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We analyze the restricted phase-space thermodynamics (RPST) of Kerr-Sen-AdS black holes with the
central charge C and its conjugate chemical potential μ but exclude the familiar PdV term in the first law of
black hole thermodynamics. That gives rise to a new perspective on the thermodynamics of black holes.
Using the scaling properties, we investigate the first law and the corresponding Euler formula. Such
formalism has its beauty; for example, the mass is considered to be a homogeneous function of the
extensive variables in the first order. In contrast, the intensive variables are of zeroth order. Because of the
complicated expressions of the metric, we numerically calculate the critical values of the thermodynamic
quantities. We find the phase-transition behavior of the free energy and other thermodynamic conjugate
variables that appear in the first law. The RPSTof the Kerr-Sen-AdS black holes is like that of the Reissner-
Nordström-AdS and the Kerr-AdS black holes. Such notions of the phase transition behavior show that
there should be some underlying universality in the RPST formalism.
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I. INTRODUCTION

Almost five decades after Hawking’s proposal for the
black hole as radiating black body [1], the investigation of
black hole thermodynamics is a significant area of research
in modern theoretical physics. Since its inception by the
pioneers Bardeen, Carter, and Hawking [1,2] of the laws of
black hole mechanics, the thermodynamics of black holes
have been an active and crucial subject area of investigation.
However, Bekenstein’s entropy-area relation [3], is a uni-
versal feature that is explored in many approaches and
provides a well-posed interpretation of the counting of the
microstates [4–6]. These interpretations of the microstate
counting give us the same entropy-area relation,S ¼ A=4, in
Einstein’s general relativity. In black hole thermodynamics,

the phase transition is a fascinating phenomenon that has
received significant attention. It can be traced back to the
pioneering research of phase transitions of asymptotically
anti–de Sitter (AdS) black holes when Hawking and Page
discovered a phase transition between the Schwarzschild
AdS black hole and pure thermal AdS space [7].
Thermodynamics black holes in AdS spacetime provide
speculative ideas related to the ordinary thermal system
and have a deep-rooted connection to the unresolved
puzzles of quantum gravity. It also has a dual description
of the boundary conformal field theory (CFT) at finite
temperature in AdS=CFT correspondence. The Hawking-
Page phase transition relates the confinement/deconfine-
ment phases in the double quark-gluon plasma [8]. For
charged or rotating black holes, one likewise observes a
small/large black hole first-order phase transition remi-
niscent of the liquid/gas transition of the van der Waals
fluid.
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An exciting development is the identification of
negative cosmological constant, Λð< 0Þ as a positive
thermodynamic pressure via P ¼ −Λ=8πG, where
Λ ¼ −ðd − 1Þðd − 2Þ=2l2, d is the number of spacetime
dimension and l is the AdS curvature radius. It is
traditionally called the extended phase-space thermody-
namics [9], after introducing a new ðP; VÞ pair of state
variables. After this development in the extended phase
space, significant attention was devoted to Refs. [10–26]
in the field. Such notion of the phase transitions behavior
led to the holographic deployment of black holes as
systems dual to conformal field theories, quantum
chromodynamics, and condensed-matter physics. Another
exciting feature that is included in connection to extended
phase thermodynamics is the development of the corre-
lation between the null geodesics and thermodynamic
phase transitions [27–29].
Studying thermodynamics in the extended phase space

has become one cornerstone of black hole mechanics
and gave birth to conventionally called black hole chem-
istry [17–21]. Since its inception, a series of development
has been made [30], and the most recent variant of the
extended phase-space thermodynamics is designed and
investigated in Visser’s formalism [31]. Such investiga-
tions include considerations about the famous work of
AdS=CFT correspondence by Maldacena [32]. The main
contribution of Visser’s [31] formalism includes the CFT
central charge C, and its conjugate chemical potential μ in
the first law of black hole thermodynamics. Here, we
expect that the volume and the corresponding conjugate
pressure are transformed into the language of the
AdS=CFT correspondence, i.e., V ∼ Ld−2 as a CFT
volume in which L is representing the familiar AdS
radius, and the corresponding pressure term, P, is
related through the CFT equation of states
E ¼ ðd − 2ÞPV, where d is the spacetime dimension in
the bulk. It is noticeable here that the very idea of
inclusion of the chemical potential, μ and the correspond-
ing central charge, C as a pair of thermodynamic varia-
bles, have been considered in many of the previous
works [31,33–36]. Moreover, in the new formalism of
Visser, the pairs ðP; VÞ variables are transformed into the
ðP;VÞ, where the AdS radius plays the fundamental role.
From these considerations, together with Visser’s formal-
ism, we have for the charged rotating AdS black holes, the
first law has the form dE¼TdS−PdVþΦ̃dQ̃þ
ΩdJþμdC, which in turn gives rise to the Euler-like
relation

E ¼ TSþ Φ̃ Q̃þΩJ þ μC; ð1Þ

where Q̃ is the rescaled electric charge and Φ̃ is its
conjugate potential. In Visser’s framework, we have the
full description of the thermodynamic properties of

the black hole in the bulk and the corresponding CFT
description on the boundary. Hence, there is a one-to-one
correspondence in this grand formalism. The problem
arrives somewhere else such that when one replaces the
famous ðP; VÞ term with the CFT pairs ðP;VÞ, interpret-
ing the total mass as the black hole enthalpy is completely
avoided. However, with the fixed central charge of C,
Visser provides a thermodynamic description for the
CFT which is holographically dual to the AdS black hole
in the bulk [37,38].
The lack of correct homogeneity relation of the

internal energy and the intensive variables, extended
phase-space thermodynamics, and Visser’s original for-
malism has the problem of an “ensemble of theories”. In
the former case, we do not get the proper interpretation of
the volume term in the first law or the Euler-like or Euler-
Gibbs-Duhem relation. In contrast, for later case, there is
a missing PV term in the Euler-like relation (1). Such
issues could be circumvented if one assumes a restricted
version of Visser’s formalism called the restricted phase-
space thermodynamics (RPST) for AdS black holes
as proposed in [39]. The RPST formalism has been
studied for Reissner-Nordtsröm-AdS and Kerr-AdS black
holes. Since the RPST formalism lacks the familiar
“PdV” term in the first law, it cannot give information
about the black hole heat engine. Nevertheless, having
been occupied by multiple degrees of freedom as still, it
is the thermodynamic system, the thermodynamic behav-
iors in the RPST formalism provide us with other
exciting phenomena. Following [39,40], in the present
work, we study the RPST formalism for the case of
Kerr-Sen-AdS black holes [41]. It can be seen that,
despite the differences in their geometries, the thermo-
dynamic properties of the Kerr-Sen-AdS black holes
in RPST formalism mimic similar behaviors to that of
the RN-AdS and Kerr-AdS. Such similarities suggest
that there should be some universal features in the
RPST formalism. Moreover, studying black hole
thermodynamics in the RPST formalism may also
be helpful in further understanding the AdS=CFT
correspondence.
The organization of the paper is as follows. In Sec. II,

we briefly review the Kerr-Sen-AdS spacetime and
derive the various thermodynamic quantities, the first
law, and the corresponding Euler-like relation. In Sec. III,
we express the black hole mass in terms of extensive
variables such as entropy S, the CFT charge C, the AdS
radius l the dilaton-axion charge Q, and the angular
momentum J, and represent the intensive variables in
terms of the equations of states. Such a process confirms
the correct homogeneity behaviors of the extensive
and intensive variables. Section IV is mainly devoted
to investigate different thermodynamic processes.
Finally, in Sec. V, we summarize our results and conclude
the paper.
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II. KERR-SEN-AdS BLACK HOLE AND THE
RESTRICTED PHASE-SPACE

THERMODYNAMICS

This section briefly reviews the Kerr–Sen black hole and
its extension to the AdS spaces. Sen [42] discovered a
charged-rotating black hole solution to the low-energy limit
of the heterotic string theory, famously known as the Kerr-
Sen black holes. The action is a modification to that of
general relativity from that of the low-energy heterotic
string theory, given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p
e−Φ
�
Rþ ð∇ΦÞ2 − 1

8
F2 −

1

12
H2

�
; ð2Þ

where g̃ is a determinant of metric tensor gμν, R is a
Ricci scalar, F ¼ FμνFμν with Fμν being the Uð1ÞMaxwell
field-strength tensor, Φ is a scalar dilaton field, and
H ¼ HμνρHμνρ is the field strength for the axion field

Hκμν ¼ ∂κBμν þ ∂νBκμ þ ∂μBνκ

−
1

4
ðAκFμν þ AνFκμ þ AμFνκÞ: ð3Þ

It is a 3-form tensor field which contains the antisymmetric
2-form tensor field where the last term in Eq. (3) is
the gauge Chern-Simons term. On using the conformal
transformation

ds2E ¼ e−Φd̃s2; ð4Þ

one obtains the action in Einstein’s frame

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
RðgÞ − 1

2
ð∇ΦÞ2 − e−Φ

8
F2 −

e−2Φ

12
H2

�
;

ð5Þ

which encompasses the Einstein-Hilbert action as a particu-
lar case in the absence of dilaton, vector, and axion fields.
To obtain the black holes with a nonzero cosmological

constant, one can rewrite the three-form field H≡
dB − A ∧ F=4 ¼ −e2ϕ⋆dχ, where B is an anti-symmetric
two-form potential, and the⋆ operator is the Hodge duality.
Then the Lagrangian can be rewritten in a different but
completely equivalent form [41]

L̂ ¼ ffiffiffiffiffiffi
−g

p �
R −

1

2
ð∂ϕÞ2 − 1

2
e2ϕð∂χÞ2 − e−ϕF2

�

þ χ

2
ϵμνρλFμνFρλ þþ ffiffiffiffiffiffi

−g
p ½4þ e−ϕ þ eϕð1þ χ2Þ�=l2;

ð6Þ

where ϵμνρλ is the four-dimensional Levi-Civita antisym-
metric tensor density and l is the cosmological scale or the

reciprocal of the gauge coupling constant. However, in
the usual Boyer-Lindquist coordinate, the Kerr-Sen-AdS
metric reads

ds2 ¼ −
Δr

ρ2

�
dt −

a sin2 θ
Ξ

dϕ

�
2

þ ρ2

Δr
dr2 þ ρ2

Δθ
dθ2

þ sin2 θΔθ

ρ2

�
adt −

r2 þ 2brþ a2

Ξ
dϕ

�
2

; ð7Þ

where

ρ2 ¼ r2 þ 2brþ a2 cos2 θ;

Δr ¼ ðr2 þ 2brþ a2Þ
�
1þ r2 þ 2br

l2

�
− 2Gmr;

Ξ ¼ 1 −
a2

l2
; Δθ ¼ 1 −

a2

l2
cos2 θ:

The parameter b is the diatonic charge of the black holes and
is expressed as b ¼ q2=ð2mÞ, where q is the electric charge
and m is the mass of the black holes. In the limit of l → ∞,
the above metric reduces to the usual Kerr-Sen black holes.
The nonrotating case (a ¼ 0), reduces to the Gibbons-
Maeda-Garfinkle-Horowitz-Strominger (GMGHS) solution.
Gibbons and Maeda [43] gave the black hole and black
brane solutions to the dilaton field, and Garfinkle-Horowitz-
Strominger obtained its charged version [44]. It is worth-
while to mention that the Kerr-Sen-(A)dS black holes in four
dimensions have been studied from various perspectives,
including the black hole silhouettes [45] and the phase-space
thermodynamics in the extended phase space [46]. The
ADMmassM, the angular momentum J and the chargeQ in
AdS spacetimes is related as

M ¼ m
Ξ2

; J ¼ ma
Ξ2

; Q ¼ q
Ξ
; ð8Þ

where the mass term m can be derived from the condition
Δrðr ¼ rþÞ ¼ 0 with rþ being the radius of the event
horizon. Therefore, we can write the M and J in terms of
a; rþ; G as

M ¼ 1

2Ξ2Grþ
ðr2þ þ 2brþ þ a2Þ

�
1þ r2þ þ 2brþ

l2

�
; ð9Þ

J ¼ aðr2þ þ 2brþ þ a2Þ
2Ξ2Grþ

�
1þ r2þ þ 2brþ

l2

�
: ð10Þ

The corresponding expressions for Kerr-AdS black holes are
obtained when b ¼ 0 [40],

M ¼ 1

2Ξ2Grþ

�
r2þ þ a2 þ r4þ

l2
þ a2r2þ

l2

�
; ð11Þ

J ¼ a
2Ξ2Grþ

�
r2þ þ a2 þ r4þ

l2
þ a2r2þ

l2

�
: ð12Þ
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The rest of the thermodynamic quantities can be written as

T ¼ a2ðr2þ − l2Þ þ r2þð4b2 þ 8brþ þ l2 þ 3r2þÞ
4πl2rþða2 þ 2brþ þ rþÞÞ

; ð13Þ

S¼πðr2þþ2brþþa2Þ
GΞ

; Ω¼ aΞ
r2þþ2brþþa2

þ a
l2

; ð14Þ

Φ ¼ qrþ
r2þ þ 2brþ þ a2

: ð15Þ

The above thermodynamic quantities reduce to the corre-
sponding quantities of Kerr-AdS black holes, in the limit,
when b ¼ 0 [40]

T ¼ rþ
4πðr2þ þ a2Þ

�
1þ a2

l2
þ 3r2þ

l2
−
a2

r2þ

�
; ð16Þ

S ¼ πðr2þ þ a2Þ
GΞ

; Ω ¼ aΞ
r2þ þ þa2

þ a
l2

; ð17Þ

The contribution of Φ apparently is nonvanishing when
b ¼ 0. However, if we carefully analyze the relation
b ¼ q2=ð2mÞ, the potential term is trivially vanishing.
The above expressions are a simple derivation of the usual
thermodynamics of the black hole systems. This work aims
to introduce the RPST formalism studied in the RN-AdS and
Kerr-AdS black holes [39,40]. Proceeding with the same line
of thought, we introduce the pairs for which we account
RPST formalism. We define such variables as [31,39,40]

C ¼ l2

G
; μ ¼ M − TS − ΩJ − Φ̂ Q̂

C
; ð18Þ

where Q̂ is the rescaled electric charge and Φ̂ is the
corresponding rescaled electric potential, which is
expressed as

Q̂ ¼ Qlffiffiffiffi
G

p ; Φ̂ ¼ Φ
ffiffiffiffi
G

p

l
: ð19Þ

Noticeably, all other thermodynamic quantities must always
be positive except for the chemical potential, μ. One should
remember that we can also identify the chemical potential
as an independent thermodynamic quantity using the
language of AdS=CFT only, as ZCFT ¼ ZGravity, and using
the expression for the Gibbs free energy W¼μC¼
−T logZCFT¼−T logZGravity, with ZGravity¼ expð−AE=TÞ,
AE representing the Euclidean action evaluated at the black
hole event horizon (see Ref. [47–49] and references therein
for details). The RPST formalism differs from Visser’s
AdS=CFT duality description. In the formal case, we treat

the AdS radius l, as a constant, and therefore its variation
will vanish. Keeping this in mind and using the thermody-
namic quantities as derived in Eqs. (9) and (16), we see that
the first law of thermodynamics is easily written as

dM ¼ TdSþ ΩdJ þ Φ̂dQ̂þ μdC; ð20Þ

which is obviously free from the familiar PdV term and,
hence Eq. (18) immediately follows the Euler-like relation as

M ¼ TSþ ΩJ þ Φ̂ Q̂þμC: ð21Þ

We should emphasize that Eqs. (21) and (20) are funda-
mental in the RPST’s formalism. These two equations
inherently determine the probable Hawking-Page-like page
transitions, as will be clear from the subsequent discussions.
As mentioned in [39,40], one should remember that

although the pair ðμ; CÞ is borrowed from the CFT dic-
tionary, they could be understood as the chemical potential
corresponding to the effective Nbulk relating the micro-
scopic degrees of freedom defined in bulk. We should
realize this as μCFT ¼ μbulk, and C ¼ Nbulk in the language
of AdS=CFT dictionary. Therefore, for simplicity of the
notations, we replace the pair ðμbulk; NbulkÞ of the bulk to
ðμ; CÞ. One should keep track of the fact that we study the
black holes thermodynamics only at the bulk. It is also
emphasized here that the pair ðμ; CÞ is followed by the
rescalings: μ → λ−1μ and C → λC, where λ is an arbitrary
and nonzero constant. We also remembered it with such
scaling, the first law and subsequent Euler-like relation do
not get harmed.

III. EQUATIONS OF STATES AND
HOMOGENEITY

In this section we are determined to express the pre-
viously derived thermodynamic quantities, e.g., the mass
M, as well as other thermodynamic variables T;Ω; Φ̂; μ
relating the S; J; Q̂; C as extensive variables. We can
circumvent this in the subsequent steps as follows.
Moreover, one has to rewrite a, G in terms of ðJ;M;CÞ,

a ¼ J
M

; G ¼ l2

C
: ð22Þ

As we know, we may also solve the horizon radius rþ, in
terms of entropy S, mass M, the central charge C, and the
rescaled charge Q̂ as

rþ ¼ 1

2M

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−4J2ðπCþ SÞ þ πCQ4 þ 4l2M2S

πC

r
−Q2

!
:

ð23Þ
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The case of Kerr-AdS black holes is derived by simply
putting Q ¼ 0,

rþ ¼ 1

2M

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−4J2ðπCþ SÞ þ 4l2M2S

πC

r !
: ð24Þ

The horizon radius for Gibbons-Maeda-Garfinkle-
Horowitz-Strominger (GMGHS) black holes in AdS space-
times is written as

rþ ¼ 1

2M

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πCQ4 þ 4l2M2S

πC

r
−Q2

!
: ð25Þ

Putting Eqs. (22) and (23) into Eq. (8), we can express the
ADM mass of the Kerr-Sen-AdS black holes in terms of
extensive variables as

M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πCþ S

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πCð4π2J2 þ S2Þ þ 2π2Q̂2Sþ S3

q
2lπ3=2

ffiffiffiffi
C

p ffiffiffi
S

p : ð26Þ

All other thermodynamic variables are conventionally
derived using the first law, Eq. (20). Using Eq. (26) and
the first law, the following are the equations of state:

T ¼
�
∂M
∂S

�
C;Q̂;J

¼ C2ðπ2S2 − 4π4J2Þ þ 4πCS3 þ 2π2Q̂2S2 þ 3S4

4π3=2l
ffiffiffiffi
C

p
S3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πCþ S

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πCð4π2J2 þ S2Þ þ 2π2Q̂2Sþ S3

q ; ð27Þ

Ω ¼
�
∂M
∂J

�
C;S;Q̂

¼ 2π3=2
ffiffiffiffi
C

p
J
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πCþ S

p

l
ffiffiffi
S

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πCð4π2J2 þ S2Þ þ 2π2Q̂2Sþ S3

q ; ð28Þ

Φ̂ ¼
�
∂M

∂Q̂

�
C;S;J

¼
ffiffiffi
π

p
Q̂

ffiffiffi
S

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πCþ S

p

l
ffiffiffiffi
C

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πCð4π2J2 þ S2Þ þ 2π2Q̂2Sþ S3

q ; ð29Þ

μ ¼
�
∂M
∂C

�
S;Q̂;J

¼ π2C2ð4π2J2 þ S2Þ − 2π2Q̂2S2 − S4

4π3=2lC3=2
ffiffiffi
S

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πCþ S

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πCð4π2J2 þ S2Þ þ 2π2Q̂2Sþ S3

q : ð30Þ

The above thermodynamic quantities reduce to that of the
GMGHS-AdS black holes thermodynamic expressions
such that

M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πCþ S

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πCSþ 2π2Q̂2 þ S2

p
2lπ3=2

ffiffiffiffi
C

p : ð31Þ

T ¼
�
∂M
∂S

�
C;Q̂

¼ π2C2 þ 4πCSþ 2π2Q̂2 þ 3S2

4π3=2l
ffiffiffiffi
C

p
S1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πCþ S

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πCSþ 2π2Q̂2 þ S2

p ; ð32Þ

Φ̂ ¼
�
∂M

∂Q̂

�
C;S

¼
ffiffiffi
π

p
Q̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πCþ S

p

l
ffiffiffiffi
C

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πCSþ 2π2Q̂2 þ S2

p ; ð33Þ

μ ¼
�
∂M
∂C

�
S;Q̂

¼ π2C2S − 2π2Q̂2S − S3

4π3=2lC3=2
ffiffiffi
S

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πCþ S

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πCSþ 2π2Q̂2 þ S2

p : ð34Þ

These equations show that all the intensive variables,
such as the mass M, the angular velocity Ω, the rescaled
electric potential Φ̂, and the chemical potential μ as the
functions of S; J; C; Q̂. Obviously, the ADM mass M is
scaled as M → λM, while T;Ω; Φ̂, and μ are not, with
the proviso that the extensive variables are scaled as
S → λS; J → λJ; C → λC and Q̂ → λQ̂. This tells us that
M is homogeneous in first order while T;Ω; Φ̂; μ are zeroth
order in their homogeneity. Keeping all these arguments in
mind and also the first law and corresponding Euler-like
relation, given in Eqs. (20) and (21), we can express the
Gibbs-Duhem relation for chemical potential as

dμ ¼ −SdT − J dΩ − Q̂dΦ̂;

where S ¼ S=C;J ¼ J=C, and Q̂ ¼ Q̂=C are, respec-
tively, the entropy per unit C-charge, the angular momen-
tum per unit C-charge, and the rescaled electric charge per
unit C-charge. It is to be mentioned that S, J , and Q̂ are
homogeneous functions in S; J; Q̂; C with order zero.
Therefore, the thumb rule for any standard thermodynamics
system is that they all should follow the first law of black
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hole mechanics and the corresponding Euler and Gibbs-
Duhem relations. Additionally, all the intensive variables,
including the internal energy, must follow the various
homogeneity properties. In this sense, the RPST formalism
must be valid because it follows the first law of black hole
thermodynamics and the essential homogeneous properties
of all the intensive variables, including the mass.
One can see from Eqs. (27)–(30), that the algebraic

relations stand for the eight state variables, but not all of
them should be of equal importance to define the macrostate
of the system. However, for the Kerr-Sen-AdS black hole,
one can look for the macrostates which can be determined by
only four of the eight variables, namely, ðT; SÞ; ðΩ; JÞ;
ðΦ̂; Q̂Þ; ðμ; CÞ. The mass function in Eq. (26) is function of
five variables, viz., the charge Q̂, the angular momentum J,
the central charge C, the entropy S, and the AdS radius l.
Therefore, one must continuously change any of the five
variables to study the system’s thermodynamic behavior.
Let us make helpful comments before we go into the

main discussion of the thermodynamic process. For any
nonzero and positive definite temperature, the value of the
angular momentum J,

J ≤ Jmax ¼
S
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2C2 þ 4πCSþ 2π2Q̂2 þ 3S2

p
2π2C

;

must not exceed this value. We obtain the similar bound
on the angular momentum parameters for the Kerr black
holes as [40]

JKerr ≤ JKerrmax ¼ S
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2C2 þ 4πCSþ 3S2

p

2π2C
;

in terms of the macro state variables.

IV. THERMODYNAMIC PROCESSES

This section discusses the various thermodynamic proc-
esses for the Kerr-Sen-AdS black holes in the recently
proposed restricted phase-space analysis. As mentioned
earlier, the equations of state (27)–(30) imposes four differ-
ent constraints over the eight variables. As mentioned in the
previous section, if one chooses any of the four pairs to be
varied continuously, the macroscopic description occurs in
the system under study. In all the expressions in the
equations of state (27)–(30), the charge parameter Q̂ was
square, except in the expressions for the electric potential, Φ̂.
Therefore, the parameters Q̂ and Φ̂ would bear identical
signatures. It drives us to take the positive values of the
charge parameter, i.e., Q̂ ≥ 0. One more thing to be
mentioned here, since any of the equations of state depends
explicitly on four extensive parameters, the investigations of
the permissible macroscopic processes can be tough to
analyze. We fix any two variables to avoid such complicacy
and consider the macroscopic processes along simple curves.

Therefore, we restrict ourselves to some specific proc-
esses, such as T − S, Ω − J, Φ̂ − Q̂, and μ − C processes.
These are the conventional processes as they only incorpo-
rate one pair of canonically conjugate intensive-extensive
variables. Although they may sometimes lead to compli-
cated results and may even end in analyses where
numerical techniques are used. It is essential to mention
that for the Reissner-Nordström-AdS, we can get the exact
analysis, but the Kerr-AdS case requires the slow-rotation
limits to have the full view of the thermodynamic process.
In our case we cannot have the result in analytic forms,
hence we adopt the numerical methods in determining the
thermodynamic processes.

A. The critical points

The first-order phase transition of the black holes, either
in the extended phase-space thermodynamics or in the
RPST formalism, requires the analysis of the T − S curves
at fixed J. Such a curve tells us about the first-order phase
transition below the critical points, but in the crucial points,
they become second order. In the RPST formalism, the
T − S diagram at fixed rescaled electric charge Q̂ for the
Reissner-Nordström-AdS, and also the T − S diagram for
the Kerr-AdS black holes at fixed J has been tested in the
usual four-dimensional spacetimes. Our work extends the
existing results to examine the effect of the RPST formal-
ism in the thermodynamic process.
To analyze the critical points on the T − S curve at fixed

J and Q̂, we need to solve for the inflexion point, which is
given by the following relations:�

∂T
∂S

�
J;Q̂;C

¼ 0;

�
∂
2T
∂S2

�
J;Q̂;C

¼ 0: ð35Þ

We use the equation of state (27), to determine the critical
points, not by the analytic method but in the numerical way.
Therefore, we can evaluate the critical points by their
numerical fits. Before do it, let us verify the existing results
in the slow-rotation limits of the mass term and all the other
intensive variables. Therefore, by series expanding the
mass functionM ¼ MðS; J; CÞ and also the other intensive
variables in powers of J up to second orders and for Q̂ ¼ 0,
we get the equations,

MðS; J; Q̂; CÞ ¼ ðπCð2π2J2 þ S2Þ þ S3Þ
2π3=2

ffiffiffiffi
C

p
lS3=2

; ð36Þ

TðS; J; Q̂; CÞ ¼ SðπCþ SÞ2ð−6π3CJ2 þ πCS2 þ 3S3Þ
4π3=2l

ffiffiffiffi
C

p
S5=2

;

ð37Þ

ΩðS; J; Q̂; CÞ ¼ 2π3=2
ffiffiffiffi
C

p
J

lS3=2
;

μðS; J; Q̂; CÞ ¼ πSð2π2J2 þ S2Þ − S3

4π3=2lðCSÞ3=2 : ð38Þ
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All the above expressions match the corresponding results
of the Kerr-AdS black holes. In the limit when J → 0, these
results gives rise to GMGHS black holes in AdS spacetimes

M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πCþ S

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πCSþ 2π2Q̂2 þ S2

p
2π3=2

ffiffiffiffi
C

p
l

;

T ¼ π2C2 þ 4πCSþ 2π2Q̂2 þ 3S2

4π3=2
ffiffiffiffi
C

p
l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πCþ S

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πCSþ 2π2Q̂2 þ S2

p ;

Φ ¼
ffiffiffi
π

p
Q̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πCþ S

p
ffiffiffiffi
C

p
l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πCSþ 2π2Q̂2 þ S2

p ;

μ ¼ Sðπ2ð−C2Þ þ 2π2Q̂2 þ S2Þ
4π3=2C3=2l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πCþ S

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πCSþ 2π2Q̂2 þ S2

p : ð39Þ

The mass and other equations of states for the GMGHS-
AdS black holes are obtained this way. However, as
expected, such results at the second order of the angular
momentum J must hold for the first law, the corresponding
Euler relations, and the Gibbs-Duhem relations.
Using Eq. (27), we can numerically solve the approxi-

mate critical-point equations (35).
We find the solution of the numerical critical points for

the Kerr-Sen AdS black hole by dimensional analysis:

Sc ¼ k1ðϵÞ · C; Q̂ ¼ k2ðϵÞ · C; ð40Þ

where, ϵ ¼ J=Q̂ is the angular momentum to charge ratio
as a dimension-independent variable. Such scaling yields
the critical parameters

k1ðϵÞ ¼
−55.7964ϵ6 þ 313.683ϵ5 þ 376.682ϵ4 þ 179.553ϵ3 þ 41.4088ϵ2 þ 3.59711ϵþ 0.049029

−1.94285ϵ5 þ 11.2937ϵ4 þ 10.9136ϵ3 þ 4.43796ϵ2 þ 0.784196ϵþ 0.0375307
;

Sc ¼
C

k2ðϵÞ
−55.7964ϵ6 þ 313.683ϵ5 þ 376.682ϵ4 þ 179.553ϵ3 þ 41.4088ϵ2 þ 3.59711ϵþ 0.049029

−1.94285ϵ5 þ 11.2937ϵ4 þ 10.9136ϵ3 þ 4.43796ϵ2 þ 0.784196ϵþ 0.0375307
;

k2ðϵÞ ¼
−1250.47ϵ6 þ 3668.25ϵ5 þ 21809.1ϵ4 þ 21620:ϵ3 þ 7916.38ϵ2 þ 1086.96ϵþ 39.2484

−29.9273ϵ5 þ 99.2271ϵ4 þ 483.749ϵ3 þ 333.596ϵ2 þ 66.5065ϵþ 3.06935
;

Jc ¼
Cð−29.9273ϵ6 þ 99.2271ϵ5 þ 483.749ϵ4 þ 333.596ϵ3 þ 66.5065ϵ2 þ 3.06935ϵÞ

−1250.47ϵ6 þ 3668.25ϵ5 þ 21809.1ϵ4 þ 21620:ϵ3 þ 7916.38ϵ2 þ 1086.96ϵþ 39.2484
: ð41Þ

We choose to make the entropy, the temperature and the Helmholtz free energy dimensionless. The coefficients k1 and k2 as
a function of ϵ are obtained by numerically solving Eq. (35). They are also plotted as a function of ϵ in Fig. 1.
Inserting all the critical points in the above equation, the critical temperature reads

Tc ¼
3k41ϵ

4 − 4π4k22ϵ
4 þ 4πk31k2ϵ

4 þ π2k21k2ϵ
3ðk2ϵþ 2Þ

4π3=2lðk1ϵÞ3=2
ffiffiffiffiffiffiffi
k2ϵ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1ϵþ πk2ϵ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k31ϵ

3 þ 4π3k2ϵ3 þ πk21k2ϵ
3 þ 2π2k1k2ϵ2

p : ð42Þ

In the same line, introduce the Helmholtz free energy as

FðT; J; Q̂; CÞ ¼ MðT; J; Q̂; CÞ − TS;

FIG. 1. The plots for k1 (left) and k2 (right) vs the parameter ϵ.
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which, in turn, on putting the exact expressions for the mass, and temperature, takes the value

FðT; J; Q̂; CÞ ¼ Cðπ2C2ð12π2J2 þ S2Þ þ 8π3CJ2S − S4Þ þ 2π2Q̂2Sð2πCþ SÞ
4π3=2Cl

ffiffiffi
S

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πCþ S

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πC2ð4π2J2 þ S2Þ þ 2π2Q̂2Sþ S3

q ; ð43Þ

where the entropy S is determined from Eq. (40). At the critical point, the free energy reads

Fc ¼
� ffiffiffiffiffi

k1
p

ϵðπ3k2k31ðk22 þ 6k2 þ 10ϵ2Þ þ 2π4k22k
2
1ð3k2 þ 10ϵ2 þ 2Þ

4π3=2k3=22

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 þ πk2

p ðk31 þ πðk1 þ 2πÞk2k1Þ3=2

þ 2π5k22k1ðk2ð5ϵ2 þ 4Þ þ 6ϵ2Þ þ 16π6k32ϵ
2 − k61 − πk2k51 þ π2k22k

4
1Þ

4π3=2k3=22

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 þ πk2

p ðk31 þ πðk1 þ 2πÞk2k1Þ3=2
�
C
l
: ð44Þ

Equations (41), (42), and (44) contain complicated expressions for the critical points of various intensive and extensive
variables. At a large parameter ϵ value, the critical points should match with the corresponding expressions for the Kerr-AdS
black holes. Therefore, at large, e.g., ϵ → ∞, the critical points read

Sc ≈ 0.68250C; Jc ≈ 0.02411C;

Tc ≈ 0.26939l−1; Fc ≈ 0.10556l−1C:

At this stage, we are able to express the equation of states (27) and the free energy in terms of the reduced parameters

s ¼ S
Sc

; j ¼ J
Jc

; τ ¼ T
Tc

; f ¼ F
Fc

:

Using the critical points of various extensive and intensive variables, we write the reduced temperature and the free energy
in terms of reduced parameters as

τðs; jÞ ¼ Cϵ2ð−4π4C3j2ϵ2 þ π2k22k
2
1s

2ðC3 þ 2Q̂2Þ þ 3C2k22k
4
1s

4ϵ2 þ 4πC3k22k
3
1s

3ϵÞ
4lπ3=2k22ðCk1sϵÞ3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cðk1sϵþ πÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4π3C4j2ϵ4 þ πCk1k22sϵðC3k1sϵþ 2πQ̂2Þ þ C3k31k
2
2s

3ϵ3
q ; ð45Þ

fðt; jÞ ¼ Cϵð4π3k1sð2C3j2ϵ4 þ k22Q̂
2Þ þ 12π4C3j2ϵ3 þ π2k22k

2
1s

2ϵðC3 þ 2Q̂2Þ − C3k22k
4
1s

4ϵ3Þ
4lπ3=2k2

ffiffiffiffiffiffiffiffiffiffiffiffi
Ck1sϵ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cðk1sϵþ πÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4π3C4j2ϵ4 þ πCk1sϵðC3k1sϵþ 2πQ̂2Þ þ C3k31s
3ϵ3

q : ð46Þ

Let us emphasize here that, regarding the reduced param-
eters, the equations of state and the free energy is not
absolutely independent of the central charge C and the
rescaled electric charge Q̂. But it does not reflect their
effects in the temperature vs entropy behavior plot or the
free energy vs the temperature plot. Such plots mimic the
same thermodynamic behavior of the RN-AdS or Kerr-AdS
black holes. We attribute such phenomena to any black hole
spacetimes with any such charges. Similarly, we observe
the same physical phenomena for any generic thermal
systems or in the extended phase of black hole mechanics.
Such events are characterized by the law of corresponding
states. We attribute the role of the central charge to the
number of particles when we study extended-phase-
space thermodynamics. We plot the T=Tc − S=Sc and
F=Fc − T=Tc curves in the Fig. 2 at fixed J, where
J > 0. From the structure of the T=Tc − S=Sc curves,
there is clear an oscillatory phase below the critical points

where J < Jc. Thus T > Tc phase comprises three different
black holes states, independent of angular momentum, the
rescaled electric charge and the central charge at some
particular T ¼ T0, where T0 is the transition temperature. It
corresponds to the first-order phase transition, where the
small/large and metastable phases exist simultaneously.
The small and large black hole phases are stable, while the
metastable one is not. Therefore, the thermodynamic
equilibrium exists between the small and large black hole
phases. When T0 ¼ Tc, such oscillatory behavior and the
metastable phase disappear and the corresponding phase
becomes second order. On a similar ground, if we look at
the F=Fc − T=Tc diagram, we see a swallowtail behavior
mimicking the first-order phase transition. When the
temperature T ¼ T0, where the crossing of the swallow
tail is reflected, is the first-order phase-transition point.
At the critical points, such behavior ceases a point and
represents the second-order phase-transition point. Above
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this point, when J > Jc, the F=Fc − T=Tc curve shows
continuous behavior.
Noticeably, we only deal with the cases where the

angular momentum J > 0. The cases of J ¼ 0 do not lead
to the RN-AdS black holes phases for T − S and F − T
curves for the Kerr-Sen AdS black holes. However, in
this case, we have another interesting feature for the
T − S and F − T diagrams. When J ¼ 0, we still have the

stable small black hole phases, and the T − S curve deals
show similar behavior as in the case of Kerr-Sen AdS
black holes. Though the analytical evaluation of such
minimum temperature for the Kerr-Sen-AdS black holes
is impossible, luckily, we can get the minimum entropy
for such a case. Therefore, using Eq. (27), we get the
minimum temperature is at the point when entropy has
a value

Smin ¼
1

3
π

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðC3 − 9Q̂2Þffiffiffiffi

A
p þA − 6

ffiffiffi
3

p 8Q̂6

C3
− Q̂4

s
þ

ffiffiffiffi
A

p
− 2C

!
; A ¼ 3

ffiffiffi
3

p 8Q̂6

C3
− Q̂4 þ C2 −

6Q̂2

C
:

Thus, the value of Tmin is obtained at S ¼ Smin, which is a
very lengthy expression and is not of analytical interest.
However, the rescaled equations of state in (27) and the
free-energy expression (43) can be recast as

τ̂ ¼ τðŝ; J; Q̂; CÞ; f̂ ¼ fðŝ; J; Q̂; CÞ; ð47Þ

where ŝ ¼ S=Smin; τ̂ ¼ T=Tmin and f̂ ¼ F=Fmin. The plots
for T=Tmin − S=Smin and F=Fmin − T=Tmin are depicted in
Fig. 3. It is clear from the figure that for T > Tmin, there are
two black hole phases at fixed values of T, C, and Q̂ but
with different values of S. The smaller one corresponds to
the unstable state, and the larger one corresponds to the

stable state of the black holes. Apparently, there is no such
metastable state for any T > Tmin for such configurations.
As a second example, we discuss the T − S process at

fixed values of Ω. For that, we need to evaluate the
functional dependence of J in terms of (Ω) and putting
them into (27), we find an expression T ¼ TðS;Ω; Q̂; CÞ. It
also gives us a minimum for the temperature T, which is
located at

Sex ¼ SexðS;Ω; Q̂; CÞ; Tex ¼ TexðS;Ω; Q̂; CÞ:

With the dimensionless variables s̃ ¼ S
Sex

; τ̃ ¼ T
Tex
, we can

rewrite the equation of states as the T − S

τ̃ ¼
ffiffiffiffiffiffiffiffiffi
s̃Sex

p ðCðs̃Sex þ πCÞðπCs̃Sexð4 − l2Ω2Þ þ 3s̃2S2ex þ π2C2Þ þ 2π2Q̂2ðs̃Sex þ πCð1 − l2Ω2ÞÞÞ
4lπ3=2Cðs̃Sex þ πCÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s̃SexðCs̃Sexðs̃Sex þ πCÞ þ 2π2Q̂2Þðs̃Sexðl2Ω2 þ 1Þ þ πCÞ

q : ð48Þ

FIG. 2. T − S and F − T curves at fixed J > 0.
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It should be emphasized that as with T=Tmin − S=Smin
given in (47), the behavior of T=Tex − S=Sex given in (48),
are identically the same.
For a clear view, we need to understand the T − S

processes at fixed Ω. In addition, it is also important to see
the effect of the μ − T relation μ ¼ μðT;ΩÞ, where μ is
served as the Gibbs free energy. Therefore, we replace J
with Ω, in the μ − T relation. However, it is seen that μ is
exactly peaked at S ¼ Sex, where

μex ¼ μexðS;Ω; Q̂; CÞ:

Defining the dimensionless variable

m̃ ¼ μ

μex
;

the expected relation for μ − T can be written as

m̃ ¼
ffiffiffiffiffiffiffiffiffi
s̃Sex

p ðs̃Sexðs̃Sex þ πCÞðπCl2Ω2s̃Sex − s̃2S2ex þ π2C2Þ þ 2π3Q̂2ðs̃Sexðl2Ω2 þ 1Þ þ πCÞÞ
4π3=2Clðs̃Sex þ πCÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s̃SexðCs̃Sexðs̃Sex þ πCÞ þ 2π2Q̂2Þðs̃Sexðl2Ω2 þ 1Þ þ πCÞ

q ; ð49Þ

where s̃ is determined from Eq. (48) in terms of τ̃, and
the other variables. It is worth mentioning that although
Eqs. (48) and (49) are explicitly dependent on Ω, this does
not have any significant effect on the T=Tex vs S=Sex plots
and also on the μ=μex vs T=Tex plot.
Equations (48) and (49), are depicted in Fig. 4. The

analytical expressions are not applicable even with a slow
rotation limit, although we have shown it just for simplicity.
We apply entirely numerical techniques to determine
the analytical critical points. The corresponding numerical
results do not change the notion of the plots. It seems to be
the same as in the Kerr-AdS black holes case.

B. Ω− J process at fixed S

Next, we emphasize on theΩvsJ processes at fixed values
of S and Q̂. In the slow rotation limit, the expression forΩ is

linearly dependant on J at fixed values of ðS; Q̂; CÞ as seen
from Eq. (28). Therefore, the corresponding curve is just a
straight line in the slow rotation case for Ω − J curve (see
Fig. 5). The graph for the Ω − J processes is depicted in
Fig. 5, where we take the relation (28). Substituting S ¼ SC,
J ¼ JC and Q̂ ¼ Q̂=C into Eq. (28), we have

Ω ¼ 2π3=2J
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðS þ πÞp

l
ffiffiffiffi
S

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4π3J 2 þ S2ðS þ πÞ þ 2π2Q̂2SÞ

q ;

where S, J both represent the intensive variables and is
completely independent of the central charge C. We can see
from the above expression that it is independent of the
central charge C. In addition, we can determine the upper
bound on the rescaled angular momentum J , as

FIG. 3. T − S and F − T curves at J ¼ 0.
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J max ¼
Sð3S2 þ 4πS þ π2 þ 2π2Q̂2Þ1=2

2π2
:

The upper bound is determined to fix the endpoint of the
value of the angular momentum in the Ω − J plot.
Figure 5 depicts the behavior of the Ω − J curves at

different values of S and Q̂. It is worth mentioning that the
curves in Fig. 5 are a monotonically varying functions. For
smaller values of the angular momentum, the small seg-
ment of theΩ − J curve represents a straight line. It reaches
a maximum and finally attains a fixed value at large values
of the rescaled angular momentum. It is worth mentioning
here that, unlike the Kerr-AdS case, the Kerr-Sen-AdS
shows the maximum in the Ω − J plane. It signifies that a

macroscopic phase-transition behavior of the small-large
black hole phases should exist through this process.

C. μ−C processes at fixed ðS;JÞ
We studied the T − S and Ω − J processes in the

previous subsection. In the present subsection, we see
the behavior of the μ − C processes. Such investigation is
necessary because it might play an important role. For that
purpose, we take the whole expression of the chemical

FIG. 4. T − S and μ − T curves at fixed Ω.

FIG. 5. Ω − J curves at fixed S. FIG. 6. μ − C curve at fixed ðS; JÞ.
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potential in Eq. (30). Remarkably, each μ − C curve at
fixed ðS; Q̂; JÞ, corresponds to a maximum. We obtain
the maxima through the relation

Cmax ¼ CmaxðS; Q̂; JÞ; μmax ¼ μmaxðS; Q̂; JÞ;

for different values of the parameters S, Q̂, and J. The value
of the maximum chemical potential, μmax is always positive

for any independent values of the parameters S; Q̂; J. We
define the rescaled dimensionless quantities such that

c ¼ C
Cmax

; m ¼ μ

μmax
;

therefore, the expression for the chemical potential is
written as

m ¼ π2c2C2
maxð4π2J2 þ S2Þ þ 2π3cQ̂2SCmax − S4

4π3=2l
ffiffiffi
S

p ðcCmaxÞ3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πcCmax þ S

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πcCmaxð4π2J2 þ S2Þ þ 2π2Q̂2Sþ S3

q : ð50Þ

in order to have a clear view of the graphs in the μ − C
plots. It is important to mention that the expression for the
chemical potential gives us a full understanding of the
scaling properties of the μ − C processes at any fixed values
of S and J. Besides that, it is important to mention that
it also reflected a similar behavior as with RN-AdS and
Kerr-AdS black holes. This indicates that some universality
lies behind the μ − C process for many black holes in AdS
spacetimes. The μ − C curve for the Kerr-Sen-AdS black
holes is depicted in Fig. 6. At some particular numerical
value of the central charge, the chemical potential becomes
zero, indicating a Hawking-Page-like phase transition.

V. CONCLUSIONS

The thermodynamics of the black hole in AdS space-
times is of utmost importance because of its application to
the AdS=CFT correspondence and related scenarios. This
article presents thermodynamics from the viewpoint of the
central charge and its conjugate potential as a pair of new
thermodynamic variables. In such a case, we varied the
gravitational constant to include it in the first law and the
Euler or Euler-Gibbs-Duhem relation. The AdS radius is
kept constant, unlike the case of extended phase-space
thermodynamics, where it is taken as the thermodynamic
variable proportional to the pressure. This paper discusses
various thermodynamic processes of the AdS spacetimes in
a fixed AdS radius while the gravitational constant is

changed. Such a study is critical, not only because it has
the similar phase structure as the black holes with varying
cosmological constants but also because it has the dual
description of the CFT, thereby showing some essential
features of the AdS=CFT correspondence. In the grand
canonical ensemble, the AdS=CFT correspondence relates
the given macrostate for the black holes in AdS spacetime
to that of the dual CFT.
We proceed by analyzing the critical numerical values of

the thermodynamic quantities. Such critical points lead us
to find the exact nature of the temperature and the free
energy of the AdS black holes for different values of the
central charge C, the angular momentum J, and the charge
parameter Q̂. There is a certain minimum in the temperature
vs the entropy profile showing a supercritical temperature
where the free energy shows erratic behavior.
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