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Supermassive black hole binaries (SMBHBs) are expected to be detected by the future space-based
gravitational-wave detector LISA with a large signal-to-noise ratio (SNR). This prospect enhances the
possibility of differentiating higher harmonics in the inspiral-merger-ringdown (IMR) waveform. In this
study, we test the ability of LISA to identify the presence of different modes in the IMR waveform from a
SMBHB. We analyze the contribution of each mode to the total SNR for different sources. Higher modes,
in particular the mode (3, 3) and (4, 4), can dominate the signal observed through the LISA detector for
SMBHB of the order of 108M⊙. With Bayesian analysis, we can discriminate models with different
harmonics. While spherical harmonics are often considered orthogonal, we observe it is not the case in the
merger-ringdown phase observed by LISA. Omitting harmonics not only diminishes the SNR but can also
lead to biased parameter estimates. We analyze the bias for each model in a source example and quantify
the threshold SNR where we can expect the parameter bias to be comparable to the statistical error. By
computing the waveform model error with the Fisher approximation and comparing it with the posterior
distribution from our sampler results, we can evaluate the veracity of the analytical bias, which converges
with the sampler results as more harmonics are introduced. To conclude, SMBHB events with SNR of a few
hundred, as expected in LISA, are required to use templates with at least modes (2, 2), (2, 1), (3, 3), (3, 2),
(4, 4), (4, 3) to estimate all intrinsic parameters correctly. Our work highlights the importance of higher
modes to describe the gravitational waveform of events detected by LISA.

DOI: 10.1103/PhysRevD.108.044053

I. INTRODUCTION

In the next decade, the Laser Interferometer Space
Antenna (LISA) [1,2] will leave Earth on the quest to find
new gravitational-wave (GW) sources. The most intense
signals are expected to result from the coalescence of super-
massive black hole binaries (SMBHBs). The predicted rate
depends on the population and evolution model [3] and
vary from 1 to 100 per year with a signal-to-noise ratio
(SNR) ranging from a few tens up to thousands [4]. These
high-SNR sources allow testing general relativity (GR)
with black hole binaries (BHBs). One way to put Einstein’s
theory to the test with black hole binary coalescences is
to probe the no-hair theorem [5,6] through the study of
quasinormal modes (QNMs) [7].
After two compact objects have merged into one, a final

black hole (BH) in a perturbed state is expected to be
obtained. As it stabilizes to quiescence during the ring-
down regime, it will emit gravitational radiation that can
be described as a superposition of sinusoidal oscillations
decaying over, i.e., the QNMs [8–11]. Each QNM has an

associated complex frequency labeled by ðl; m; nÞ, includ-
ing polar, azimuthal, and overtone indices. In GR, these
solutions are entirely determined by the final black hole’s
mass and spin ðMf; afÞ [12,13]. Nonetheless, the corre-
sponding amplitude and phase of each oscillation depend
on the characteristics of the progenitors (the initial BHs)
and their relative orientation toward the observer [14,15].
The spin-weighted “spheroidal” harmonics are the

eigenfunctions of the ringdown. They can be projected
into spin-weighted spherical harmonics, which are the
basis of numerical relativity (NR) (see Eq. (3.7) in [8],
also see [16–18] for further information and mixing of the
modes). This representation is conventionally used to
describe the full inspiral-merger-ringdown (IMR) wave-
form, as it is done, for instance, in phenomenological
models, where only the fundamental overtone (n ¼ 0) is
included in each spherical harmonic in the ringdown
regime. From now on, we will refer to spin-weighted
spherical harmonics components of the IMR waveform
as modes and will index them by their mode numbers
ðl; mÞ. The response of LISA can be included as a transfer
function in the frequency domain separately for each
mode, allowing us to produce fast phenomenological*chantal.pitte@cea.fr
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IMR waveforms [19–21] with the appropriate instrumental
response [22].
Investigating the role of higher harmonics in SMBHB

signals is essential because of the high SNR these events
will have in LISA. The analysis of such strong signals will
be sensitive to many subdominant features in the waveform
and, in particular, to higher harmonics beyond the dominant
(2, 2) mode. Modes with different m are often considered
orthogonal since their phases scale differently with the
orbital phase as mϕorb, leading to destructive interference.
In LISA, this is no longer the case for the merger-ringdown
phase, where a large SNR is accumulated over only a
few wave cycles. Cross-terms of the harmonics yield an
SNR contribution in the likelihood, which can also affect
the parameter inference. Thus, the absence of higher
harmonics in the template will induce biases in the
parameter estimation.
The correct estimation of the parameters of the full

waveform is crucial, in particular, to test the no-hair
theorem. There are two main approaches to probing the
no-hair hypothesis. The first one uses two QNM parameters
to find the “hairs” of the final BH, i.e., final mass and spin
ðMf; afÞ, while a third QNM parameter, or preferably
more, are used to check for consistency [7,23]. The second
approach compares the estimated final parameters from the
full IMR or pre-merger waveform with those obtained from
only the ringdown [24]. Their inequality can be understood
as a possible deviation from GR. Note that in the latter case,
the measure of only one harmonic is necessary to test the
hypothesis. A third method called the “merger-ringdown”
test has recently been proposed to check for consistency
between both regimes. In the same line as the previous
method, it is based on the relation of the amplitude and
the phase of the QNMs with the properties of the progeni-
tors [25]. To test the hypothesis with any method, one
should know the intrinsic parameters with enough accuracy
and precision. They include the total mass M, the mass
ratio q, and the individual spins Si of the initial BHs. With
the progenitors’ parameters, one can compute the values
of final mass and spin ðMf; afÞ (see, e.g., [19,26]) thus
allowing one to perform BH spectroscopy, i.e., the study of
the BH harmonics. Nonetheless, one should also determine
the extrinsic parameters from the IMR or premerger
inference to analyze the ringdown regime.
Several analyses of black hole spectroscopy have been

proposed over the years [13,27–31]. The work from [23]
was the first to use Bayesian analysis to study deviations
from GR in the context of the first method; but also
see [32,33]. Concerning the second approach, studies of the
detectability of overtones (n ≥ 1) or higher angular modes
(l, m ≥ 2) have been performed by the LIGO-Virgo-Kagra
(LVK) collaboration as well as by other authors [24,34–39].
Tension between different authors is observed regarding
the presence of higher modes for the detected event
GW150914 [40]. We recommend however to read [41]

for a thorough analysis on the detectability of the overtones.
The effective-one-body (EOB) formalism [42–44] (full
IMR waveform for spinning or nonspinning binaries)
was also adapted to study possible deviations from GR,
namely pSEOBNR and pEOBNR [45,46], for events
in the LVK frequency range. To the best of our know-
ledge, the full LISA response (including high-frequency
effects) has not been taken into account to study ringdown
signals.
In this study, we evaluate our ability to identify and

differentiate modes of a plausible source detected by LISA
and investigate the possible consequences of ignoring
modes. To this end, we make use of the software lisa-
beta [47], which incorporates LISA’s response to the
source waveform, as described in Sec. II. We continue
explaining the study methodology in Sec. III. In Sec. IV,
we analyze the contribution of the modes to the total SNR
for general cases. Then we focus on the impact of mode
contributions on estimating parameters for a specific
event in Sec. V. We also analyze the errors from using
an incorrect template relative to the source SNR. Finally,
we summarize our conclusions in Sec. VI.

II. SUPERMASSIVE BLACK HOLE
WAVEFORMS IN LISA

To study signals observed by LISA, we must incorporate
its instrumental response to the GW signature produced
by an event. We use the lisabeta software developed
for this purpose, which accounts for several instrumental
effects in LISA. We review the main features implemented
in lisabeta that are particularly interesting to our study
in the following subsections. More detailed information can
be found in [22].

A. Waveform in the source and detector frames

We generate the SMBHB waveform with Phenom-
HM [21], a phenomenological approach based on
PhenomD [19,20] for nonprecessing binaries. In addition
to the dominant quadrupole ðl ¼ 2; m ¼ 2Þ, higher modes
are introduced, including ðl; mÞ ¼ ð2; 1Þ, (3, 3), (3, 2),
(4, 4), (4, 3). Incorporating these higher harmonics brings
crucial complementary information, not only to the ring-
down part of the signal but also to the inspiral and merger,
which has been shown to narrow down the posterior of
extrinsic parameters in the inference [48–53].
The gravitational-wave signal can be decomposed in

spin-weighted spherical harmonics −2Ylm, which depend
on the orientation of the emission parametrized by the
inclination { and the phase φ. The polarizations hþ and h×
of a GW are related to their harmonics by

hþ − ih× ¼
X
l≥2

Xl

m¼−l
−2Ylmð{;φÞhlm; ð1Þ
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where each mode can be described in terms of an
amplitude Alm and a phaseΦlm that depends on the intrinsic
parameters of the source

hlm ¼ Alme−iΦlm : ð2Þ

In the frequency domain, nonprecessing binary systems
have an advantageous symmetry relation between pro-
grades and retrogrades modes (m and −m). It allows us to
describe each polarization as

h̃þ;×ðfÞ ¼
X
l

X
m>0

Kþ;×
lm h̃lmðfÞ; ð3Þ

where we introduced

Kþ
lm ¼ 1

2
ð−2Ylm þ ð−1Þl−2Y�

l−mÞ; ð4aÞ

K×
lm ¼ i

2
ð−2Ylm − ð−1Þl−2Y�

l−mÞ: ð4bÞ

The GW strain in the traceless-transverse gauge is
expressed as

hTT ¼ eþhþ þ e×h×; ð5Þ

where eþ;× are the polarization tensors,

eþ ¼ u ⊗ u − v ⊗ v; ð6aÞ

e× ¼ u ⊗ v þ v ⊗ u: ð6bÞ

Vectors v and u together with the propagation vector k in
spherical coordinates locate the source in the observational
frame,

u ¼ fsin λ; cos λ; 0g; ð7aÞ

v ¼ f− sin β cos λ;− sin β sin λ; cos βg; ð7bÞ

k ¼ f− cos β cos λ;− cos β sin λ;− sin βg: ð7cÞ

with ðβ; λÞ as the ecliptic latitude and longitude.
Combining previous equations, we obtain the final

expression

h̃TTðfÞ ¼
X
l;m

Plmh̃lmðfÞ; ð8Þ

where

Plm ¼ eþKþ
lm þ e×K×

lm

¼ 1

2
½−2Ylmðeþ þ ie×Þe−2iψ

þð−1Þl−2Y�
l−mðeþ − ie×Þe2iψ �: ð9Þ

Note that Plm depends not only on ðl; mÞ and ð{;φÞ due to
the spherical harmonics, but also on the parameters defin-
ing the reference frame, such as the sky localization ðβ; λÞ
and the polarization ψ .

B. LISA response

The LISA constellation comprises three spacecraft (S=C)
deployed triangularly. As a GW travels across one arm of
the constellation, the detectors at both ends of the arm will
read the frequency shift between the sent and received
signals. This response is known as the link response. One
advantage of this triangular setup is that it allows for
forming multiple interferometers with different combina-
tions of the links. Each link response is defined as

yrsðtrÞ ≃
1

2ð1 − k̂ · n̂rsðtrÞÞ
½Hrsðtr − LrsðtrÞ

− k̂ · xrðtrÞÞ −Hrsðtr − k̂ · xsðtrÞÞ�; ð10Þ

where we used c ¼ 1. The position of the S=C is designated
by xr;s where the subindex s stands for the sender, while r
stands for the receiver. Note the ordering of those indices,
which follows the last convention adopted in [54]. Their
values go from 1 to 3, indexing the three S=C. Therefore six
combinations are produced, resulting in six different links.
The unit vector k̂ defines the direction of propagation of
the GW, while n̂rs is the direction of the beam. Finally, Lrs
is the arm’s length between the two S=C, and Hrs is the
source’s gravitational strain projected into the arm,

HrsðtÞ ¼ ðhþðtÞ cos2ψ − h×ðtÞ sin2ψÞn̂rsðtÞ · eþ · n̂rsðtÞ
þ ðhþðtÞ sin2ψ þ h×ðtÞ cos2ψÞn̂rsðtÞ · e× · n̂rsðtÞ:

ð11Þ

The constellation as a whole will follow Earth in the
same orbit. However, each S=C will follow its own orbit
around the sun and within the constellation. The orbital
motion translates into a time variation in the orientation
of the detector relative to the solar system barycenter
frame (SSB). Note that this introduces modulations on the
signal observed by LISA, as is noticeable from the
explicit time-dependent prefactors and delays in the instru-
mental response given by Eqs. (10) and (11). In LISA’s
frequency band, the observation of SMBHBs can last
from days to months, depending on the total mass and
frequency evolution. Therefore, their waveform can be
strongly affected by these modulations. Additionally, in the
postprocessing, beams are combined in the time-delay

DETECTABILITY OF HIGHER HARMONICS WITH LISA PHYS. REV. D 108, 044053 (2023)

044053-3



interferometry (TDI, see Refs. [55,56] and Sec. II B 1) to
cancel laser frequency noise. As a result, the time delays
and their variations leave an imprint in the measured signal.

1. TDI and frequency-domain formulation

Time delay interferometry was first proposed by
Armstrong, Estabrook, and Tinto [57] as a solution to
cancel the dominant noise produced by fluctuations in the
laser frequency. The idea is to combine the links linearly
with an adequate time delay to eliminate laser frequency
noise. Different combinations have been proposed depend-
ing on the characteristics of the constellation. We can find
what is known as a first-generation Michelson interferom-
eter (TDI 1.5) for a stationary unequal-arm constellation
and a second-generation Michelson interferometry (TDI
2.0) for a rotating unequal- and flexing-arm constellation.
Note that any actual constellation will have flexing arms,
which prompted the development of TDI 2.0.
It was shown (see e.g., [22]) that it is possible to

approximately express the response of the links in terms
of the harmonics in the frequency domain as

ỹrsðfÞ ¼
X
lm

T lm
rs ðfÞh̃lmðfÞ; ð12Þ

where T lm
rs ðfÞ ¼ Glm

rs ðf; tlmf Þ is a kernel carrying informa-
tion on the modulation and time-delay of the links
response. It is defined as

Glm
rs ðf; tÞ ¼

iπfLrs

2
sinc½πfLrsð1− k̂ · n̂rsðtÞÞ�

· eiπfðLrsþk̂·½xrðtÞþxsðtÞ�Þn̂rsðtÞ · Plm · n̂rsðtÞ: ð13Þ

The frequency-domain response can be obtained thanks to
a generalized relation giving a time-to-frequency corre-
spondence. This relation extends the one found within
the stationary phase approximation (SPA) [58,59], which
applies only to the slowly evolving inspiral signal, to the
merger-ringdown part of the signal. It reads [22,52]

tlmf ≡ −
1

2π

dΦlm

df
; ð14Þ

where Φlm is the phase of each mode (l; m).
To simplify the transfer function in the frequency

domain, some assumptions were made:
(i) the constellation forms an equilateral triangle, then

the arms will remain equal and constant;
(ii) L12 ¼ L21, i.e., the arm length is similar in both

directions since the relative motion of the beam
relative to the S=C (also known as the pointing-
ahead effect) is not taken into account.

With these assumptions and after factoring out several
terms, we can write the response in terms of channels
A, E, T; the optimal linear combinations of Michelson

variables [60] that are approximately orthogonal relative to
the noise. They read

Ã ¼ i
ffiffiffi
2

p
sinð2πfLÞ
e−2iπfL

½ð1þ zÞðỹ13 þ ỹ31Þ
− ỹ32 − zỹ23 − ỹ12 − zỹ21�; ð15aÞ

Ẽ ¼ i
ffiffiffi
2

p
sinð2πfLÞffiffiffi
3

p
e−2iπfL

½ð1 − zÞðỹ31 þ ỹ13Þ

þ ð2þ zÞðỹ21 − ỹ23Þ þ ð1þ 2zÞðỹ12 − ỹ32Þ�; ð15bÞ

T̃ ¼ 4 sinðπfLÞ sinð2πfLÞffiffiffi
3

p
e−3iπfL

½ỹ12 − ỹ21

þ ỹ23 − ỹ32 þ ỹ31 − ỹ13�; ð15cÞ

with z≡ e2iπfL.

III. METHODOLOGY

This study aims to quantify our ability to identify the
presence of different modes in a SMBHB event detected
by LISA. We expect the detectability of the modes to be
related to the SNR itself and the relative SNR of each mode.
In this framework, there are two main parameters to
consider in the computation of the SNR: the luminosity
distance and the mass. While the distance is just a scaling
factor that affects all modes similarly, the mass (and
therefore the frequency) moves the signal to lower and
higher frequencies affecting the relative weight of the
inspiral and merger-ringdown. Since the observed signal
is characterized by the redshifted mass, we will distinguish
between the source-frame mass and the observed (red-
shifted) mass.
As an analogy to the luminosity peak in the time domain,

we use here an ad-hoc frequency-domain definition of
frequency peak as the frequency at the maximum value of
the observed rescaled TDI variable for each mode; see
Eq. (29) of [52] for a definition of rescaled TDI variables.
With the time-to-frequency correspondence in Eq. (14), this
parameter lies about 2.4tM (tM ¼ tc3=MG, adimensional
value) after the time of coalescence. In the waveform
observed by LISA, this frequency peak lies in the ringdown
regime, even though there is no clear starting point for it
(see ongoing discussion on this topic [17,31,41,61,62]).
The mass of the source will move the frequency peaks
through the spectrum so that the contribution of each mode
depends on the sensitivity of LISA at the frequency peaks.
For this reason, we study the contribution of each mode in
terms of the mass. Results are shown in Sec. IV.
Once we know the contribution of different modes in

the general case, we can focus on a specific event as an
example. The method we use to assess the detectability of
modes is Bayesian model comparison and parameter
estimation. Each model corresponds to a different
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combination of modes in generating the waveform. This
method allows us to compare different models based on
Bayes factors, as we shall see.

A. Bayesian analysis

In Bayesian analysis, the posterior distribution of
the strain parameters θ given the observed data d, is
expressed as

pðθjd;MÞ ¼ pðdjθ;MÞpðθjMÞ
pðdjMÞ ; ð16Þ

where θ are the physical parameters of the source, M is the
model (and any other context) considered, pðdjMÞ is the
evidence, pðθjMÞ the prior of the parameters (in practice
independent ofM), and pðdjθ;MÞ the likelihood. The three
latter are also usually denoted by Z, πðθÞ, and LðθÞ, as
the evidence, the prior, and the likelihood, respectively. In
the following, we drop the indication of the modelM in the
equations.
The likelihood for a Gaussian noise with a covariance

matrix C takes the form

L ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð2πCÞp e−

1
2
ðd−hðθÞÞ†C−1ðd−hðθÞÞ: ð17Þ

From now on, we drop the tilde notation for simplicity,
even though we work in the frequency domain. One
advantage of working in the frequency domain is that each
frequency bin is approximately independent when dealing
with stationary noise. The noise covariance can therefore be
diagonalized and represented by its power spectral den-
sity (PSD).
We introduce the definition of the inner product as

ðajbÞ ¼ 4Re
Z

∞

0

aðfÞb�ðfÞ
SnðfÞ

df; ð18Þ

where Sn is the noise’s PSD and b� is the complex
conjugate or b. Eq. (17) can thus be rewritten as

lnL ¼ −
1

2
ðd − hðθÞjd − hðθÞÞ þ const: ð19Þ

It can be decomposed as

lnL ¼ ðdjhðθÞÞ − 1

2
ðhðθÞjhðθÞÞ − 1

2
ðdjdÞ; ð20Þ

where the last term can be neglected since it does not
depend on the estimated parameters and represents a
multiplicative constant in the likelihood. The full log-
likelihood is a sum over the log-likelihoods of the uncorre-
lated instrumental channels A, E, T. We use an adaptive
heterodyned likelihood to speed up the likelihood

computation (see [63,64] and references therein for more
information).
Given a chosen prior, the Bayes factor is a means to

compute the preference of the data toward one model or
another. It is defined as the ratio of the evidence Z of two
models i and j

B ¼ Zi

Zj
; ð21Þ

where the evidence is the integral of the likelihood over the
whole parameter’s hyper-volume,

Z ¼
Z
Θ
LðθÞπðθÞdθ: ð22Þ

IV. STUDY OF THE MODES CONTRIBUTIONS
TO THE SNR

The SNR builds up in time and frequency and is defined
by ρ as

ρ2 ¼
X
lm

X
l0m0

X
I

4Re
Z

HI
lmðfÞHI

l0m0 �ðfÞ
SnðfÞ

df; ð23Þ

where the sum over independent channels (index I) extends
over A, E (which have the same noise PSD Sn). The
assumed PSD is drawn from the “science requirement
model” SciRDv1 [2], including the galactic white dwarf
confusion noise, subtracting sources over one year. Note
that we are using HI

lm instead of hlm, because we also
include LISA instrumental response and TDI post-
processing combining Eqs. (12)–(15). They read

Ha
lmðfÞ ¼ hlmðfÞ ·

i
ffiffiffi
2

p
sinð2πfLÞ
e−2iπfL

· ½ð1þ zðfÞÞðT lm
13ðfÞ þ T lm

31ðfÞÞ
− T lm

32ðfÞ − zðfÞT lm
23ðfÞ

− T lm
12ðfÞ − zðfÞT lm

21ðfÞ�; ð24aÞ

He
lmðfÞ ¼ hlmðfÞ ·

i
ffiffiffi
2

p
sinð2πfLÞffiffiffi
3

p
e−2iπfL

· ½ð1 − zðfÞÞðT lm
31ðfÞ þ T lm

13ðfÞÞ
þ ð2þ zðfÞÞðT lm

21ðfÞ − T lm
23ðfÞÞ

þ ð1þ 2zðfÞÞðT lm
12ðfÞ − T lm

32ðfÞÞ�; ð24bÞ

where zðfÞ ¼ e2iπfL. For convenience, we use the notation
of inner product for modes,

ðlmjl0m0Þ ¼
X
I

4Re
Z

HI
lmðfÞHI

l0m0 �ðfÞ
SnðfÞ

df: ð25Þ
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Then the squared SNR can be written as

ρ2 ¼
X
lm

X
l0m0

ðlmjl0m0Þ: ð26Þ

In Eq. (25), the cross-terms ðlmjl0m0Þ have no reason to
be positive and can contribute negatively to the total SNR.
In other words, the phases can be constructive or destruc-
tive, which depends on the values of the ecliptic latitude
β and longitude λ, the inclination {, the phase ϕ, the
polarization angle ψ and the mass ratio q. An illustration of
this outcome can be seen in Fig. 1. For this example, we use
the parameters written in Table I with a redshifted total
mass of ∼2.44 × 106M⊙. In Fig. 1, we show the ð22jl0m0Þ
cross-terms of the accumulated squared SNR ρ2 varying
between positive and negative values depending on the
frequency. After a certain point, it remains constant since
there is no more contribution to the SNR, either positive or
negative. This happens at a different frequency for each pair
of modes. We plot the frequency peak of the (2, 2) mode
with a dotted black line as a guide.

A. Dependency on mass and frequency

The next natural step to understanding the detectability
of modes is to analyze the contribution of each pair of
modes to the total SNR for different sources. In general, the
SNR depends on all parameters of the source. To simplify
our analysis, we fix most parameters to arbitrary values
(listed in Table I) and let the mass vary. Note that the
results, particularly the details of the hierarchy between
modes and cross-terms, might depend on this choice of
parameters. For each source’s total mass and each fre-
quency bin, we compute the accumulated SNR for each
mode and normalize it to the total SNR. Since the ratio of
the total mass over the luminosity distance increases for
higher masses, the normalization allows us to compare the
contribution of each mode regardless of their absolute
SNR value.
We gather the results in a set of plots in Figs. 2(a) and

2(b). Each panel of the figure corresponds to a mode and
shows the squared SNR dependence on both the source
mass and the observed frequency. Then, for a given mass,
we can observe how the squared SNR accumulates in
frequency for each pair of modes. Each set of plots has its
color bar where warmer colors correspond to larger
accumulated SNR contributions. The numbers at the right
of the bars represent the contribution ratio of each pair
of modes to the total squared SNR ρ2. Note that we use
squared SNR instead of SNR so that the sum of all
contributions is equal to 1. This choice also allows us to
highlight the negative contributions we mentioned before
and their direct impact on the likelihood [see Eqs. (20)
and (26)]. That said, the most noticeable feature is the
positive contribution of the square terms ðlmjlmÞ over all
the frequencies, while in contrast, the cross-terms ðlmjl0m0Þ
can have negative contributions. We decided to plot the
frequency peak of the (2, 2) mode (diagonal dotted line) as
a mapping guide since the contribution to the SNR changes
considerably in the merger-ringdown regime. Depending
on the mode, the SNR variation will start before or after this
frequency line.
In the left plot of Fig. 2(a), we note that the contribution

of ð22j22Þ to ρ2 is between 80% to 94% of the total, up to
masses ∼4 × 106M⊙, while it decreases to 30% around
masses of ∼108M⊙. The rectangular darker area at the
bottom right, between frequencies [10−3 − 5 × 10−2] Hz
and masses ½105 − 2 × 106�M⊙, indicates that most of the
SNR comes from the inspiral part. This is expected since
the waveform peaks outside or at the limit of the LISA
frequency band. The pair ð33j33Þ (in the center) has a small
contribution for low masses but exhibits a considerable
increase up to 21% for high masses around 108M⊙. Finally,
the case of ð44j44Þ (right plot) shows a similar behavior but
is augmented by a factor ∼2.5, representing about 54% of
the total SNR for large-mass SMBHBs. In other words,
if the redshifted total mass of the system is larger than

FIG. 1. Contribution of cross-terms ð22jl0m0Þ to ρ2. We can
observe how the cumulative squared SNR changes from positive
to negative values and vice-versa until after the ringdown, where
it remains constant. The frequency peak of the mode (2, 2) is
shown here for guidance. Each mode peaks at a different
frequency, so the stabilization period starts at a different point
for each pair of modes.

TABLE I. Source parameters in SSB frame with aligned spins
and redshifted masses.

Parameter Value Parameter Value

Mass (M⊙) ½105; 5 × 109� β (rad) π=2
q (Mass ratio) 2 λ (rad) π
χ1 0.5 ϕ (rad) π=2
χ2 0.5 ψ (rad) π=2
redshift 3 { (rad) π=3
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FIG. 2. Cumulative contribution to the squared SNR of pairs of modes depending on the total redshifted mass. In the top row, we find
the square terms with the largest ratios. The quadrupolar square term represents most of the contribution for low-mass sources, while it
slowly decreases for more massive ones. The opposite happens for terms ð33j33Þ and ð44j44Þ albeit to a smaller extent. We show the
cross-terms in the last two rows. They oscillate between ∼1% and 5%, especially near the ringdown, illustrated with a dotted line for the
mode (2, 2) as guidance. This percentage can represent an SNR of tens for a total SNR of thousands.
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108M⊙, the contribution of the quadrupolar mode will no
longer predominate. It can represent half of the mode (4, 4)
and only a factor of 1.5 bigger than the mode (3, 3). This
highlights the importance of including higher harmonics to
describe SMBHB signals.
The second set of plots in Fig. 2(b) shows the pairs of

modes that make the highest contributions to the squared
SNR, representing approximately from 1% to 5% of the
total. This percentage might seem small, but for SMBHBs
with a total SNR of 1000, the cross-term contribution can
be from 10 to 50. Those contributions are even higher than
other square terms not shown here. Even though the
contributions can be negative, we use their absolute value
for comparison. The reason is that the sign depends on the
extrinsic parameters and the mass ratio, which vary from
source to source, but are fixed here to arbitrary values for
the sake of an illustration.
The position of the mode’s frequency peak relative to the

LISA sensitivity curve is driven by the event mass.
Therefore, the SNR of higher modes can become more
relevant than the (2, 2) mode for large mass events.

B. Dependency on source mass and redshift

To represent the impact of the mass and the distance on
the SNR, as mentioned in Sec. III, we show in Figs. 3(a)
and 3(b) the contour plots for different modes depending on
the total mass in the source frame. We choose a source with
parameters listed in Table I for the sake of an illustration.
However, the contributions would change with different
parameters. Note that the lower bound of the total SNR is
10, which is the adopted threshold for SMBHB detection
in LISA [1,2].
In these figures, we can see the high contribution of the

square terms jðl; m ¼ ljl; m ¼ lÞj1=2 as well as the highest-
contributing cross-terms such as jð22j21Þj1=2, jð22j32Þj1=2
and jð33j32Þj1=2. The complete array of pairs of modes is
shown in Fig. 11 of Appendix. The pairs jð22j33Þj1=2 and
jð22j32Þj1=2 exhibit a drop in SNR for systems with a total
source mass around 106M⊙, depending on the redshift.
This effect results from the specific choice of parameters of
the source we study. It is also visible in Fig. 1, where some
cross-terms have a null cumulative contribution to the total
squared SNR.
We also investigated the effect of the mass ratio on

mode SNR by performing the same analysis, observing the
SNR cancellation expected for equal-mass systems (see
Appendix). Contour plots are shown in Fig. 10 also in
Appendix.

V. EXAMPLE OF BAYESIAN ANALYSIS

A. Data and models

To understand the impact of higher modes in the
parameter inference, we inject a SMBHB source signal
with 6 modes. The parameters used to generate this source

were taken from the LISA Data Challenges (LDC)
Sangria’s catalog [65], and detailed in Table II, where
the subscript L in the extrinsic parameters means that it is
expressed in the LISA frame at the time of coalescence tc.
We also use the redshifted chirp mass Mc and mass ratio
q ≥ 1 instead of the individual masses. The parameters χi
represent the aligned (nonprecessing binaries) BH’s dimen-
sionless spin and DL is the luminosity distance.
Two datasets were considered, one without noise and

another with noise. The noise was generated with the PSD
assumed in Sec. IV. Each dataset includes two TDI
channels, A and E. In both cases, we restricted the
frequency band to the interval ½10−5 − 5 × 10−2� Hz and
ran a nested sampling algorithm to estimate the source
parameters for various models. We chose the sampler
dynesty [66], as it allows us to obtain approximate
evidence estimates [see Sec. III A and particularly
Eq. (22)]. As a consistency check, we also ran ptemcee,
a parallel-tempered Markov Chain Monte Carlo ensemble
sampler [67,68]. We obtained consistent results with the
two samplers, with a slightly better convergence for
ptemcee (which does not allow for direct evidence
computation, however). We report dynesty results in
the following.
We consider six models for the parameter estimation,

where each one describes the waveform with a certain
number of modes. The first model generates the gravita-
tional signature with only the quadrupolar mode (2, 2). The
other models (see Table III for models’ definition) include
an increasing number of higher harmonics, ranked by their
SNR contribution ðlmjlmÞ, as observed in Fig. 3(a). This
amounts to first selecting successive ðl; m ¼ lÞ modes with
increasing l and then the ðl; m ¼ l − 1Þ modes.
The priors we use are flat for all parameters in the

intervals written in Table II, except for the chirp mass,
which has a uniform prior in logarithmic scale. We use the
whole physically allowed interval for the extrinsic param-
eters, while we use a raw estimation of the expected values
for the intrinsic ones. We use a narrow prior for the
coalescence time as it can easily be spotted in the detection
process but with a difference of up to 600 seconds between
the LISA and the SSB reference frame. Note that the
polarization ψ is allowed to go from 0 to π (and not 2π) to
prevent parameter degeneracy, given that in the antenna
pattern, the polarization is always preceded by a factor 2 as
shown in Eq. (9).

B. SNR and Bayes factor

Before presenting the Bayes factor and parameter esti-
mation results, we discuss our expectations regarding the
contribution of modes. Our example considers a source
event randomly chosen from the LDC Sangria’s catalog
with a SNR ∼ 744 (see Table II). Converting the redshifted
total mass to the source-frame total mass with a redshift of
4.3, we obtain the value of 2.28 × 105M⊙. Using Fig. 3,
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FIG. 3. Contour plot for the root squared absolute cumulative value of contributions jðlmjl0m0Þj1=2. The dotted line corresponds to the
total SNR with a ≥ 10 threshold, plotted here for comparison. We remark the subdominant contribution of jð33j33Þj1=2 and jð44j44Þj1=2
after the quadrupolar square term. Note the 0-contributions in some cross-terms due to representing a single system with fixed
parameters. The complete array for all contributions is plotted in Fig. 11 of the Appendix.
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with this source-frame mass, we can expect the term
ð22j22Þ to be the dominant contributor, whereas the rest
of the SNR will come from ð33j33Þ and ð44j44Þ and the
cross-terms ð22j21Þ and ð22j32Þ. This is a simple estima-
tion since the source parameters are not precisely the same
as the ones listed in Table I.
The actual contribution from each pair of modes is

plotted in Fig. 4, where we show the squared SNR
contribution for each pair of modes for the full IMR signal
of our example source. Both axes correspond to the modes,
so the intersection represents the pair of modes ðlmjl0m0Þ.
In the diagonal of the matrix, we find the square terms,
while in the upper and lower triangle, we encounter the
symmetric cross-terms. The value in each box indicates the
squared SNR of each pair, whose absolute value is shown
by the color bar. We can observe that the pair ð22j22Þ
indeed accounts for the largest contribution as expected,
followed by the pairs ð22j21Þ, ð33j33Þ, and ð22j33Þ. The
color gradient we observe when descending in the diagonal
line is a consequence of the hierarchic ordering of modes.
One striking difference with Fig. 3 is the high contribution
of ð22j21Þ when compared to ð33j33Þ, showing that the
details of the mode contributions will vary for different
sources with different intrinsic and extrinsic parameters.

Even if the final value of a mode’s SNR is small for the
complete IMR signal, it does not mean that its impact is
negligible in relative terms everywhere in frequency,
particularly in the pre-merger phase. This feature can be
observed in Fig. 5, where we represent the squared SNR
absolute value as a function of the frequency. The pairs’
contributions are separated into groups to make the figures
readable. We can see how some terms dominate in their
group below a frequency that approximately corresponds to
the merger, after which they later decrease. This happens
for the pair ð22j32Þ in the top-right figure or ð21j32Þ in
the bottom-left figure. Thus, statements about modes’
relative importance generally depend on the total accumu-
lated SNR.
To quantify our ability to identify the presence of modes,

we compute the Bayes factor using the dynesty sampler.
We compare all the models Mk with k ¼ 1;…; 5 with M6.
The results gathered in Table IV show clear negative values
for all of them. This means the model with 6 modes is
preferred and describes the data better than all other
models, as expected. Even the value of −84 (−100 with
noise) shows a significant preference for the modelM6 over
M5, where only the mode (4, 3) is absent. Thus, even the
weakest modes in our setting should be identified as present
in the data, which indicates that LISA observations will be
capable of identifying waveform modes beyond the ones
available in current waveform models. This result advo-
cates using waveforms with all available higher harmonics
to capture all the physics in LISA signals and further
developing waveforms with higher mode contents. In the
following section, we investigate whether ignoring these

TABLE II. Parameters of the SMBHB source with SNR 744
chosen from Sangria’s LDC catalog for redshifted mass without
precession, along with the flat priors intervals used in the
inference.

Parameter Value Prior

Mc (M⊙) 857080.8396 ½104; 5 × 107�
q 2.7589 [1, 10]
χ1 −0.5488 ½−1; 1�
χ2 0.2317 ½−1; 1�
DL (Mpc) 40084.6792 ½104; 5 × 106�
tc (s) 0.0 ½−600; 600�
βL (rad) −0.6186 ½−π=2; π=2�
λL (rad) 2.2782 ½0; 2π�
ϕ (rad) 0.2492 ½−π; π�
ΨL (rad) 1.5158 ½0; π�
{ (rad) 2.5969 ½0; π�

TABLE III. Each model is indexed according to the number of
modes included in the waveform generation.

Model Modes (l; m)

M1 (2, 2)
M2 (2, 2), (3, 3)
M3 (2, 2), (3, 3), (4, 4)
M4 (2, 2), (3, 3), (4, 4), (2, 1)
M5 (2, 2), (3, 3), (4, 4), (2, 1), (3, 2)
M6 (2, 2), (3, 3), (4, 4), (2, 1), (3, 2), (4, 3)

FIG. 4. Final value of squared SNR of each pair of modes
ðlmjl0m0Þ for our example. Note the positive values for the square
terms and the decreasing values in the diagonal. In contra-
position, note the negative values for pairs with different “m”
except for cross-terms ð22j21Þ and ð44j32Þ. An interesting result
is the relatively high value of ð22j21Þ, the second highest value.
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weaker higher modes would produce biased parameter
estimation results.

C. Posterior and parameter bias

To assess the impact of the mode’s contribution on
the estimation of the parameters, we show in Fig. 6 the
posterior distribution of the logarithm of the chirp mass
logMc, the mass ratio q and individual adimensional spins
χ1, χ2. Note that these parameters are relevant to the
description of the remnant BH (see Sec. I and [19,26]).
The complete array of the parameter’s posterior distribution
can be found in Fig. 12 in Appendix.
We show here the six models for comparison. Intersected

black lines represent the true values, and each model’s

posterior distribution is distinguished by the color code
indicated in the legend. The parameter estimation for the
model with only the quadrupolar mode (green color) leads
to biased estimates. As we increase the number of har-
monics in the models, the parameter posterior means get
closer to the injected values. We observe that the posterior
of model M6 (in blue) is centered on the true value for all
parameters, which is expected since the signal is injected
and recovered with the same model. By comparing models
with 3 and 4 modes (M3 and M4, orange and pink,
respectively), we observe a better estimation of spin
parameters when the mode (2, 1) is included in the
waveform (model M4). This observation is consistent with
the large relative contribution of ð22j21Þ indicated by
Fig. 4. The explanation of the importance of the (2, 1)
mode and whether this is generic or specific to our example
source are left for future investigations. Note that
PhenomHM generates the inspiral phase of the waveform
with post-Newtonian approximation, however, the SNR is
dominated by the late-inspiral-merger regime.
In Table V, we list the parameter’s injected values and the

estimated values, with models M1 and M6 in the presence
and absence of noise. The super- and subscripts indicate
the 68% confidence interval. In both cases, i.e., with and
without noise, the model featuring only the dominant

FIG. 5. Cumulative contribution to the squared SNR (in absolute value) of different pairs of modes depending on the frequency. The
upper left figure shows the contribution of the square pairs, where we can see the quadrupolar making the higher contribution. All the
other figures show cross-terms, from where we can highlight the contribution of the quadrupolar mode with higher modes ð22jl0m0Þ,
which are predominant over other cross-terms.

TABLE IV. Bayes factor for all models compared to the
injected model.

Bayes factor Noiseless dataset Noisy dataset

logðZ1=Z6Þ −6845 −6873
logðZ2=Z6Þ −976 −1015
logðZ3=Z6Þ −237 −259
logðZ4=Z6Þ −109 −134
logðZ5=Z6Þ −84 −100
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FIG. 6. The six models with different numbers of modes are represented here. The posterior of the model M6 (blue) finds the true
values with high accuracy, while other models tend to induce biases, especially for spin parameters. In the bottom figure, we see how the
introduction of noise does not decrease our ability to find the true values with 6 modes for this particular source.
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quadrupole mode is inaccurate in finding the true values.
In contrast, the estimated mean value with all modes is
consistent with the injection. Surprisingly, the values
obtained with the noisy data and the M6 template appear
closer to the injection than the ones obtained without noise.
Note that the posterior distributions are not perfectly
Gaussian and the mean value can be shifted due to tails.
We performed another run with a different realization of the
noisy data, obtaining similar results as the data without
noise. The evidences we obtained with both noisy reali-
zation encompass the evidence obtained the data without
noise. Therefore, we interpret this particular result as a
fortuitous outcome of statistical fluctuations. In conclusion,
for the medium-SNR and medium-mass case that we study
(see Fig. 4), the absence of higher modes would already
result in biased estimated values. These biases would only
get worse for higher-SNR and higher-mass systems.
In Fig. 7, we illustrate the impact of the parameter biases

on the reconstruction of the post-merger waveform. We
randomly select 200 samples from posterior distributions
obtained with models M1, M3, and M6 and generate the
waveform in the time domain with the same model.
Fig. 7(a) serves as a visual representation of the amplitude
and phase from the results obtained by each model. We
cannot distinguish individual lines due to the small stat-
istical error: the posteriors are centered around biased
parameters but with a small dispersion. The waveform
reconstruction would therefore be “confidently wrong”.
Trying to infer a ringdown analysis with IMR information
from biased analyses would presumably raise issues. If we
compare M3 and M6 (in orange and blue, respectively),
enlarging the image, we see visible differences in the post-
merger phase. This feature, consistently with the significant
Bayes factor for model M6 over model M3, highlights the
contribution of less dominant modes such as (2, 1), (3, 2),
and (4, 3).
One of the tests looking for deviations from GR in

ringdown signals consists in comparing the final mass and
spin inferred from the ringdown signal with the values
derived from the IMR posteriors using formulas fitted on
numerical relativity; the consistency between the two
estimates is the focus of the test. We do not perform a
ringdown analysis here. Still, we illustrate in Fig. 7(b) how
the parameter biases found in our IMR parameter estima-
tion would translate into erroneous mass and spin. Using

the same fitted formulas as in PhenomHM [21] (see
Eqs. (3.6)–(3.8) in [19]), we derived the final mass and
spin for 2000 randomly distributed points within the
posterior distribution for each model. The IMR parameter

TABLE V. Estimated value for models M1 and M6, for the two datasets, without and with noise.

Parameter True value
Estimated value

with M1 (noiseless)
Estimated value

with M6 (noiseless)
Estimated value

with M1 (with noise)
Estimated value

with M6 (with noise)

logMc (M⊙) 5.93302 5.93371þ0.00019
−0.00016 5.93303þ0.00010

−0.00010 5.93374þ0.00019
−0.00016 5.93304þ0.00009

−0.00010

q 2.759 2.411þ0.012
−0.011 2.751þ0.019

−0.021 2.414þ0.012
−0.012 2.759þ0.013

−0.023
χ1 −0.549 −0.890þ0.009

−0007: −0.559þ0.016
−0.024 −0.888þ0.009

−0.008 −0.549þ0.011
−0.021

χ2 0.232 0.996þ0.004
−0.019 0.261þ0.064

−0.043 0.996þ0.004
−0.018 0.231þ0.057

−0.030

FIG. 7. Illustrative effect of biased parameters in the ringdown.
In the top figure, we see waveforms generated with the same
model as the one used in the inference, obtained from 200
posterior samples for three models θ̂ðM1;3;6Þ. We can see the
consistency of the models with the injection, albeit its parameter
bias. The bottom figure shows the mass and spin of the remnant
BH derived from each set of parameters for all models (colored
dots) and the true value (crossing black lines). This is a visual
representation of the impact of biased parameters on the
remnant BH.
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biases would translate into significantly biased Mf and af.
In this figure, the addition of higher modes shows no clear
trend for the final mass, but we can appreciate how the
introduction of weaker higher modes helps to obtain a more
accurate final spin for the remnant BH. Those models are
M4, M5, and M6, in pink, purple, and blue, respectively. It
is worth mentioning the scattered distribution ofM5, which
is the result of the bimodal distribution of individual spins
(see Fig. 6).

D. Modeling error and SNR dependency

The magnitude of the bias on each parameter depends
on the SNR and on the template waveform used for the
inference, hence on the model Mk (with k ¼ 1;…; 6). To
properly analyze this issue, we introduce some definitions.
Within the Fisher approximation, valid in principle in
the high-SNR limit, the statistical error in each parameter
σθ produced by the noise for a given waveform is
determined as

σθi ¼
ffiffiffiffiffiffiffi
Γ−1
ii

q
; ð27Þ

where Γij ¼ ð∂h
∂θi

j ∂h
∂θj
Þ is the Fisher information matrix.

In this framework, the statistical error scales directly
as SNR−1.
The bias ΔθðMkÞ or “modeling error” due to the use of

an incorrect template is defined as [69]

Δθi ¼ θ̂0i − θ̂temp
i ¼

X
j

Γ−1
ij ðθkÞ

�
∂hk
∂θj

jδhk
�
; ð28Þ

where k refers to model Mk, with k ¼ 1;…; 5 and
δhk ¼ h0 − hk is the difference between the true waveform
and the template waveform with model Mk. The template
model corresponds to waveforms generated with the modes
defined in Table III, so δhk is simply the sum of the
ignored modes.
If the statistical error σθ is larger than the error produced

using an incorrect template ΔθðMkÞ, one can consider the
bias irrelevant. On the contrary, if the statistical error is
smaller than the modeling error, the waveform model is
not sufficiently accurate to describe the data, and the bias
becomes relevant.
We first check in Fig. 8 whether the bias observed in the

posterior distributions is consistent with the value obtained
from the approximate Fisher bias formula in Eq. (28). We
show the bias from each model (black dot) and the error
distribution obtained from the sampler (in colors) for
intrinsic parameters. In the case of M1, we observe that
the Fisher bias is much larger than the one found by
sampling for all parameters, sometimes lying outside the
plot. For adimensional spins, this may be because their
values are limited to the interval [−1, 1] in the sampler,
whereas they are unconstrained in the Fisher matrix
computation. In the case of M2, the opposite happens,
and the posterior distribution exhibits a slightly larger error

FIG. 8. Comparison of the error in the intrinsic parameters posterior distribution for all models (Mk, k ¼ 1;…; 6 in color) with the
error derived from the Fisher approximation (in black). Due to its large value, the Fisher bias for M1 in the spins and mass ratio lies
outside the plot. We observe consistency between the Fisher computation and posteriors for models Mk with k ¼ 3, 4, 5, 6 as the bias
decreases.
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than the bias predicted by the Fisher analysis. Overall, from
model M3 to M6, both errors become more and more
consistent as parameter biases shrink. Thus, we can rely on
the analytical bias obtained with the Fisher approximation
for the intrinsic parameters. The same analysis for extrinsic
parameters gave disagreeing results, with typically an
overestimation of the bias with the Fisher approximation
compared to the sampled posteriors; see Appendix for a
short discussion on this matter.
A natural question arises about the minimum SNR at

which higher modes become important in parameter
estimation. In other words, given a certain SNR, how
many modes do we need to describe the waveform
adequately? One way to answer this question is by
comparing the approximate statistical error for each param-
eter σθ with the systematic bias induced by an incorrect
model ΔθðMkÞ. We perform this comparison in Fig. 9,
where we show the errors for the intrinsic parameters as a

function of SNR. Varying the SNR amounts to changing
the value of the luminosity distance DL, leaving all other
parameters unchanged. The Fisher bias in models M1 and
M2 are inconsistent with posteriors, as observed in Fig. 8.
For this reason, we will not discuss them, although they are
plotted in the figure. The black diagonal line corresponds to
the statistical error in the model parameters (σθ), and the
color lines represent the modeling error produced by the
wrong waveform template (Mk). With the same color code
as the modeling error, we mark the value of SNR in dotted
lines at which the modeling error becomes higher than the
statistical error.
Figure 9’s top left panel shows that the model M3

(in pink), which includes modes (2, 2), (3, 3), and (4, 4),
does not describe accurately enough the signal for sources
with SNR ≥ 129 since the chirp mass bias becomes more
significant than the statistical error. Similarly, the modelM4

is sufficient until the SNR reaches 189 and M5 until 984.

FIG. 9. Comparison of the statistical error (in black) and modeling errors (in colors) for relevant parameters in function of the SNR.
When the statistical error becomes smaller than the modeling error, that model no longer fits the data well and biases the estimated
parameters. The SNR for this transition is marked with dotted lines in the correspondent color for each incorrect template
(models Mk, k ¼ 1;…; 5).
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Since the SNR of the source we consider in this work is
around 744, the value of the chirp mass inferred with the
model M5 (in yellow) should be within the estimated error.
However, to accurately infer the other parameters, the
model M5 works until an SNR of 107 for the mass ratio,
156 for χ1, and 215 for χ2. Then, with an SNR of 744, this
model will correctly estimate the chirp mass but induce
biases for all other parameters. For consistency, we can
look at the inferred values from the Bayesian analysis
with M5 in Fig. 6 and confirm this statement within the
68% confidence level.
This analysis does not derive a limit on the number of

modes needed to describe an event observed by LISA. Still,
it provides maximum SNR values to correctly estimate the
parameters with a given model if less than these six modes
are present in the waveform. Extrapolating from our
example, we find that generally, sources detected by
LISAwith SNR of hundreds will require using waveforms
with at least six modes to estimate all intrinsic parameters
correctly. Note that the Fisher error in Eq. (27) and its
scaling with SNR−1 are only approximate and are best
valid for high-SNR and nondegenerate posteriors, so this
estimate does not replace a complete parameter estima-
tion study.

VI. CONCLUSIONS

We studied the contribution of IMR higher modes
of a SMBHB source to the total SNR. We observed how
this contribution depends on the event’s redshifted mass
through the observed frequency, directly related to LISA’s
response and sensitivity. We also showed that the cross-
terms could contribute constructively or destructively to the
total SNR, depending on the signal frequency and obser-
vational parameters. We presented a map guide of the
relevance of each mode given the mass of an event. We
highlighted the role of higher modes for SMBHBs with
masses of the order of 108M⊙. In LISA, large mass sources
enhance the contribution of modes with higher frequencies
so that the quadrupolar mode will no longer dominate.
To compare sensitivity performances, we defined differ-

ent models, each including different harmonics. We could
distinguish higher modes by comparing the Bayesian
evidence for different models. In our example of a noisy
signal with six modes, the model M6, which includes the
same higher modes as in the injection, was the preferred
one, as expected. The model M6 showed a very significant
Bayes factor compared to models with fewer modes.
Furthermore, we found that the absence of modes in the
waveform template can bias the parameter estimation for
high SNR sources due to the nonorthogonality of the modes
in the merger-ringdown phase. Biased binary parameters
can lead to a biased inference of the remnant BH’s mass and
spin. This effect can corrupt the no-hair theorem test and
lead to misinterpretations.

We could quantify the SNR needed to distinguish models
by comparing statistical errors of the injected waveform
parameters with the modeling errors produced using an
incorrect template (Mk, k ¼ 1;…; 5). In other words, given
a certain SNR, we can specify the modes needed to infer the
parameters without significant bias. This quantification
depends on the actual waveform, which includes six modes
in our analysis. In reality, such a situation is unlikely, as we
expect more modes in the dynamics. Hence, this study does
not derive a limit on the number of observable modes,
which is still an open question that can be answered once
more harmonics are implemented. However, our work
demonstrates the need for higher modes in the waveform
templates to perform accurate GW source characterization
with LISA. Besides, featuring precession and eccentricity
in the inspiral stage will also be necessary, while mode-
mixing and nonlinearity [16,17,70,71] will become essen-
tial features in the ringdown.
The ability of LISA to identify different modes allows us

to consider GR tests on more solid grounds, including the
test of the no-hair theorem, which will be the subject of a
forthcoming study.
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APPENDIX: COMPLEMENTARY RESULTS

To assess how the mass ratio affects the SNR, we show in
Fig. 10 the contour plots representing mass ratio versus
total source mass for a source with parameters given in
Table II and redshift z ¼ 2. The absence of contribution at
leading PN order of modes with oddm for equal mass ratio
(see, e.g., [72]) is illustrated here. We can also note the
importance of higher modes for sources with masses
around 106M⊙, and mass ratios between 2 and 15.
For completeness, we also include here the square and

cross-terms of the SNR contributions from Sec. IV B. As
well as the marginalized posterior on all parameters forM1,
M3, and M6 with noisy data from Sec. V C.

1. Modeling error

If we compare the modeling error on the extrinsic
parameters obtained from the Fisher information with
the ones obtained from posterior distributions, see Fig. 13,
we observe some disagreeing results. The model M1 is
the least accurate, as some Fisher bias values lie outside
the range in the plots. As we introduce more modes, the
difference between analytical and experimental results
tends toward zero. Thus, we expect the analytical bias to
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be trustworthy for Mk with k ≥ 4. As previously men-
tioned, the discrepancy could come from the constraint set
on the parameter space explored by the sampler, which is
absent from the Fisher derivation. This can be seen for
example in the polarization ψL and phase ϕ, where some
analytical points are outside the allowed range. Another
possible explanation is the multimodality of some extrinsic
parameters, such as the ecliptic latitude βL in LISA’s frame

and the source inclination {, especially for M1. We also
observe that most of the errors obtained with the Fisher
information can change if we use for instance adimensional
spin parameters such as χþ and χ− instead of individual
spins χ1 and χ2. Furthermore, the numerics of Fisher
matrices are notoriously delicate, and we leave the
observed discrepancy between extrinsic errors for future
investigation.

FIG. 10. Contour plots for mass ratio with respect to the total mass. The plot highlights the contribution of higher modes for sources of
∼106M⊙ and mass ratios up to 15. SNR decreases slowly when increasing the mass ratio by a few units for a fixed mass.
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FIG. 11. SNR contribution for each pair of modes.
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FIG. 12. Marginalized posterior distribution for all parameters. Here M1 in green, M3 in orange and M6 in blue with true values
represented with black lines. Note the high accuracy of the estimated mean value of all parameters found with the model M6.
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