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We show that binary black hole mergers with precessing evolution can potentially excite photons from
the quantum vacuum in such a way that total helicity is not preserved in the process. Helicity violation is
allowed by quantum fluctuations that spoil the electric-magnetic duality symmetry of the classical Maxwell
theory without charges. We show here that precessing binary black hole systems in astrophysics generate a
flux of circularly polarized gravitational waves which, in turn, provides the required helical background
that triggers this quantum effect. Solving the fully nonlinear Einstein’s equations with numerical relativity
we explore the parameter space of binary systems and extract the detailed dependence of the quantum effect
with the spins of the two black holes. We also introduce a set of diagrammatic techniques that allows us to
predict when a binary black hole merger can or cannot emit circularly polarized gravitational radiation,
based on mirror-symmetry considerations. This framework allows to understand and to interpret correctly
the numerical results, and to predict the outcomes in potentially interesting astrophysical systems.
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I. INTRODUCTION

A dynamical spacetime can excite the quantum modes of
the electromagnetic field and can produce as a result photons
out of the quantum vacuum [1,2]. Well-known examples of
this effect were explored long ago in cosmological back-
grounds [3] and in the gravitational collapse of stars [4]. The
particles created by the spacetime are entangled and in
particular their physical properties respect the symmetries
of the background. For instance, if the spacetime is spatially
homogeneous, as is typical in cosmology, particles are
produced in pairs and with opposite linear momentum.
This is because of the invariance of the fieldmodes or vacuum
state under spatial translations. Similarly, the spherical sym-
metry of the Schwarzschild metric in a gravitational collapse
requires that the Hawking pairs have opposite angular
momentum. In other words, the symmetries of the back-
ground impose constraints on the particles created. If, on the
other hand, the background spacetime does not possess these
symmetries, then the particles created may not be subject
to such limitations. To give an example, for the gravitational
collapse of a rotating star, where spherical symmetry is lost,
the spacetime dynamics can induce a net angular momentum
in the fluxof particles created, particle pairs arenot necessarily
created with opposite angular momenta [5].
In addition to the symmetries of the background, there

are intrinsic symmetries of the quantum field that must be

preserved during the process of particle creation. For
instance, the electromagnetic theory must be gauge invari-
ant, and if the electromagnetic field is coupled to fermion
fields, this symmetry requires the conservation of the
electric charge in any process. Interestingly, in some
particular cases the background spacetime can induce
fundamental violations of classical internal symmetries
in the quantum theory. An example of this is the elec-
tric-magnetic duality symmetry of the source-free Maxwell
theory. In the classical theory this symmetry guarantees that
the circularly polarized state of electromagnetic waves
remains constant during their propagation. Then, one could
naively expect that, in any dynamical gravitational field,
photons should be created in pairs of opposite helicity, so as
to keep the same circular polarization state of the vacuum.
However, it was found that this symmetry fails to survive
the quantization in a gravitational field [6–9]. As a result,
the net helicity need not be conserved, and photons are
expected to be created without having to satisfy this
constraint, provided the background spacetime is helical.
Given a fixed spacetime background that evolves

between two asymptotically stationary configurations, a
detailed study of how many photons are created in each
helicity sector from this anomaly, as well as the frequency
and angular spectrum, requires an explicit calculation of the
Bogoliubov coefficients that relate “in” and “out” vacuum
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states [1]. However, except for few well-known examples,
this calculation is inaccessible with current theoretical
techniques. Despite this, it is still possible to determine
the average total amount of right-handed minus left-handed
photons created. This quantity is accessible from the
vacuum expectation value of the operatorQ5 that represents
the classical Noether charge in the quantum theory. Indeed,
the quantum anomaly indicates that the change in time of
this expectation value is independent of the choice of
quantum state and, furthermore, it only depends on the
background geometry as

ΔQ̂5 ≡ hQ̂5ðt2Þi − hQ̂5ðt1Þi

¼ −ℏ
96π2

Z
½t1;t2�×Σ

d4x
ffiffiffiffiffiffi
−g

p
Rabcd

�Rabcd; ð1Þ

where Ra
bcd denotes the Riemann tensor of the spacetime.

The quotient ΔQ̂5=ℏ is the net average number difference
between positive-helicity photons (or right-handed) and
negative-helicity photons (or left-handed) created by the
gravitational dynamics (integrated over all possible frequen-
cies and momenta). Since this is fully determined by the
spacetime geometry, it can be evaluated very easily with
usual techniques in General Relativity. In compact mani-
folds without boundary the right-hand side of Eq. (1) is a
topological invariant, called the Chern-Pontryagin scalar. In
General Relativity and astrophysics, 4-dimensional space-
time manifolds of physical interest are neither compact nor
boundaryless, and the Chern-Pontryagin does contain
information about the geometry (i.e., about the gravitational
field). Roughly speaking, it measures the helical nature of
the spacetime. This is, the degree of gravitational chirality.
In a previous paper we proved that this quantum anomaly

is produced whenever the spacetime background admits a
flux of net circularly polarized gravitational radiation
[10,11]. More precisely,

hQ̂5ðJ þÞi − hQ̂5ðJ −Þi

¼ ð...Þ þ ℏ
Z

∞

0

dωω3

24π3
X
lm

½jhlmþ ðωÞ − ihlm× ðωÞj2

− jhlmþ ðωÞ þ ihlm× ðωÞj2�; ð2Þ

where hþ, h× denote the two linear polarization modes of
gravitational waves that reach future null infinity, emitted by
an arbitrary isolated gravitational source that is stationary at
both past and future timelike infinities. These modes are
characterized by the frequency ω, and angular momentum
l; m. The contribution denoted by dots corresponds to the
flux of chiral gravitational flux falling through the black hole
(BH) horizon. The explicit expression is tedious but will not
be relevant in our discussion. The physical picture is simple;
a nontrivial gravitational field can create a difference in the
number of right- and left-handed circularly polarized pho-
tons from the quantumvacuum. Themore right(left)-handed

gravitational radiation is emitted by a system, the more right
(left)-handed electromagnetic modes will be excited.
In this paper we examine in great detail which spacetime

backgrounds in astrophysics can generate such gravitational
wave flux. Using symmetry arguments and some diagrams
wewill be able to predict that precessing binary BH systems
can potentially trigger this quantum effect.Wewill prove this
rigorously solving the fully nonlinear Einstein’s equations
using standard techniques in numerical relativity, and explore
the dependencewith the relativemasses and spins of theBHs.
Notice on the other hand that the net difference of positive
and negative photons (1) will be insensitive to the total mass
of the system, since the integral on the rhs is adimensional
and one can always rescale the coordinates by this mass.
Along this paper we work in geometric units G ¼ c ¼ 1.

The present paper is a detailed exposition of the numerical
results presented in [10], where the main results were
communicated.

II. BINARY DIAGRAMS
AND MIRROR SYMMETRY

Although it may seem a trivial question, it is actually
difficult to find examples of physically interesting gravi-
tational fields that make (1) nonzero. In fact, one can prove
that all stationary, asymptotically flat solutions of Einstein’s
equations lead to a vanishing result [11]. As a consequence,
one needs dynamical gravitational fields in the fully
nonlinear regime, and, in turn, this requires the use of
numerical relativity.
Unfortunately, solving Einstein’s equations numerically

is a computationally expensive task. To study this question
efficiently, it is necessary first to have some guidance. If
one restricts to binary BH systems in astrophysics, it is
possible to infer which family of solutions can be expected
to produce nontrivial results using just symmetry argu-
ments. The key idea is to notice that (1) is a pseudoscalar.
As a result, any binary system that is invariant under a
mirror transformation with respect to, at least, one coor-
dinate plane, will make this integral equal to zero. The goal
then is to look for systems with no mirror symmetries.
Let us make this idea more precise. Consider a 3þ 1

foliation of the spacetime manifold M ¼ I × Σ. In 3þ 1
numerical relativity Einstein’s equations are solved with
3-dimensional euclidean grids, so we will restrict to spatial
slices with trivial topology, Σ ≃ R31 The different binary
BH systems are uniquely represented by a 4-dimensional

1For spacetimes involving black holes a convenient 3þ 1
foliation is engineered to bypass the curvature singularities, in
such a way that they remain in the asymptotic future of Σ and
Eintein’s equations are well-posed. The spatial slices Σ are
therefore not “pierced” by singularities, they remain smooth
[12,13]. An illustrative example is given by the usual Penrose
diagram for a spherically symmetric collapse. It is possible to
foliate the spacetime by spacelike hypersurfaces Σ ≃ R3, and they
only intersect the curvature singularity for t → ∞.
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metric gab, that is solution of Einstein’s equations. For each
of them we can calculate the time-dependent quantity
F½gab�ðtÞ ¼

R
Σ d

3x
ffiffiffiffiffiffi−gp

Rabcd
�Rabcd. We can think of this

as a quantity that keeps track of the chirality of the
gravitational field as a function of time. As a pseudoscalar
it flips sign under a reflection I of the metric (improper
rotation) and remains invariant under a proper rotation R of
the metric, namelyF½ðR ∘ IÞgab� ¼ −F½gab�. If the metric of
a binary system is invariant under a mirror transformation
with respect to some coordinate plane, then one also has
F½ðR ∘ IÞgab� ¼ F½gab�, and therefore F½gab� ¼ 0 in these
cases.
To give an illustrative example, consider a binary BH

system in which the two spins are parallel to the orbital
angular momentum, as in Fig. 1. These systems are
nonprecessing, the orientation of the orbital angular
momentum is constant (roughly speaking, the two BHs
remain in a plane all the time). As a first approximation, we
can assume that the gravitational field of the binary is
equivalent to the gravitational fields of the two individual
Kerr BHs (i.e., we ignore the nonlinearities associated to
the mutual interaction). BHs are rigid compact objects, in
the sense that tidal love numbers are zero or very small,
so this approximation should work well. In this approxi-
mation, the entire spacetime geometry will be determined
by the two masses and the two spins, because of the
no-hair theorem. A simple analysis using symmetry
arguments allows us to infer which binary systems can
produce circularly polarized gravitational waves, i.e., if
F½gab�ðtÞ ≠ 0. First of all, take the system in a fixed instant
of time, like in the upper figure of Fig. 1. Now perform a
mirror transformation with respect to the coordinate plane
normal to the separation between the two objects. The
result is shown in the lower part of Fig. 1. Notice that the
spins are pseudovectors, so one has to reverse sign under
this transformation. Then, it is easy to see that we can find a
continuous rotation in 3-space that returns the system
back to the original configuration of masses and spins.

This simple example shows that nonprecessing binary BH
systems have a mirror symmetry at any given time. Because
F½gab�ðtÞ is a pseudoscalar, it flips sign under mirror
reflection. So at each instant of time we must necessarily
have F½gab� ¼ 0. In particular it also applies to nonspinning
binary BHs, even in the unequal-mass case.
Most interestingly, the contrapositive of this statement

tells us that for a spacetime to have a nonvanishing Chern-
Pontryagin, it is required that the individual BH spins must
be misaligned with the orbital-angular momentum. In other
words, precessing binary BH systems can potentially lead
to nonvanishing values of (1) and (2).2 See Fig. 2 for an
example of this. The mirror-symmetry arguments intro-
duced in this section turn out to be really helpful in
understanding the outcomes of numerical simulations.

III. NUMERICAL RESULTS
FOR PRECESSING BHs

In the previous section we argued that precessing binary
BH systems are the relevant configurations to explore the
quantum effect of Eq. (1). In this section we confirm these
theoretical expectations and extract the dependence of this
quantity with the parameters of the binary.
To achieve this we perform numerical simulations using

the 3þ 1 numerical relativity code Einstein Toolkit [14,15],
and the McLachlan thorn [16,17] for the spacetime
evolution. We solve Einstein’s equations for head-on,
eccentric, and quasicircular BBH mergers, taking the

FIG. 1. Example of a binary BH system that is expected to yield
a zero value of the Chern-Pontryagin (1). The picture represents
one instant of time of a nonprecessing binary system with orbital
angular momentum L⃗. The arrows 1 and 2 denote the individual
spin vectors of each BH, and they keep aligned with L⃗ the whole
evolution. The existence of a mirror symmetry in the metric
produces F½gab�ðtÞ ¼

R
Σ d

3x
ffiffiffiffiffiffi−gp

Rabcd
�Rabcd ¼ 0 for any t.

Numerical simulations confirm this theoretical prediction.

FIG. 2. Example of a binary BH system that is expected to yield
a nonzero value of the Chern-Pontryagin (1). The picture
represents one instant of time of the evolution of the binary,
which has orbital angular momentum L⃗. The red and blue arrows
denote the individual spin vectors of each BH, and are misaligned
with L⃗. This produces the system to precess in time. The lack of a
mirror symmetry in the metric can potentially yield F½gab�ðtÞ ¼R
Σ d

3x
ffiffiffiffiffiffi−gp

Rabcd
�Rabcd ≠ 0 at each t. Numerical simulations

confirm these theoretical expectations. In particular, the merger
produces a flux of circularly polarized gravitational waves, as
predicted in Eq. (2).

2Not all precessing BH system will lead to a nonzero effect as
we will see in the next section.
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component masses and initial linear momentum from [18].
To compute Eq. (1) we notice that

ΔQ̂5 ¼ −
ℏ
6π2

Z
t2

t1

dtα
Z
Σt

dΣt

ffiffiffi
h

p
EijBij; ð3Þ

where Σt is a spacelike hypersurface in our 3þ 1 spacetime
foliation, α is the lapse function, hij is the induced metric,
and Eij, Bij are the electric and magnetic components of the
Weyl tensor on Σt. We compute this by modifying the
Antenna thorn [19,20] and the initial data are obtained
using the TwoPunctures thorn [21]. As we will see later,
the result of (3) will be dominated by the merger stage, so
the specific choice of initial momenta and initial radial
separation of the two black holes will not play a signifi-
cative role. Our initial numerical grid is a superposition of
two individual grids centered at the initial positions of the
BHs. We make use of the PunctureTracker thorn,
that tracks the location of each BH puncture during
the evolution. Each individual grid has nine refinement
levels with fð320; 160; 80; 40; 20; 5; 2.5; 1.25; 0.625Þ,
ð4; 2; 1; 0.5; 0.25; 0.125;0.0625; 0.03125; 0.015625Þg. The
first set of numbers indicates the size of the spatial domain
of each level and the second set indicates the resolution.
No symmetries are imposed on the numerical grids, there-
fore we have xmin ¼ ymin ¼ zmin ¼ −320 and xmax ¼
ymax ¼ zmax ¼ 320. We also use the Carpet adaptative
mesh refinement for the Cactus framework [22] within
the Einstein Toolkit infrastructure.

A. Head-on collisions

Head-on collisions provide the simplest setting to study
the dependence of the Chern-Pontryagin with the spins in a
binary system. In contrast to orbital mergers, the relative

spin configuration remains roughly constant during the
entire evolution, so that it is relatively easy to understand
and interpret correctly the numerical results in terms of the
framework described in Sec. II. The numerical exploration
of head-on collisions can be particularly useful if we let the
two individual BH spins be aligned with the velocity axis,

FIG. 3. Value of ΔQ̂5=ℏ calculated from (3) in head-on collisions as a function of the spin ratio a2=a1 for four different fixed values of
a1. As a2 evolves from negative to positive values and viceversa, the binary system transitions between two relative spin orientations,
indicated in each figure with two vectors on the real line. Notice how ΔQ̂5=ℏ flips sign when switching between the two figures, as
expected from the mirror transformation underlying the figures.

TABLE I. Value of the Chern-Pontryagin ΔQ̂5=ℏ computed
from Eq. (3) using numerical-relativity simulations of binary BH
mergers of equal mass and spin magnitude with orbital evolution.
The S configurations correspond to binary systems where the
initial BH spins have two nonvanishing cartesian components (of
the same magnitude) in our coordinate system, as indicated in the
second column, while the X configurations are binary BHs where
the initial spins are aligned in the x direction. The spin
orientations vary cyclically during the entire evolution. Roughly,
they return to the same relative orientation after one orbital
period. The results for ΔQ̂5=ℏ confirm the theoretical predictions
described in Sec. II using symmetry arguments. In particular,
those binary BHs with a configuration of spins with mirror
symmetry produce a zero value of ΔQ̂5=ℏ (compatible with
numerical inacuracies, see footnote 3).

Configuration

Initial spin
orientation
ðx; y; zÞ jai=mij

Total
ADM
mass ΔQ̂5=ℏ

S1 ð←; 0;↑Þ; ð→; 0;↑Þ 0.312 1.03 0.040
S2 ð←; 0;↑Þ; ð→; 0;↑Þ 0.520 1.12 −0.039
S3 ð←; 0;↑Þ; ð→; 0;↑Þ 0.630 1.22 0.064
S4 ð→; 0;↑Þ; ð→; 0;↑Þ 0.520 1.12 1.09 × 10−09

S5 ð0; 0;↑Þ; ð0; 0;↑Þ 0.630 1.22 3.42 × 10−11

X1 ð←; 0; 0Þ; ð→; 0; 0Þ 0.312 1.03 −0.051
X2 ð←; 0; 0Þ; ð→; 0; 0Þ 0.520 1.12 0.105
X3 ð←; 0; 0Þ; ð→; 0; 0Þ 0.630 1.22 0.086
X4 ð→; 0; 0Þ; ð→; 0; 0Þ 0.630 1.22 1.15 × 10−09
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say in the x direction of our cartesian coordinate system, as
ð→; 0; 0Þ; ð←; 0; 0Þ and ð←; 0; 0Þ; ð→; 0; 0Þ. These two spin
configurations are related by a mirror transformation, and
both are expected to make (1) different from zero using the
symmetry arguments of Sec. II.
To explore the impact of the spin magnitude on (1), we

evolve a series of head-on collisions with these two spin
configurations, fixing the spin magnitude of one of the
BHs, a1=m1, and varying the other one in the range
a2=m2 ∈ ð−a1=m1; a1=m1Þ. The initial separation of the
two BHs is not expected to play any important role in this
problem so in all cases we fix D ¼ 11 in code units. The
results of four representative cases are summarized in
Fig. 2, where we plot the values of the Chern-
Pontryagin from Eq. (3) as a function of the ratio
ða2=m2Þ=ða1=m1Þ for four values of a1=m1. We conclude
that the Chern-Pontryagin (3) reaches its maximum (in
absolute value) when the two BHs have spins with equal
magnitudes but opposite direction, while the a1 ¼ a2 (with
m1 ¼ m2) configuration gives a zero contribution. In
addition, the right panel of Fig. 2 shows that flipping

the sign of a1 only results in an overall change of sign in the
Chern-Pontryagin, keeping the same magnitude. All these
results confirm the validity of the analysis of mirror
symmetry described in Sec. II above. It is worth noticing
that even in the collision of a Kerr and of a Schwarzschild
BHs, the resulting effect is nonzero (see Fig. 3).

B. Orbital mergers

While head-on collisions are useful to easily identify the
role of the relative spin configurations on the Chern-
Pontryagin, as well as its connection to the lack of mirror
symmetry in the problem, it is also interesting to study the
more astrophysically relevant case of orbital binary BHs to
take into account the contribution of the inspiral phase. As
we will detail shortly, the main new feature in this case is
the presence of oscillations in the gravitational chirality
during the evolution.
To explore this problem we perform nine equal-mass and

equal-spin magnitude binary Kerr BH mergers in eccentric
orbits. As before, we set the initial separation at D ¼ 11,

FIG. 4. Trajectories of the BHs projected on the equatorial xy (z ¼ 0) plane for the different configurations described in Table I.
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the initial momentum of the BHs to jPxj ¼ 0.000728 and
jPyj ¼ 0.0903, and we vary their spin and mass. The details
of each binary configuration can be found in Table I. As a
result of varying both spin and mass without changing the
initial separation and initial linear momentum, the orbital
dynamics are drastically modified and we obtain different
eccentric motions for the binary. This is shown in Fig. 4
where we plot the trajectories of the BHs in the equatorial
plane (z ¼ 0).
We have considered two main setups; in the first one, the

spins are tilted 45 degrees with respect to the orbital plane
and 90 degrees with respect to each other, ð←; 0;↑Þ;
ð→; 0;↑Þ (configurations S1, S2, S3); while in the other
the spins have only a x-component and are anti-aligned,
ð←; 0; 0Þ; ð→; 0; 0Þ, as in the head-on case (configurations
X1, X2, X3). Three additional cases are considered for
completeness: a binary with aligned spins but tilted
45 degrees with respect to the orbital plane ð→; 0;↑Þ;
ð→; 0;↑Þ (configuration S4); a binary with both spins

aligned with the orbital angular momentum ð0; 0;↑Þ;
ð0; 0;↑Þ (configuration S5); and a binary with aligned
spins in the x direction ð→; 0; 0Þ; ð→; 0; 0Þ (configura-
tion X4).
Most of the configurations studied here precess because

the orientation of the spins have been chosen such that they
are not aligned with the orbital angular momentum. The
effect of precession is shown in Fig. 5 where we plot the
trajectories of the BHs in the xz plane (y ¼ 0). In general,
both BHs start at z ¼ 0 but move in the z plane. The only
exception is the S5 configuration which consists of two
aligned Kerr BHs with the orbital plane (bottom row,
middle panel of Figs. 4 and 5). Despite this, not all
precessing evolutions give a nonzero value of the Chern-
Pontryagin. For instance, configurations S4 and X4 have
the BH spins aligned with each other, but not aligned with
the orbital angular momentum. In these cases, we also
observe precession, which translates to non-negligible
motion in the z plane (bottom row of Fig. 5). However,

FIG. 5. Trajectories of the BHs projected on the xz plane (with y ¼ 0) for the different configurations described in Table I. The
existence of precession in the evolution is manifest in most cases. Configurations S1, S2, S3, X1, X2, and X3 give a nonzero
contribution to the Chern-Porntryagin and also display a kick after the merger.
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their contribution to the Chern-Pontryagin is compatible
with zero3 (see Table I). This could have been anticipated
using arguments of mirror symmetry (see Fig. 6). It should
be noted though that the Chern-Pontryagin vanishes only
because we are considering equal-mass equal-spin BHs in
this problem. If the mass or spin magnitude were different,
we would have a nonzero effect.
From all these observations we can conclude that if

ΔQ̂5=ℏ ≠ 0 then the system is necessarily precessing, but
the converse is not necessarily true. On the other hand, the
configurations with misaligned spins move along the z-axis
and suffer a gravitational recoil or kick after the merger
[23,24] as seen in Fig. 5. These configurations correspond
precisely to the binaries that have a nonvanishing Chern-
Pontryagin and would produce a flux of circularly polar-
ized photons. Therefore, we find that there seems to be a
connection between a nonzero Chern-Pontryagin, preces-
sion, and kicks. Our results suggest that all configurations
with a nonvanishing ΔQ̂5=ℏ precess and are prone to kicks.
However, the opposite is not necessarily true. Note that not

all precessing systems give a nonzero contribution or suffer
a kick, for instance the X4 configuration.
Since the Chern-Pontraygin (3) can be written as the time

integral of a quantity that only depends on the geometry of
the spatial slices in our 3þ 1 spacetime decomposition, it is
interesting to see explicitly the evolution in time of the
geometrical quantity

Q̇5ðtÞ ¼
Z
Σt

dΣt
ffiffiffiffiffiffi
−g

p
EijBij: ð4Þ

Notice that, in contrast to (1), this magnitude does depend
on the total mass M� of the binary, as 1=M�. The
integration in time cancels this dependence though.
Figure 7 shows the time evolution of this quantity for the

nine simulations. For instance, in the upper-left panel, which
corresponds to configurations S1 and X1 in Table I, we see
that Q̇5ðtÞ oscillates around zero. This is in fact the general
result in all orbiting cases where the Chern-Pontryagin is not
zero. To understand correctly this behaviour we have to
recall the analysis of symmetries of Sec. II. Suppose a
quasicircular binary system. The relative orientation of the
twoBH spins evolve cyclically in time during the inspiral. In
particular, given a particular spin configuration at some
instant of time t0, with value Q̇5ðt0Þ, after half orbital period
T the new configuration of BH spins gets exactly the mirror-
reflected version of the system at time t0. If additionally the
separation distance remains roughly constant during this
half-period, we can expect Q̇5ðt0 þ T=2Þ ≈ −Q̇5ðt0Þ. Then,
after one full orbital period, the relative spin configuration
returns to the same state, and we can again expect
Q̇5ðt0 þ TÞ ≈ Q̇5ðt0Þ. The smaller the separation distance
between the BHs, the greater this effect will be (because
gravity gets more extreme). Therefore, the oscillations are
expected to increase adiabatically during the whole inspiral,
until BHs merge and we observe a sharp rise corresponding
to the maximum peak in the plots. After the merger and
formation of the final BH, the value goes to zero very
quickly, as expected for a stationary Kerr BH. All these
expectations are clearlymanifested in Fig. 8, which shows in
more detail the time evolution of Q̇5ðtÞ together with the
evolution of the x and z coordinates of both BHs. The
maxima and minima of Q̇5ðtÞ are obtained approximately
when the BHs are again located on the x axis with y ¼ 0
(solid black and dashed red lines). This is due to the initial
setup, in which the initial spins are positioned in an extremal
configuration for the Chern-Pontryagin (←; 0, 0), (→; 0, 0).
Due to the orbital motion, when the black holes cross the y-
axis (with x ¼ 0) the configuration becomesminimal [Q̇5ðtÞ
vanishes] due to mirror symmetry. However, when they
reach half an orbit and the black holes are back on the x-axis
(with y ¼ 0), we find an extremal spin configuration but
with opposite sign (→; 0, 0), (←; 0, 0). Finally, when the
orbit is complete and again the black holes are located on the
x-axis, we have the extremal configuration of the beginning

FIG. 6. Binary BH system with orbital evolution that may or
may not yield a nonzero value of the Chern-Pontryagin (1). The
picture represents one instant of time during the inspiral. The
colors serve to distinguish the two BHs (each one with their own
mass and spin magnitude). If the two BHs have the same masses
and spins, then the system has a mirror symmetry which produces
F½gab�ðtÞ ¼

R
Σ d

3x
ffiffiffiffiffiffi−gp

Rabcd
�Rabcd ¼ 0 at the time considered.

Numerical simulations confirm this theoretical prediction. How-
ever, if the two BHs are distinguishable, there is no mirror
symmetry and F½gab�ðtÞ ≠ 0.

3Note that a zero value cannot be strictly attained due to the
numerical truncation errors. The nonzero values obtained for the
S4, S5, and X4 configurations are the result of numerical
accuracy, which, for the same resolution, may vary depending
on the binary orbital dynamics and the precession they undergo.
Our convergence study (see the Appendix) shows that such
values do converge to zero as the resolution increases.
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(although the distance between the objects has been slightly
reduced). At similar times, their position in the z-axis jzij
(solid dark blue and orange dotted lines) also becomes
maximum.
The contribution of the inspiral to the Chern-Pontryagin

ΔQ̂5=ℏ is small since, as commented above, the orbital
motion changes the spin configuration cyclically and leads
to consecutive positive and negative peaks in Q̇5ðtÞ that
almost cancel each other out after integrating in time. The
most important contributions to ΔQ̂5=ℏ come from the last
orbit and the merger. It is during the merger that we get the
largest positive or negative peaks shown in the plots of
Fig. 7. In quasicircular binaries (see upper left panel of
Fig. 7) there is also a previous large amplitude peak with
opposite sign that can cancel an important part of the final
maximum peak when computing the total time-integrated
quantity. However, as the orbits become more and more
eccentric (upper right and lower left panels of Fig. 7), and in

particular for head-on collisions, there is only one final
peak. Therefore, it is for highly eccentric collisions that the
maximum net effect for ΔQ̂5=ℏ could be expected. On
the other hand, the bottom-right panel of Fig. 7 displays the
time evolution of Q̇5 in cases when the two BH spins are
aligned (configurations S4, S5, X4), and for which the
binary BH retains some mirror symmetry. In these cases not
only the Chern-Pontryagin ΔQ̂5=ℏ vanishes, as shown in
Table I, but Q̇5ðtÞ is zero (within the numerical error) at all
times, in excellent agreement with our theoretical inter-
pretation in Sec. II.
Finally, Fig. 9 shows how the Chern-Pontryagin (3)

changes as a function of the spin parameter for different
collisions and spin configurations. The comparison is not
entirely accurate, since in the orbital case the trajectories
are different for each binary and the final result may vary
depending on the dynamics, but it serves as an illustrative
estimate of the behaviour of the Chern-Pontryagin in these

FIG. 7. Time evolution of Q̇5 computed from (4) for the nine binary BH configurations described in Table I. In cases whenΔQ̂5=ℏ ≠ 0

(top left and right panels, bottom left panel), Q̇5ðtÞ oscillates in time around zero during the inspiral phase all the way up to the merger.
This periodicity in Q̇5ðtÞ is a manifestation of the cyclic evolution of the relative spin configuration of the two BHs during inspiral (see
main text for details). The largest positive or negative peaks correspond to the time of merger, after which Q̇5ðtÞ drops down to zero, as
expected for a stationary Kerr BH.
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scenarios. The conclusion is that (3) is maximized when the
spins are as misaligned as possible with respect to each
other and with respect to the orbital angular momentum. As
expected, the more the mirror symmetry is broken in the
binary, the higher the value of (3) is.

IV. CONCLUSIONS AND FURTHER
APPLICATIONS

Motivated by quantum considerations, in this work we
carried out a throughout study of the Chern-Pontryagin

curvature scalar (1) to figure out what are the key elements
of binary BH systems that may trigger the spontaneous
creation of photons with net helicity through quantum
vacuum fluctuations. To this end we have performed a
series of numerical simulations of head-one collisions and
eccentric orbital mergers, with specific configurations of
masses and spins motivated on arguments of mirror
symmetry. Our findings indicate that orbital precession
of the two BHs, or equivalently the misalignment of the two
spins with the orbital angular momentum, can produce the
required helicity violation.
As remarked above, we solved the dynamical evolution

of these BHs with numerical relativity simulations.
However, the use of symmetry arguments has proven to
be extremely efficient to understand correctly the numerical
results. Our theoretical expectations have been validated
one by one in the simulations. Given the highly nonlinear
nature of Einstein’s equations and of the systems involved,
it is remarkable that one can predict the outcomes of a
quadratic curvature integral over the whole spacetime using
simple arguments on mirror symmetry. In fact, the use of
symmetry breaking may be helpful to gain further insights
on the dynamics of binary BHs. More precisely, the
exploitation of mirror symmetry in Sec. II above allowed
us to predict that a necessary condition for (1) and (2) to be
nonzero is that the binary is precessing. Currently, the
identification of precessing binary BHs among all the
observed events in LIGO-Virgo interferometers is an open
problem and, although many events are expected to
precess, there is only partial evidence of this in one single
event GW200129 [25–27] (and in fact it is not free of
controversy [28]). Precession is expected to produce a
small modulation on the gravitational waveforms, but
detecting this requires more precision and searches that
include this effect [29–31]. Alternatively, symmetry argu-
ments guarantee that if (2) is not zero, then the binary is
necessarily precessing. In other words, the inference of net,
non-negligible gravitational-wave circular polarization
from LIGO-Virgo detections can be used to identify
precessing systems.4 This independent observable may
pave the way for identifying precession systematically.
We plan to explore this possibility in future works [32].
Another interesting feature is that there seems to be a

correlation between precessing binaries with non-zero
Chern-Pontryagin and kicks due to gravitational-wave
emission. This is somewhat expected; on the one hand,

FIG. 8. Time evolution of Q̇5 computed from (4) for configu-
ration X1 of Table I (solid dark red line). The x (divided by 100)
and z coordinates of each BH are also shown as a function of
time. Notice the high correlation between the value of Q̇5 and the
position of the BHs along the orbit. This supports the theoretical
interpretation described in the main text.

FIG. 9. Absolute value of ΔQ̂5=ℏ computed from (3) as
function of the spin parameter ai=mi for equal-mass and
equal-spin orbital binary BH mergers with different spin incli-
nations with respect to the orbital plane; 45 degrees (red line) and
90 degrees (blue line). The green line corresponds to equal-mass
and equal-spin head-on collisions with spins inclined 90 degrees.

4Notice that Eq. (2) represents the net, circularly polarized flux
of gravitational waves emitted by a binary, integrated among all
directions on the sphere. While nonprecessing binaries can
generate a gravitational wave mode (l; m) with circular polari-
zation, i.e., jhlmþ ðωÞ − ihlm× ðωÞj2 − jhlmþ ðωÞ þ ihlm× ðωÞj2 ≠ 0,
the mirror-symmetric mode (l;−m) cancels this contribution
upon summation in (2). An unbalance is only obtained when the
binary black hole is precessing, i.e., when the mirror symmetry is
broken.
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kicks can be measured from the gravitational waves emitted
by the system [30] and are expected to be originated from
an asymmetry in the direction of the gravitational emission,
that pushes the BH out of the orbital plane due the
gravitational waves carrying linear momentum [33]. On
the other hand, if the positive and negative modes m of the
spin-weighted spherical harmonics do not compensate each
other, this is a indication of mirror asymmetry and therefore
the Chern-Pontryagin [10] is different from zero. It may be
possible that in some cases both asymmetries are con-
nected [34,35].
From a quantitative point of view, the results obtained for

helicity violation in photons are rather small, the order of
magnitude is similar to the Hawking radiation effect,
roughly one photon of difference between the right-handed
and left-handed fluxes for each merger. This is not really
surprising, and taken at face value, it seems very unlikely
that one may be able to observe this quantum effect directly
for one single event. However, it should be noted that small
numbers can seed macroscopic effects through classical
amplification mechanisms. Besides, in large enough num-
bers the quantum effect may lead to significant implica-
tions. More precisely, if the formation channels of binary
black holes in astrophysics favour “right-handed” spin
configurations over “left-handed,” or vice versa, this may
produce an accumulated effect in the Universe. This is out
of the scope of the present paper, our plan is to investigate
this in more detail in the future [32].
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APPENDIX: CODE ASSESSMENT

We briefly comment here on the convergence analysis we
carried out to assess the quality of our simulations. To
perform the binary black hole evolutions we have employed
the freely-available Einstein Toolkit code. Further convergence
tests can be found in [14,15]. In Fig. 10 we plot the volume
integral of the Chern-Pontryagin as a function of time Q̇5ðtÞ
computed for configurations S4 and X3, which correspond
to precessing systems with aligned and nonaligned spins
respectively, using three different resolutions with dx ¼
dy ¼ dz ¼ f0.03125; 0.01953125; 0.015625g in the finest
level. In the bottom panel of Fig. 10 we show that the Chern-
Pontryagin converges to zero at the expected fourth-order
rate for the S4 configuration, confirming our symmetry
analysis.

FIG. 10. Time evolution of Q̇5 for configurations X3 (top panel)
and S4 (bottom panel) using three different resolutions with dx ¼
dy ¼ dz ¼ f0.03125; 0.01953125; 0.015625g in the finest level.
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