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We study here the unhindered gravitational collapse of spatially homogeneous (SH) scalar fields ϕwith a
potential VsðϕÞ, as well as vector fields Ã with a potential VvðBÞ where B ¼ gðÃ; ÃÞ and g is the metric
tensor. We show that in both cases, classes of potentials exist that give rise to black holes or naked
singularities. The strength of the naked singularity when it occurs is examined, and these are found to be
gravitationally strong in the sense of Tipler, for a wide class of respective potentials (for both scalar and
vector fields). We match the collapsing scalar or vector field with a generalized Vaidya spacetime outside.
We highlight that full generality is maintained within the domain of SH scalar or vector field collapse.
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I. INTRODUCTION

The contraction of a matter field under its own gravi-
tational influence is called gravitational collapse. In 1939,
Oppenheimer and Snyder [1], and independently in 1938,
Datt [2], developed the first solution of Einstein’s field
equations [the Oppenheimer-Snyder-Datt (OSD) model]
depicting the gravitational collapse of a massive star. They
considered a rather specific case of spatially homogeneous
(SH) dust collapse (by spatial homogeneity, we mean
homogeneous on a three-dimensional spacelike orbit with
a six-dimensional isometry group G6 corresponding to the
spacetime [3]). Such a matter field undergoes gravitational
collapse that ends up in a singularity. These spacetime
singularities are hidden behind an event horizon, not visible
to any observer, resulting in a black hole as the outcome of
a continual collapse.
Extending the above special scenario, in 1969, Penrose

proposed what is now known as the cosmic censorship
hypothesis (CCH) [4]. The weaker version of the hypoth-
esis states that all singularities of gravitational collapse are
hidden within a black hole and hence, cannot be seen by a
distant observer (a globally naked singularity cannot exist).
The strong version of the hypothesis states that no past
inextendable nonspacelike causal curves exist between the
singularity and any point in the spacetime manifold. In
other words, a causal geodesic with a well-defined positive

tangent “at” the singularity does not exist (that is, a locally
naked singularity does not exist). The supporting argument
for the validity of the strong CCH is the desirability of the
spacetime manifold to be globally hyperbolic. Global
hyperbolicity implies the existence of Cauchy surfaces
embedded in the total manifold, thereby making general
relativity a deterministic and predictable theory [5–7].
The singularity theoremsofHawking andPenrose [6,8] do

not imply that singularities are necessarily hidden from an
external observer under all possible circumstances. In fact,
singularity theorems take the causality condition as one of the
axioms to start with to prove the existence of incomplete past
(future) directed causal curves. Additionally, the OSDmodel
that motivated cosmic censorship is a special case. Joshi and
Malafarina [9] showed that any arbitrarily small neighbor-
hood of the initial data giving rise to OSD collapse contains
initial data corresponding to collapse evolution, giving rise to
a singularity with the following property: one could trace
outgoing past singular causal geodesics. This means that the
end state of OSD collapse is unstable under small perturba-
tions in initial data.Moreover, one can show the formation of
naked singularities (global and local) as an end state of
gravitational collapse from suitable, physically reasonable
initial data for various matter fields [10,11]. This implies that
the initial conditions must be fine-tuned for the cosmic
censorship conjecture to hold.
In such a context, an important question one can ask is as

follows: What will be the end state of an unhindered
gravitational collapse of a fundamental matter field, such
as a scalar field or a vector field? The answer to this question
has been achievedup to a certain extent.A real scalar field is a
map defined on a smooth manifold as ϕ∶M → R with a
suitable continuity condition. Christodoulou showed that in

*kmosani2014@gmail.com
†koushiki.malda@gmail.com
‡pankaj.joshi@ahduni.edu.in
§jay.verma2210@gmail.com
∥tapobroto.bhanja@gmail.com

PHYSICAL REVIEW D 108, 044049 (2023)

2470-0010=2023=108(4)=044049(12) 044049-1 © 2023 American Physical Society

https://orcid.org/0000-0001-5682-1033
https://orcid.org/0000-0002-5438-2054
https://orcid.org/0000-0002-8064-082X
https://orcid.org/0000-0001-7070-1353
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.044049&domain=pdf&date_stamp=2023-08-23
https://doi.org/10.1103/PhysRevD.108.044049
https://doi.org/10.1103/PhysRevD.108.044049
https://doi.org/10.1103/PhysRevD.108.044049
https://doi.org/10.1103/PhysRevD.108.044049


the case of gravitational collapse of a massless scalar field ϕ
[the scalar-field Lagrangian isLϕ ¼ ð−1=2Þgμν∂μϕ∂νϕ], the
set of initial data giving rise to a naked singularity as an end
state has positive codimension in the entire initial
dataset [12,13]. This means that the initial dataset corre-
sponding to naked singularity has a zero measure in the total
initial dataset. In otherwords, naked singularity in such cases
is unstable under arbitrarily small perturbations in the
initial data.
One can have amassless scalar fieldwith a potentialVsðϕÞ

that is still a fundamental matter field. A massive scalar field
will then be a particular case of a massless scalar field with a
specific potential of the formVsðϕÞ ¼ ð1=2Þμ2ϕ2, whereμ is
the mass term. Goswami and Joshi [14] showed the example
of thegravitational collapse of amassless SHscalar fieldwith
a certain potential VsðϕÞ that ends up in a naked singularity.
Mosani et al. [15] conducted a similar investigation for a
massless scalar field with a two-dimensional analog of the
Mexican-hat-shaped Higgs field potential and found out that
the end state of such unhindered scalar-field collapse is a
naked singularity.
In addition to scalar fields (as fundamental matter fields),

we also have vector fields as fundamental matter fields in
nature and thus it becomes an intriguing problem to study
the gravitational collapse of vector fields. Geometrically,
vector fields on a smooth manifoldM can be thought of as
sections on the tangent bundle π∶TM → M, where π is a
continuous surjection. A section is a smooth map σ∶M →
TM such that π ∘ σ is an identity map on M. From a
particle physics point of view, the fundamental nature of a
vector field is different from that of a scalar field. The
importance of vector fields here can be gauged from the fact
that vector fields are the mediators (or propagators) of the
basic three forces (interactions): QED, weak and strong
(e.g., photon, a massless vector field, is the mediator of
electromagnetic force in QED, etc.). A massless vector
field with a potential function VvðBÞ is again a fundamental
matter field. A massive vector field will then be a particular
case of a massless vector field with a specific potential of
the form VvðBÞ ¼ ð1=2Þμ2B, where μ is the mass term.
Garfinkle et al. [16] studied the collapse of a massive vector
field and numerically obtained the critical initial conditions.
To our knowledge, much analytical work has not been done
in investigating the causal structure of the end-state
spacetime of the unhindered gravitational collapse of
matter fields that are vector fields.
Although the CCH is sometimes discussed abstractly, a

general consensus is that it should be examined for our
universe within the context of cosmological expansion
(apart from the exception of the big bang singularity,
which is known to be a naked singularity). Here, in order
to give a full solution to Einstein field equations, we glue
the interior spacetime of the collapsing cloud to the exterior
generalized Vaidya spacetime. One could then argue that
examining the final states of gravitational collapse and

existence or otherwise of black holes or naked singularity
in this manner would be a mere mathematical exercise and
might not have implications for the physical expanding
universe we live in. However, as is known, in view of the
complexity of the real physical universe, in order to
understand certain phenomena or properties of the uni-
verse, one often first studies an ideal scenario by isolating
the problem under consideration. The first gravitational
collapse model of Oppenheimer and Snyder [1] is one such
example. Nevertheless, in [17–19] the authors examined
the nature of singularities forming in the presence of the
cosmological constant and formed due to gravitational
collapse. It was seen that depending on the nature of the
regular initial data from which the collapse develops, black
holes or naked singularities form as collapse final states.
Also the recent observations of the central compact object
of our galaxy by the EHT group [20] has indicated that a
particular naked singularity spacetime, namely the Joshi-
Malafarina-Narayan (JMN)-1 model [21] maybe one of the
best black hole mimickers for the SgrA*. This provides a
good motivation to understand the formation of these
singularities in various scenarios by looking at it as an
isolated problem related to possible final states of gravi-
tational collapse of a massive matter cloud.
From such a perspective, in the present work, we would

like to investigate the gravitational collapse and the nature
and formation of singularities for scalar and vector fields
with potential. As indicated, such fields are often consid-
ered to be of much interest due to their fundamental nature.
This is mainly because these fields constitute fundamental
matter Lagrangian. Due to this, they are sometimes argued
to be more basic and closer to being physically realistic. At
the same time, for the sake of simplicity, we consider here
spatially homogeneous matter clouds and we leave the
investigation of a more general inhomogeneous scenario
for a future work. It is worth noting that even if the universe
may appear to be homogeneous on rather large scales,
spatial homogeneity need not constitute an astrophysical
scale or need not be considered to be a physically realistic
model, as evidenced in many structure-formation studies
and various numerical structure-formation simulations. In
that sense our exercise may be considered of a toy model
nature, despite the fields considered being physically
realistic as above. Here, SH scalar fields and vector fields
correspond to the matter field with stress-energy tensor of a
perfect fluid, governed by the Friedmann–Lemaître–
Robertson–Walker (FLRW) metric.
In this paper, in both the massless SH scalar-field as well

as vector-field cases, we show that there are broad classes
of potentials for which the configuration collapses and ends
up in either a black hole or a naked singularity depending
on the potential function chosen. We approach the causality
investigation problem of scalar-field as well as vector-field
collapse in a unified way, so to speak. As far as general
relativity is concerned, it does not discriminate between

MOSANI, KOUSHIKI, JOSHI, TRIVEDI, and BHANJA PHYS. REV. D 108, 044049 (2023)

044049-2



whether a scalar field or a vector field seeds the matter field.
The matter field is entirely identified by a rank 2 tensor
field, which is the stress-energy tensor. As far as SH perfect
fluid is concerned, one can identify a given matter field by
the functional form of the equation of state parameter ωðaÞ,
where a is the scale factor of the collapsing cloud. We
derive relevant equations of collapsing SH scalar field ϕðaÞ
and vector field ÃðaÞ in the subsections of Sec. II. The main
body of Sec. II contains discussions and relevant relations
regarding the gravitational collapse of SH perfect fluids. In
Sec. III, we smoothly join the interior collapsing perfect
fluid with an external generalized Vaidya spacetime. In
Sec. IV, we investigate the causal structure of the spacetime
(condition of obtaining a naked singularity) at the end of
the collapse of the interior perfect fluid that is either a scalar
field ϕ with potential Vs or a vector field Ã with potential
Vv. We also depict a few examples of well-known scalar
fields and vector fields. In Sec. V, we derive the criteria for
the singularity, thus obtained in the end, to be strong of
Tipler’s type. In the last section, we highlight the key points
of the investigation. Here we use the geometrized units
8πG ¼ c ¼ 1 throughout.

II. INTERIOR COLLAPSING MATTER FIELD

Consider a gravitational collapse of a SH perfect fluid.
The components of the stress-energy tensor in the coor-
dinate basis fdxμ ⊗ ∂νj0 ≤ μ; ν ≤ 3g of the comoving
coordinates ðt; x; y; zÞ are given by

Tμ
ν ¼ diagð−ρ; p; p; pÞ: ð1Þ

The spacetime geometry is governed by the flat (k ¼ 0)
FLRW metric

ds2 ¼ −dt2 þ a2dΣ2; ð2Þ
where dΣ2 ¼ dx2 þ dy2 þ dz2. Here a ¼ aðtÞ is the scale
factor such that að0Þ ¼ 1 and aðtsÞ ¼ 0, where ts is the
time of formation of the singularity. R ¼ Rðt; rÞ is the
physical radius of the collapsing cloud and can bewritten as

Rðt; rÞ ¼ raðtÞ; ð3Þ
where r is the radial spherical coordinate. For a FLRW
spacetime, Eq. (2), we have

ρ ¼ 3ȧ2

a2
; ð4Þ

and

p ¼ −
2ä
a

−
ȧ2

a2
: ð5Þ

The overhead dot denotes the partial time derivative of a.
Equation (4) can be rewritten to obtain the dynamics of the
collapse as

ȧ ¼ −

ffiffiffiffiffiffiffiffiffi
ρðaÞ
3

r
a: ð6Þ

Differentiating the above equation once again gives us

ä ¼ 1

3
a

�
aρ;a
2

þ ρ

�
: ð7Þ

Integrating Eq. (6), we obtain the time curve, which is

tðaÞ ¼
Z

1

a

ffiffiffi
3

ρ

s
da
a
: ð8Þ

The dynamics of the scale factor aðtÞ is, thus, the inverse of
the lhs of the above equation. The time of formation of the
singularity ts ¼ tð0Þ is

ts ¼
Z

1

0

ffiffiffi
3

ρ

s
da
a
: ð9Þ

Now, let us consider a particular matter field T̂ from a set of
all the possible SH perfect fluids. Choosing such an
element means choosing a specific functional form of
the equation of state parameter,

ωðaÞ ¼ p
ρ
: ð10Þ

Using Eqs. (4), (5), and (10), we can express the density of
the matter field with the equation of state parameter ω as

ρ ¼ ρ0 exp

�Z
1

a

3ð1þ ωðaÞÞ
a

da

�
: ð11Þ

A SH perfect fluid is a fundamental matter field since it can
be derived by a fundamental matter Lagrangian. In the
following two subsections, we will describe two distinct
ways of obtaining such a matter field.

A. Scalar-field collapse

We prove that any SH perfect fluid is equivalent to a SH
scalar field ϕðaÞ with a suitable potential VsðaÞ, as far as
the gravitational collapse is concerned. If ϕðaÞ is invertible,
then the following statement holds: Any SH perfect fluid is
gravitationally equivalent to a SH scalar field ϕ with a
suitable potential VsðϕÞ.
Consider a real scalar field defined on the manifoldM as

ϕ∶ M → R: ð12Þ

The Lagrangian of a massless scalar field ϕ with potential
VsðaÞ is given by
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Lϕ ¼ −
1

2
gμν∂μϕ∂νϕ − VsðϕÞ: ð13Þ

The stress-energy tensor is obtained from the Lagrangian
Lϕ as

Tμν ¼ −
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LϕÞ
δgμν

: ð14Þ

The density (ρs) and the isotropic pressure (ps) are
subsequently expressed in terms of the time derivative of
the scalar field and its potential as

ρs ¼
1

2
ϕ̇2 þ Vs; ð15Þ

and

ps ¼
1

2
ϕ̇2 − Vs: ð16Þ

The overhead dot denotes the time derivative of the
functions. From Eqs. (15) and (16), and from using the
chain rule ϕ̇ ¼ ϕ;aȧ, we get

ρs þ ps ¼ ϕ2
;aȧ2: ð17Þ

We now equate ρs ¼ ρ and ps ¼ p. Using Eqs. (5) and
(17), along with replacing ȧ and ä using Eqs. (6) and (7),
one obtains the expression of density as a function of a as

ρs ¼ ρ0 exp

�Z
1

a
aϕ2

;ada

�
: ð18Þ

From Eqs. (15) and (16), we get

ps ¼ ρs − 2Vs: ð19Þ

Using Eq. (6) in Eq. (17), we get

ρs

�
1 −

ϕ2
;aa2

3

�
þ ps ¼ 0: ð20Þ

Using Eqs. (19) and (20), we get

VsðϕÞ ¼ ρs

�
1 −

ϕ2
;aa2

6

�
: ð21Þ

Using Eqs. (17) and (6) in Eq. (5), one obtains

ρs;a
ρs

¼ −
ϕ;2a
a

: ð22Þ

We have, using Eq. (10), Eqs. (15) and (16),

Vs ¼
ρs
2
ð1 − ωÞ: ð23Þ

Now from Eqs. (21) and (23), we have

ϕðaÞ;a ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þ ωðaÞÞp

a
: ð24Þ

Integrating the above equation, one obtains

ϕðaÞ ¼ �
Z

1

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þ ωðaÞÞp

a
daþ c: ð25Þ

From Eqs. (11) and (21) we have

VsðaÞ¼ ρ0

�
1−ωðaÞ

2

�
exp

�Z
1

a

3ð1þωðaÞÞ
a

da

�
: ð26Þ

Hence, we prove that given the functional form of the
equation of state parameter ωðaÞ, one can obtain the
corresponding scalar field ϕðaÞ given by Eq. (25) with
potential VsðaÞ given by Eq. (26). As long as ϕðaÞ is
invertible [or, in other words, a bijective map from
ð0; 1� → R)], we obtain aðϕÞ, at least in principle, using
which, we get VsðϕÞ.
Alternatively, given a scalar field ϕðaÞ, one can obtain

the corresponding perfect fluid T̂ [or the ωðaÞ by which it is
identified], using Eq. (24).
On the other hand, we can also start with a given scalar-

field potential VðϕÞ. One can use Eqs. (18) and (21) to
obtain the ordinary nonlinear differential equation

H
�
a;ϕ;

dϕ
da

;
d2ϕ
da2

�
¼ 0; ð27Þ

that can be solved in principle, to obtain ϕðaÞ, and later
obtain ωðaÞ using Eq. (24). Hence, given a scalar-field
potential VsðϕÞ, one can obtain the corresponding T̂
[identified by ωðaÞ] in the above manner.

B. Vector-field collapse

We prove that any SH perfect fluid is equivalent to a SH
vector field ÃðaÞ with a suitable potential VvðaÞ, as far as
the gravitational collapse is concerned. If BðaÞ is invertible,
then the following statement holds: Any SH perfect fluid is
gravitationally equivalent to a SH vector field Ã with a
suitable potential VvðBÞ [where B ¼ gðÃ; ÃÞ].
Consider a vector field

Ã∶ M → TM; ð28Þ

with potential VðBÞ. For a fixed p ∈ M, ÃðpÞ ¼ Aμdxμ,
where Aμ ¼ ðA0; AiÞ, 1 < i < 3 (in the comoving Cartesian
coordinate basis). Here B ¼ gαβAαAβ. We consider a SH
pure vector field: A0 ¼ 0 and Ai ¼ A ∈ R ∀ i ∈ ð1; 2; 3Þ.
For such a vector field, B ¼ 3A2=a2.
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The Lagrangian of a massless vector field Ã with
potential VvðBÞ is given by

LÃ ¼ −
1

4
FμνFμν − VvðBÞ: ð29Þ

F is a two-form called the field strength and can be
written in terms of wedge product as F ¼ Fμνdxμ ∧ dxν.
The field strength is the exterior derivative of the vec-
tor field Ã, i.e., F ¼ dÃ. The components are written as
Fμν ¼ ∇μAν −∇νAμ.
The stress-energy tensor is obtained from the Lagrangian

LÃ as

Tμν ¼ −
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LÃÞ
δgμν

: ð30Þ

This gives us

Tμν ¼ −
1

4
FαβFαβgμν − VvðBÞgμν þ FμαFν

α

þ 2V 0
vAμAν: ð31Þ

The overhead prime denotes the ordinary derivative with
respect to B. The density and the isotropic pressure are
subsequently expressed in terms of the time derivative of
the vector-field component and its potential as

ρv ¼
3

2

Ȧ2

a2
þ VvðBÞ; ð32Þ

and

pv ¼
1

2

Ȧ2

a2
− VvðBÞ þ 2V 0

v
A2

a2
: ð33Þ

We now equate ρv ¼ ρ and pv ¼ p. From Eqs. (32) and (4),
we obtain

Vv ¼ ρv

�
1 −

1

2
A;2a

�
: ð34Þ

Substituting for ρðaÞ from Eq. (11), we obtain

Vv ¼ ρ0 exp

�Z
1

a

3ð1þ ωðaÞÞ
a

da

��
1 −

1

2
A;2a

�
: ð35Þ

On differentiating Eq. (34) with respect to B, we obtain

V 0
v ¼

ρv;a
�
1 − A;2a

2

�
− ρvA;a A;aa

6A2

a2

�
A;a
A − 1

a

� : ð36Þ

Using Eqs. (33), (4), and (5), we obtain

aρv;a
3

þ ρv

�
1þ 1

6
A;2a

�
¼ Vv − 2V 0

v
A2

a2
: ð37Þ

Substituting for Vv and V 0
v from Eqs. (34) and (36), and

also substituting for ρ;a [by differentiating Eq. (11)] in
Eq. (37), we obtain a second-order nonlinear differential
equation

SH Perfect Fluid

Characterised by the equation of state 

parameter (a)

SH Scalar Field

Characterised by (a)

SH Vector Field

Characterised by Ã(a)

FIG. 1. A SH perfect fluid (governed by a flat FLRW spacetime metric) is completely characterized by the equation of state parameter
ωðaÞ, Eq. (10), of the matter field. This matter field is obtained from fundamental matter Lagrangian. Hence, the same matter field is also
characterized by a SH scalar field ϕðaÞ, Eq. (25), or its potential VsðaÞ, Eq. (26) [VsðϕÞ if ϕðaÞ is invertible]. Similarly, it can also be
characterized by a SH vector field ÃðaÞ, Eq. (38), or its potential VvðaÞ, Eq. (35) [VvðBÞ if BðaÞ is invertible]. This schematic diagram
depicts the equivalence between the gravitational collapse of SH perfect fluid, scalar field and vector field. By spatial homogeneity, we
mean homogeneous on a three-dimensional spacelike orbit with a six-dimensional isometry group G6 corresponding to the
spacetime [3].
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G
�
a;ω; A;

dA
da

;
d2A
da2

�
¼ 0; ð38Þ

where G is

G¼ d2A
da2

−
2

A

�
dA
da

�
2

þ 1

2a
ð1−3ωÞdA

da
þ 3

A
ð1þωÞ: ð39Þ

For a fixed ωðaÞ, solving this differential equation with two
initial conditions gives us AðaÞ, and consequently, the
vector field Ã.
Hence, we prove that given the functional form of the

equation of state parameter ωðaÞ, one can obtain the
corresponding vector field Ã using Eq. (38), and conse-
quently, the vector-field potential VvðaÞ using Eq. (35).
Now, from the functional form AðaÞ, we obtain BðaÞ. As
long as BðaÞ is invertible [or, in other words, a bijective
map from ð0; 1� → R),] we obtain aðBÞ, at least in
principle, using which, we get VvðBÞ.
Alternatively, given a vector field ÃðaÞ, one can obtain

the corresponding perfect fluid T̂ [or the ωðaÞ by which it is
identified], using Eq. (38).
On the other hand, we can also start with a given vector-

field potential VvðBÞ. One can differentiate Eq. (35), and do
some rearrangements to obtain

ω

�
a; A;

dA
da

;
d2A
da2

�

as

ω ¼ 2AV 0

aV

�
A
a
−
dA
da

�

−
a
3

dA
da

d2A
da2

�
1 −

1

2

�
dA
da

�
2
�

−1
− 1: ð40Þ

Substituting Eq. (40) in Eq. (38), we obtain

G̃
�
a; A;

dA
da

;
d2A
da2

�
¼ 0: ð41Þ

In principle, this differential equation can be solved to
obtain AðaÞ, which, when substituted in Eq. (40), gives us
ωðaÞ. Hence, given a vector-field potential VðBÞ, one can
obtain the corresponding T̂ [identified by ωðaÞ] in the
above manner.

III. EXTERIOR GENERALIZED
VAIDYA SPACETIME

The collapsing vector-field spacetime (g−μν) can be
joined smoothly with the exterior generalized Vaidya
spacetime (gþμν) so that their union forms a valid solution
of Einstein’s field equations. The interior FLRW and the

exterior generalized Vaidya spacetime [22] are respectively
given as

ds2− ¼ −dt2 þ aðtÞ2dr2 þ r2baðtÞ2dΩ2; ð42Þ

and

ds2þ ¼−
�
1−

2MðR;vÞ
R

�
dv2−2dvdRþR2dΩ2: ð43Þ

Here, v is the retarded null coordinate,R is the generalized
Vaidya radius, and rb is the value of the radial coordinate r
corresponding to the matching hypersurface, or in other
words, the radial coordinate of the outermost shell of the
collapsing scalar-/vector-field cloud. The matter field
corresponding to the generalized Vaidya spacetime is a
combination of type I and type II, such that the components
of the stress-energy tensor written in the orthonormal basis
appear as

Tab ¼

0
BBB@

ϵ̄
2
þ ϵ ϵ̄

2
0 0

ϵ̄
2

ϵ̄
2
− ϵ 0 0

0 0 P 0

0 0 0 P

1
CCCA: ð44Þ

ϵ ¼ P ¼ 0 and ϵ̄ ≠ 0 correspond to the usual Vaidya
spacetime as a special case. ϵ̄ ¼ 0 and ϵ ≠ 0 correspond
to a subclass of type I matter field. The generalized Vaidya
solution encompasses many known Einstein field equation
solutions. Matching the first and second fundamental forms
for the interior and exterior metric on Σ gives the following
equations:

RðtÞ ¼ Rðt; rbÞð¼rbaðtÞÞ; ð45Þ

Fðt; rbÞ ¼ 2MðR; vÞ; ð46Þ
�
dv
dt

�

Σ
¼ 1þ Ṙ

1 − Fðt;rbÞ
R

; ð47Þ

and

MðR; vÞ;R ¼ Fðt; rbÞ
2R

þRR̈: ð48Þ

Here, F ¼ RṘ2 is the Misner-Sharp mass function of the
collapsing spherical SH perfect fluid. Using the relation
(45), we can relate the generalized Vaidya mass with the
density of the interior collapsing SH spherical perfect fluid
cloud as

M ¼ ρ

6
R3: ð49Þ

Using Eq. (7), differentiation of Eq. (25) with respect to a,
and Eq. (49), in Eq. (48) we get
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M;R ¼ 3M
R

�
1þ ð1þ ωðaÞÞr2b

R2

�
; ð50Þ

integrating which we obtain

MðR; vÞ ¼M1ðvÞ exp
�Z

3

R

�
1þ ð1þ ω̃ðRÞÞr2b

R2

�
dR

�
:

ð51Þ

HereM1ðvÞ is a constant of integration and is a function of
null coordinate v, and

ω̃ðRÞ ¼ ω

�
R
rb

�
:

Equation (51) gives us the expression of the generalized
Vaidya mass function of the exterior generalized Vaidya
spacetime, in terms of interior collapsing perfect fluid
equation of state parameterω, to ensure smooth matching at
the matching hypersurface.
For the exterior matter field to satisfy the weak-energy

condition, ϵ̄ and ϵ should be non-negative [22]. These
inequalities, in turn, put restrictions on the generalized
Vaidya mass function as

M;v ≤ 0; and M;R ≥ 0: ð52Þ

Using Eqs. (50) and (51) in the above two relations, we
obtain

M1;v ≤ 0; ð53Þ

and

�
1þ ωðaÞ

a2

�
≥ 0: ð54Þ

The inequality (54) is always satisfied if the interior
collapsing matter field obeys the weak-energy condition.
Hence, Eq. (53) is the only restriction on the generalized
Vaidya mass function for the exterior spacetime to obey at
least the weak-energy condition.
Now, we have a complete solution of Einstein’s field

equations consisting of an interior collapsing SH scalar/
vector field (with some potential) and the exterior gener-
alized Vaidya solution, matched smoothly at the matching
hypersurface. The free functions are categorically the
potential function [VsðϕÞ in case of scalar-field collapse,
and VvðBÞ in case of vector-field collapse], and the
component of generalized Vaidya mass function M1ðvÞ,
the latter one restricted by the inequality (53). It is evident
that the choice of M1ðvÞ does not affect the causal
structure of the spacetime obtained as an end state of
unhindered gravitational collapse. Of course, instead of
considering the potential function VsðϕÞ [or VvðBÞ] as a

free function, one could also consider any one of the
remaining functions: ωðaÞ, ρðaÞ, ϕðaÞ [or AðaÞ], VsðaÞ [or
VvðaÞ] as a free function, without any trouble. In the next
section, we study the end state of this class of global
dynamical spacetime identified by any one of the free
functions.

IV. CAUSAL STRUCTURE AND STRENGTH
OF THE SINGULARITY

Once the singularity is formed as an end state of
gravitational collapse of the interior scalar (vector) field
with potential VsðϕÞ [VvðBÞ], one can investigate whether
or not causal geodesics can escape the singularity.
Additionally, one can investigate whether or not such
singularity is gravitationally strong in the sense of
Tipler. The following two subsections discuss these two
properties.

A. Causal structure of the singularity

We say that a singularity formed due to unhindered
gravitational collapse is naked if there exists a family of
outgoing causal curves whose past endpoint is the singu-
larity. In the future, these curves can either reach a faraway
observer or fall back to the singularity. The singularities are
then termed globally naked and locally naked, respectively.
Whether or not the singularity is naked essentially depends
on the geometry of trapped surfaces as the collapse evolves.
Trapped surfaces are two-surfaces in the spacetime on
which not only the ingoing congruence but also the
outgoing congruence necessarily converge. Convergence
or otherwise of the outgoing null geodesic congruence is
determined by the behavior of its expansion scalar, which
we denote here as θlðt; rÞ. It is expressed in terms of the
metric coefficients, in comoving spherical coordinates, as

θl ¼
2

R

�
1 −

ffiffiffiffiffiffiffiffi
ρR2

3

r �
: ð55Þ

The region in which θl < 0 is called the trapped region. The
boundary of the trapped region, given by θl ¼ 0, is called
the apparent horizon. If the neighborhood of the singular
center is surrounded by a trapped region since before the
time of formation of the singularity ts, then it is covered,
and we get a black hole. Hence, the necessary condition for
singular null geodesic congruence to escape the singularity
is the absence of a trapped region, which is ensured by the
condition θlðts; rÞ > 0 for such congruence. The absence of
trapped region in the neighbourhood of the singularity
ðt; rÞ ¼ ðts; 0Þ is ensured by the following inequality:

lim
t→ts

ρR2

3
≤ lim

a→0

ρðaÞr2ba2
3

< 1: ð56Þ

The inequality (56) is definitely satisfied if
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lim
a→0

ρðaÞ < 1

a2
: ð57Þ

For

lim
a→0

ρðaÞ ¼ k
a2

;

for some k ∈ Rþ, the inequality is satisfied only for
rb <

ffiffiffiffiffiffiffiffi
3=k

p
. Rewriting the inequality (57) in terms of

the equation of state parameter ωðaÞ using Eq. (11), one
obtains

lim
a→0

ρ0a2 exp

�Z
1

a

3ð1þ ωðaÞÞ
a

�
da < 1: ð58Þ

If a collapsing matter field with the equation of state
parameter ωðaÞ satisfies the inequality (58), then it will end
up in a naked singularity [14]. In the case of otherwise, the
final outcome is a black hole.
Hence, as decided by the above inequality, we get a class

of SH matter fields that include scalar and vector fields,
identified by the functional form ωðaÞ, that goes to either
the black hole or naked-singularity final state as an end
state of unhindered gravitational collapse.
In the case of scalar-field collapse, the restriction (58) on

ωðaÞ gives us a restriction on the scalar field ϕðaÞ using
Eq. (25), and the scalar-field potential function VsðaÞ using
Eq. (26). Hence, obtaining a class of ωðaÞ is gravitationally
equivalent to obtaining a class of scalar-field potentials
VsðaÞ that goes to the naked singularity as an end state of
unhindered gravitational collapse. Moreover, suppose ϕðaÞ
is a bijective map from ð0; 1� → R. In that case, obtaining a
class of ωðaÞ is gravitationally equivalent to obtaining a
class of scalar-field potentials VsðϕÞ ¼ VsðaðϕÞÞ that goes

TABLE I. Four examples of spatially homogeneous scalar fields that collapse to form a singularity that is either
hidden (black hole or BH) or (naked singularity or NS). In the fourth example, μ ¼ − 16

3
λ. The first three types end

up in a strong singularity in the sense of Tipler.

Massless scalar field VsðϕÞ ¼ 0 ϕðaÞ ¼ c� ffiffiffi
6

p
log a Strong BH

Homogeneous dust (ω ¼ 0) VsðϕÞ ∝ exp ð ffiffiffi
3

p
ϕÞ ϕðaÞ ¼ c� ffiffiffi

3
p

log a Strong BH
Goswami/Joshi [14] (ω ¼ − 2

3
) (SF1) VsðϕÞ ∝ exp ϕ ϕðaÞ ¼ c� log a Strong NS

Two-dimensional analog of Mexican hat [15] (SF2) VsðϕÞ¼ 1
2
μϕ2þλϕ4 ϕðaÞ¼�2

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c− loga

p
Weak NS

TABLE II. Four examples of spatially homogeneous vector
fields that collapse to form a singularity that is either hidden
within a black hole (BH) or is naked (NS). The ones mentioned in
the third and the fourth row are newly constructed vector fields
from known scalar fields (mentioned in the third [14] and the
fourth [15] row of Table 1, respectively) by exploiting the
gravitational equivalence depicted in Fig. 1. The corresponding
vector-field component AðaÞ for each case is plotted in Figs. 2
and 3. The first three types end up in a gravitationally strong
singularity in the sense of Tipler.

Massless vector field VvðBÞ ¼ 0 Strong BH
Massive vector field VvðBÞ ¼ − 1

2
μ2B Strong BH

VF1 VvðaÞ as in Fig. (3) Strong NS
VF2 VvðaÞ as in Fig. (3) Weak NS

FIG. 2. The dynamics of the vector-field component AðaÞ in the case of the massive (μ ¼ 1) vector field Ã (left panel) and its potential
VvðaÞ (right panel). First we obtain ωða; A; dAda ; d

2A
da2Þ by substituting VvðBÞ ¼ − 1

2
μ2B in Eq. (40). Substituting for ωða; A; dAda ; d

2A
da2Þ in

Eq. (41) and solving the differential equation with initial conditions Að1Þ ¼ 1 and A0ð1Þ ¼ 2, we obtain AðaÞ. Consequently,
substituting VvðBÞ ¼ − 1

2
μ2B, and the obtained AðaÞ in Eq. (40), we obtain ωðaÞ. With further substitution of ωðaÞ in Eq. (35), we

obtain VvðaÞ.
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to the naked singularity as an end state of gravitational
collapse.
Similarly, in the case of vector-field collapse, the restric-

tion (58) on ωðaÞ gives us a restriction on the vector field Ã
[or more specifically, a restriction on the vector-field
component AðaÞ] obtained by solving the differential
equation (38), and the vector-field potential function
VvðaÞ obtained by substituting AðaÞ and ρ from Eq. (11),
in Eq. (34). Hence, obtaining a class of ωðaÞ is gravitation-
ally equivalent to obtaining a class of vector-field potential
VvðaÞ that goes to the naked singularity as an end state of
unhindered gravitational collapse. Moreover, suppose AðaÞ

is a bijective map from ð0; 1� → R. In that case, obtaining a
class of ωðaÞ is gravitationally equivalent to obtaining a
class of vector-field potential VvðAÞ ¼ VvðaðAÞÞ that goes
to the naked singularity as an end state of unhindered
gravitational collapse.
In Tables I and II, we discuss examples of such scalar-

field collapse and vector-field collapse that end up in either
a black hole or a naked singularity. Exploiting the equiv-
alence between SH perfect fluids, scalar fields with
potential VsðaÞ, and vector fields with potential VvðaÞ,
we construct two examples of collapsing vector fields with
potential out-of-known examples of collapsing scalar fields

(a) (b)

(c) (d)

(e)

FIG. 3. (a), (c) Vector-field potentials VvðaÞ corresponding to newly constructed vector fields VF1 (orange) and VF2 (green), as
mentioned in the third and fourth row of Table (II), respectively. (b), (d) The same vector-field potentials VvðBÞ as function of B. (e) The
vector-field components AðaÞ in both of these cases. In the latter example, μ ¼ −8=3 and λ ¼ 1. First, we obtain ωiðaÞ, using Eq. (25)
(Here i ∈ 1, 2 corresponds to VF1 and VF2 respectively). Then we obtain the vector-field components AiðaÞ by solving the differential
equation (38) with initial conditions Aið1Þ ¼ 10 and A0

ið1Þ ¼ 1. With further substitution of ωiðaÞ and the obtained AiðaÞ in Eq. (35), we
get VvðiÞðaÞ. Once VvðiÞðaÞ is obtained, we obtain VvðiÞðBÞ.
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with potentials, giving rise to the naked singularity as an
end state.
The first example of a collapsing vector field with

potential VvðaÞ is constructed from the scalar field with
potential mentioned in the third row of Table I [14]. The
perfect fluid corresponding to such scalar-field example has
an equation of state parameter ωðaÞ ¼ − 2

3
. The constructed

collapsing vector field Ã ¼ ð0; A; A; AÞ (in the comoving
coordinate basis) has the property [dynamics of AðaÞ and
VvðaÞ] as shown in Fig. 3. Refer to the third row of Table II.
The second example of a collapsing vector field with

potential VvðaÞ is constructed from the scalar field with
potential mentioned in the fourth row of Table I [15]. Such
a scalar field has a two-dimensional analog of Mexican-hat-
shaped potential. The constructed collapsing vector field
Ã ¼ ð0; A; A; AÞ (in the comoving coordinate basis) has the
property [dynamics of AðaÞ and VvðaÞ] as shown in Fig. 3.

Refer to the fourth row of Table II. The spacetime diagrams
of some of the examples in Tables I and II are plotted
in Fig. 4.

B. Strength of the singularity

Generally, a singularity in the spacetime manifold is
identified by the existence of at least one past/future
incomplete geodesic. However, in the case of singularities
forming as the end state of a gravitational collapse, apart
from the existence of such incomplete geodesics, one
expects an additional physical property as follows: An
object approaching such singularity should be crushed to
zero volume. We call such a singularity gravitationally
strong in the sense of Tipler [23]. A precise definition of a
strong singularity is as follows:
Consider a smooth spacetime manifold ðM; gÞ and a

causal geodesic γ∶½t0; 0Þ → M. Let λ be an affine

FIG. 4. Spacetime diagram of the examples of spatially homogeneous scalar fields and vector fields mentioned in Tables I and II. The
solid black curve in each of them represents the boundary of the collapsing cloud. Upper panel (a and b) [These diagrams represent the
collapse of both vector and scalar fields for 0-potentials]: the singularity is not visible in both examples. Lower panel: (c) in the case of
SF1/VF1, the singularity forms in a finite comoving time and is globally visible because of the absence of the apparent and event
horizons and (d) In the case of SF2/VF2, the singularity forms in an infinite comoving time. However, an ultrahigh-density region is
obtained in finite comoving time, which can be visible globally because of the absence of the apparent and event horizons.
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parameter along this geodesic. Let ξðiÞ, (0 ≤ i ≤ 2 in the
case of null geodesic, 0 ≤ i ≤ 3 in the case of timelike
geodesic) be the independent Jacobi vector fields. The
wedge product of these Jacobi fields gives us the volume
form V ¼ ⋀ξðiÞ. We say that a singularity is gravitationally
strong in the sense of Tipler if this volume form vanishes
as λ → 0.
Clarke and Krolak [24] related the existence of a Tipler

strong singularity with the growth rate of the curvature
terms as follows: At least along one null geodesic with
affine parameter λ (such that λ → 0 as the singularity is
approached), the following inequality

lim
λ→0

λ2RijKiKj > 0 ð59Þ

should hold for the singularity to be strong in the sense of
Tipler. Here Ki ¼ dxi

dλ are the tangents to the chosen null
geodesic, and xi is the coordinate system. This condition
puts a lower bound on the growth of the curvature scalar. In
the spherical coordinate system ðt; r; θ;ϕÞ, the radial null
geodesic equation reads

dt
dr

¼ a: ð60Þ

Hence, we have the relation between the tangents Kt and
Kr as

Kt ¼ aKr; ð61Þ

and subsequently, in terms of the affine parameter,

Kt ¼ R
λ
; and Kr ¼ r

λ
: ð62Þ

The inequality (59) can then be written in terms of ω as

lim
a→0

�
r2ð1þ ωÞρ0 exp

�Z
1

a

3ð1þ ωÞ
a

da

��
> 0: ð63Þ

Hence, the singularity formed due to the gravitational
collapse of a scalar/vector field is strong in the sense of
Tipler if the following inequality holds (assuming that the
weak-energy condition is respected):

lim
a→0

exp

�Z
1

a

3ð1þ ωÞ
a

da

�
> 0: ð64Þ

Hence, [along with using the condition (58)] one can obtain
a naked singularity that is strong in the sense of Tipler for
that ω that satisfies the following constraint:

0 < lim
a→0

exp

�Z
1

a

3ð1þ ωÞ
a

da

�
< Oða−2Þ: ð65Þ

This constraint gives us the class of SH collapsing matter
fields that we identify by ωðaÞ, which ends up in strong
curvature naked singularity. Or in other words, we have a
class of scalar-/vector-field potentials corresponding to the
given scalar/vector field that collapses to a strong naked
singularity. As an example, in Tables I and II, we mention
the causal property and the strength of the singularity
formed due to the gravitational collapse of four different
scalar/vector fields.

V. CONCLUSIONS AND REMARKS

Following are the concluding remarks:
(1) Unlike the singularity theorems that provide rigor-

ous proof of the existence of incomplete causal
geodesics under rather generic conditions, one does
not currently have proof or disproof of the cosmic
censorship hypothesis. In fact, we need a math-
ematically rigorous formulation of this conjecture,
which is not available currently, before we can prove
or disprove it.
Under the situation at present, we can only

speculate its validity or otherwise. Proposed counter-
examples hence have great importance in under-
standing whether naked singularities, in fact, exist or
not in our universe. Through such analysis of
gravitational collapse models only, one could pos-
sibly hope to arrive at a suitable formulation of
cosmic censorship. The collapse of inhomogeneous
dust and the Vaidya null fluids were the first
examples proposed to produce naked singularities.
However, an important objection could be that, even
if astrophysically interesting, they are not funda-
mental forms of matter [7,25]. One could then ask
whether the collapse of matter configuration that is
obtained from a fundamental matter Lagrangian
ends up in a naked singularity. Scalar fields with
potential and vector fields with potential are funda-
mental matter fields in this sense. Here we show that
not just one particular choice of these fields but an
entire class of such types could collapse and form a
naked singularity as an end state. This basically
divides the allowed class of potential functions into
classes that take the unhindered collapse to a black
hole or naked singularity.

(2) To achieve this, we show equivalence between SH
(a) Perfect fluid: characterized by ωðaÞ,
(b) Massless scalar field ϕ: characterized by ϕðaÞ or

its potential VsðaÞ or VsðϕÞ [if ϕðaÞ is invert-
ible], and

(c) Massless vector field Ã: characterized by AðaÞ,
or its potential VvðaÞ, or VvðBÞ [if BðaÞ is
invertible].
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as far as the gravitational collapse is concerned. This
gravitational equivalence is described in subsections of
Sec. II and depicted in Fig. 1. Now, if the functional form of
ωðaÞ satisfies the inequality (58), then the singular null
geodesic congruence, if at all there exists, does not get
trapped as a → 0. Hence, we have a class of functions ωðaÞ
corresponding to a naked singularity as an end state of
gravitational collapse. Now, because of the above equiv-
alence, in the case of a SH scalar-field collapse, one then
has a class of scalar-field function ϕðaÞ, or a class of scalar
field potential VsðaÞ, or a class of scalar-field potential in
terms of ϕ, i.e. VsðϕÞ [provided ϕðaÞ is invertible], that
corresponds to the naked singularity as an end state.
Similarly, in the case of a SH vector-field collapse, one
has a class of vector-field component function AðaÞ, or a
class of vector-field potential VvðaÞ, or a class of vector-
field potential in terms of B ¼ gðÃ; ÃÞ, i.e. VsðBÞ [provided
BðaÞ is invertible], that corresponds to the naked singu-
larity as an end state.
(3) A naked singularity formed due to gravitational

collapse may or may not be relevant if it is not

gravitationally strong in the sense of Tipler [23].
Here, we show a class of ωðaÞ that satisfies the
inequalities (65) that corresponds to the formation of
a strong curvature naked singularity. Using argu-
ments similar to point No. 2 of this section, we have
equivalently shown a class of scalar-field potential
(in case of scalar-field collapse) and a class of
vector-field potential (in case of vector-field col-
lapse) that corresponds to a strong curvature naked
singularity.

(4) For the sake of completion, we studied the global
spacetime, consisting of the interior collapsing
scalar/vector field and the exterior generalized
Vaidya spacetime. The smooth matching demands
a restriction on the free function, that is, the
generalized Vaidya mass function, in terms of the
property of the interior collapsing scalar/vector field.
We have fulfilled this demand by deriving the
expression of the generalized Vaidya mass in terms
of the equation of state parameter of the interior
collapsing field in Eq. (51).
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