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In this work we investigate the anisotropic conformal structure of the gravitational field incorporating
dark gravity in a generalized Lagrange geometric framework on the Lorentz tangent bundle and we
present two applications: the anisotropic conformal Minkowski spacetime and the anisotropic conformal
Friedmann–Lemaître–Robertson–Walker cosmology. In the first application, the conformal factor induces
an anisotropic conformal de-Sitter-like space with extra curvature which causes extra gravity and allows for
Sasaki-type Finsler-like structures which could potentially describe certain gravitational phenomena in a
more extended form. The cosmological properties of the model are also studied using a Friedmann–
Lemaître–Robertson–Walker metric structure for the underlying base manifold in the second application,
where we derive generalized Friedmann-like equations for the horizontal subspace of the Lorentz tangent
bundle spacetime that reduce under certain conditions to those given by Triantafyllopoulos and Stavrinos
[Classical Quantum Gravity 35, 085011 (2018)] as well as those of general relativity.
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I. INTRODUCTION

Over the last decades the topic of dark matter and dark
energy stands at the forefront of scientific research in the
field of gravity and cosmology [1–18]. The significant
interest in this topic stems from observational data that
attribute the vast majority of the mass in the observable
universe to sources other than ordinary luminous matter,
what researchers called dark matter [19]. Examples of
phenomena that would suggest a modified theory of gravity
that would account for the discrepancies in the classical
theory of gravitation due to the presence of dark matter and
dark energy arise from the study of gravitational lensing,
cosmic microwave background radiation (CMB) or the
rotational curves of spiral galaxies [20,21].
The study of such phenomena suggests that dark matter

would contribute significantly in the evolution and accel-
eration of the universe which would mean that the study of
dark matter is essential for cosmology. In particular, dark
matter could possibly be considered as the main reason for
galaxy structure formations and dark energy as the drive
for the measured cosmic acceleration [22–24]. This would

suggest the need for a modified theory of gravity that would
incorporate such gravitational effects and potentially
describe the aforementioned phenomena, since extra dark
gravity influences all scales of matter. Particularly, the
Λ-CDM model is especially efficient in agreeing with
observational data [25–27]. However, it has been argued
[28] that this model is lacking in sufficient mathematical
and theoretical background. This would therefore indicate
that there exists a need to obtain an improved mathematical
structure consistent with such description of the universe
with dark gravity.
There is some evidence that a conformal theory of gravity

can dynamically accommodate for this “extra” gravity by
introducing additional degrees of freedom to the existing
underlying metric structures [29–31]. In addition, a con-
formally invariant theory could possibly be linked to a
bounce evolution of the universe [32,33]. Furthermore, the
purely gravitational dark matter may be produced mainly
by the gravitational particle creation process [34], which is
thought to normally convert anisotropy energy into radiation
energy [35]. It is also worth noting that a conformal
framework of gravity seems to be particularly compatible
with observational data of galactic rotational velocities and
halos among others [36–39].
One geometrical frame for the anisotropic conformal

modification of gravity arises from the extension of the
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underlying geometry of a manifold ðM; gðxÞÞ; i.e., general-
ized Lagrange metric structures on the tangent bundle
[40–47]. In this framework the gravitational field is extended
in a higher dimensional spacewith greater volume.A Sasaki-
type Finsler-like structure of this kind not only furnishes the
geometric frame with extra degrees of freedom, but also
endows the structure of the spacetime with local anisotropy
and extra dimensions, which could be associated with dark
gravitational effects [48], while simultaneously preserving
the light cone [49,50]. These extra degrees of freedom are
introduced in 8-dimensions and are linked to the notion
of direction-dependent anisotropy caused by velocity or
momentum coordinates [40]. This dependence of the physi-
cal quantities on the observer 4-velocity provides a natural
geometric extension of the Riemannian frame on the tangent
bundle, which could be reproduced from the generalized
frame by eliminating this direction dependence. Moreover,
such a Sasaki-type consideration could potentially be related
to a generalized anisotropic conformal de-Sitter Minkowski
spacetime structure. We can notice that a Friedmann space-
time is isotropic conformal to a Minkowski flat spacetime.
Analogously, it could be interesting to study an anisotropic
conformal Minkowski as well as Friedmann–Lemaître–
Robertson–Walker (FLRW) spacetime using the aforemen-
tioned geometry. Finally, due to the strong association of
Finsler and Finsler-like geometries with the effective geom-
etry within anisotropic media [40,51,52], forming a natural
gravitational analogy [40,53], it could be argued that they
could play an important role in quantum gravity consider-
ations [54–57].
This work is organized as follows: in Sec. II, we present

the generalized Lagrange Sasaki-type geometric structure
of the tangent bundle giving the relations for the metric, the
connection, the curvature tensor field as well as the field
equations, among others. In Sec. III, we give the geodesic
equations for this model. In Sec. IV we study the case of the
anisotropic conformal Minkowski spacetime and derive a
couple of special types of conformal factors. Further in
Sec. V we investigate the anisotropic conformal FLRW-
cosmology using the geometric frameworks developed in
this work. Finally, in Sec. VI, we summarize our results and
in the Appendix we present some further geometric results.

II. METRIC STRUCTURE

In this section, we shall introduce some basic notions
from the geometry of generalized Finsler-like metric
structures. LetM be a differentiable manifold of dimension
dimðMÞ ¼ n and TM be its tangent bundle. Let the
manifold M be endowed with a (pseudo-)Riemannian
metric γðxÞ. Then it is well known [58,59] that its tangent
bundle can be endowed with a Riemann-Sasaki metric
structure as follows:

dl2 ¼ γμνðxÞdxμ ⊗ dxν þ γabðxÞδya ⊗ δyb; ð1Þ

where

δya ¼ dya þ Na
μðx; yÞdxμ ð2Þ

with μ; ν;… ¼ 0; 1;…; n − 1 and a; b;… ¼ 0;…; n − 1.
The components of Na

μðx; yÞ, which is known as the
nonlinear connection, is produced by the Whitney sum
of the horizontal and vertical subspaces of the tangent
bundle [60,61]. It is then well established that this metric
structure for the tangent bundle can be further generalized
to include Finsler, Lagrange and generalized Lagrange
metrics gðx; yÞ, collectively known as Finsler-like struc-
tures. In this case we have:

dτ2 ¼ gμνðx; yÞdxμ ⊗ dxν þ gabðx; yÞδya ⊗ δyb: ð3Þ

Let us now consider a nonreducible generalized
Lagrange tangent bundle space TM,

GLð2nÞ ¼ ðgμνðx; yÞ; gabðx; yÞÞ ð4Þ

with metric G such that

ds2 ¼ efðx;yÞdl2 ¼ σðx; yÞdl2; ð5Þ

where f; σ∶TM → R are functions which are at least C2

known as the (anisotropic) conformal factors. For con-
venience we shall be using both of these equivalent
definitions for the conformal factor throughout this study.
Physically, the conformal factor is introduced to incor-
porate the dark gravitational effect into the geometric
framework of the gravitational field. The variable y in
particular, is the internal variable that introduces direction
dependence and hence local anisotropy. If the conformal
factor does not depend on y, this is interpreted as isotropic
dark gravity, and if f ¼ 0 then we get a spacetime without
dark gravity. This metric space is said to be anisotropic
conformal [50,62] to the Riemann-Sasaki metric space
defined by the Riemannian metric γðxÞ. In terms of the
bundle components, the metric tensor can be equivalently
written as,

GMNðx; yÞ ¼ fgμνðx; yÞ; gabðx; yÞg; ð6Þ

where M;N;… ¼ 0; 1;…; 2n − 1

gμνðx; yÞ ¼ efðx;yÞγμνðxÞ ð7Þ

gabðx; yÞ ¼ δμaδ
ν
bgμνðx; yÞ ð8Þ

and γμνðxÞ is a Riemannian metric that has been extended in
the vertical subspace as γab ¼ δμaδ

ν
bγμν.

The adapted and dual bases of TTM are given by

XM ¼ fδμ; ∂ag; XM ¼ fdxμ; δyag ð9Þ
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respectively, where

δμ ¼ ∂μ − Na
μðx; yÞ∂a; ∂μ ≔

∂

∂xμ
; ∂a ≔

∂

∂ya
: ð10Þ

The connection is then given by the following:

Dδνδμ ¼ Lλ
μνδλ; Dδν∂a ¼ L̃c

aν∂c

D
∂b
δμ ¼ C̃λ

μbδλ; D
∂b
∂a ¼ Cc

ab∂c: ð11Þ

Hence, the coefficients of the d-connection are

ΓL
MN ¼ fLλ

μν; L̃c
aν; C̃

λ
μb; Cc

abg: ð12Þ

The d-connection preserves the horizontal and vertical
components of a vector under parallel translation [60].
Throughout this study we shall assume a metrical
d-connection [60,61,63,64]. From this assumption we get
the subsequent relations for the d-connection coefficients:

Lλ
μν ¼ γλμν þ

δλνδμσ þ δλμδνσ − γμνγ
λρδρσ

2σ
ð13Þ

L̃a
bμ ¼

∂bNa
μ þ γac∂μγbc þ δab

δμσ
σ − γbdγ

ac
∂cNd

μ

2
ð14Þ

Cc
ab ¼

1

2σ
ðδcb∂aσ þ δca∂bσ − γabγ

cd
∂dσÞ ð15Þ

C̃λ
μc ¼

1

2
δλμ∂cðln σÞ; ð16Þ

where γλμν are the Christoffel symbols of the Riemannian
metric γ.
Using the d-connection coefficients we previously found

in relations (13)–(16), we can now calculate the curvature
of this space. In particular, let R be the curvature tensor
field of the d-connection D, then the nonzero components
of R are given by the following relations:

Rν
μ
ρσ ¼ Rν

μ
ρσ; Rb

a
κλ ¼ Rb

a
κλ ð17Þ

Rν
μ
ρd ¼ Pν

μ
ρd; Rb

a
κd ¼ Pb

a
κd ð18Þ

Rν
μ
ab ¼ Sνμab; Rb

a
cd ¼ Sbacd; ð19Þ

where the d-tensor fields are given by:

Rν
μ
ρσ ¼ δσLμ

νρ − δρLμ
νσ þ Lκ

νρLμ
κσ

− Lκ
νσLμ

κρ þ C̃μ
νcRc

ρσ ð20Þ

Rb
a
ρσ ¼ δσL̃a

bρ − δρL̃a
bσ þ L̃c

bρL̃a
cσ ð21Þ

− L̃c
bσL̃a

cρ þ Ca
bcRc

ρσ ð22Þ

Pν
μ
ρd ¼ ∂dLμ

νρ − C̃μ
νdjρ þ C̃μ

νbPb
ρd ð23Þ

Pb
a
ρd ¼ ∂dL̃a

bρ − Ca
bdjρ þ Ca

bcPc
ρd ð24Þ

Sνμab ¼ ∂bC̃
μ
νa − ∂aC̃

μ
νb þ C̃λ

νaC̃
μ
λb − C̃λ

νbC̃
μ
λa ð25Þ

Sbacd ¼ ∂dCa
bc − ∂cCa

bd þ Ce
bcCa

ed − Ce
bdCa

ec; ð26Þ

where Rc
ρσ ¼ δσNc

ρ − δρNc
σ ¼ δ½σNc

ρ�. N is said to be
integrable if and only if Rc

ρσ ¼ 0 [60,63]. Let the nonlinear
connection be of Cartan-type, i.e., Na

κ ¼ γabκyb. Then it is
clear that in general N is not integrable. For the anisotropic
conformal metric (5) we have the following curvature
tensor field components [65]:

Rν
μ
ρσ ¼ Kν

μ
ρσ þ

1

2
Lν

μ
ρσ þ

1

4
Mν

μ
ρσ ð27Þ

Rb
a
ρσ ¼ 1

2
L̃b

a
ρσ þ

1

4
M̃b

a
ρσ ð28Þ

Sνμab ¼ 0 ð29Þ

Sbacd ¼
1

2
ðδa½c∂d�∂bf þ γb½dγae∂c�∂efÞ

þ 1

4
ðδa½d∂bf∂c�f þ δa½cγd�bγef∂ef∂ff

þ γb½cγae∂d�f∂efÞ; ð30Þ
where

Kν
μ
ρσ ¼ ∂½σγμρ�ν þ γκν½ργμσ�κ ð31Þ

Lν
μ
ρσ ¼ δμ½ρδσ�δνf þ δμνδ½σδρ�f þ ∂½ργσ�νγμλδλf

þ γν½σ∂ρ�γμλδλf þ γν½σγμλδρ�δλf

þ γκν½ρδμσ�δκf þ γκν½σγρ�κγμλδλf

þ γμκ½ργσ�νγκλδλf þ δμνδ½σNc
ρ�∂cf ð32Þ

Mν
μ
ρσ ¼ δμ½σδρ�fδνf þ γν½ργμλδσ�fδλf þ δμ½ργσ�νγκλδκfδλf

ð33Þ
L̃b

a
ρσ ¼ δ½σ∂bNa

ρ� þ ∂½σγac∂ρ�γbc þ δabδ½σδρ�f

þ γac∂½ργbd∂cNd
σ� þ γbd∂½ργac∂cNd

σ�

þ γbdγ
acδ½ρ∂cNd

σ� þ δ½σNa
ρ�∂bf

þ δ½σNc
ρ�δab∂cf − δ½σNc

ρ�γbcγad∂df ð34Þ
M̃b

a
ρσ ¼ ∂bNc½ρ∂cNa

σ� þ γcd∂cNa½σ∂ρ�γbdþ γad∂bNc½ρ∂σ�γcd

þ γbdγ
ce
∂eNd½σ∂cNa

ρ� þ γaeγcd∂½σγce∂ρ�γbd

þ γbdγ
afγce∂eNd½σ∂ρ�γcfþ γbdγ

ac
∂cNd½σδρ�f

þ γcdγ
ae
∂eNd½ρ∂bNc

σ� þ γac∂cNd½ρ∂σ�γbd

þ γbcγ
ad
∂dNc½ρδσ�fþ γbdγ

ae
∂cNd½ρ∂eNc

σ� ð35Þ
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K, in particular, is the Riemann curvature tensor corre-
sponding to the (pseudo-)Riemannian metric γ of the
underlying manifold structure. The horizontal R-curvature
contains extra terms, in addition to the underlying
Riemannian K-curvature, which allow for any discrepan-
cies to the Riemannian K-curvature that result from the
effect of the “extra” dark gravity and could otherwise be
interpreted as perturbations to the Riemannian framework
to be incorporated in the geometry of the spacetime in the
tangent bundle.
A physical interpretation of the vertical S-curvature (30),

on the other hand, could be tied to an anisotropic behavior
of dark gravity since the S-curvature indicates an aniso-
tropically curved spacetime. This is made evident by the
above-mentioned form of the vertical S-curvature which
depends on the existence of a direction-dependent con-
formal factor, which in turn presupposes an anisotropic
dark matter as mentioned in the beginning. A nontrivial
S-curvature is absent from a Riemannian framework and
would thus introduce extra degrees of freedom not present
in a Riemannian theory of gravity. Consequently, this
geometric structure could allow for a broader study of
gravitational phenomena linked with dark gravity and
anisotropy (e.g., the evolution of universe).
We shall now find the Ricci tensors as follows:

Rνρ ¼ Rν
μ
ρμ ¼ Kνρ þ

1

2
Lνρ þ

1

4
Mνρ; ð36Þ

where

Lνρ ¼ δ½νδρ�f þ γν½μγμλδρ�δλf þ ∂½ργμ�νγμλδλf

þ γν½μ∂ρ�γμλδλf þ γκν½μγρ�κγμλδλf

þ γμκ½ργμ�νγκλδλf þ δ½νNc
ρ�∂cf ð37Þ

Mνρ ¼ γν½ργμλδμ�fδλf ð38Þ

and the Ricci tensor corresponding to the Riemannian
metric γ is

Kνρ ¼ Kν
μ
ρμ ¼ ∂½μγμρ�ν þ γκν½ργμμ�κ: ð39Þ

From the S-curvature, we get:

Sbc ¼ Sb
a
ca ¼

1

4
ð2γb½aγad∂c�∂df þ γb½cγad∂a�f∂dfÞ: ð40Þ

We therefore have the following scalar curvature:

R ¼ Rþ S ¼ e−f
�
K þ 1

2
Lþ 1

4
M þ 3

4
S̃

�
; ð41Þ

where

R ¼ gνρRνρ ¼ e−f
�
K þ 1

2
Lþ 1

4
M

�
ð42Þ

with

L ¼ −ðn − 1Þγμλδμδλf þ γνρ∂½ργμ�νγμλδλf

− ðn − 1Þ∂μγμλδλf þ γνργκν½μγρ�κγμλδλf

− ðn − 1Þγμκμγκλδλf þ γνρδ½νNc
ρ�∂cf ð43Þ

M ¼ e−f

4
ðn − 1Þγμλδμfδλf ð44Þ

and the Ricci scalar corresponding to the Riemannian
metric γ is

K ¼ γνρKνρ: ð45Þ

For the scalar S-curvature we have

S ¼ gbcSbc ¼
3

4
e−fS̃ ð46Þ

with

S̃ ¼ 1

3
ð−2ðn − 1Þγab∂a∂bf þ ðn − 1Þγab∂af∂bfÞ: ð47Þ

The scalar S-curvature could be interpreted as the degree of
anisotropy of a conformal anisotropically curved spacetime
which includes anisotropic gravitational effects as shown
in the previous relation. It is worth pointing out, however,
that while the S-curvature is dominated by the direction
dependence of the conformal factor, a flat vertical space
does not necessarily lead to (or result from) a direction
independent conformal factor and such a case should be
treated carefully as shall be demonstrated in a later section
of this study.
The field equations are then given by the calculus of

variation on the action given in [47,60,63,66]:

RMN −
1

2
RGMN ¼ T MN; ð48Þ

where T MN is the energy-momentum tensor field on the
tangent bundle in the adapted basis; namely T μν ¼ Tμν and
T ab ¼ Wab with T aν ¼ T μb ¼ 0. By taking the trace of
relation (48) we get the following:

R ¼ −
1

n − 1
T ð49Þ

where T ¼ GMNT MN or, equivalently, T ¼ T þW, where
T ¼ gμνTμν is the trace of the horizontal component of the
energy-momentum tensor and W ¼ gabWab is the trace of
the vertical component of the energy-momentum tensor,
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respectively. We thus arrive at the following equivalent
form of the field equations:

RMN ¼ T MN −
1

2n − 2
T GMN: ð50Þ

By virtue of relations (7), (48), and (50) the following
proposition holds: the horizontal and vertical Ricci curva-
tures are equal to each other if and only if the horizontal and
vertical components of the energy-momentum tensors are
also equal to each other [67]; namely:

Wab ¼ δμaδ
ν
bTμν ⟺ Sab ¼ δμaδ

ν
bRμν: ð51Þ

As can be seen from relation (51), an intrinsically geo-
metric connection of the horizontal and vertical subspaces
results in a physical connection of the energy-momentum
tensors and vice-versa. This is, however, also a conse-
quence of the profound relation between the metric of the
horizontal and vertical subspaces that has been assumed in
relation (8), without which relation (51) would not be true.

III. GEODESICS

We define the absolute energy E as follows [60]:

E ≔ gabyayb ¼ σðx; yÞγabðxÞyayb: ð52Þ

Using the absolute energy we define the following tensor:

g̃cd ≔
1

2
∂c∂dE ¼ E

2σ
σcd þ γadyaσc þ γacyaσd þ γcdσ;

ð53Þ

where σa ¼ ∂aσ. We shall now calculate the inverse tensor
g̃ as follows:

g̃ab ¼ gacgdbg̃cd ¼
E
2σ3

σab þ ya
σb

σ2
þ yb

σa

σ2
þ γab

σ
: ð54Þ

We further define:

Ga ≔
1

4
g̃abðyk∂b∂kE − ∂bEÞ; ð55Þ

where yk ¼ δiaya. In our case:

Gaðx; yÞ≔ 1

4σ

�
E
2
σab þ yaσb þ ybσa þ γab

�

×

�
σb∂μγcdycydyμ þ 2σ∂μγbcycyμ þ 2σμγbcycyμ

þ E
σ
σμbyμ − δμbσ∂μγcdycyd þ δμb

E
σ
σμ

�
; ð56Þ

where σμ ¼ ∂μσ and σa ¼ gab∂bσ. We can now write the
geodesic equation as follows:

dya

dt
þ 2Gaðx; yÞ ¼ 0; ya ¼ dxa

dt
: ð57Þ

We observe that:

Gaðx; yÞ ¼ 1

2
γaμνyμyν þ

1

2
ra þ 1

2
la; ð58Þ

where γaμν are the Christoffel symbols of second type of the
Riemannian metric γ,

ra ¼ 1

2σ

�
2σμyayμ −

E
σ
γaβσβ

�
ð59Þ

is the conformal part of the geodesics corresponding to the
Riemannian case, and

laðx; yÞ ≔ 1

2

�
E
2σ

σab þ ya
σb

σ
þ yb

σa

σ

�

×

�
σγbcμycyμ þ σb∂μγcdycydyμ þ 2σμγbcycyμ

þ E
σ
σμbyμ þ δμb

E
σ
σμ

�
þ σa

σ
∂μγcdycydyμ

þ E
σ
σμ

ayμ ð60Þ

is the generalized Lagrange conformal part of the geo-
desics, where γaμν are the Christoffel symbols of first type
of the Riemannian metric γ. Therefore we can write the
geodesic equation as follows:

dya

dt
þ γaμνyμyν þ ra þ la ¼ 0; ya ¼ dxa

dt
: ð61Þ

It is then clear, that the direction dependence introduced by
σ contributes through la in the geodesics. If the conformal
map σ is independent of the direction variable y, i.e.,
σ ¼ σðxÞ, then la ¼ 0 and the geodesics reduce to their
Riemannian counterpart. The internal y coordinates of the
gravitational field express the anisotropic dark structure
through the function σðx; yÞ. The additional terms raðx; yÞ
and laðx; yÞ in Eq. (61) provide an anisotropic conformal
type of metric geodesics that incorporate dark gravitational
effects which is imprinted in the structure of this spacetime.
Dark gravity plays an essential role in these perturbed
conformal geodesics.

IV. ANISOTROPIC CONFORMAL
MINKOWSKI SPACETIME

In this section we shall examine a first application of this
geometric framework by using a Minkowski metric struc-
ture for the underlying manifold. This could be especially
interesting for the cosmology of a postinflation universe
which evolves toward flatness, since this metrical model
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could be considered connected to an anisotropic generali-
zation of a de-Sitter metric spacetime in which the scale
factor causes a conformal structure for the spatial metric,
e.g., in a Friedmann metric space. In particular, let

gμνðx; yÞ ¼ efðx;yÞημν; ð62Þ

where

ημν ¼ diagð1;−1;−1;−1Þ ð63Þ

for some f∶TM → Rwhich is at least C2. Let the nonlinear
connection be of Cartan-type, i.e., Na

κ ¼ γabκyb. Then the
nonlinear connection is obviously zero and the adapted
basis fδμ; ∂ag coincides with the ordinary basis f∂μ; ∂ag.
Since the curvature tensor of the underlying structure,

K ¼ 0, it is relatively easy to find the curvature tensor R.
Indeed:

Rν
μ
ρσ ¼

1

2
ðδμ½ρ∂σ�∂νf þ ην½σημλ∂ρ�∂λfÞ

þ 1

4
ðδμ½σ∂ρ�f∂νf þ ην½ρημλ∂σ�f∂λf

þ δμ½ρησ�νηκλ∂κf∂λfÞ ð64Þ

Rb
a
ρσ ¼ 0; Sνμab ¼ 0 ð65Þ

Sbacd ¼
1

2
ðδa½c∂d�∂bf þ ηb½dηae∂c�∂efÞ

þ 1

4
ðδa½d∂bf∂c�f þ δa½cηd�bηef∂ef∂ff

þ ηb½cηae∂d�f∂efÞ: ð66Þ

The Ricci tensors and scalars are then:

Rνρ ¼
1

4
ð2ην½μημλ∂ρ�∂λf þ ην½ρημλ∂μ�f∂λfÞ ð67Þ

Sbc ¼
1

4
ð2ηb½aηad∂c�∂df þ ηb½cηad∂a�f∂dfÞ ð68Þ

R ¼ 3

4
e−fð−2ημλ∂μ∂λf þ ημλ∂μf∂λfÞ ð69Þ

S ¼ 3

4
e−fð−2ηab∂a∂bf þ ηab∂af∂bfÞ: ð70Þ

It is worth noting that these relations (64)–(70) show
that although the underlying Minkowski tangent bundle
is flat, the transformed spacetime has in general nonzero
curvature. Thus, as is the case with a conformally flat
Riemannian manifold, the anisotropic conformal flat tan-
gent bundle is not flat itself. Nonetheless, each point has
a neighborhood that can be mapped to a flat space by a
conformal transformation, simply for example by the

inverse transformation e−f of the metric. What distin-
guishes this case from the Riemannian one, however, is
the nonzero S-curvature. This extra curvature, which, as
shall be seen bellow, corresponds to extra gravity, could
allow Finsler and Finsler-like structures to better describe
the intricate nature of certain gravitational phenomena
[54,68–73]. Physically, in this model, the conformal factor
represents the gravitational influence of dark matter. It can
therefore be seen that, in this case, it is dark matter that
curves the space-time even though the underlying base
manifold is flat as is evident for example by relations (67)
and (68). A particularly interesting special case of aniso-
tropic conformal Minkowski spacetime arises if the con-
formal factor is solely direction dependent; namely if the
conformal factor is of the form fðyÞ. Then it can clearly be
seen that R ¼ 0 but in general S ≠ 0, i.e. a flat horizontal
space has nevertheless a nonflat tangent space since the
vertical subspace is curved. This shows that the notion of
“flatness” has been generalized on the tangent bundle since
a seemingly flat space can still be anisotropic.
Let us now consider the field equations (50). Suppose the

energy-momentum tensor field T is of the following form:

Tμν ¼
�
ρðxÞ 0

0 gijpðxÞ
�

¼
�
ρ 0

0 efI3p

�
ð71Þ

Wab ¼
�
ϕðx; yÞ 0

0 gijψðx; yÞ
�

¼
�
ϕ 0

0 efI3ψ

�
; ð72Þ

where I3 ¼ diagð1; 1; 1Þ is the 3 × 3 identity matrix,
ρðxÞ, pðxÞ∶M → R are the ordinary density and pressure
functions of a thermodynamic fluid and ϕðx; yÞ, ψðx; yÞ∶
TM → R. These last two quantities; namely ϕ and ψ , could
potentially be viewed as generalized thermodynamic var-
iables on the tangent bundle [74]. Since the Ricci tensors
given by (67) and (68) are not diagonal, we get the
following nontrivial differential equations from the non-
diagonal components of (50):

2fμν ¼ fμ · fν; ∀ μ ≠ ν ð73Þ
2fab ¼ fa · fb; ∀ a ≠ b ð74Þ

From the diagonal components we get the following set of
8 differential equations:

6ðf11 þ f22 þ f33Þ − 3ððf1Þ2 þ ðf2Þ2 þ ðf3Þ2Þ
¼ 10ρ − 2ϕþ 6efðpþ ψÞ ð75Þ

6ðf00 − f11 − f22Þ þ 3ð−ðf0Þ2 þ ðf1Þ2 þ ðf2Þ2Þ
¼ 2ðρþ ϕÞ − 6efðp − ψÞ ð76Þ

6ðf00 − f22 − f33Þ þ 3ð−ðf0Þ2 þ ðf2Þ2 þ ðf3Þ2Þ
¼ 2ðρþ ϕÞ − 6efðp − ψÞ ð77Þ
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6ðf00 − f11 − f33Þ þ 3ð−ðf0Þ2 þ ðf1Þ2 þ ðf3Þ2Þ
¼ 2ðρþ ϕÞ − 6efðp − ψÞ ð78Þ

6ðf55 þ f66 þ f77Þ − 3ððf5Þ2 þ ðf6Þ2 þ ðf7Þ2Þ
¼ 10ϕ − 2ρþ 6efðpþ ψÞ ð79Þ

6ðf44 − f55 − f66Þ þ 3ð−ðf4Þ2 þ ðf5Þ2 þ ðf6Þ2Þ
¼ 2ðρþ ϕÞ þ 6efðp − ψÞ ð80Þ

6ðf44 − f66 − f77Þ þ 3ð−ðf4Þ2 þ ðf6Þ2 þ ðf7Þ2Þ
¼ 2ðρþ ϕÞ þ 6efðp − ψÞ ð81Þ

6ðf44 − f55 − f77Þ þ 3ð−ðf4Þ2 þ ðf5Þ2 þ ðf7Þ2Þ
¼ 2ðρþ ϕÞ þ 6efðp − ψÞ: ð82Þ

We shall now try to find a possible form for the
conformal factor fðx; yÞ using the field equations (73)–
(82). First, let F∶TM → R>0 be some auxiliary function
such that Fμν ¼ Fab ¼ 0∀ μ ≠ ν and a ≠ b. Such a
function exists. For example:

Fðx; yÞ ¼ λ0ðx0Þ þ λ1ðx1Þ þ � � � þ λ7ðx7 ¼ y3Þ ð83Þ

with λi∶ I ⊆ R → R, ∀ i ¼ 0; 1;…; 7 is such a function.
Then fðx; yÞ ¼ −2 lnðFðx; yÞÞ satisfies Eqs. (73) and (74).
Next, by manipulating relations (76)–(78) and (80)–(82) we
get the following relations:

2ðf11 − f22Þ ¼ ðf1Þ2 − ðf2Þ2 ð84Þ

2ðf11 − f33Þ ¼ ðf1Þ2 − ðf3Þ2 ð85Þ

2ðf22 − f33Þ ¼ ðf2Þ2 − ðf3Þ2 ð86Þ

2ðf55 − f66Þ ¼ ðf5Þ2 − ðf6Þ2 ð87Þ

2ðf55 − f77Þ ¼ ðf5Þ2 − ðf7Þ2 ð88Þ

2ðf66 − f77Þ ¼ ðf6Þ2 − ðf7Þ2: ð89Þ

Substituting f ¼ −2 lnðFÞ in relations (84)–(89) we get the
following pieces of information concerning Fðx; yÞ:

F11 ¼ F22 ¼ F33 ð90Þ

F55 ¼ F66 ¼ F77: ð91Þ

Subsequently, using Eqs. (75), (79), (90), and (91) we
arrive at the following equation:

F11 − F55

F
¼ −

1

3
ðρ − ϕÞ: ð92Þ

Though it does not represent a general solution, Eq. (92)
demonstrates the dependence of the conformal factor on the
thermodynamic variables of the energy-momentum tensor.
If, in addition, the auxiliary function Fðx; yÞ is of the form
given in (83), then F11 − F55 is a constant due to Eqs. (90)
and (91). Then:

gμν ¼ χðρ − ϕÞ2ημν; ð93Þ
where χ is a positive constant. In this special case (93) it can
clearly be seen that the conformal factor is connected with
the distribution of energy and matter in the anisotropic
conformal Minkowski spacetime.

V. ANISOTROPIC CONFORMAL
FLRW-COSMOLOGY

In this section we shall study an application of this
geometric framework in cosmology. In particular, we shall
use a FLRW metric structure for the underlying manifold
M and derive Friedmann-like equations of the horizontal
subspace on the tangent bundle.
Let

γμν ¼

0
BBB@

−1 0 0 0

0 a2

1−κr2 0 0

0 0 ðraÞ2 0

0 0 0 ðr a sin θÞ2

1
CCCA ð94Þ

In this case we shall consider an integrable nonlinear
connection. The diagonal components of the Ricci tensor
will then be

R00 ¼ −3
ä
a
þ 1

2
L00 þ

1

4
M00 ð95Þ

R11 ¼
aäþ 2ȧ2 þ 2κ

1 − κr2
þ 1

2
L11 þ

1

4
M11 ð96Þ

R22 ¼ r2ðaäþ 2ȧ2 þ 2κÞ þ 1

2
L22 þ

1

4
M22 ð97Þ

R33 ¼ r2sin2θðaäþ 2ȧ2 þ 2κÞ þ 1

2
L33 þ

1

4
M33; ð98Þ

where:

L00 ¼
2κa2r

ð1 − κr2Þ2 δ00f þ 1 − κr2

a2
δ11f þ 1

r2a2
δ22f

þ 1

r2a2 sin2 θ
δ33f −

3ȧ
a
δ0f þ 2 − κr2

ra2
δ1f

þ cot θ
r2a2

δ2f ð99Þ

M00 ¼ 2ðδ0fÞ2 − ð1 − κr2Þ
�
δ1f
a

�
2

−
�
δ2f
ra

�
2

−
�

δ3f
r a sin θ

�
2

ð100Þ

ANISOTROPIC CONFORMAL DARK GRAVITY ON THE LORENTZ … PHYS. REV. D 108, 044048 (2023)

044048-7



L11 ¼
a2δ00f
1 − κr2

−
δ22f

ð1 − κr2Þr2 −
δ33f

r2 sin2 θð1 − κr2Þ
þ 4aȧ
1 − κr2

δ0f −
2

r
δ1f −

cot θ
r2ð1 − κr2Þ δ2f ð101Þ

M11 ¼ −
a2ðδ0fÞ2
1 − κr2

þ 2ðδ1fÞ2 þ
ðδ2fÞ2

ð1 − κr2Þr2

þ ðδ3fÞ2
r2sin2θð1 − κr2Þ ð102Þ

L22 ¼ r2a2δ00f − r2ð1 − κr2Þδ11f −
δ33f
sin2θ

þ 4r2aȧδ0f − rð3 − 4κr2Þδ1f − cot θδ3f ð103Þ

M22 ¼ −r2a2ðδ0fÞ2 þ r2ð1 − κr2Þðδ1fÞ2 þ 2ðδ2fÞ2

þ ðδ3fÞ2
sin2θ

ð104Þ

L33 ¼ r2a2sin2θδ00f − r2 sin2θð1 − κr2Þδ11f
− sin2 θδ22f þ 4r2aȧ sin2θδ0f

− rð3 − 4κr2Þ sin2 θδ1f − 2 sin θ cos θδ2f ð105Þ

M33 ¼ −r2a2 sin2 θðδ0fÞ2 þ r2 sin2 θð1 − κr2Þðδ1fÞ2
þ sin2 θðδ2fÞ2 þ 2ðδ3fÞ2: ð106Þ

It can be seen in Eqs. (95)–(98) that the horizontal Ricci
curvature fields of the tangent bundle are the form given
in (36), i.e., they consist of the Ricci curvature K of the
Riemannian base manifold which appears perturbed by the
two terms L and M added to it. In particular, the Ricci
curvature K of the Riemannian base manifold is naturally
independent of the conformal factor and hence free of the
influence of dark gravity, while L is a pertubation of first
order that is linear in terms of the conformal factor andM is
a second order pertubation which is nonlinear in terms of
the conformal factor.
In general the horizontal Ricci tensor field R is non-

diagonal and nonsymmetric, i.e., for μ ≠ ν, Rμν ≠ 0 and
Rμν ≠ Rνμ. Due to this increased complexity in the geometric
structure, we are going to limit this first order approach to the
study of the diagonal terms (95)–(98). Although limited to
these terms, important results could still be deduced from
their study as a first order generalization of the classical
theory of gravity on the tangent bundle.
The vertical Ricci curvature shall be

S00 ¼
1

2

�
1 − κr2

a2
∂11f þ ∂22f

r2a2
þ ∂33f
r2a2 sin2 θ

�

−
1

4

�
1 − κr2

a2
ð∂1fÞ2 þ

ð∂2fÞ2
r2a2

þ ð∂3fÞ3
r2a2sin2θ

�
ð107Þ

S11 ¼
1

2

�
a2∂00f
1 − κr2

−
∂22f

r2ð1 − κr2Þ −
∂33f

r2sin2θð1 − κr2Þ
�

−
1

4

�ða∂0fÞ2
1 − κr2

−
ð∂2fÞ2

r2ð1 − κr2Þ −
ð∂3fÞ2

r2sin2 θð1 − κr2Þ
�

ð108Þ

S22 ¼
1

2

�
r2a2∂00f − r2ð1− κr2Þ∂11f −

∂33f
sin2θ

�

−
1

4

�
ðra∂0fÞ2 − ð1− κr2Þðr∂1fÞ2 −

ð∂3fÞ2
sin2θ

�
ð109Þ

S33 ¼
1

2
ððr a sin θÞ2∂00f

− ðr sin θÞ2ð1 − κr2Þ∂11f − sin2θ∂22fÞ

−
1

4
ððr a sin θ∂0fÞ2 − ð1 − κr2Þðr sin θ∂1fÞ2

− ðsin θ∂2fÞ2Þ ð110Þ

Sbc ¼
1

4
ð2∂cbf − ∂cf∂bfÞ; ∀ b ≠ c: ð111Þ

As is the case with the horizontal Ricci curvature, the
vertical Ricci is not diagonal but it is symmetric as is
evident by relation (111) if the conformal factor f is at
least C2.
The scalar curvature will then be

R ¼ Rþ S ¼ e−f
�
K þ 1

2
Lþ 1

4
M þ 3

4
S̃
�
; ð112Þ

where

R ¼ e−f
�
K þ 1

2
Lþ 1

4
M

�
ð113Þ

S ¼ 3

4
e−fS̃ ð114Þ

K ¼ 6

�
ä
a
þ
�
ȧ
a

�
2

þ κ

a2

�
ð115Þ

L ¼ 3

�
δ00f −

1 − κr2

a2
δ11f −

δ22f
ðraÞ2 −

δ33f
ðr a sin θÞ2

þ 3
ȧ
a
δ0f −

2 − 3κr2

ra2
δ1f −

cot θ
ðraÞ2 δ2f

�
ð116Þ

M ¼ −3
�
ðδ0fÞ2 −

1 − κr2

a2
ðδ1fÞ2 −

ðδ2fÞ2
ðraÞ2 −

ðδ3fÞ2
ðr a sin θÞ2

�

ð117Þ
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S̃ ¼ −2
�
∂00f −

1 − κr2

a2
∂11f −

∂22f
ðraÞ2 −

∂33f
ðr a sin θÞ2

�

− ð∂0fÞ2 þ
1 − κr2

a2
ð∂1fÞ2 þ

ð∂2fÞ2
ðraÞ2 þ ð∂3fÞ2

ðr a sin θÞ2 :

ð118Þ

A. Extended anisotropic conformal
Friedmann-like equations

Let us now consider the field equations (48). Suppose, as
in Sec. IV, that the energy-momentum tensor field T is of
the following form:

Tμν ¼
�
ρðxÞ 0

0 gijpðxÞ
�

ð119Þ

Wab ¼
�
ϕðx; yÞ 0

0 gijψðx; yÞ
�
; ð120Þ

where ρðxÞ, pðxÞ∶M → R are the ordinary density and
pressure functions of a thermodynamic fluid and ϕðx; yÞ,
ψðx; yÞ∶TM → R could potentially be viewed as general-
ized thermodynamic variables on the tangent bundle. Then,
the horizontal Friedmann-like equations shall be of the
following form:

�
ȧ
a

�
2

þ κ

a2
þ 1

8
S̃þ 1

12
X þ 1

24
Φ ¼ ρ

3
ð121Þ

ä
a
þ 1

8
S̃ −

1

12
Xi −

1

24
Φi ¼ −

ρþ 3efp
6

; ð122Þ

where i ¼ 1, 2, 3 and

X ¼ 3þ 4κa2r − 6κr2 þ 3κ2r4

ð1 − κr2Þ2 δ00f

−
1 − κr2

a2
δ11f −

δ22f
ðraÞ2 −

δ33f
ðr a sin θÞ2

þ 3
ȧ
a
δ0f −

2 − 7κr2

ra2
δ1f −

cot θ
ðraÞ2 δ2f ð123Þ

Φ ¼ ðδ0fÞ2 þ
1 − κr2

a2
ðδ1fÞ2 þ

ðδ2fÞ2
ðraÞ2 þ ðδ3fÞ2

ðr a sin θÞ2
ð124Þ

X1 ¼
2κa2r

ð1 − κr2Þ2 δ00f þ 4
1 − κr2

a2
δ11f þ δ22f

ðraÞ2

þ δ33f
ðr a sin θÞ2 þ

2 − 4κr2

ra2
δ1f þ cot θ

ðraÞ2 δ2f ð125Þ

Φ1 ¼ 2ðδ0fÞ2 þ 2
1 − κr2

a2
ðδ1fÞ2 −

ðδ2fÞ2
ðraÞ2 −

ðδ3fÞ2
ðr a sin θÞ2

ð126Þ

X2 ¼
2κa2r

ð1 − κr2Þ2 δ00f þ 1 − κr2

a2
δ11f þ 4

δ22f
ðraÞ2

þ δ33f
ðr a sin θÞ2 −

1 − 2κr2

ra2
δ1f þ cot θ

ðraÞ2 δ2f ð127Þ

Φ2 ¼ 2ðδ0fÞ2 −
1 − κr2

a2
ðδ1fÞ2 þ 2

ðδ2fÞ2
ðraÞ2 −

ðδ3fÞ2
ðr a sin θÞ2

ð128Þ

X3 ¼
2κa2r

ð1− κr2Þ2 δ00fþ
1− κr2

a2
δ11fþ

δ22f
ðraÞ2

þ 4
δ33f

ðra sin θÞ2 −
1− 2κr2

ra2
δ1f − 2

cotθ
ðraÞ2 δ2f ð129Þ

Φ3 ¼ 2ðδ0fÞ2 −
1 − κr2

a2
ðδ1fÞ2 −

ðδ2fÞ2
ðraÞ2 þ 2

ðδ3fÞ2
ðr a sin θÞ2 :

ð130Þ

By virtue of the three equations (121) we get the following
pair of generalized anisotropic conformal Friedmann-like
equations for the horizontal subspace on the tangent bundle:

�
ȧ
a

�
2

þ κ

a2
þ 1

8
S̃þ 1

12
X þ 1

24
Φ ¼ ρ

3
ð131Þ

ä
a
þ 1

8
S̃ −

1

6
Ψ −

1

12
D ¼ −

ρþ 3efp
6

; ð132Þ

where X and Φ are given in relations (123) and (124) and

Ψ ¼ κa2r
ð1 − κr2Þ2 δ00f þ 1 − κr2

a2
δ11f þ δ22f

ðraÞ2 þ
δ33f

ðr a sin θÞ2
ð133Þ

D ¼ ðδ0fÞ2: ð134Þ

Inview of relations (131) and (132), it isworth noting that the
generalized anisotropic conformal Friedmann-like equations
for the horizontal subspace on the tangent bundle include
extra terms denoted by X,Ψ,Φ,D which introduce a higher
order structure derived by the gravitational influence of dark
matter and dark energy, which enrich the cosmological study
of the evolution of the universe with further information. It is
also clear that if these terms are equal to zero then Eqs. (131)
and (132) reduce to the ordinary Friedmann equations of
general relativity. In particular, it can be seen that the scalar
Ricci curvature S of the vertical subspace and especially S̃,
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could be related to a dynamical anisotropic cosmological
“constant” as is shown in [47], which emerges from the
additional degrees of freedom of the anisotropic conformal
geometric structure instead of being added ad hoc as in the
classical case. Therefore, Eqs. (131) and (132) reduce to the
Friedmann equations of general relativity with dynamical
cosmological parameter equal to S̃ ¼ − 8

3
Λ, where in this

case Λ denotes the varying cosmological constant [75]. By
means of relation (114) the cosmological parameter is related
to the scalar vertical curvature S in precisely the sameway as
in [47]. With respect to the classical case, the presence of a
varying cosmological constant in the form of S̃ indicates a
different dynamical evolution of the universewhich could be
compared to the Λ − CDM cosmological model [75] in a
further study, possibly viewed through the lens of a mimetic
dark gravity model. In general, if f ¼ 0, i.e., in the absence
of dark gravity, then (131) and (132) reduce exactly to the
classical Friedmann equations (without cosmological con-
stant), as well as to the geometric frame as described in [47]
for a flat vertical subspace.
A special case of conformal factors that are of the form

fðx; y0Þ is of noteworthy interest since, this family of con-
formal transformations leave the vertical subspace isotropic
in the sense presented in [76], i.e., the vertical S-curvature
tensor is diagonal and Sij ¼ 1

4
γijð2∂00f − ð∂0fÞ2Þ. In par-

ticular S00 ¼ 0. The vertical field equation (50) for ða ¼
b ¼ 0Þ then yields:

ρ − 5ϕ ¼ 3efðpþ ψÞ ⟶
if p≠−ψ

fðx; y0Þ ¼ ln

�
ρ − 5ϕ

3ðpþ ψÞ
�
:

ð135Þ

As is the case in (93) it can be seen that the conformal factor
of relation (135) is connected with the distribution of
energy and matter in the anisotropic conformal spacetime.
This is another indication that the conformal factor may be
related to the thermodynamic properties of the spacetime.
Figure 1 summarizes the relations between the physical

and geometrical concepts that arise from this section. In
particular, the internal properties (possibly of thermody-
namical nature) of DM and DE are mathematically
expressed through the conformal factor f which in turn
induces a vertical S-curvature. This curvature produces then

a varying dynamical cosmological constant Λ which is
related to DE. A relation between DE and DM could
possibly be studied as discussed in the next Sec. VI.
In light of the generalized anisotropic conformal

Friedmann-like equations for the horizontal subspace
on the tangent bundle (131) and (132), we can obtain
the following pair of equations for the Hubble parameter
HðtÞ ≔ ȧ=a, as follows

3H2 þ 3κ

a2
¼ ρþ ρDE ð136Þ

2Ḣ þ 3H2 þ κ

a2
¼ −ðefpþ pDEÞ; ð137Þ

where

ρDE ≔ −
3

8
S̃ −

1

4
X −

1

8
Φ ð138Þ

pDE ≔
3

8
S̃þ 1

12
X þ 1

24
Φ −

Ψ
3
−
1

6
D ð139Þ

could be interpreted as the density and pressure of DE,
respectively. Let us now consider the following special case
of a simplified linear conformal factor, i.e., let f be of the
form:

fðx; yÞ ¼ βtþ μy0 þ νy1: ð140Þ

Additionally, let us focus on a spatially flat universe and
assume dust matter; namely let κ ¼ 0 and p ¼ 0. For the
simplicity, let the coefficients of the nonlinear vanish
identically. In this case, we obtain X ¼ −3βH, Φ ¼ β2,
S̃ ¼ −μ2 þ ν2

a2, Ψ ¼ 0 and D ¼ β2, where HðtÞ ¼ ȧ=a is
the Hubble function. Then from the Friedmann-like equa-
tions (136) and (137) we get:

3H2 ¼ ρþ ρDE ð141Þ

2Ḣ þ 3H2 ¼ −pDE; ð142Þ

where

ρDE ¼ 1

8
ð3μ2 − β2Þ − 3

8

ν2

a2
þ 3

4
βH ð143Þ

pDE ¼ −
1

8
ð3μ2 þ β2Þ þ 3

8

ν2

a2
−
1

4
βH: ð144Þ

Hence, as described above, the richer structure of Finsler
geometry produces an effective dark energy sector of
geometric origin. The first term in (143) is constant and
accounts for the usual cosmological constant, the second
term is an effective spatial curvature term that will have a
negligible role at late-time universe, and the last term is a

FIG. 1. Brief diagram illustrating the relations between the
physical and geometrical concepts.
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novel friction term. Additionally, since p ¼ 0 the evolution
of ρ reads simply ρ ¼ ρð0Þa−3, while we can define
the effective dark-energy equation-of-state parameter as
wDE ≡ pDE=ρDE. Finally, we introduce the density param-
eters Ωm ≡ ρ

3H2 and ΩDE ≡ ρDE
3H2, while we use the redshift z

as the independent variable, defined through 1þ z ¼ a0
a

(and setting the present scale factor as a0 ¼ 1).
We evolve Eqs. (141) and (142) numerically and in Fig. 2

we depict the evolution of the effective dark energy density
parameter ΩDE and of the matter density parameter Ωm, as

well as the evolution of the effective dark-energy equation-
of-state.
Finally, we perform a confrontation of the obtained

HðzÞ behavior with Supernovae type Ia (SN Ia) data. In
particular, one measures the apparent magnitudemðzÞwhich
is related to the luminosity distance as mðzÞ −M ¼
5 log½dLðzÞobsMpc � þ 25, with M and L the absolute magnitude
and luminosity. Moreover, the predicted luminosity distance
dLðzÞth is given as dLðzÞth ≡ ð1þ zÞ R z

0
dz0

Hðz0Þ. In Fig. 3 we

present the theoretically predicted apparent minus absolute
magnitude as well as the prediction of ΛCDM cosmology,
on top of the 580 SN Ia observational data points from [77].
As we observe, the agreement is excellent.

VI. CONCLUDING REMARKS AND SOME
FUTURE PROSPECTS

Motivated by the apparent need for a mathematical and
in particular geometrical framework for a theory of gravity
that includes the significant contributions of dark matter
and dark energy, whose study currently constitutes the
greatest problem of modern cosmology [28] we developed
a theoretical model based on an anisotropic conformal
spacetime on the tangent bundle that allows for extra
degrees of freedom due to the higher-dimensionality of
the underlying geometry which intrisically incorporates the
concept of an anisotropic direction dependent dark gravity
in the metric structure. This higher order internal geometric
structure is interpreted as the contributions of dark matter
and dark energy. In particular, in this framework we
examined two cases of significant interest; namely the
conformal anisotropic Minkowski spacetime and the con-
formal anisotropic FLRW-cosmology.
A first application of this geometric framework is given

by using a Minkowski metric structure for the underlying
manifold. The interest of this case lies in its potential
cosmological application for the study of a postinflation
universe which evolves toward flatness, because this
metrical model might be connected to an anisotropic
generalization of a de-Sitter metric spacetime in which a
conformal structure for the spacelike metric, (e.g., in a
Friedmann metric space) is caused by the scale factor. The
study of the anisotropic conformal Minkowski space,
especially Eqs. (67) and (68), reveals that even though
the underlying base manifold is flat, dark matter, repre-
sented by the conformal factor, curves the space-time. A
further study of special types of conformal factors that
constitute solutions to the field equations for this spacetime,
reveal a first indication in Eq. (93) that the conformal factor,
which we nevertheless consider given a priori (e.g.,
determined by observational or experimental data), is
potentially connected to the thermodynamic variables of
energy and matter. A future dynamical analysis of this
model, similar to that studied in [68,75], could provide
critical points which are vital regions of the evolution of the

FIG. 2. Upper graph: the evolution of the effective dark energy
density parameterΩDE and of the matter density parameterΩm, as
a function of the redshift z, for μ ¼ 1, β ¼ 0.1, and ν ¼ 0.1.
Lower graph: the evolution of the corresponding dark-energy
equation-of-state parameter wDE. We have imposed Ωm0 ≈ 0.3 at
present time.

FIG. 3. The theoretically predicted apparent minus absolute
magnitude for μ ¼ 1, β ¼ 0.1, and ν ¼ 0.1 (red-dashed) and for
μ ¼ 1, β ¼ 0.2, and ν ¼ 0.3 (green-dotted). The observational
points correspond to the 580 SN Ia data points from [77], and for
completeness and comparison we depict the prediction of ΛCDM
cosmology with the black-solid curve.
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universe. Relating these results with current observational
data could lead to a more complete understanding of this
anisotropic geometric framework of gravity and cosmol-
ogy, as well as of the contribution of dark matter and dark
energy to the evolution of the universe. In particular, a
deeper study of the conformal factor could be performed by
imposing certain extra physical conditions on this model
which are consistent with observational data. For instance,
one could assume that the horizontal space tends toward
flatness for large time, i.e., that the R-curvature tensor given
in Eq. (64) tends toward zero as the time parameter tends
to infinity. Furthermore, assuming that the anisotropy of
the universe reduces for large time, i.e., that the universe
tends toward isotropy, one could argue that the vertical
S-curvature given in Eq. (66) should diminish in the limit
as time tends to infinity. Due to the afore-mentioned
connection of the conformal factor to the thermodynamic
structure of energy and matter, the thermodynamic impli-
cations of such a future study could potentially be linked to
the notion of a cosmological entropy [78,79].
A second application studied in this work, is an

anisotropic conformal FLRW space which is, naturally,
of significant cosmological interest. According to the
generalized anisotropic conformal Friedmann-like equa-
tions for the horizontal subspace on the tangent bundle that
we derived, Eqs. (131) and (132), we find that the classical
Riemannian structure appears perturbed by the inclusion of
extra terms which arise naturally by the geometry of the
tangent bundle, are linked to the higher order structure
of this framework and are interpreted as the additional
gravitational influence of dark matter and dark energy in
the cosmological evolution of the universe. We find, in
particular, that the classical Friedmann equations of general
relativity, as well as the generalized Friedmann equations in
[47] with dynamical cosmological parameter can be recov-
ered if we interpret the vertical scalar curvature S as the
varying cosmological constant in much the same way as in
[47]. This cosmological parameter is produced internally
through the geometry of the tangent bundle instead of being
added ad hoc as in the classical case and could potentially
be quantitatively studied for a given conformal factor. One
such first approach at a more concrete example of a simple
conformal factor is provided and connected with observa-
tional constraints on both dark energy and dark matter. We
find that this special case is very consistent with observa-
tional results as well as with Λ-CDM, which could suggest
that this model is promising and that further work on
combining recent observational data and constraints, as in
[80], with our theoretical model could potentially yield ever
more accurate conformal factors to fit the observational
results. In addition, a future study of the bounce conditions
applied to this model could prove fruitful, as they could
endow the conformal factor, and hence the contribution of
dark matter and dark energy, with essential cosmological
information related to the dynamic anisotropic evolution of

the universe. For this purpose, a careful investigation of the
equation of state of the anisotropic generalized thermody-
namic variables of the cosmological fluid, and of the energy
conditions that may ensue from the generalized anisotropic
conformal Friedmann-like equations (131) and (132) might
prove invaluable for a deeper understanding of the con-
nection between dark gravity, cosmology and anisotropy.
In conclusion, this geometric framework of conformal

gravity on the tangent bundle that incorporates the gravita-
tional influence of dark matter and dark energy could allow
for both a qualitative and a quantitative analysis of the
cosmological aspects of the evolution of the universe, for
instance in a future study that includes an application of this
model using observational data. In particular, a quantitative
study of the deflection angle using this model may provide
for a correction due to dark gravity of the already known
results given for an anisotropic Finsler-Randers model in
[68].Moreover, potential links between dark energy and dark
matter on galactic scales could be studied, since the behavior
of the dark matter cosmological fluid on a large scale could
reveal a relationwith dark energy [81–83].Connected to such
a future endeavor could possibly be the model of the
Chaplygin gas [84] whose study as a dark cosmological
fluid instead of the perfect fluid model, in conjunction with
the present geometric model could potentially yield interest-
ing results. Finally, an especially interesting future prospect
of this mathematical framework would be the application of
the present work in the development of a galactic model
combining the already existing dark matter halo theory [85]
and related observational data in order to study structure
formations due to anisotropy.
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APPENDIX: APPENDIX SECTION

Let

γμν ¼

0
BBB@

−1 0 0 0

0 a2

1−κr2 0 0

0 0 ðraÞ2 0

0 0 0 ðra sin θÞ2

1
CCCA ðA1Þ

Let the nonlinear connection be of Cartan-type; namely we
take Na

κ ¼ γabκyb. Then the components of the nonlinear
connection are as follows:
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N0
0 ¼ 0 ðA2Þ

N0
1 ¼

aȧ
1 − κr2

y1 ðA3Þ

N0
2 ¼ aȧr2y2 ðA4Þ

N0
3 ¼ aȧr2sin2θy3 ðA5Þ

N1
0 ¼

ȧ
a
y1 ðA6Þ

N1
1 ¼

ȧ
a
y0 þ κr

1 − κr2
y1 ðA7Þ

N1
2 ¼ −rð1 − κr2Þy2 ðA8Þ

N1
3 ¼ −rð1 − κr2Þy2 sin2θy3 ðA9Þ

N2
0 ¼

ȧ
a
y2 ðA10Þ

N2
1 ¼

1

r
y2 ðA11Þ

N2
2 ¼

ȧ
a
y0 þ 1

r
y1 ðA12Þ

N2
3 ¼ − sin θ cos θy3 ðA13Þ

N3
0 ¼

ȧ
a
y3 ðA14Þ

N3
1 ¼

1

r
y3 ðA15Þ

N3
2 ¼ cot θy3 ðA16Þ

N3
3 ¼

ȧ
a
y0 þ 1

r
y1 þ cot θy2: ðA17Þ

Indeed we can clearly see that such a nonlinear connection
is not integrable.
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