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We derive the gravitational field and the spacetime metric generated by sources in quantum super-
position of different locations. We start by working in a Newtonian approximation, in which the effective
gravitational potential is computed as the expectation value of the gravitational potential operator in a
Gaussian distribution of width R for the position of the source. The effective gravitational potential is then
covariantly uplifted to a fully relativistic metric in general relativity, describing the spacetime generated by
averaging over the state of such sources. These results are then rederived and extended by adopting an
independent construction in terms of quantum reference frames. We find three classes of quantum effective
metrics which are all asymptotically flat and reproduce the Schwarzschild metric at great distances.
The solutions differ, however, in the inner core. The quantum uncertainty Δr ∼ R in the position of the
source prevents the radius of the transverse two-sphere to shrink to zero. Depending on the strength of the
quantum superposition effects, we have either a nonsingular black hole with a “quantum hair” and an event
horizon, a one-way wormhole with a critical null throat or a traversable wormhole. We also provide a
detailed study of the geometric and thermodynamic properties of the spacetime structure for each of these
three families of models, as well as their phenomenology.
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I. INTRODUCTION

The presence of singularities in general relativity (GR)
[1–3], both for black holes and cosmology or even
deviations from Newtonian dynamics at galactic scales
or the accelerated expansion of the Universe [4–8], can be
regarded as a problem that could possibly find a natural
resolution in a quantum theory of gravity.
In this paper, instead of trying to construct a fully

consistent, i.e., finite or renormalizable, theory of quantum
gravity (QG), we follow a bottom-up approach, namely we
start from GR and quantum theory and we try to gradually
insert more “quantumness” into gravity.
This is suited, for instance, to study quantum super-

positions of reference frames or detectors [9–12], entangle-
ment of quantum systems mediated by gravitational fields
[13,14], and the investigation of the behavior of gravita-
tional sources (and even spacetimes) in quantum super-
positions [10,11,15–19]. The advantage of these approaches
is that they do not rely on a definite ultraviolet formulation
of QG, so that they are likely to be experimentally tested in

the foreseeable future. In fact, there is a number of table-top
experiments, not only being designed and discussed in the
literature [13,14,20–22], but attempts to implement them
are ongoing as well [23–25]. On the other hand, deviations
from GR could be also probed and measured in the strong
gravity regime, i.e., via gravitational wave (GW) experi-
ments (see, e.g., Refs. [26–30]) or, potentially, in black-hole
shadow observations (see, e.g., Refs. [31–34]).
This bottom-up approach faces, however, a number of

difficulties. For instance, it was argued in [35,36] that
gravity may cause decoherence, forcing the collapse of
the quantum wave functions of matter, hence leaving no
space for quantum superpositions of gravitational states.
According to Penrose, the fundamental problem lies in the
inconsistency between general covariance and the equiv-
alence principle with the linearity of quantum mechanics.
This idea was further explored for quantum states near a
black hole [37–39]. It was, however, shown in [40] that,
when the black hole is put in a superposition of masses, this
decoherence of the quantum state largely decreases.
Penrose’s arguments were also challenged in [9,41], where
a unitary locally inertial reference-frame transformation
was derived within a set of assumptions, supporting the
validity of the equivalence principle for observers in a
quantum superposition of reference frames.
The main goal of the present paper is trying to build a

bridge between these different approaches. Without making
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any assumption about the underlying fundamental quantum
theory of gravity, we derive an effective description of
gravity emerging from quantum superposition of configu-
rations of the source. We first follow a simplified approach
by working in a Newtonian framework and regarding the
standard gravitational potential as an operator acting on a
Hilbert space spanned by states of the source of the
gravitational field. We consider the source in a super-
position of different locations in space, with a general
isotropic probability amplitude ϕðrÞ. We then derive the
effective Newtonian potential by taking the expectation
value of the gravitational-potential operator, and the effec-
tive metric is derived using a covariant uplifting method.
We then reproduce and extend the previous results by using
a more general approach. We still consider a source in a
quantum superposition of different locations, but we
assume, in addition, that the metric is described by the
classical Schwarzschild solution in each branch of
the superposition. We then derive the explicit form of
the effective metric by assuming that the source is in a
quantum state described by a Gaussian wave packet of
width R.
The resulting spacetime metric is asymptotically flat and

quickly tends to the Schwarzschild one at large distances.
However, important differences emerge in the inner core of
the solutions. The metric is invariant under reflection of the
radial coordinate r ↔ −r, so that it describes two asymp-
totically flat and equivalent regions. Moreover, due to the
quantum uncertainty Δr ∼ R in the position of the source,
the radius of the transverse S2 in themetric does not shrink to
zero for r → 0, but reaches a nonzero R-dependent value.
The latter represents the radius of a throat connecting the two
asymptotically flat regions, and thus resembles the throat of
a wormhole. Depending on the strength of the quantum-
superposition effects, our metric describes three classes of
objects: (1) nonsingular black holes with an event horizon
and a “quantum hair”; (2) one-way critical wormholes;
and (3) traversable (in the sense of Morris-Thorne [42])
wormholes.
Our approach does not rely on a would-be specific

microscopic theory of gravity. The simplest andmoregeneral
guess for the effective theory isGR sourced by an anisotropic
fluid.This type of fluid has been extensively used to construct
stellar and black hole models (both singular and regular) and
in cosmology to address the dark matter and dark energy
problems (for an incomplete list, see, e.g., Refs. [5,43–58]
and references therein). We therefore compute the stress-
energy tensor and discuss the associated energy conditions
by assuming our effective metric to represent an exact
solution of Einstein’s field equations, sourced by an aniso-
tropic fluid. As expected, we find that all the usual energy
conditions are violated in all the three models.
We then study the thermodynamic properties of the

black-hole model. We find two thermodynamic branches
of black-holes: those in the “Hawking branch,” which are

unstable with respect to their radiation (they have negative
specific heat), and those which, instead, represent thermo-
dynamically stable configurations and have positive spe-
cific heat. By computing the free energy, we show that the
latter are always thermodynamically preferred. Using the
general entropy formula recently proposed in Ref. [58] we
show that the extremal black hole configuration not only
has zero temperature, but also is a zero-entropy state. We
also revisit the Hawking radiation spectrum and show it is
Planckian, but with a different surface gravity. We compute
the evaporation time, which turns out to be infinite in the
extremal limit, thus confirming the thermodynamic stabil-
ity of this configuration.
Finally, we extensively analyze the phenomenological

properties of our spacetimes, which could possibly give
observable signatures in the near future. We study the
geodesic structure in detail, focusing on timelike and null
geodesics. In both cases, we analyze the evolution of the
geodesic congruence, showing that in neither of the two
cases we have formation of caustics, which thus further
confirms the geodesic completeness of our spacetime. This
is a clear consequence of the violation of the energy
conditions, which allows to circumvent Penrose’s singular-
ity theorems. Additionally, we compute the position of the
light ring, i.e., the position of the last unstable photon orbit,
showing that the presence ofR causes potentially detectable
deviations from the standard Schwarzschild prediction.
We also study scalar perturbations in this spacetime.While

for small values of R, the effective potential in the Klein-
Gordon equation has a single peak, for the stellar wormhole
we observe a double peak. This indicates the possibility of
having characteristic signatures in the quasinormal modes
(QNMs) spectrum, namely echoes [27,59–63]. For models
with a single peak, we exploit the construction of Ref. [64] to
derive an analytical expression of the quasinormal frequen-
cies in the eikonal regime.
The paper is organized as follows. In Sec. II, we derive

the metric for our models following the two approaches
mentioned above. The general geometric properties of the
metric are studied in Sec. III, where we also investigate the
usual energy conditions and find violation of all of them.
We also explicitly prove that the horizonless wormhole is
traversable. Section IV contains an extensive analysis on
the thermodynamic properties of the black hole model, its
Hawking radiation and the evaporation time. In Sec. V,
we investigate the phenomenological properties of our
models. Specifically, we analyze the timelike and null
geodesics and the evolution of their congruence and we
show that the spacetime is geodesically complete. In the
case of null geodesics, we also compute the position of
the light ring. Finally, we compute the analytical expression
of the quasinormal frequencies in the black hole case in
the eikonal regime. We draw our conclusions in Sec. VI.
Throughout the entire paper, we adopt natural units,
i.e., c ¼ ℏ ¼ 1.
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II. THE DERIVATION OF THE METRIC

Localized gravitational sources have been studied for
centuries, and can be described through Newtonian
mechanics or GR, depending on the physical settings.
However, quantum mechanics showed that matter cannot
be completely localized. Therefore, it is natural to study
quantum delocalized gravitational sources. Here, we con-
sider a pointlike particle in a quantum superposition of
different locations, and we probe its gravitational field. We
will first study the quantum corrected Newtonian potential,
and do a covariant uplifting to derive the spacetime metric
that it generates. The resulting “quantum” metric will turn
out to be a regular black hole that has interesting properties.
We will then proceed by considering the superposition in a
full covariant framework. We will use the formalism
established in [41,65], through which one can construct
a quantum superposition of classical spacetimes. We
assume GR to hold in each branch of the superposition.
Then, we will use the resulting state to compute the
expectation value of the metric operator and get the
effective quantum spacetime metric. In principle, in such
a situation, the probe would get in a joint superposition
(entanglement) with the source, as shown in [65] and as
intuitively expected. However, we are here only interested
in an average/statistical description of the source, which is
the heart of semiclassical approximation, and thus we will
treat the probe classically.

A. Quantum Newtonian potential uplifting

In this section we will work in the framework of
Newtonian gravity. We assume that a point source of mass
M interacts gravitationally with a probe P of mass m
through the Newtonian potential. While the latter is treated
as a classical particle, the source is assumed to be in a
quantum superposition of different locations. We use a
spherical coordinate system where r indicates the radial
distance from the origin. The gravitational-potential oper-
ator describing the system is

V̂ ¼ −
GMm

jr̂M − IMrmj
; ð1Þ

where r̂M is the position operator for the source, while rm is
treated as a c-number giving the three-dimensional vector
position of the probe. IM, instead, is the identity operator
acting in the Hilbert space HM pertaining to the source.
Moreover, the operator being in the denominator simply
denotes the inverse of that operator, i.e., in our nota-
tion 1

ÂþÎb
¼ ðÂþ ÎbÞ−1.

In HM, we define the state of the source as

jψiM ¼
Z

d3rϕðrÞjriM; ð2Þ

i.e., we express it in terms of a superposition of the
complete set of orthonormal generalized eigenstates of
r̂M, being ϕðrÞ a complex function whose modulus gives
the probability amplitude for the position of the source. The
quantum corrected potential is given by the expectation
value of V̂ with respect to the state jψiM, which gives1

hV̂i ¼ −Mhψ j
GM

jr̂M − IMrmj
jψiM ð3Þ

¼ −GM
Z

d3r
jϕðrÞj2
jr − r0j ð4Þ

¼ −2πGM
Z

π

0

dθ sin θ

×
Z

∞

0

drr2
jϕðrÞj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ r02 − 2rr0 cos θ
p ð5Þ

¼ −
2πGM

r0

Z
∞

0

drrðr0 þ r − jr − r0jÞjϕðrÞj2; ð6Þ

where, to lighten the notation, we indicated with r and r0
the positions of the source and the probe, respectively,
while the last two equalities are valid only if we assume
ϕðrÞ to be isotropic. Given the spherical symmetry of the
case under consideration, this assumption is satisfied.
Notice that hV̂i does not depend on the relative phases
between the states jriM. The latter commonly arise due to a
unitary time evolution of a would-be joint state of the
probe, which gets entangled with the source [65]. In this
work, however, we are not interested in a fine-grained
picture describing the quantum state of one particle and its
entanglement with the gravitational field, but rather in the
effective description of how, on average, classical localized
test particles behave in presence of quantum delocalized
sources. This is fully consistent with our choice of treating
sources as quantum objects and test particles classically. In
this “semiclassical” framework, computing the expectation
value Eq. (3) in eigenstates of V̂, erases completely all
information regarding possible relative phases in the super-
position (2).
Following the standard method of covariant uplifting,

one can use this potential to construct some components of
the spacetime metric. The idea is that this potential can be
seen as some weak field limit of a general relativistic
metric, which can be guessed from the potential as

1We note that there are strong similarities with the approaches
based on the Newton-Schrödinger (NS) equation [66–70] (how-
ever, see, e.g., Refs. [69,71,72] for challenges to this approach).
These analogies are mostly embodied by Eq. (4), which is the
usual way to write the potential appearing in the NS equation.
Despite this, it is important to stress that in our approach we do
not rely here on any dynamics described by the NS equation.
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−g00 ¼ g−1rr ≡ fðr0Þ ¼ 1þ 2hV̂ðr0Þi: ð7Þ

Note that the conventional minus sign is already inserted in
the definition of hV̂i.
Looking at Eq. (2), the most basic requirement we can

impose on ϕðrÞ is L2-integrability [so that the state (2) can
be correctly normalized]. This requirement is sufficient to
guarantee asymptotic flatness (more precisely, an asymp-
totic Schwarzschild form) of the resulting metric at spatial
infinity, as we now show. Using Eqs. (3) and (7), we write
the metric function in terms of the probability amplitude
ϕðrÞ of the position of the source

fðr0Þ ¼ 1 −
4πGM

r0

Z
∞

0

drrðr0 þ r − jr − r0jÞjϕðrÞj2: ð8Þ

To get rid of the absolute value, we separate the integral into
two parts, one for r < r0, for which jr − r0j ¼ −ðr − r0Þ,
and the other for r > r0, for which jr − r0j ¼ r − r0.
Therefore, the integral in the metric function is separated
accordingly

1

r0

Z
∞

0

drrðr0 þ r − jr − r0jÞjϕðrÞj2

¼ 2

r0

Z
r0

0

drr2jϕðrÞj2 þ 2

Z
∞

r0
drrjϕðrÞj2: ð9Þ

L2-integrability and normalization of the ϕðrÞ distribution
gives a constraint on the form of the probability amplitude,
namely

4π

Z
∞

0

drr2jϕðrÞj2 ¼ 1: ð10Þ

We will consider the behavior at asymptotic infinity first.
Indeed, by taking the r0 → ∞ limit of Eq. (9), the second
integral goes to zero, since the two integral extrema become
identical. This is true as long as the integral converges,
so that the r0 → ∞ limit and the integral commute, which
is guaranteed by virtue of Eq. (10). Indeed, ϕðrÞ is
L2-integrable when the minimal condition

jϕðrÞj2 ∼ 1

r4
þOðr−5Þ; for r → ∞ ð11Þ

is satisfied. In this case, the integral in Eq. (9) reduces to

Z
∞

r0
drrjϕðrÞj2 ∼

Z
∞

r0
dr

1

r3
∼

1

r02
→ 0 for r0 → ∞: ð12Þ

The first integral, on the other hand, is equal to 1=4π by
virtue of Eq. (10). In other words, the metric reduces to
fðr0Þ ¼ 1 − 4πGM

r0
1
2π ¼ 1 − 2GM

r0 , which is the usual, asymp-
totically flat, Schwarzschild metric.

One can also show that L2-integrability of ϕðrÞ is only a
necessary condition2 to have a nonsingular metric, i.e., a
spacetime without a central singularity at r0 ¼ 0. However,
the analysis is more involved than before. We first separate
the integral in the condition Eq. (10) into two partsZ

r0

0

drr2jϕðrÞj2 þ
Z

∞

r0
drr2jϕðrÞj2 ¼ 1

4π
: ð13Þ

Next, we use this decomposition to rewrite the right-hand
side of Eq. (9) as follows:

2

r0

Z
r0

0

drr2jϕðrÞj2 þ 2

Z
∞

r0
drrjϕðrÞj2

¼ 1

2πr0
−
2

r0

Z
∞

r0
drr2jϕðrÞj2 þ 2

Z
∞

r0
drrjϕðrÞj2: ð14Þ

The second integral on the right-hand side is well-behaved
by virtue of L2-integrability and, in the r0 → 0 limit, the
divergent factor 2=r0 in front of it cancels the other
divergent term 1=2πr0. The last integral, instead, can be
evaluated by parts to yield

2

Z
∞

r0
drrjϕðrÞj2 ¼

�
r2jϕðrÞj2j∞r0 −

Z
∞

r0
drr2∂rjϕðrÞj2

�
:

ð15Þ

As long as we consider ϕ as a function and not as a
distribution (thus, as long as we have smearing effects), the
first “boundary” term will always be zero. Therefore, we see
that the requirement of also ∂rjϕðrÞj2 being an L2-function
seems to guarantee absence of singularities for r0 → 0. This
additional condition alone, however, is still insufficient, as it
does not automatically prevent the presence of conical
singularities. The latter can be avoided if the spacetime is
endowed with a throat, i.e., the angular part of the metric
does not shrink to zero for r0 → 0 [73]. In Sec. III, we will
argue that an important consequence of superposing sources
in different locations, together with the related uncertainty
principle, guarantees the presence of a throat whenever ϕðrÞ
is L2-integrable and sharply peaked at r ¼ 0.
The specific spacetime describing the local behavior of

the metric near r0 → 0 will, of course, strongly depend on
the function of r0

F ðr0Þ≡
Z

∞

r0
drr2∂rjϕðrÞj2; ð16Þ

and on the precise form of the angular part of the metric.
This is a clear manifestation of the nonlocal nature of the

2L2-integrability alone is not sufficient to guarantee regularity
of the metric. For example, a distribution like δðrÞ=r2, which is
L2-integrable, generates the usual Schwarzschild singularity
when plugged into Eq. (8).

AKIL, CADONI, MODESTO, OI, and SANNA PHYS. REV. D 108, 044051 (2023)

044051-4



quantum-mechanical approach we are using. The fact
that the angular part of the metric is unspecified in this
construction prevents us from performing a complete
analysis of the different possibilities.

B. A simple realization: Gaussian distribution

Our approach does not allow to determine the probability
amplitude function ϕðrÞ. In fact, we are not making any
assumption on the fundamental QG dynamics, which
should determine ϕ. The latter is only weakly constrained
by general quantum mechanical principles. It must be
L2-integrable, implying that it must decrease sufficiently
fast as r → ∞. Moreover, the existence of a classical limit,
in which the mass M behaves as a point particle in the
Newtonian theory (or GR), requires jϕj2 to be peaked in
r ¼ 0. The most natural and simple candidate, respecting
these and the other requirements listed in the previous
subsection, is a Gaussian distribution of width R centered in
r ¼ 0. That is

jψiM ¼
�

2
ffiffiffi
2

p

π3=2R3

�1
2
Z

d3re−
r2

R2 jriM: ð17Þ

Physically, this means that we are using a wave packet with
uncertainty Δr ∼ R as a quantum state describing the
superposition of the source location states. The resulting
momentum uncertainty reads ΔP ∼ 1=R. We can therefore
associate to our superposition state a de Broglie length
λDB ∼ R. As we will show in the following sections, a
comparison of λDB with the gravitational (Schwarzschild)
radius of the source will allow us to measure the strength of
quantum effects.
Plugging Eq. (17) into Eq. (3) we get

hV̂i ¼ −
GM
r

Erf

� ffiffiffi
2

p

R
r

�
: ð18Þ

Here and in the rest of the present work, unless otherwise
specified, we have dropped the prime symbol to simplify
the notation. Equation (18) gives, upon covariant uplifting,

−g00 ¼ g−1rr ¼ 1 −
2GM
r

Erf

� ffiffiffi
2

p

R
r

�
: ð19Þ

As we shall see in Sec. III, for particular values of the width
R, this metric has a horizon at r ¼ rH, where g00ðrHÞ ¼ 0,
but no divergences at r ¼ 0, as expected. The classical
Schwarzschild solution, compatible with a classical source
exactly placed at r ¼ 0, is only recovered when the
uncertainty in the position, quantified by R, is sent to zero.
Interestingly, the same metric function was found also in

other works dealing with nonlocal gravity effects and black
hole mimickers in this framework [74–78].

C. A more general approach

In the previous section we derived the expectation value
of the potential operator, given a source in a quantum
superposition and a localized probe. Here we will take a
slightly different approach which will turn out to give the
same results, but further allowing for a derivation of the
angular part of the metric as well. The main difference is
that we will now work in a full covariant framework and the
source is treated as being in a superposition of different
locations of a given classical manifold. The mathematical
formalism needed to do this was introduced in [79], and
further developed by Giacomini, Brukner, and others
[9,41,80] in a series of papers focused on quantum
observers in a superposition of different reference frames.
In their approach, they also consider the possibility of
having a superposition of different classical manifolds.
They start with the state jΨðiÞi describing a delocalized

gravitational source in a single manifold, labeled by a fixed
index i, and the gravitational field associated with it

jΨðiÞi ¼ 1

2

Z
d4xS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðiÞðxSÞ

q
ϕiðxSÞjgðiÞðxS − xPÞijxðiÞS i:

ð20Þ

Here, jxðiÞS i is the position eigenstate of the source, while we
are again treating the probe classically, at a position xP. This
implies that also here the source coordinate xS is an operator,
whereas xP is a number. As in the previous section, ϕiðxSÞ
describes the probability amplitude of the source position xS
in the ith manifold, whereas jgðiÞðxÞi is the state describing
the spacetime metric. The factor 1=2 is due to the symmetry
under the exchange of xS and xP. Moreover, jgðiÞðxÞi
describes a classical spacetimeMi, with i running through
themanifolds of the superposition, i.e.,M ¼ fMigi¼1;…;N .
By summing over the states labeled by i, as well as by
integrating over xS, we construct a quantum superposition of
classical spacetimes described by the state jΨi ¼Pi jΨðiÞi.
We stress, again, the fact that this is not meant to represent a
fully consistent second quantization of the gravitational
field, but it just represents a way to build a quantum
superposition of classical geometries in a first-quantization
framework. Thus, summing over manifolds has not the
meaning of summing over different spacetime geometries
in a diffeomorphism-invariant way, but it is just a formal
definition of such superposition.
Now we assume that, in each manifoldMi, there exists a

metric operator ĝðiÞμν ðx̂Þ acting on the Hilbert space spanned
by its generalized eigenstates jgðiÞðxÞi as

ĝðiÞμν ðx̂ÞjgðiÞðxÞi ¼ gðiÞμν ðx̂ÞjgðiÞðxÞi: ð21Þ

The eigenvalues gðiÞμν ðx̂Þ are not numbers, but rather oper-
ators acting on the Hilbert space spanned by the eigenstates
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of the coordinates jxi. When acting on a position eigen-
state, it gives the usual spacetime metric as eigenvalues

gðiÞμν ðx̂Þjxi ¼ gðiÞμν ðxÞjxi: ð22Þ

Describing states of the gravitational field as a quantum
superposition of positions and spacetimes is not straightfor-
ward and can be controversial [35]. However, there was a
very nice argument presented in Ref. [65] supporting the
validity of this construction. The authors start with amassive
object (the source) in a superposition of two locations, and
a localized probe falling through. They do not construct
an a priori superposition of spacetimes, like jg1i þ jg2i.

Instead, they construct a quantum reference-frame trans-
formation which makes the source localized and leaves the
free-falling probe in a superposition of two locations. In that
case, the physics is described by the semiclassical approach.
They then evolve the superposed probe state on the
determined curved background, and, at the end of the
evolution, they transform back to the original frame in
which the source is in a superposition. The result turns out to
be in exact accordancewith the casewhere thewhole process
is done with the source being in a superposition of the two
locations, described by the state jg1i þ jg2i.
The state jΨi defined above can now be used to compute

the metric operator expectation value,

hĝμνðx̂Þi≡ hΨjĝμνðx̂ÞjΨi

¼ 1

4

XN
i;j¼1

Z
d4x0S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðjÞðx0SÞ

q
ϕ�
jðx0SÞhgðjÞðx0S − xPÞjhx0ðjÞS jĝðiÞμν ðx̂Þ

Z
d4xS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðiÞðxSÞ

q
ϕiðxSÞjgðiÞðxS − xPÞijxðiÞS i

¼
XN
i¼1

Z
d4xS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðiÞðxSÞ

q
jϕiðxSÞj2gðiÞμν ðxS − xPÞ; ð23Þ

where we assumed that the metric and the position
eigenstates of the source are orthogonal to each other,
and specifically (see also Refs. [41,80])

1

4
hgðjÞjgðiÞihx0ðjÞS jxðiÞS i ¼ δð4ÞðxS − x0SÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gðiÞðxSÞ
q δij; ð24Þ

where the Kronecker delta emphasizes the fact that
gravitational fields on different manifolds are perfectly
distinguishable. On a curved background, the distribution
jϕiðxÞj2 now satisfies the normalization conditionR
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðiÞðxÞ

q
jϕiðxÞj2 ¼ 1. Note also that we are sum-

ming over different manifolds in order to account for extra
physical parameters which can as well be in quantum
superpositions. That sum can also be an integral for
continuous parameters. The mass of the source or the
probe being in a superposition is a simple example (see the
end of the present section).
As previously noticed, summing over geometries, even

in a first quantization framework, is a quite involved
procedure. The completeness of the space spanned by
these geometries and diffeomorphism invariance are impor-
tant issues one should address before performing the
summing [81]. In order to avoid these problems and to
keep things as simple as possible, we just consider super-
position of the positions of a gravitational source in a single
given geometry and in a given coordinate system. We fix
therefore a particular gauge, requiring that the spacetime
metric is the Schwarzschild metric. We also fix the

parametrization by writing the latter in the Eddington-
Finkelstein coordinates ðv; r; θ;φÞ for simplicity.
Therefore, Eq. (23) becomes

hĝμνðx̂Þi¼N 2
2
ffiffiffi
2

p

π
3
2R3

Z
dvdrdθdφr2 sinθe−2r

2=R2

gμνðr− rPÞ:

ð25Þ

Given that the metric is static, i.e., invariant under
v-translations in each branch of the superposition, we have
to renormalize the integral over v with a renormalization
factor N 2. Moreover, given the spherical symmetry of the
metrics gðiÞ, we can also integrate over φ. This yields

hĝμνðx̂Þi¼
4π

ffiffiffi
2

p

π
3
2R3

Z
drdθr2 sinθe−2r

2=R2

gμνðr− rPÞ: ð26Þ

Plugging the explicit expressions of gμν in terms of the
Schwarzschild metric into the above, the expectation value
of the metric operator reads

hds2i ¼
�
−1þ 2GM

r
Erf

� ffiffiffi
2

p

R
r

��
dv2 þ 2dvdr

þ
�
r2 þ 3R2

4

�
dΩ2;

dΩ2 ¼ dθ2 þ sin2θdφ2; ð27Þ

where now the radial coordinate r corresponds to the
distance of the probe to the source. Interestingly, thus,
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for a Gaussian distribution of the probability amplitude of
the source, one gets the same metric components computed
in the previous section, supporting the result, and, in
addition, interesting angular components emerge.
Transforming to the Schwarzschild coordinates yields

hds2i¼
�
−1þ2GM

r
Erf

� ffiffiffi
2

p

R
r

��
dt2þ 1

1− 2GM
r Erfð

ffiffi
2

p
R rÞ

dr2

þ
�
r2þ3R2

4

�
dΩ2: ð28Þ

Note that we can also introduce a superposition of masses.
In a simplified formulation, one can promote the mass in
the Schwarzschild metric to an operator, and let it act on a
state vector accounting for the dependence of the system
from its Arnowitt-Deser-Misner (ADM) mass. In this way,
we can consider a quantum superposition of mass eigen-
states. Note that the mass operator corresponds to an
observable in quantum gravity, since it is an explicitly
gauge-invariant quantity. Its nonlocal nature is here inher-
ited from the superposition of the different eigenstates. We
start therefore by writing the state as

jΨi ¼ 1

2

Z
d4xS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðxSÞ

p
ϕðxSÞjgðxS − xPÞijxSi

×
Z

dMψðMÞjMi; ð29Þ

where ψðMÞ describes the distribution of different masses.
The previously defined metric operator, on the other hand,
will be promoted to ĝμνðx̂; M̂Þ. Then, assuming the
Schwarzschild metric in each branch of the superposition,
and focusing on the mass state, we have

hgμνðx̂; M̂Þi ¼
Z

dM0ψ�ðM0ÞhM0jĝμνðx̂; M̂Þ

×
Z

dMψðMÞjMi: ð30Þ

Substituting the zeroth component of the metric as an
example reads

hg00i ¼
Z

dM0ψ�ðM0ÞhM0j
�
1 −

2GM̂
r̂

�Z
dMψðMÞjMi:

ð31Þ

Assuming ψðMÞ to be normalized to 1, we haveZ
dMjψðMÞj2 ¼ 1 ð32Þ

Z
dMjψðMÞj2M ¼ hMi≡Mcl; ð33Þ

where we have identified the classical mass Mcl with
the expectation value of the operator M̂. When plugged
together into Eq. (30), one easily finds

hgμνðx̂; M̂Þi ¼ 1 −
2GMcl

r̂
: ð34Þ

The same works for the other components of the metric
tensor. An important remark is that these results are totally
independent of the details of the superposition, i.e., of the
explicit form of the distribution ψðMÞ. Equation (28) is
again recovered when we compute the expectation value of
the operator Eq. (34) with the position states of the source.

III. METRIC STRUCTURE

In the remainder of the paper, we will use fðrÞ to indicate
the metric function in Eq. (28), i.e.,

fðrÞ ¼ 1 −
2GM
r

Erf

� ffiffiffi
2

p

R
r

�
: ð35Þ

The metric tends to the standard Schwarzschild metric for
r ≫ R. As also mentioned at the end of Sec. II B, this last
result can also be obtained in theR → 0 limit, i.e., in the limit
inwhich thewidth of theGaussian position distribution goes
to zero, which yields the standard Dirac-delta distribution,
thus recovering the classical central singularity.
In the r → 0 limit, instead, the metric function behaves as

fðrÞ ≃ 1 −
4GM

ffiffiffiffiffiffiffiffi
2=π

p
R

þ 8GM
ffiffiffiffiffiffiffiffi
2=π

p
3R3

r2 þOðr3Þ: ð36Þ

We see that there are no spacetime singularities at r ¼ 0.
This suggests the relevance of the present approach to
the construction of nonsingular black-hole models, which
have recently gained increasing attention (see, e.g.,
Refs. [54,58,73,82]). The local r ¼ 0 behavior of the
metric function f is similar, except for the constant term,
to that of the anti–de Sitter case. We have explicitly
computed the curvature invariants for our spacetime metric
(see the Appendix) and showed that they remain finite at
r ¼ 0. One can also easily show that the r ¼ constant
time slices of our spacetime have a surface with area
A ¼ 4πðr2 þ 3

4
R2Þ, which is minimized at r ¼ 0. The

radius of the two-sphere does not shrink to zero, but to
the minimal nonvanishing value

ffiffiffiffiffiffiffiffi
3=4

p
R. This means that,

near r ¼ 0, the t ¼ constant sections of our spacetime
exhibit a R × S2 local topology. Additionally, we have an
invariance of the metric under r ↔ −r. Altogether this
means that the metric Eq. (28) describes two asymptotically
flat equivalent regions, connected through a long throat of
minimal radius

ffiffiffiffiffiffiffiffi
3=4

p
R, i.e., a wormhole. Indeed, in the

M → 0 limit, our metric reduces to the standard Morris-
Thorne wormhole [42,83]
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ds2 ¼ −dt2 þ dr2 þ
�
r2 þ 3R2

4

�
dΩ2: ð37Þ

The r → 0 behavior of the metric is what distinguishes our
solution from other either phenomenological [54,58,84] or
“quantum-inspired” regular models [85–89]. Similarly to
our case, these solutions are parametrized by a quantum
hair R and are usually endowed with a de Sitter core,
which determines the presence of two (or, more generally,
an even number of) horizons. Inspection of Eq. (36)
reveals that fð0Þ changes sign at the critical value of
R ¼ Rc ¼ 4

ffiffiffiffiffiffiffiffi
2=π

p
GM ≃ 3.19GM. This signalizes the

presence of horizons, whose position can be easily found
by computing the zeroes of fðrÞ. For R < Rc, we have one
horizon, while for R > Rc we have no horizons (see Fig. 1).
At R ¼ Rc, instead, the metric function has a zero at r ¼ 0
and we have an “extremal configuration,” separating
solutions with and without horizons.
The occurrence of different solutions for different

values of the parameter R has a nice explanation in terms
of the strength of quantum effects characterizing our
quantum superposition of spacetimes. R and Rc are of
the order of magnitude of the de Broglie length λDB of our
quantum state and of the classical gravitational radius of the
source RS ¼ 2GM, respectively. Thus, R ≪ Rc means that
quantum effects are completely negligible and we are
describing the classical limit of a fully localized source.
Correspondingly, the solutions of the effective theory
are indistinguishable from the classical Schwarzschild
black hole with its singularity at r ¼ 0. When R ∼ Rc,
instead, quantum effects become relevant and the solution

of the gravitational theory is a “quantum-deformed”
Schwarzschild black hole; R plays the role of a quantum
hair and the classical singularity at r ¼ 0 is resolved.
Finally, R > Rc corresponds to a regime that is fully
dominated by the quantum effects generated by the super-
position of the source location states. On the effective
gravitational theory, we have now a horizonless wormhole
solution. This is a quite intriguing result, reminiscent of
the ER ¼ EPR conjecture [90,91]. When quantum effects
become fully dominant, both the singularity and the
horizon disappear, leaving behind a fully regular travers-
able wormhole.
One could ask whether the presence of a wormhole in the

effective theory is generic or a consequence of assuming
the Gaussian form Eq. (17) for the distribution ϕðrÞ. We
can easily show that a wormhole solution will always be
present, regardless of the specific form of ϕðrÞ, whenever
the latter is L2-integrable and sharply peaked at r ¼ 0
(as required by a meaningful quantum picture and for
consistency with the classical description in terms of
localized source particle) and whenever the metric is
Schwarzschild in every branch of the superposition.
Indeed, from Eq. (23) we see that the gθθ component of
the effective metric can be written as

hgθθi ¼ 2π

Z
π

0

dθ
Z

∞

0

drSr2S sin θjϕðrSÞj2

× ðr2 þ r2S − 2rrS cos θÞ; ð38Þ

where rS indicates the radial coordinate of the source. The
integral over θ can be done immediately, giving

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0
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R / GM

r H
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M
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Schwarzschild

R = 2 GM

R = Rc
R = 4 GM

0 1 2 3 4 5
–1.5
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–0.5

0.0

0.5

r / GM

f(r
)

(b)

FIG. 1. (a) Horizon radius as a function of the smearing parameter R, both in units of GM. We see that, for values of R greater than
Rc ≃ 3.19 GM, the horizon disappears and we are left with a horizonless object. The horizontal dashed line corresponds to the position
of the classical Schwarzschild horizon 2 GM. (b) Behavior of the metric function (35) as a function of the radial coordinate for different
value of R: R ¼ 2 GM (solid red line), R ¼ Rc (solid blue line) and R ¼ 4 GM (solid orange line). The first case corresponds to a
solution with an event horizon (regular black holes), the second to a “critical” wormhole with a null throat, while the latter to a
horizonless object, which is a two-way wormhole.
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hgθθi ¼ 4π

Z
∞

0

drSr2SjϕðrSÞj2ðr2 þ r2SÞ

¼ 4πr2
Z

∞

0

drSr2SjϕðSÞj2 þ 4π

Z
∞

0

drSr4SjϕðrSÞj2:

ð39Þ

Using Eq. (10), the first integral gives 1=4π. By defining a
new dimensionless variable ξ ¼ rS=R, the second one, can
be written in the form,Z

∞

0

drSr4SjϕðSÞj2 ¼ R5

Z
∞

0

dξξ4jϕðξÞj2: ð40Þ

If we assume the integral to be convergent, as it is the case
for a sharply peaked function, simple counting of dimen-
sions in the normalization of ϕ, gives ϕ ∼ R−3=2. This
implies in turn that integral Eq. (40) gives a2R2, where a2 is
some real constant. Therefore, the metric can always be
written in the form

ds2 ¼ −fðr; RÞdt2 þ dr2

fðr; RÞ þ ðr2 þ a2R2ÞdΩ2: ð41Þ

Additionally, if ϕ has a narrow maximum at r ¼ 0, the first
integral in Eq. (12) is dominated by the contribution near
this maximum, so that this integral, and hence the metric
function fðrÞ in Eq. (41), are even functions of r. Finally,
L2-integrability guarantees that the metric is asymptotically
flat, as shown in Sec. II A. Altogether, these features tell us
that the metric (41) represents a wormhole.

A. Effective theory and energy conditions

From Birkhoff’s theorem, the only static, vacuum-
solution of Einstein’s field equations is the Schwarzschild
metric. Therefore, if we interpret our spacetime as a solution
of standard GR equations, it must be sourced by some
nonzero stress-energy tensor. As previously stated, we are
not making any assumption about the fundamental quantum
theory of gravity underlying our quantum description of
spacetime. Our goal is restricted to deriving the effective
description of gravity emerging fromquantumsuperposition
of positions of the source. Owing to our lack of knowledge
about the underlying theory of QG, the simplest, and more
general, guess on the emerging effective theory is that of GR
sourced by an anisotropic fluid [43,44], which is charac-
terized by profiles for the energy density ϵ and for the radial
and transverse components of the fluid pressure, respec-
tively given by pk and p⊥. This means that the effect of
the quantum superposition of spacetimes allows for an
effective classical description in terms of an anisotropic
fluid. This kind of fluids are very promising for para-
metrizing QG effects both for black holes/compact objects
[46–49,52,54,57,58,84,86,89] and for galactic dynamics
and cosmology [5,7,45,50,51,55,56]. The information about
the effective theory will be encoded in the profile ϵðrÞ and
the equation of state pk ¼ pkðϵÞ, whereas p⊥ is determined
by the conservation equation for the stress energy tensor.
Using Einstein’s equations, we can compute the explicit
expressions of the density and the pressure components for
the anisotropic fluid

ϵ ¼
−3R3 þ 4e−2r

2=R2

GM
ffiffi
2
π

q
ð3R2 þ 4r2Þ þ 6GMR3

r Erf
� ffiffi

2
p
R r
�

2πGRð3R2 þ 4r2Þ2 ; ð42aÞ

pk ¼
−3R3 − 4e−2r

2=R2

GM
ffiffi
2
π

q
ð3R2 þ 4r2Þ þ 6GMR3

r Erf
� ffiffi

2
p
R r
�

2πGRð3R2 þ 4r2Þ2 ; ð42bÞ

p⊥ ¼
6R5r3 þ 2e−2r

2=R2

GM
ffiffi
2
π

q
rð9R6 þ 30R4r2 þ 48R2r4 þ 32r6Þ − 3GMR5ð3R2 þ 8r2ÞErf

� ffiffi
2

p
R r
�

4πGR3r3ð3R2 þ 4r2Þ2 : ð42cÞ

We now analyze the energy conditions, focusing on the null
energy condition (NEC). In order for this condition to be
satisfied, we have to require both ϵþ pk ≥ 0 and ϵþp⊥≥0
to hold globally. It is sufficient to consider that, from
Eqs. (42a) and (42b), it follows:

ϵþ pk ¼ −
3R2fðrÞ

Gπð3R2 þ 4r2Þ2 ; ð43Þ

with fðrÞ given by Eq. (35). For R > Rc, i.e., for horizon-
less objects, the NEC is always violated, since fðrÞ > 0

everywhere (see Fig. 1). This means that the wormhole is
potentially traversable [42,92] (see Sec. III B). For R ¼ Rc,
the NEC is always violated except from the point r ¼ 0.
This means that this model represents a one-way wormhole
with a null throat at r ¼ 0, which poses restrictions to its
traversability as we will see in detail in the following
section.
In the black-hole case, things are a little more subtle. In

the exterior region, the NEC is always violated, since
fðrÞ > 0. In the interior, we have that the time and the
radial coordinates swap, so that we now have ϵ ¼ −Tr

r and
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pk ¼ T0
0, while p⊥ remains unchanged. Therefore, the

right-hand side of Eq. (43) changes sign. This implies that
also in the interior, fðrÞ < 0, and thus the NEC is violated.
For R → 0 (the limit in which our spacetime reduces

to the standard Schwarzschild solution), we have that
ϵþ pk ¼ 0 and the NEC is of course satisfied. Violation
of the NEC is a sufficient condition for violating all
the other energy conditions [92,93]. Indeed, it has been
proved [93] that, for a general metric of the form
ds2 ¼ −fðrÞdt2 þ f−1ðrÞdr2 þ ΣðrÞdΩ2, there is a viola-
tion of all energy conditions (regardless of whether t is a
temporal or a spatial coordinate, i.e., regardless of whether
we are inside or outside the horizon) whenever fðrÞ ≠ 0
and ΣðrÞ is nonzero everywhere and satisfies ΣðrÞ > 0 and
Σ00ðrÞ > 0, which is indeed the case here.
We have explicitly checked that the other energy con-

ditions are also violated. It is worth noting that the weak
energy condition ϵ ≥ 0 is typically strongly violated in the
region near the Schwarzschild radius, whereas it holds both
inside the latter and in the asymptotic (r → ∞) region
(see Fig. 2).

B. Wormhole traversability

The violation of the standard energy conditions is only
a necessary, but not sufficient, condition to have an “in-
principle” traversable wormhole. An additional condition,
commonly referred to as “flaring-out,” needs to be satisfied.
To properly explain the physical meaning and implications
of this requirement, we write a general-wormhole metric in
the standard form

ds2 ¼ −e2ΦðrÞdt2 þ dr2

1 − bðrÞ
r

þ r2dΩ2; ð44Þ

where ΦðrÞ and bðrÞ are functions of r only. bðrÞ controls
the spatial shape of the wormhole and is therefore called the
“shape function,” while ΦðrÞ is the “redshift function.”
The “flaring-out” condition guarantees the existence

of a throat connecting the two asymptotic regions, where
the radius of spherical shells, as a function of the
proper radial distance from the throat itself L, attains a

minimum [42,92,94]. We, thus, compute the proper radial
distance from the throat in the wormhole spacetime
Eq. (44), which is

LðrÞ ¼ �
Z

r

rthroat

drffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − bðrÞ

r

q : ð45Þ

The radius of the throat rthroat is given by the minimum of
rðLÞ, which translates to imposing

dr
dL

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

bðrthroatÞ
rthroat

s
¼ 0; ð46Þ

which gives rthroat as the solution of bðrthroatÞ ¼ rthroat.
Finally, in order for the proper distance to be strictly
increasing on both sides of the minimum rthroat, we require

d2r
dL2

¼ 1

2rthroat

�
−b0ðrthroatÞ þ

bðrthroatÞ
rthroat

�
> 0: ð47Þ

Since bðrthroatÞ ¼ rthroat, the “flaring-out” condition trans-
lates to requiring b0ðrthroatÞ < 1.
To explicitly analyze this condition in our model,

we need first to recast our metric (28) into the form of
Eq. (44). This is simply realized by the coordinate change

r0 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 3R2

4

q
, and the metric (28) becomes

ds2 ¼ −

"
1 −

2GMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02 − 3R2

4

q Erf

 ffiffiffi
2

p

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02 −

3R2

4

r !#
dt2

þ r02dr02�
r02 − 3R2

4

��
1 − 2GMffiffiffiffiffiffiffiffiffiffiffi

r02−3R2
4

p Erf

� ffiffi
2

p
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02 − 3R2

4

q ��

þ r02dΩ2; ð48Þ

from which we immediately read the “redshift” and the
“shape” functions

R = 2 G M
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r
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–0.00020
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–0.00010
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(a)

R = Rc
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r r
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–0.00010
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FIG. 2. Density ϵ as a function of r in the three cases, black-hole (case a), “critical wormhole” (case b), and wormhole (case c). In the
first case, the dashed vertical line corresponds to the position of the event horizon. For all figures, we set G ¼ M ¼ 1.
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Φðr0Þ¼1

2
ln

"
1−

2GMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02− 3R2

4

q Erf

 ffiffiffi
2

p

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02−

3R2

4

r �#
; ð49aÞ

bðr0Þ ¼ r0−
1

r0

�
r02−

3R2

4

�

×

"
1−

2GMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02− 3R2

4

q Erf

 ffiffiffi
2

p

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02−

3R2

4

r !#
: ð49bÞ

The position of the throat is given by solving the equation
bðrthroatÞ ¼ rthroat, so that

�
r2throat−

3R2

4

�"
1−

2GMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2throat−

3R2

4

q Erf

 ffiffiffi
2

p

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2throat−

3R2

4

r !#

¼0: ð50Þ

Regularity of the redshift function (49a) everywhere
[42,92], required to have traversability, implies that the
quantity in square brackets in Eq. (50) is different from
zero, which isolates the throat radius rthroat ¼

ffiffiffiffiffiffiffiffi
3=4

p
R, as

expected.
Taking the derivative of bðrÞ with respect to r0 and

evaluating it at r0 ¼ ffiffiffiffiffiffiffiffi
3=4

p
R yields

b0
� ffiffiffi

3

4

r
R

�
¼ −1þ 8GM

R

ffiffiffi
2

π

r
: ð51Þ

For b0ð ffiffiffiffiffiffiffiffi
3=4

p
RÞ < 1, i.e., for R > 4

ffiffiffiffiffiffiffiffi
2=π

p
GM, we have a

traversable wormhole, while it is nontraversable otherwise.
It is interesting to note that the same value of R discrimi-
nating between traversable and nontraversable wormholes
is the same discriminating between the presence or absence
of an event horizon, which correspond, respectively, to
R < Rc and R > Rc, with, we recall, Rc ¼ 4

ffiffiffiffiffiffiffiffi
2=π

p
GM the

critical value corresponding to the extremal configuration.
Specifically, horizonless wormholes will be traversable,
while those with an event horizon will not. The object with
R ¼ Rc falls in this last category as a particular configu-
ration with a null throat.
This is consistent with the usual Morris and Thorne’s

requirement [42] of the absence of event horizons to
guarantee traversability, as the presence of a horizon
prevents two-way travel through the wormhole. This is
of course a consequence of the requirement of the regularity
of the redshift function (49a), which implies the absence of
a horizon. Indeed, if we had fixed rthroat as the zero of the
square bracket in Eq. (50), we would have hadΦðrÞ → −∞
and thus a horizon [since we would have had e2Φ → 0
in Eq. (44)].

IV. THERMODYNAMICS
AND HAWKING EVAPORATION

The discussion of the present section is focused on
configurations endowed with an event horizon, namely
configurations with R ≤ Rc.

A. Thermodynamic properties

From the metric function Eq. (35), using the standard
black hole thermodynamic relations, we can compute both
the black hole mass and the Hawking temperature TH as
functions of the event horizon radius rH and the position
uncertainty R

MðrH; RÞ ¼
rH

2GErf
� ffiffi

2
p
R rH

� ; ð52aÞ

THðrH; RÞ ¼
1

4π

dfðrÞ
dr

				
r¼rH

¼ GMðrH; RÞ
2π3=2r2H

�
−
2
ffiffiffi
2

p
e−2r

2
H=R

2

R
rH

þ ffiffiffi
π

p
Erf

� ffiffiffi
2

p

R
rH

��
: ð52bÞ

Specifically, Eq. (52a) is the implicit relation between the
ADM mass and the event-horizon radius. Plugging it into
Eq. (52b) yields the explicit expression of the temperature

THðrH; RÞ ¼
1

4πrH
−

ffiffi
2
π

q
e−2r

2
H=R

2

2πRErf
� ffiffi

2
p
R rH

� : ð53Þ

The first term corresponds to the standard Hawking result.
Indeed, it is easy to see that, in the R → 0 limit, rH → 2GM
and TH → 1=ð8πGMÞ. In the rH → 0 limit, instead, the
temperature goes as TH ≃ rH=3πR2 þOðr2HÞ, so it goes to
zero linearly. The temperature also vanishes as rH → ∞.
This signals the nonmonotonic behavior of the temperature,
which must have at least an extremum somewhere. Indeed,
solving dTH=drH ¼ 0 yields the position of the maximum
rH;max ≃ 0.97R. A qualitative plot of the temperature is
shown in Fig. 3.
As expected, the standard thermodynamic divergence

of the temperature at rH → 0 of the Schwarzschild black
hole is cured. The rH ¼ 0 configuration corresponds to the
“extremal” wormhole, which, therefore, is a perfectly
regular, zero-temperature state. In the limit rH → 0,
MðrH; RÞ → Mc ≡ 1

4G

ffiffi
π
2

p
R, which is a nonzero value.

This signals the transition from an object with an event
horizon to a horizonless one.
An important remark is that R has to be considered as a

quantum deformation parameter that, contrary to M, is
not associated with conserved charges defined at infinity.
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This makes our quantum black hole solution drastically
different from other two-parameter classes of solutions,
like, e.g., the charged Reissner-Nordström solution, for
which both parameters are associated with thermodynamic
potentials. Owing to this feature, we expect a first law of
thermodynamics of the form dM ¼ THdS, where S is the
black hole entropy. It is known that the presence of a
quantum deformation parameter R, not associated with a
thermodynamic potential, implies violation of the area law
for the entropy [58]. An entropy formula, which generalizes
the area law and applies to “quantum-deformed” black
holes, has been proposed in Ref. [58]

S ¼ 4π

Z
rH

rmin

Mðr0HÞdr0H; ð54Þ

where rmin is the minimum value rH can attain, corre-
sponding to the radius of the extremal-state event horizon.
One can easily check that Eqs. (52a) and (52b) imply the
validity of the relation dM ¼ 4πMTHdrH, from which it
follows that the entropy Eq. (54) satisfies the first principle
dM ¼ THdS. In the case under consideration, rmin ¼ 0 and,
therefore, the entropy of the extremal, TH ¼ 0, configura-
tion vanishes. This TH ¼ S ¼ 0, M ≠ 0 extremal state
separates solutions with horizons from horizonless worm-
holes. In Fig. 4 we plotted the result of the numerical
integration of the entropy expression (54).
As mentioned before, the entropy formula (54) is a

consequence of the validity of the first law of black hole
thermodynamics in its standard formulation, i.e., withMðrÞ
identified as the internal energy of the system. This
eventually led to deviations from the entropy area law. It
is worth stressing that a parallel, but conceptually different,
thermodynamic description can be given [95], in which
instead the area law is satisfied, but the first law gets
modified; the internal energy is not identified with M
anymore, but also the matter-fields contribution is taken

into account. This is due to the extra dependence on M
contained in the stress-energy tensor, which leads to a first
law of the form

CðrH;MÞdM ¼ THd

�
AH

4

�
;

CðrH;MÞ≡ 1þ 4π

Z
∞

rH

drr2
∂T0

0

∂M
; ð55Þ

where AH is the area of the event horizon. In the standard
case, ∂T0

0=∂M ¼ 0, CðrH;MÞ ¼ 1 and we recover the usual
formulation of the first law.
However, this discussion is limited to an analysis of the

equations of motion and a Lagrangian description of these
models is clearly required to have a precise thermodynamic
interpretation of the internal energy of the system and of the
entropy (see Ref. [96]), which would allow one to prefer
one approach over the other.
Let us end this section by briefly discussing the behavior

of our solutions near the “extremal” configuration, i.e.,
the configuration with rH ¼ 0, TH ¼ 0, to gain some
insights into the transition between the black hole and
the horizonless wormhole models. Expanding around this
critical value, at leading order we get, for the mass and the
temperature

M ≃Mc þ βr2H; ð56aÞ

TH ≃ γrH; ð56bÞ

where we have defined β≡ 1
2
d2M
dr2H

jrH¼0 and γ ≡ dTH
drH

jrH¼0.

Combining the two expressions together, we find the
scaling of the mass above extremality in terms of the
temperature

Quantum BH

Schwarzschild

0 2 4 6 8 10
yH

20

40

60

80

100
S

FIG. 4. Numerical evaluation of the entropy of the quantum
black hole (solid blue line), compared to Hawking’s standard
result SH ¼ AH=ð4GÞ (with AH the area of the event horizon), as
a function of the event horizon radius in R units yH ≡ rH=R. We
set G ¼ 1.

Branch I

Branch II

rH

TH

FIG. 3. Qualitative behavior of the temperature as a function of
the event horizon radius. We highlighted the two thermodynamic
branches; thermodynamic stable configurations (blue line) and
the unstable (Hawking) branch (orange line).
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M −Mc ∼
β

γ2
T2
H: ð57Þ

This scaling of the mass above extremality with the
temperature squared is typical of several black hole
models [97,98].

B. Second-order phase-transition and free energy

The nonmonotonic behavior of the temperature (53)
depicted in Fig. 3 signals the presence of a nontrivial
thermodynamic phase portrait and of a second-order phase
transition occurring when the temperature reaches the
maximum, for the solutions with 0 ≤ R ≤ Rc. To see this,
we consider the specific heat of the solution, given by

C ¼ dM
dT

¼ dM
drH

�
dT
drH

�
−1
: ð58Þ

Being dM=drH always positive, the nonmonotonic behav-
ior of TH implies that:

(i) For rc < rH < rH;max, dT=drH is positive and thus
C > 0.

(ii) For rH > rH;max, dT=drH is negative and thus C < 0.
(iii) For rH ¼ rH;max, dT=drH ¼ 0 and thus C → ∞.
The qualitative behavior of the specific heat is represented

in Fig. 5. The second-order phase transition distinguishes
between two thermodynamic branches. Branch I, corre-
sponding to the left side of the temperature in Fig. 3, pertains
to black holes with positive specific heat, which therefore
can be considered at equilibriumwith their radiation. Branch
II, instead, describes black holes with large event-horizon
radii [right part of the temperature (52b) in Fig. 3], which are
instead characterized by a negative specific heat and there-
fore are unstable with respect to their radiation. This branch

corresponds to “classical” black holes, for which the effects
of the smearing parameter R are negligible.
The existence of this phase transition and related

thermodynamic phase portrait, for the solutions with
0 ≤ R ≤ Rc, can be checked by computing the free energy
F ¼ M − THS as a function of the temperature. The free
energy for the two branches I and II has to be calculated
numerically by inverting the equation TH ¼ THðrHÞ. We
plot F ðTHÞ in Fig. 6. Branch I corresponds to rH varying
between the minimum value r ¼ 0 and rH;max. Conversely,
branch II corresponds to rH taking values much larger than
rH;max, corresponding to the classical black hole branch.
Notice that the branch I is always energetically preferred
with respect to branch II.
The presence of a phase transition and a stable branch of

small, nonsingular black hole solution is coherent with the
quantum resolution of the classical black-hole singularity.
Large values of rH, i.e., rH ≫ R, correspond to the
classical, Schwarzschild, thermodynamic branch, in which
black holes are intrinsically unstable. For small values
rH ∼ R, below the critical temperature TH, the stable branch
of small, quantum, black holes cures the rH → 0 singular
thermodynamic behavior of the Schwarzschild black hole.
In the full quantum regime, i.e., in the parameter range
R > Rc, black holes do not exist anymore and the gravi-
tational field allows for an effective description in terms of
a traversable wormhole.

C. Particle production and evaporation time

In this sectionwewill study theHawking radiation for our
regular black hole. We will give a lightning presentation of
the derivation, following the original computation in [99].
Since the geometric optics approximation is valid in both
cases, the equations of motion will be identical, the only
differences being in the metric matching, which will—as we

Branch I

Branch II

rH

C

FIG. 5. Qualitative behavior of the specific heat (58) as a
function of the horizon radius rH. The dashed vertical line
corresponds to the position of the maximum of the temperature
(53). The stable and unstable branches (blue and orange solid
lines, respectively, are highlighted).

Branch 1

Branch 2

0.01 0.02 0.03 0.04 0.05 0.06
TH R

0.5

1.0

1.5

2.0

2.5

R

FIG. 6. Free energy F, in units of R−1, as a function of the
temperature, in units of R−1, for the two branches of our black-
hole model. Branch I and II correspond to solid blue and solid
orange curves respectively. We see that “quantum deformed”
black holes in branch I are always energetically preferred with
respect to those in branch II.
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shall show—appear only in the expression of the surface
gravity. We start by assuming a Vaidya-like gravitational
collapse of a null-shell at the light cone coordinate v ¼ v0
that leads to the metric (28).3 For such a collapse, there is an
“in” region described by the Minkowski metric

ds2in ¼ −dt2 þ dr2 þ r2dΩ2; ð59Þ

and an “out” region where the metric reads

ds2out ¼ −
�
1 −

2GM
r

Erf

� ffiffiffi
2

p

R
r

��
dt2 þ dr2

1 − 2GM
r Erf

� ffiffi
2

p
R r
�

þ
�
r2 þ 3R2

4

�
dΩ2: ð60Þ

We consider a massless scalar field ϕðxÞ obeying the usual
Klein-Gordon (KG) equation in the fixed spacetime back-
ground given by the previous metric. The field can be
expanded in terms of both in and out wave-mode functions

ΨðxÞ ¼
X
k

akukðxÞ þ a†ku
�
kðxÞ ð61Þ

¼
X
k

bkvkðxÞ þ b†kv
�
kðxÞ; ð62Þ

where ak is the particle annihilation operator in the
“in” region, bk in the “out” region. uk and vk are thus the
corresponding “in” and “out” wave modes. Each set of
modes is a complete basis and the two sets can be related to
each other through the Bogoliubov transformations

vkðxÞ ¼
X
j

αkjujðxÞ þ βkju�jðxÞ: ð63Þ

One can then easily check that

αkj ¼ ðvk; ujÞ and βkj ¼ −ðvk; u�jÞ; ð64Þ

where the canonical inner product ðvk; ujÞ is defined by

ðvkðxÞ; ujðxÞÞ ¼
Z

dΞnμ½vkðxÞ∂μu�jðxÞ − u�jðxÞ∂μukðxÞ�:

ð65Þ

Ξ is a Cauchy hypersurface, and nμ its normal vector. This
product can be shown to be independent of the choice of the
hypersurface (see, e.g., Ref. [100]).
Similarly, also the “in” and “out” creation and annihilation

operators are related through Bogoliobov transformations.

We can now compute the expectation value of the number
operator of “out” modes in the “in” vacuum and we find

hNouti ¼
X
j

jβkjj2: ð66Þ

Information about the number of Hawking quanta of each
mode k is encoded in the β coefficient, which requires
evaluating the integral in Eq. (64). To do so, one has to find
both the “in” and “out” wave modes that are solutions of the
KG equation, each in its corresponding spacetime geometry.
Following Hawking’s computations [99,101], one arrives at4

hNout
ω i ¼

X
ω0

jβωω0 j2 ¼ 1

e−2πωκ − 1
: ð67Þ

As it is known, the equation forNout
ω describes a thermal flux

of particles with a Planckian spectrum at temperature
T ¼ κ=2π. The only difference with respect to the original
Hawking calculation is the explicit expression of the surface
gravity κ evaluated at the horizon, which also depends on R,
which, therefore, also alters the spectral radiance (see Fig. 7).
Specifically, from the temperature (53), the surface gravity
reads

κ ¼ 1

2rH
−

ffiffi
2
π

q
e−2r

2
H=R

2

RErf
� ffiffi

2
p
R rH

� : ð68Þ

Since the spectrum of the quantum corrected black holes is
Planckian, we can use the Stefan-Boltzmann law to compute
the luminosity,

SchwS
R=1

R=2

R=3

0.1 0.2 0.3 0.4 0.5 0.6

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

0.00014

3Nω

FIG. 7. Spectral radiance of the blackholes for different values of
R (in units of GM), in comparison with the Schwarzschild case.

3A dynamic study of the formation of objects with such
metrics from gravitational collapse is an important issue, which is
left to future investigations.

4In the following, we will adopt the s-wave approximation in
which all Hawking modes propagate freely. This is a reasonable
approximation since the KG potential appearing in Eq. (98)
vanishes both at Iþ and near the horizon, where it is believed
that relevant physics happens. Therefore, we will not include the
backscattering effects by the potential in the KG equation, which
usually determine the graybody factors and only affect luminosity.
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L ¼ σSBAHT4
H; ð69Þ

where σSB is the Stefan-Boltzmann constant and AH ¼
4πðr2H þ 3R2=4Þ is the surface area of the two-sphere
computed at rH. We then use this to compute the mass loss
rate which is simply

dMðtÞ
dt

¼ −L ¼ −4πσSB
�
r2H þ 3

4
R2

�
T4
H: ð70Þ

The main problem is the absence of an analytic formula
isolating rH as a function of the black hole mass M.

We however get around this difficulty by expressing M in
terms of rH as in Eq. (52a). Thus, the variation ofMðtÞ with
time is

dM
dt

¼

2
64 1

2GErf
� ffiffi

2
p

rHðtÞ
R

�−
ffiffi
2
π

q
rHðtÞe−

2rHðtÞ2
R2

GRErf
� ffiffi

2
p

rHðtÞ
R

�
2

3
75drHðtÞ

dt
: ð71Þ

Plugging Eqs. (53) and (71) into Eq. (70) and integrating
from an initial radius rH;0 down to rH ¼ 0 yields

Δt ¼ −
Z

0

rH;0

128π5r4HR
3e6r

2
H=R

2

Erf
� ffiffi

2
p

rH
R

�
2
h
Re2r

2
H=R

2

Erf
� ffiffi

2
p

rH
R

�
− 2

ffiffi
2
π

q
rH
i

GσsBð4r2H þ 3R2Þ
� ffiffiffi

π
p

Re2r
2
H=R

2

Erf
� ffiffi

2
p

rH
R

�
− 2

ffiffiffi
2

p
rH
�
4

drH: ð72Þ

Since we are interested in the final part of the evapora-
tion process, i.e., rH ∼ 0 (which coincides with the
extremal configuration), we look at the expansion of
the integrand near this point. We get, after integration,
Δt ∼ ½ R5

Gr2H
þOðr−3H Þ�j0rH;0 , which diverges in rH ¼ 0. This is

perfectly consistent with the thermodynamic behavior
analyzed in Sec. IVA; for values of rH smaller than that
in correspondence with the temperature peak (see Fig. 3),
we have stable remnants.

V. THE PHENOMENOLOGY

The aim of this section is to compute phenomenological
observables and to compare them to the Schwarzschild
case. In fact, despite the simplicity of our derivation, the
presence of the additional parameter R entering the wave
function for the source may have observational signatures,
which could be tested in the near future by black hole
imaging and GWs observations. In particular, we will
analyze the geodesic structure of our spacetime, focusing
on null and timelike geodesics, and the QNMs for a scalar
perturbations in the eikonal regime.

A. Geodesic structure

In order to study the geodesics equation, we start
by considering the following Lagrangian in the usual
ðt; r; θ;φÞ Schwarzschild coordinates, which can be easily
derived from the metric (28)

L¼1

2
gμνẋμẋν

¼1

2

�
−fðrÞṫ2þ ṙ2

fðrÞþ
�
r2þ3R2

4

�
ðθ̇2þsin2θφ̇2Þ

�
; ð73Þ

where the dot indicates differentiation with respect to some
affine parameter λ. The equations of motion of a particle in
such a spacetime are given by

�
∂

∂λ

∂

∂ẋμ
−

∂

∂xμ

�
L ¼ 0; ð74Þ

and the conjugate momenta are given by

pt ¼ ∂ṫL ¼ −fðrÞṫ; pr ¼ ∂ṙL ¼ ṙ
fðrÞ ; ð75aÞ

pθ ¼ ∂θ̇L ¼
�
r2 þ 3

4
R2

�
θ̇;

pφ ¼ ∂φ̇L ¼
�
r2 þ 3

4
R2

�
sin2 θφ̇: ð75bÞ

Notice that the Lagrangian is not explicitly dependent on t
and φ. The corresponding quantities pt ¼ −E and pφ ¼ L
are conserved, a clear consequence of the isometries of
the metric. Moreover, from the equations of motion, it
follows that

∂pθ

∂λ
¼ ∂

∂λ
ðr2θ̇Þ¼−

∂L
∂θ

¼
�
r2þ3

4
R2

�
sinθcosθφ̇2; ð76Þ

so that, if we choose θ ¼ π=2when θ̇ is zero, θ̈ will be zero
as well, and the motion will be constrained on the
equatorial plane since θwill remain constant at the assigned
value. In order to find another integral of motion, we can
build the Hamiltonian corresponding to the Lagrangian
Eq. (73) as

H ¼ pμẋμ − L: ð77Þ
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It is straightforward to see that neither the Lagrangian nor
the Hamiltonian depend on the affine parameter, therefore
H ¼ L ¼ const: ¼ −ϵ2=2, where ϵ ¼ 0 or ϵ ¼ �1 for null
and timelike geodesics, respectively. From the constancy of
the Lagrangian, we can write

ṙ2 þ fðrÞ
�
ϵ2 þ L2

r2 þ 3R2=4

�
¼ E2; ð78Þ

which is the desired equation for geodesics in the space-
time Eq. (28).

B. Timelike geodesics

1. Proper time of radially infalling timelike particles

We want to compute the proper-time interval a massive
particle in radial free fall in the metric Eq. (28) takes to
reach r ¼ 0 starting from some finite distance r ¼ r0. We
take radially (infalling) timelike geodesics, which therefore
satisfy the constraint

gμνuμuν ¼ −1; ð79Þ

together with uθ ¼ uφ ¼ 0. Using the geodesic integral of
motion ṫ ¼ E=f, Eq. (79) translates to

−
E2

fðrÞ þ
ṙ2

fðrÞ ¼ −1 ⇒ ṙ2 ¼ E2 − fðrÞ: ð80Þ

Since the value of E will not alter the qualitative results of
this section, we can choose E ¼ 1, which means that the
particle starts at infinity at rest (marginally bound geo-
desics). Since we are interested in the behavior near r ¼ 0,
we expand Eq. (80) around r ¼ 0

�
dr
dτ

�
2

≃
4GM
R

ffiffiffi
2

π

r
−
8GM
3R3

ffiffiffi
2

π

r
r2 ≡ Rc

R
−
2Rc

3R3
r2; ð81Þ

where we defined λ ¼ τ as the proper time and Rc is the
critical value of R at which we have the transition to a
horizonless wormhole, i.e., 4

ffiffiffiffiffiffiffiffi
2=π

p
GM. Therefore, the

proper time, as measured by a particle moving from r0
to r, is given by the integral

ΔτðrÞ ¼ −
Z

r

r0

dr0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rc
R − 2Rc

3R3 r02
q ; ð82Þ

where the minus accounts for radial infalling geodesics.
This integral is analytical. Evaluating it in the limit r → 0
yields the finite results

Δτðr → 0Þ ¼
ffiffiffi
3

2

r
R3=2ffiffiffiffiffi
Rc

p arctg

� ffiffiffiffiffiffiffiffi
2Rc

p
r0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rcð−2r20 þ 3R2Þ
p �

: ð83Þ

This result is particularly important in the horizonless
wormhole case, since it confirms that indeed it is travers-
able, as massive particles can reach the throat in a finite
interval of proper time.

2. Timelike geodesic congruence

We can now study the expansion rate of the metric to
check whether the spacetime is geodesically complete or
not. To do so, we need to compute the geodesic con-
gruence’s expansion rate as

dΘ
dτ

¼ ṙ
dΘ
dr

¼ ṙ
d
dr

�
1ffiffiffiffiffiffi−gp ∂μð

ffiffiffiffiffiffi
−g

p
uμÞ
�
; ð84Þ

where uμ is the 4-velocity of a particle orbiting the quantum
black hole. If we consider timelike radial geodesics, the
components of the vector uμ read

uμ ¼
�

1

fðrÞ ;�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fðrÞ

p
; 0; 0

�
; ð85Þ

where the upper (lower) sign refers to outgoing (ingoing)
geodesics. Therefore, Eq. (84) becomes just

dΘ
dτ

¼ ṙ
d
dr

�
1

ρ2
d
dr

ðρ2urÞ
�
; ð86Þ

where ρ2 ¼ r2 þ 3R2=4. The evaluation of Eq. (86) in
terms of the metric functions around r ¼ 0 gives

dΘ
dτ

¼ −4
�
2

π

�
1=4

ffiffiffiffiffiffiffiffi
GM
R5

r
ṙþOðr2Þ; ð87Þ

which indicates that the solution is regular near this point
and caustics cannot form.

C. Null geodesics

1. Null-geodesic congruence

We start from a null vector field kμ ¼ dxμ=dλ (where λ is
as usual the affine parameter), satisfying the normalization
condition kμkμ ¼ 0, tangent to a bundle of radial ingoing
null geodesics. The null-geodesic congruence therefore
reads

Θ ¼ ∇μkμ ¼
1ffiffiffiffiffiffi−gp ∂μð

ffiffiffiffiffiffi
−g

p
kμÞ: ð88Þ

We first need to compute the components of the vector
field kμ. To do so, we consider again radial null geo-
desics, setting θ ¼ constant and φ ¼ constant. Also in this
case it is useful to introduce the Eddington-Finkelstein
coordinates
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u ¼ t − r�; v ¼ tþ r�; r� ¼
Z

f−1dr: ð89Þ

We see that the vector field kμ ¼ −∂μu is tangent to the
outgoing geodesics, while kμ ¼ −∂μv is tangent to the
ingoing ones. We are interested in the latter, whose
components are kμ ¼ ð−1;−f−1; 0; 0Þ. So, we also have
kμ ¼ gμνkν ¼ ðf−1;−1; 0; 0Þ, and we see that the constraint
kμkμ ¼ 0 is satisfied. Therefore, the congruence reads

Θ ¼ −
1

r2 þ 3R2

4

∂r

�
r2 þ 3R2

4

�
¼ −

8r
4r2 þ 3R2

: ð90Þ

The null-geodesic expansion thus reduces to

dΘ
dλ

¼ dΘ
dr

kr ¼ 8ð4r2 − 3R2Þ
ð4r2 þ 3R2Þ2 ; ð91Þ

which near r ¼ 0 behaves as

dΘ
dλ

≃ −
8

3R2
þ 32

3R4
r2 þOðr3Þ: ð92Þ

As in the previous case, no caustics form.

2. Photon sphere

The second term in the left-hand side of Eq. (78) (for null
geodesics), i.e.,

VðrÞ ¼ fðrÞ L2

r2 þ 3R2=4
; ð93Þ

can be thought of as an effective potential felt by massless
particles orbiting around either the black hole or the
wormhole. Therefore, minima and maxima of this potential
correspond to the radii of stable and unstable orbits,
respectively. In order to determine the position of such
points, we have to find the zeroes of dVðrÞ=dr, i.e., the
roots of the equation

− 3GMRe
2r2

R2 ð4r2 þ R2ÞErf
� ffiffiffi

2
p

R
r

�

þ 2

ffiffiffi
2

π

r
GMrð4r2 þ 3R2Þ þ 4r3Re

2r2

R2 ¼ 0: ð94Þ

Inspection of Eq. (93) shows that the potential has always a
maximum for values of R less than a minimum value
Rmin ≃ 4.8GM, while, for larger values, the maximum
shifts to r ¼ 0. The maximum corresponds to the so-called
photon sphere (or light ring) rLR. The numerical solution of
Eq. (94) is shown in Fig. 8 as a function of R, from which
we see that there could be potentially detectable deviations
from the standard Schwarzschild value 3 GM.

The qualitative behaviors of the effective potential for
different values of R is instead depicted in Fig. 9. We note
that both the “extremal” configuration with R ¼ Rc and
the traversable wormhole with Rc < R < Rmin have also
a minimum, corresponding to a stable photon orbit at
r ¼ 0 (at the throat), which is however excluded.

D. Scalar perturbations and quasinormal modes

In this section we investigate QNMs for scalar pertur-
bations in the fixed background given by our solutions.
We will then use the eikonal approximation to give an
analytical estimate of the quasinormal frequencies for the
black hole model.
In order to discuss scalar perturbations and QNMs in our

gravitational background, we start from the KG equation
for a scalar field in spherical coordinates Ψ ¼ Ψðt; r; θ;φÞ

□Ψ ¼ 1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νÞΨ ¼ 0; ð95Þ

where
ffiffiffiffiffiffi−gp

is the square root of the determinant of
the metric (28). Due to the spherical symmetry of the
metric, we can separate the angular dependence of Ψ from
its radial and temporal dependence, i.e., Ψðt; r; θ;φÞ≡
Rlmðt; rÞYlmðθ;φÞ. The angular part is given in terms of
spherical harmonics, while the radial part satisfies a
Schrödinger-like equation

½∂2r� − ∂
2
t − VeffðrÞ�ψ ¼ 0: ð96Þ

Here ψðt; rÞ is related to Rðt; rÞ by

Rlmðt; rÞ≡ ψlmðt; rÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 3R2

4

q ; ð97Þ

while VeffðrÞ is the effective potential, namely

Photon ring

Horizon

0 1 2 3 4 5

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R / GM

r/
G
M

FIG. 8. Position of the light ring and horizon radius as a
function of R, both in units of GM.
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VeffðrÞ¼
12R2f2

ð4r2þ3R2Þ2þ
4f

4r2þ3R2
½lðlþ1Þþ rf0�; ð98Þ

where primes indicate derivation with respect to r. We see
that the presence of both R and a nontrivial angular metric
function introduce an additional term in the effective
potential with respect to the Schwarzschild case, which
goes to zero as R2 in the limit R → 0. In Fig. 10, we plot
some examples for different values of R. The traversable-
wormhole case is particularly interesting, as the double
peak in the potential always signals the possibility of
having echoes in the QNMs spectrum [27,59–63].

E. Analytic expression of QNMs in the eikonal limit

We can exploit the construction of Ref. [64] to find an
analytic expression of the quasinormal frequencies in the

eikonal regime, i.e., in the l ≫ 1 limit. This construction
only works in the case in which the effective potential in the
KG equation has a single peak (the presence of the double
peak in the horizonless-wormhole case invalidates a direct
application of this algorithm [102]). The basics of the
construction of Ref. [64] is to exploit a relation between
the ringing modes of black holes and photons on the
unstable light ring. Specifically, the black hole vibration
modes, whose energy is gradually being radiated away, are
interpreted as photons moving along an unstable null
geodesics and slowly leaking out. The real part of the
quasinormal spectrum ωR (corresponding to the periodic
oscillations of the modes) is given by the angular velocity
of photons on the light ring, whose position is at rLR,
namely Ω ¼ φ̇=ṫjr¼rLR. The imaginary part of the quasi-
normal frequencies ωI, instead, responsible for the damping
of the modes, is associated to the inverse of the timescale of

r

Veff

(a)

r

Veff

(b)

r

Veff

(c)

FIG. 10. Qualitative behavior of the effective potential (98), with l ¼ 0, for the black hole model (a), the “extremal model” (b), and the
wormhole (c). In the first case, the dashed vertical line corresponds to the position of the horizon.

(a) (b)

(c) (d)

FIG. 9. Typical qualitative behavior of the effective potential V for null geodesics as a function of r for R < Rc, R ¼ Rc,
Rc < R < Rmin, and R > Rmin.
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the instability of the circular null geodesics, given by the
Lyapunov exponent, whose form reads

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
V 00ðrÞ
2ṫ2

r 				
r¼rLR

; ð99Þ

where VðrÞ is the potential for null geodesics (93), while
the minus sign is required since the light ring corresponds
to an unstable orbit. Therefore, the spectrum of QNMs
reads, in the eikonal regime

ωQNMs ¼ ωR þ iωI ¼ Ωl − i

�
nþ 1

2

�
λ ð100Þ

with n an integer (the overtone number). Ω can be easily
computed exploiting Eq. (75) and the fact that pt ¼ E and
pϕ ¼ L. Moreover, using Eq. (78), setting ϵ ¼ 0 to con-
sider null geodesics, and making use of the fact that ṙ ¼ 0
at the light ring, yield a relation between E and L

E
L
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrLRÞ
r2LR þ 3R2

4

s
: ð101Þ

Therefore, Ω reads

Ω ¼ φ̇

ṫ

				
r¼rLR

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrLRÞ

r2LR þ 3R2

4

s
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrLRÞ

4r2LR þ 3R2

s
: ð102Þ

To compute λ, we start from Eq. (99). Using the fact that
V 0ðrLRÞ ¼ 0, we simplify the expression for V 00ðrLRÞ and
we get

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
fðrÞ½−8fðrÞ þ f00ðrÞð4r2 þ 3R2Þ�

8r2 þ 6R2

s 				
r¼rLR

: ð103Þ

By numerically solving Eq. (94) to find the position of
the light ring for different values of R (limited to the black
hole and the “extremal” model cases), one can find the
explicit values of the quasinormal frequencies Eq. (100),
given the values of Ω and λ reported in Table I. We also
checked that, in the small R limit (the first value in Table I),
the quasinormal frequencies are consistent with the
Schwarzschild ones in the eikonal regime, for which
Ω ¼ jλj ¼ 1

3
ffiffi
3

p
GM

[103].

Finally, we can study how QNMs behave near the
extremal configuration. We can expand both Ω and λ
around R ¼ Rc (before computing them at rLR). We get

Ω ≃ aþ bðR − RcÞ ∼ aþ b0ðM −McÞ; ð104aÞ

λ ≃ dþ eðR − RcÞ ∼ dþ e0ðM −McÞ; ð104bÞ

where we have defined a≡ΩðRcÞ, b≡ dΩ
dR jR¼Rc

, d≡ λðRcÞ,
e≡ dλ

dR jR¼Rc
. If we take the near-horizon5 limit together

with the near-extremal limit, it is easy to see that both the
constant and the linear term R − Rc of λ go to zero, and
therefore we are left with

ωI ∝ λ ∝ M −Mc ∝ TH; ð105Þ

where we took cognisance of Eq. (57). This scaling of the
imaginary part of the quasinormal frequencies with the
temperature is consistent with some conjectures [104–108].
These zero-damped (or nearly zero-damped) modes [108]
would therefore represent a clear phenomenological sig-
nature of the extremal configuration.

VI. CONCLUSIONS

In this paper we have derived the effective quantum
spacetime metric generated by gravitational sources in
quantum superposition of different locations. We have
considered a simple case of a Gaussian wave packet in
which the width R represents the uncertainty in the position
of the source. The resulting spacetime solution has several
distinguishing features, inherited from the “quantumness”
of the source. Firstly, the uncertainty Δr ∼ λDB ∼ R in the
position of the source prevents the radius of the transverse
two-sphere from shrinking to zero, avoiding the presence of
the classical r ¼ 0 singularity of the Schwarzschild sol-
ution. Secondly, L2-integrability implies that all spacetime
metrics arising from this superposition are asymptotically

TABLE I. Values of Ω and λ, which determine the QNMs
frequencies in the eikonal limit through Eq. (100), for different
values of the quantum-deformation parameter R (in units of GM).

R=GM GMΩ GMλ

10−4 0.19245 0.19245
0.5 0.19048 0.19179
1 0.18508 0.18978
1.2 0.18219 0.18861
1.4 0.17901 0.18716
1.6 0.17562 0.18511
1.8 0.17211 0.18201
2 0.16856 0.17754
2.2 0.16506 0.17171
2.4 0.16167 0.16470
2.6 0.15845 0.1567
2.8 0.15542 0.14803
3 0.15262 0.13877
Rc 0.15015 0.12945

5A problem of the near-horizon limit is that the minimum of
the null-geodesic effective potential gets shifted inside the event
horizon at soon as we move away from “extremality.”
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flat and closely approximates the Schwarzschild solution in
the asymptotic r → ∞ region.
On the other hand, the possible models derived from our

approach have a different inner-core behavior depending on
the strength of the quantum superposition effects, i.e., on
the comparison between values of λDB ∼ R and the classical
gravitational radius RS ¼ 2 GM. In the classical limit
R ≪ RS, when the source is classically localized at
r ¼ 0, an event horizon appears to shield the classical
singularity at r ¼ 0. For R ∼ RS, quantum effects begin to
become relevant, the horizon is still present, but the
singularity at r ¼ 0 is removed by the quantum uncertainty
in the position of the source and a “quantum hair” R
appears. Finally, when the quantum effects become fully
dominant, for R > Rc ¼ 4

ffiffiffiffiffiffiffiffi
2=π

p
GM, the horizon disap-

pears and the effective spacetime solution becomes a
traversable wormhole.
The above description seems consistent with recent

ideas, such as the ER ¼ EPR conjecture, which consider
the spacetime structure as emerging from quantum entan-
glement, despite a clear connection between the two has not
been established yet. Moreover, it also explains the cosmic
censorship conjecture and the no-hair theorem as emerging
features of the classical limit of our models.
Additionally, we investigated the thermodynamic prop-

erties of the black hole solutions we have found. Our
quantum characterization of the gravitational source cures
the singular thermodynamic behavior of the Schwarzschild
black hole, i.e., negative specific heat and its divergence at
rH → 0. The latter becomes mostly severe at the end of the
evaporation process. These problems are solved by the
phase transition we have found and by the presence of a
stable branch of small nonsingular black hole solutions
with positive specific heat. Indeed, the presence of two
thermodynamic branches and the onset of the phase
transition separating them depends on the ratio between
the mass of the object and the parameter R. Dynamically
changing the latter is challenging, given that it represents
the uncertainty in the position of the source. Based on our
thermodynamic analysis, however, we expect nonetheless
the mass to decrease during evaporation, the model to

transition from the unstable to the stable branch, and to be
left with a stable, regular remnant, in line also with the
thermodynamic behavior of other regular models.
We have also shown that the presence of the quantum

hair R induces modifications, with respect to the
Schwarzschild black hole, in the photon orbits, in the
spectrum of QNMs for scalar perturbations and in GW
signal (presence of echoes, not explicitly computed here).
These deviations are potentially detectable in the near
future by third-generation gravitational wave detectors
and by black hole imaging techniques.
On the other hand, the strength of our approach—the

independence of our prediction from the details of the under-
lying microscopic quantum gravity theory—represents also
its main limitation. The lack of knowledge about the
microscopic QG theory is reflected in the intrinsic impos-
sibility, within our model, to determine the probability
distribution function ϕðrÞ from some dynamical equation.
We have circumvented this problem by working in the
framework of an effective theory, generically described by
GR sourced by an anisotropic fluid, whose energy density
and equation of state are implicitly determined by ϕðrÞ.
However, progress in this direction hinges crucially on our
ability to incorporate some details of the microscopic QG
theory in our effective description.
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APPENDIX: CURVATURE INVARIANTS

Computing the Ricci tensor for the metric Eq. (28), one
easily finds the Ricci scalar

R ¼ −
4e−

2r2

R2

h
−3GMR5e

2r2

R2 ð3R2 þ 8r2ÞErf
� ffiffi

2
p
R r
�
þ 2

ffiffi
2
π

q
GMrð9R6 þ 18R4r2 þ 32R2r4 þ 32r6Þ þ 6R5r3e

2r2

R2

i
R3r3ð3R2 þ 4r2Þ2 : ðA1Þ

At r ¼ 0, we have

Rðr ¼ 0Þ ¼
8ð6

ffiffi
2
π

q
GM − RÞ
3R3

; ðA2Þ

which shows no divergences.
We have also computed the other curvature invariants, RμνRμν, RμνρσRμνρσ (the Kretschmann scalar) and the Weyl

contraction CμνρσCμνρσ ¼ RμνρσRμνρσ − 2RμνRμν þR2=3.

AKIL, CADONI, MODESTO, OI, and SANNA PHYS. REV. D 108, 044051 (2023)

044051-20



The first one reads

RμνRμν ¼ 8e−
4r2

R2

πr6R6ð4r2 þ 3R2Þ4


8r2½G2M2ð4r2 þ 3R2Þ2ð64r8 þ 96r6R2 þ 100r4R4 þ 36r2R6 þ 9R8Þ

þ 3
ffiffiffiffiffiffi
2π

p
GMr2R5e

2r2

R2 ð32r6 þ 48r4R2 þ 30r2R4 þ 9R6Þ þ 9πr4R10e
4r2

R2 � − 12GMrR5e
2r2

R2Erf

� ffiffiffi
2

p

R
r

�

× ½
ffiffiffiffiffiffi
2π

p
GMð256r8 þ 480r6R2 þ 384r4R4 þ 162r2R6 þ 27R8Þ þ 9πr2R5e

2r2

R2 ð4r2 þ R2Þ�

þ 9πG2M2R10e
4r2

R2 ð80r4 þ 48r2R2 þ 9R4ÞErf
� ffiffiffi

2
p

R
r

�2�
; ðA3Þ

which, evaluated at r ¼ 0 gives

RμνRμνjr¼0
¼ 64ð36G2M2 − 6

ffiffiffiffiffiffi
2π

p
GMRþ πR2Þ

9πR6
: ðA4Þ

The Kretschmann scalar instead reads

RμνρσRμνρσ ¼ 16e−
4r2

R2

πr6R6ð4r2 þ 3R2Þ4


8G2M2r2ð4r2 þ 3R2Þ2ð64r8 þ 160r6R2 þ 164r4R4 þ 60r2R6 þ 9R8Þ

− 96
ffiffiffiffiffiffi
2π

p
GMr6R7e

2r2

R2 ð4r2 þ 3R2Þ þ 108πr6R10e
4r2

R2 − 4GMrR3e
2r2

R2Erf

� ffiffiffi
2

p

R
r

�

× ½
ffiffiffiffiffiffi
2π

p
GMð512r10 þ 2048r8R2 þ 2688r6R4 þ 1728r4R6 þ 594r2R8 þ 81R10Þ

þ 12πr4R5e
2r2

R2 ð3R2 − 8r2Þ� þ 3πG2M2R6e
4r2

R2Erf

� ffiffiffi
2

p

R
r

�2

× ð256r8 þ 256r6R2 þ 336r4R4 þ 144r2R6 þ 27R8Þ
�
; ðA5Þ

which at r ¼ 0 reduces to

RμνρσRμνρσjr¼0
¼ 64ð72G2M2 − 16

ffiffiffiffiffiffi
2π

p
GMRþ 3πR2Þ

9πR6
: ðA6Þ

We see that R, RμνRμν and RμνρσRμνρσ are all regular at r ¼ 0. This is a sufficient condition to have also a regular Weyl
contraction in this point.
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