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We construct and explore the physical properties of scalaroca stars: spherically symmetric solitonic
solutions made of a complex scalar field Φ and a complex Proca field Aμ. We restrict our attention to
configurations in which both fields are in the fundamental state and possess an equal mass, focusing on the
cases when (i) the scalar and Proca fields are (nonlinearly) superimposed and do not interact with each
other; and (ii) the scalar and Proca fields interact through the term αjΦj2AμAμ. The solutions are found
numerically for the noninteracting case (α ¼ 0) as well as for both signs of the interaction coupling constant
α. While pure (i.e., single–field) Proca/scalar boson stars are the most/least massive for weakly interacting
fields, one can obtain more massive solutions for a sufficiently strong interaction. Besides, in the latter case,
solutions can be either in a synchronized state—in which both fields have the same frequency—or in a
nonsynchronized state. In addition, we observe that the coupling between the two fields allows solitonic
solutions with a real scalar field. We further comment on the possibility of spontaneous scalarization and
vectorization of the interacting solitonic solution.
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I. INTRODUCTION

With the rise of gravitational-wave detections (led by
the LIGO–Virgo collaboration [1–3]) and the shadow
imaging of supermassive objects (led by the Event
Horizon Telescope collaboration [4,5]), together with the
various unsolved problems in fundamental physics, like
the nature of dark matter and dark energy, the search for
exotic objects is at full throttle. There is a plethora of
hypothetical exotic compact objects, ranging from hori-
zonless configurations to alternative black holes. If there
happens to be enough evidence for any of these exotic
objects or modifications to general relativity, it strongly
suggests the existence of a new fundamental particle and its
corresponding field. Some of these hypothetical particles
are well-motivated candidates for physics beyond the
Standard Model [6].
Over the past few decades several hypothetical models

have been put forward and explored. The most common
models feature a scalar field which, under specific con-
ditions, give rise to boson stars [7–10] and hairy black holes
[11,12]. Boson stars (BSs) [13] are of particular interest to
this work (see [14–16] for a comprehensive review).
In a nutshell, scalar BSs (SBSs) are everywhere regular,

localized, self-gravitating solutions of theminimally coupled
Einstein-Klein-Gordon system. In the simplest case, SBSs

are lumps of a massive complex scalar field. Self-interacting
configurations can also be considered [10,14,17–27].
Unlike ordinary stars, in the simplest models, BSs do not

interact with the Maxwell field, thus being transparent and
invisible. Still, when immersed in an environment with
ordinary matter, they can be compact enough to bend light
due to the gravitational pull [28], creating an empty region
resembling a shadow of a BH event horizon. However, the
accreted matter would be visible in their interior [27].
While the more straightforward mathematical structure

of scalar fields is appealing, it does not exhaust all
possibilities. A commonly used alternative is the massive
vector (or Proca) field, and their version of self-gravitating
stars: Proca stars (PSs)1 [32] (see also [15,16,33–35]).
Proca fields can also be subject to a self-interacting potential,
much like their scalar counterparts [34]. However, unlike
scalar fields, self-interacting Proca fields are prone to ghost
instabilities and their time evolution can even break down
due to the loss of hyperbolicty [36–39].
In general, BSs have been shown topossess a stable branch

[40] dominated by the mass term and common to every BS
configuration. However, only diluted configurations exist

1Rotating black holes in equilibrium with a vector field are also
possible [29–31].
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there, making it hard to describe astrophysical observations
with them—see [27,41]. More compact BSs can be found in
theories featuring multiple bosonic fields.
While single-field BSs have been thoroughly studied in

the literature (some multistate configurations have been
considered in [42]), multifield configurations are still poorly
explored. Examples of multifield BSs include l-boson stars
[23] and Higgs-Proca stars [43–45].2,3
We study a model with a massive complex scalar field

and a massive complex vector field, both minimally
coupled to Einstein’s gravity but nonminimally coupled
to each other in such a way that their effective mass can
change. We study the two fields’ resulting superposition
(with and without the nonminimal interaction) for specific
ratios of their frequencies while keeping the mass of the
individual fields particle unaltered. We do not consider
higher-order self-interaction terms for the fields, so they are
not subject to the pathologies mentioned above.
We study these self-gravitating scalar-Proca stars (SPSs,

or scalaroca stars) and compare them to single-field BSs,
namely SBSs and PSs.4 In particular, we consider (i) non-
interacting (or purely gravitational) configurations, in
which the interaction between the fields is exclusively
ruled by gravity; (ii) interacting configurations, whose
equilibrium follows from a balance between gravity and
the direct interaction between the fields.
In Sec. II we introduce the theoretical framework,

namely the action and equations of motion (Sec. II A), the
ansätze (Sec. II B) and the boundary conditions (Sec. II C),
and explore some features of the theory (Sec. II D). In Sec. III
we present and discuss the results for the four aforemen-
tioned cases. The conclusion and remarks on futurework can
be found in Sec. IV.
Throughout the paper, 4πG ¼ 1 ¼ 4πϵ0. The signature

of the spacetime is ð−;þ;þ;þÞ. In this work one is solely
interested in spherical symmetry and the metric matter
functions are only radially dependent. For notation sim-
plicity, after being first introduced, the functions’ radial
dependence is omitted, e.g. XðrÞ≡ X, and X0 ≡ dX=dr. At
last, an overbar denotes complex conjugation, e.g. X̄.

II. FRAMEWORK

A. Action and equations of motion

Consider the field theory of a complex scalar field, Φ,
nonminimally coupled to a complex vector field, Aα,
defined by the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
4
− ðΦ;μΦ̄;μ þ μ2ΦjΦj2Þ

−
�
1

4
FμνF̄μν þ 1

2
μ2AA

2

�
− αjΦj2A2

�
; ð2:1Þ

where gμν is the spacetime metric, with determinant g and
Ricci scalar R, F ¼ dA is the Maxwell tensor, A2 ≡ AμĀμ,
μΦ, and μA are the scalar and vector field bare mass,
respectively, and α is the interaction coupling constant.
The resulting equations of motion are

Rμν −
1

2
gμνR ¼ 2Tμν; ð2:2aÞ

∇νFμν þ μ̂2AA
μ ¼ 0; ð2:2bÞ

ð□ − μ̂2ΦÞΦ ¼ 0; ð2:2cÞ

where μ̂2Φ ≡ μ2Φ þ αA2=2 and μ̂2A ≡ μ2Φ þ αjΦj2 are the
effective masses of the scalar and vector fields, respectively.
They coincide with their bare masses when α ¼ 0. Note
that the four-divergence of (2.2b) implies the modified
Lorenz condition ∇μðμ̂2AAμÞ ¼ 0.
The stress-energy tensor Tμν can be written as

Tμν ¼ TðΦÞ
μν þ TðAÞ

μν þ TðαÞ
μν ; ð2:3Þ

where

TðΦÞ
μν ¼ ðΦ;μΦ̄;νþΦ;νΦ̄;μÞ− gμνðΦ;λΦ̄;λþ μ2ΦjΦj2Þ; ð2:4aÞ

TðAÞ
μν ¼ 1

2
ðFμγF̄νλ þ FνγF̄μλÞgλγ þ

μ2A
2
ðAμĀν þ AνĀμÞ

− gμν

�
1

4
FλγF̄λγ þ μ2A

2
A2

�
; ð2:4bÞ

TðαÞ
μν ¼ α½μ2AjΦj2ðAμĀν þ AνĀμÞ − gμνjΦj2A2�; ð2:4cÞ

are the scalar, vector and scalar-vector interaction contri-
butions, respectively.
The action in (2.1) possesses two global Uð1Þ sym-

metries, being invariant under the transformations Φ →
eiχΦ and Aμ → eiξAμ, where χ and ξ are constant. This
implies the existence of two conserved four-currents

jμΦ ¼ −iðΦ̄Φ;μ −ΦΦ̄;μÞ; jμA ¼ i
2
ðF̄μνAν − FμνĀνÞ;

ð2:5Þ

which are conserved, i.e. ∇μj
μ
Φ ¼ 0 and ∇μj

μ
A ¼ 0. The

corresponding Noether charges are obtained by integrating
the timelike component of the four-currents on a spacelike
surface Σ,

2A work in the same spirit but with a scalar and a Dirac field
has recently been published [46], however, without field inter-
actions.

3Right before our work appeared, other authors have reported
the existence of hybrid scalar-Proca stars in a similar but simpler
model [47].

4While the term “boson star” usually refers to scalar fields only,
here it will denote self-gravitating bosonic solitons in general. In
other words, in this work, SBSs, PSs and SPSs are all BSs.
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QΦ ¼
Z
Σ
d3xj0Φ; QA ¼

Z
Σ
d3xj0A: ð2:6Þ

Upon quantization, QΦ and QA are nothing but the number
of scalar and vector particles, respectively. Q≡QΦ þQA
is thus the total number of particles. The Komar mass reads

M ¼
Z
Σ
dVRμνnμξν ¼ 2

Z
Σ
dV

�
Tμν −

1

2
gμνTλ

λ

�
nμξν;

ð2:7Þ
where Σ is an asymptotically flat spacelike hypersurface,
nα is a future-pointing unit normal to Σ, and dV is the
3-volume form induced on Σ.

B. Ansätze

Any static, spherically symmetric solution to the equa-
tions of motion can be cast in the form

ds2 ¼ −σðrÞ2NðrÞdt2 þ dr2

NðrÞ þ r2ðdθ2 þ sin2θdφ2Þ;

NðrÞ≡ 1 −
2mðrÞ

r
; ð2:8Þ

in Schwarzschild-like coordinates ðt; r; θ;φÞ, where m is
the Misner-Sharp mass function [48]. Note that δ ¼
logðσ ffiffiffiffi

N
p Þ is the redshift function. For both matter fields,

one considers an ansatz with an harmonic time-dependence
that makes the stress energy tensor time-independent. The
ansatz for the scalar field is

Φðt; rÞ ¼ e−iωtϕðrÞ; ð2:9Þ
where ϕ is the scalar field amplitude, which depends on the
radial coordinate only, and ω is the field’s frequency. For
the vector field, the ansatz reads

Aαðt; rÞdxα ¼ e−iγt½fðrÞdtþ igðrÞdr�; ð2:10Þ
where f and g depend on the radial coordinate only and γ is
the associated frequency. Without loss of generality, both ω
and γ are taken to be positive.
The equations of motion restricted to the ansätze

1

r2σ
ðrσNÞ0 − 1

r2
þ 2μ2Φϕ

2 þ σ2N2g2

γ2
ðμ2A þ αϕ2Þ2 ¼ 0;

ð2:11aÞ
σ0

σ
− r

�
ðμ2A þ αϕ2Þ

�
f2

σ2N2
þ g2

�
þ 2ω2ϕ2

σ2N2
þ 2ϕ02

�
¼ 0;

ð2:11bÞ
1

r2σ
ðr2σNϕ0Þ0 þ

�
ω2

σ2N
− μ2Φ −

α

2

�
Ng2 −

f2

σ2N

��
ϕ ¼ 0;

ð2:11cÞ

f0 − γgþ σ2N
γ

ðμ2A þ αϕ2Þg ¼ 0; ð2:11dÞ

the modified Lorenz condition reads5

1

r2ðμ2A þ αϕ2Þ ½r
2σNðμ2A þ αϕ2Þg�0 þ γ

σN
f ¼ 0: ð2:12Þ

Note that the ordinary differential equation (ODE) for ϕ is
of second-order, whereas those for N, σ and f are of first-
order.6

C. Boundary conditions and physical quantities

As for the inner boundary conditions, smoothness
requires the functions fN; σ;ϕ; f; gg to have a regular
Taylor series at r ¼ 0. In fact, it can be shown that

NðrÞ ¼ 1 −
2

3

ϕ2
0

σ20

�
ω2 þ μ2Φσ

2
0 þ

f20
2ϕ2

0

ðμ2A þ αϕ2
0Þ
�
r2 þ � � � ;

ð2:13aÞ

σðrÞ ¼ σ0þ
ϕ2
0

σ0

�
ω2þ f20

2ϕ2
0

ðμ2Aþαϕ2
0Þ
�
r2þ� � � ; ð2:13bÞ

ϕðrÞ ¼ ϕ0 −
1

6

ϕ0

σ20

�
ω2 − μ2Φσ

2
0 þ

α

2
f20

�
r2 þ � � � ; ð2:13cÞ

fðrÞ ¼ f0

�
1þ 1

6

�
μ2A þ αϕ2

0 −
γ2

σ20

�
r2 þ � � �

�
; ð2:13dÞ

gðrÞ ¼ −
γ

3

f0
σ20

rþ � � � ; ð2:13eÞ

where σ0 ≡ σð0Þ, ϕ0 ≡ ϕð0Þ and f0 ≡ fð0Þ. Without loss
of generality, one can assume that ϕ0 > 0 thanks to the
Z2-symmetry of the scalar field. Note that N0ð0Þ ¼
σ0ð0Þ ¼ ϕ0ð0Þ ¼ f0ð0Þ ¼ 0.
As for the outer boundary conditions, asymptotic flat-

ness requires

lim
r→∞

NðrÞ ¼ lim
r→∞

σðrÞ ¼ 1; ð2:14aÞ

lim
r→∞

ϕðrÞ ¼ lim
r→∞

fðrÞ ¼ lim
r→∞

gðrÞ ¼ 0: ð2:14bÞ

5By multiplying (2.12) by r2ðμ2A þ αϕ2Þ and integrating from
r ¼ 0 to infinity, one obtains

Z
∞

0

dr
r2

σN
ðμ2A þ αϕ2Þf ¼ 0:

Assuming α > 0, this equality is only satisfied if f changes sign
at least once (and thus have at least one node).

6The matter function g can be expressed in terms of N, σ, ϕ, f
and its first derivative.
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More precisely, the asymptotic behavior of the functions
fN; σ;ϕ; f; gg is of the form

NðrÞ ¼ 1 −
2M
r

þ � � � ; ð2:15aÞ

σðrÞ ¼ −
c20
2

μ2Aγ
2

ðμ2A − γ2Þ3=2
e−2r

ffiffiffiffiffiffiffiffiffi
μ2A−γ

2
p

r
þ � � � ; ð2:15bÞ

ϕðrÞ ¼ ϕ∞
e−r

ffiffiffiffiffiffiffiffiffiffi
μ2Φ−ω

2
p

r
þ � � � ; ð2:15cÞ

fðrÞ ¼ f∞
e−r

ffiffiffiffiffiffiffiffiffi
μ2A−γ

2
p

r
þ � � � ; ð2:15dÞ

gðrÞ ¼ f∞
γffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2A − γ2
p e−r

ffiffiffiffiffiffiffiffiffi
μ2A−γ

2
p

r
þ � � � ; ð2:15eÞ

where c0, ϕ∞ and f∞ are real constants. Restricted to the
ansätze, the conserved Noether charges in (2.6) read

QΦ ¼ 8π

Z þ∞

0

drr2
ω

σN
ϕ2;

QA ¼ −4π
Z þ∞

0

drr2
gðf0 − γgÞ

σ
; ð2:16Þ

and the Komar mass in (2.7) becomes

M ¼ 4π

Z
∞

0

dr
r2

σN

�
4

�
ω2 −

μ2Φ
2
σ2N

�
ϕ2

þ Nðf0 − γgÞ2 þ 2f2ðμ2A þ αϕ2Þ
�
: ð2:17Þ

The mass M can also be read off from the behavior of the
metric function N at infinity, (2.15a). Note that the positive
mass theorem is not violated if ω is set to 0 in (2.17), as the
coupling between the scalar and the Proca fields allows for
a positive Komar mass regardless of the negative contri-
bution of the scalar field.
At last, following [49–51], applying Derrick’s scaling

argument, one can obtain the virial identity for the full
model,

Z þ∞

0

dr
r2

N2σ
½2ω2ϕ2ð1 − 4NÞ þ 6μ2ΦN

2σ2ϕ2

− f2ð−1þ 4NÞðμ2A þ αϕ2Þ
þ g2N2½−3γ þ ð1þ 2NÞσ2ðμ2A þ αϕ2Þ�
þ ð4γg − f0ÞN2f0 þ 2N2σ2ϕ02� ¼ 0: ð2:18Þ

Observe that while the computation was performed with the
m function, for notation simplicity we express the resulting
identity with the N function.

D. Tachyonic instabilities and spontaneous
bosonification

The model in (2.1) is likely to feature (either scalar or
vector) tachyonic instabilities due to the presence of the
interaction term αjΦj2A2. Once triggered, they may lead to
the growth of the bosonic field, commonly known as
spontaneous scalarization (for spin-0 fields) and sponta-
neous vectorization (for spin-1 fields). For simplicity, we
will hereafter refer to this phenomenon as spontaneous
bosonification.
First proposed by Damour and Esposito-Farése [52,53],7

scalarization occurs when, a nontrivial configuration of a
scalar field with vanishing asymptotic behavior is dynami-
cally preferred. It is said to be spontaneous scalarized when
such a scalar configuration occurs without an inducing
external perturbation (hence the name). The spontaneous
scalarization of SBS has already been reported in [55].8 As
is the case in our model, the same can also occur in the
presence of a vector field [66–68] and even higher rank
tensor fields [69].
It is clear from (2.2) that the scalar field is prone to such

instabilities when μ̂2Φ becomes negative:

μ2Φ < −αjA2j=2 for α > 0; A2 < 0; ð2:19aÞ

μ2Φ < jαjA2=2 for α < 0; A2 > 0: ð2:19bÞ

which correspond to when the effective mass μ̂Φ of the
scalar field is imaginary. All these branches of solution
should be distinct. Note that for the A2 < 0 case one
requires jgttjjAtj2 > grrjArj2.
As for the Proca field, tachyonic instabilities may arise

when the eigenvalues of the effective mass matrix become
negative. Such matrix can be obtained by rewriting the
Proca equation (2.2c) in the form gμν∇μ∇νAσ−MσλAλ¼0.
Here,

Mσλ ¼ Rσλ þ μ̂2Agσλ −∇σ∇λ lnðμ̂2AÞ: ð2:20Þ

An in-depth study of spontaneous bosonification in
model (2.1) is out of the scope of this work.

III. RESULTS

Observe that the system (2.11) is invariant under the
transformations

fσ; f;ω; γg → λafσ; f;ω; γg; ð3:1aÞ

7Reports of an earlier proposal by Zagaluer, back in 1992, also
exist; however, due to some artificial considerations, it has been
criticized ever since [54].

8The same phenomena also occurs for neutron stars [53] and
black holes [56–65].
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fr;mg → λbfr;mg; fμΦ; μA;ω; γg → λ−1b fμΦ; μA;ω; γg;
α → λ−2b α; ð3:1bÞ

where λa; λb ∈ Rþ. Equation (3.1b) leaves ω=μΦ and γ=μA
unchanged. It is thus convenient to set the mass of one of
the fields equal to unity, μA ¼ 1 (say), which yields
λb ¼ 1=μ̃A, and physical quantities will be scaled accord-
ingly. While solutions with μA ≠ μΦ are possible, here one
sets μ≡ μA ¼ μΦ ¼ 1, and focuses on the effects of
changing the coupling α.9

Solitonic solutions are characterized by three continuous
parameters: the ADM mass, M, and the two oscillation
frequencies of the matter fields, ω and γ, all expressed in
units of μ. For each value of ðω=μ; γ=μ;MμÞ, there is a
single solution in a certain three-dimensional domain. This
family of solutions is only one among an infinite discrete
set, labeled by two integers: the number of nodes in the
radial direction nϕ and nf of the matter functions ϕ and f,
respectively. Fundamental solutions, which minimize the
total number of nodes nϕ þ nf, are the main focus of the
paper. Excited solutions are expected to exist, though.
For a given fω; γ; αg, the system is solved as a boundary

value problem with the boundary conditions in (2.13) and
(2.15). The set of coupled ODEs is integrated numerically
by using an in house developed parallelized, adaptive step-
size Runge-Kutta method of order 5(6), with a local
truncation error of 10−15. The pair fϕ0; f0g which satisfies
the boundary conditions at infinity is found by implement-
ing a two-dimensional shooting method based on the secant
algorithm, with a tolerance of 10−9. The physical accuracy
of the solutions (required to be at least 10−5) is monitored
by checking: (i) the virial identity in (2.18); (ii) the

difference between the Komar mass in (2.17) and the
asymptotic value of m.
The domain of existence of single-field BSs has a spiral

shape in a mass-frequency diagram, as shown in Fig. 2
(left). BSs exist in a finite range of frequencies and masses:
while SBSs can oscillate slower, minðωÞ < minðγÞ, PSs
can be heavier, maxðMSBSÞ < maxðMPSÞ. SPSs lie along
line segments connecting the two spirals, and their end-
points correspond to single-field (pure) BSs, i.e., either a
SBS (f0 ¼ 0) or a PS (ϕ0 ¼ 0). As one moves along the
line segment toward the PS (say), f0 increases and ϕ0

decreases—Fig. 2 (right).

A. Minimal coupling (α= 0)

When α ¼ 0, the metric and matter functions exhibit a
behavior akin to that of the corresponding single-field
BSs—see Fig. 1 (left): ϕ and f pile up around r ¼ 0 and
have a global maximum there, whereas the minimum of g is
off-center. Also, ϕ and g are nodeless, while f has one
node. Besides, most of the energy is concentrated around
r ¼ 0—see Fig. 1 (middle). In addition, for future refer-
ence, Fig. 1 (right) shows the shape of jΦj2A2, which is
proportional to the energy density contribution coming
from the interaction term.
When ω ≠ γ, the space of solutions is spanned by

fω; γ;Mg, thus being 3-dimensional. However, since they
connect single-field BSs, it is easier to visualize it in terms
of the effective frequency10

V ¼ ωQΦ þ γQA

QΦ þQA
: ð3:2Þ

FIG. 1. Minimally coupled (α ¼ 0) SPS with ω ¼ 0.758 and γ ¼ 0.834 (V ¼ 0.824), M ¼ 0.885, Q ¼ 0.805 (red circle in Fig. 2).
Left: metric and matter functions radial profile: (solid black) metric function σ; (Solid yellow) matter function m; (Solid green) vector
field function f; (Dot-dashed purple) energy density, ρ; (Dotted red) scalar field amplitude, ϕ; And (dashed blue) vector field function
g.(Middle) Energy density ρ (normalized relative to the maximum). Right: jϕ2A2j (min-max normalized). In both density plots, black
(yellow) color represents the absence (maximum value) of ρ or jϕ2A2j. The solution position in the domain of existence is represented by
a red circle in Fig. 2. Observe that the solution is regular everywhere.

9A change in μA=μΦ is expected to impact on the starting point
and size of the domain of existence, which increases (decreases)
as the ratio decreases (increases) [46].

10The effective frequency V does not have physical meaning,
since the scalar (vector) field oscillates at it’s own frequency ω
(γ). This new quantity is here introduced to ease data visualiza-
tion, and make clear that SPSs connect SBSs to PSs.
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Pure SBSs (PSs) are recovered when QA ¼ 0 (QΦ ¼ 0),
hence V ¼ ω (V ¼ γ).
Inspection of Fig. 2 (left) reveals interesting features.

First, the mass of a minimally coupled SPS ranges between
that of a SBS with frequency ω and that of a PS with
frequency γ, in agreement with the values ϕ0 and f0 take
along the existence line of SPSs—see Fig. 2 (right). Despite
the minimal interaction between the fields (which is purely
gravitational), these stars cannot be regarded as linear
combinations of the corresponding pure BSs, as their mass
is always smaller than the corresponding PSs. This picture
can change when the fields are nonminimally coupled (to
each other) and/or synchronized—see Sec. III B. Second,
there can be different solutions with the same mass and
effective frequency. This is clear for γ=σ0 ∈ f1.5; 2.5g.
Third, it is well known that single-field BSs are stable

against linear radial perturbations for frequencies greater
that the one that maximizes their mass [32,70]. Figure 2
(left) shows that there are families connecting (i) stable
SBSs to stable PSs; (ii) unstable SBSs to unstable PSs; and
(iii) stable SBSs to unstable PSs. While for the two former
families (i)–(ii) it is plausible that the connecting SPS
solutions are always stable/unstable, the same cannot be
true for the latter case. In general, it is not evident how
(iii) SPSs would behave when radially perturbed. However,
if solutions sufficiently close to the branch out points retain
the stability of the single-field BS, then one expects stable
solutions that originate from a stable SBS to become
unstable at a certain point close to the corresponding
unstable PS. Such behavior is common to every α value
studied.
Finally, fixing M, the total Noether charge Q ¼ QΦ þ

QA increases as γ=σ0 decreases. For sufficiently large mass,

Q > M for γ=σ0 ∈ f1.100; 1.192; 1.243; 1.500g (positive
binding energy), and Q < M for γ=σ0 ∈ f1.75; 2.00; 2.50;
3.00; 4.00; 5.00g (negative binding energy).

B. Nonminimal coupling (α ≠ 0)

The addition of a nonminimal coupling between the
fields provides the theory with a new interaction and
associated possibilities. Its nature (either attractive or
repulsive) depends on sgnðαA2Þ and can substantially
change the physical properties of SPSs. The interaction
is said to be attractive (repulsive) when sgnðαA2Þ ¼ þ1
(−1), since the last term in (2.1) has the same (opposite)
sign as that of the mass terms. In general, A2 does not have
a fixed sign. This means that the nature of the interaction
can change throughout the spacetime. By continuity, for
sufficiently small positive (negative) values of α, the
interaction is repulsive (attractive) close to the origin,
and becomes attractive (repulsive) at r ∼ μ toward infinity.

1. Positive coupling (α > 0)

When α > 0, both fields can either oscillate in synchrony
(ω ¼ γ) or not (ω ≠ γ). It was only possible to find numeri-
cally synchronized configurations for sufficiently high val-
ues of the interaction coupling constant, α≳ 70, while
nonsynchronized configurations were found for a wider
range of α. Let us start with the most generic case (ω ≠ γ).

Nonsynchronized configurations (ω ≠ γ).—Nonsynchronized
SPSs with a relatively small α > 0 bear a very close
resemblance to minimally coupled SPSs (see sec. III A),
as shown in Fig. 3 (top) for α ∈ f10; 100g (smaller values
of α possess a neglegible difference with the minimally

FIG. 2. Domain of existence of minimally coupled (α ¼ 0), nonsynchronized (ω ≠ γ) SPSs in a mass-effective frequency (left) and
f0 − ϕ0 diagram (right) for: a solution with both ends in the stability region γ=σ0 ¼ 1.100 (solid green); A solution that starts at the PS
maximum (PS stability transition) γ=σ0 ¼ 1.192 (dashed green); A solution that starts in the unstable PS branch and ends in the SBS
stability transition (maximum SBS mass) γ=σ0 ¼ 1.243 (dotted green); An SPS line that has both ends pertubatively unstable but
are energetically stable γ=σ0 ¼ 1.500 (solid red); An SPS line that has both ends perturbatively stable but the correspondent SBS
is energetically stable γ=σ0 ¼ 1.7500; And a set of configurations that have both pure configurations simultaneously perturbatively and
energetically unstable: γ=σ0 ¼ 2.000 (dashed red), γ=σ0 ¼ 2.500 (dot-dashed red), γ=σ0 ¼ 3.000 (solid orange), γ=σ0 ¼ 4.000 (dashed
orange), γ=σ0 ¼ 5.000 (dotted orange). The red circle corresponds to the minimally coupled SPS in Fig. 1. The squares denote solutions
with M ¼ Q, with those to the right (left) having M < Q (M > Q) and thus positive (negative) binding energy. Observe that the SPS
solutions continuously connect the pure PS configuration to the pure SBS configuration.
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coupled case—see Fig. 2). Fixing γ=σ0, the higher the
coupling constant, the higher the value ϕ0 takes as
approaching the existence line of SBSs (i.e. as f0 → 0).
Moderate values of α do not impact the shape of the lines
nor the maximum mass of SPSs (which is still equal to the
mass of the PS they branch out from). However, when
α ∼ 100, the line wiggles close to the branch out point,
generating new branches of solutions, some of which are
heavier than the corresponding PS—see Fig. 3 (right)
for α ¼ 100.
For sufficiently high values of γ=σ0, it was not possible

to obtain solutions continuously connecting single-field
BSs. For γ=σ0 ¼ 1.500, the last (numerically) obtainable
solution has μ̂2Φ < 0, as shown in Fig. 3 (bottom)—denoted
by a red circle in Fig. 4. Finally, while for α ¼ 10 the
stability argument put forward in Sec. III A seems apply, an

addendum has to be made for α ¼ 100. From catastrophe
theory arguments [71–74], one could argue that for each
turning point in the domain of existence fV;Mg, like the
one shown in Fig. 3 (right) for γ=σ0 ¼ f1.100; 1.192;
1.243g, there is a transition in the stability of the solutions.
The latter argument seems to agree with the observed
results, however V is not a proper frequency and can give
erroneous results. Further studies have to be performed, but
the data seems to indicate the existence of sections of the
SPS line with opposing stability to the rest.

Synchronized configurations (ω ¼ γ).—When the fields are
synchronized, V ¼ ω ¼ γ, and the space of solutions is
spanned by fV;Mg, the existence of such configurations
turns out to be very sensitive to the coupling constant, as
shown in Fig. 5 for α ∈ f70; 80; 90; 100; 1366g. In fact, one

FIG. 3. (Top) domain of existence of nonminimally coupled (α ≠ 0), nonsynchronized (ω ≠ γ) SPSs with α ¼ 10 (left) and α ¼ 100
(right) in a mass-effective frequency diagram for: a solution with both ends in the stability region γ=σ0 ¼ 1.100 (solid green); A solution
that starts at the PS maximum (PS stability transition) γ=σ0 ¼ 1.192 (dashed green); A solution that starts in the unstable PS branch and
ends in the SBS stability transition (maximum SBS mass) γ=σ0 ¼ 1.243 (dotted green); An SPS line that has both ends pertubatively
unstable but are energetically stable γ=σ0 ¼ 1.500 (solid red); An SPS line that has both ends perturbatively stable but the correspondent
SBS is energetically stable γ=σ0 ¼ 1.7500; And a set of configurations that have both pure configurations simultaneously perturbatively
and energetically unstable: γ=σ0 ¼ 2.000 (dashed red), γ=σ0 ¼ 2.500 (dot-dashed red), γ=σ0 ¼ 3.000 (solid orange). The red dot
represents the last (numerically) obtainable solution with α ¼ 100 and γ=ω0 ¼ 1.500.

FIG. 4. Nonminimally coupled, synchronized SPS with V ¼ 0.857 (γ=σ0 ¼ 1.500), α ¼ 100, M ¼ 0.812, and Q ¼ 0.811.(Left)
metric and matter functions radial profile: (solid black) metric function σ; (Solid yellow) matter function m; (Solid green) vector field
function f; (Dot-dashed purple) energy density, ρ; (Dotted red) scalar field amplitude, ϕ; And (dashed blue) vector field function g.
(Right) square of the effective scalar and vector masses for the last (numerically) obtainable solution with α ¼ 100 and γ=ω0 ¼ 1.500—
denoted by a red dot in Fig. 3 (right). (Right) scalar (dashed black) and vector (solid red) field’s effective mass as a function of the radial
coordinate for the previous solution. The effective mass of the scalar field becomes imaginary close to the origin. Observe that the
solution is everywhere regular.
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observes the existence of three families of solutions,
roughly characterized by high, moderate, and small values
of α, relatively. The (finite) range of frequencies for which
SPSs exist shrinks as α decreases and appears to vanish
completely for α≲ 70—see also Table I.

For α ∼Oð103Þ, the branch’s endpoint (starting from the
pure PS) corresponds to a SPS configuration with f0 → 0
(see Fig. 5, 6, and α ∼ 100, the solutions also bifurcate from
a pure PS and spiral in fV;Mg-plane just like singe-field
BSs. At last, for α≲ 100 (but larger than 70), the domain of

FIG. 5. (Left) domain of existence of nonminimally coupled (α ¼ 0), synchronized (ω ¼ γ) SPSs in a mass-effective frequency
diagram, for: α ¼ 1366 (solid red) maximum value numerically obtainable; α ¼ 100 (dotted green); α ¼ 90 (dashed orange); α ¼ 80
(dot-dashed violet) and; α ¼ 70 (dotted gray) close to the minimum value of α for which synchronized solutions exist. (Right) zoom-in
of the region where the majority of the lines branch out from the PS. Note that for high enough values of α one can obtain SPS
configurations that have an higher mass than the pure PS configuration, from which all lines seem to emerge.

TABLE I. Characteristic quantities of the branch out solution and the terminal point solutions for the nonminimally coupled
synchronized (ω ¼ γ ¼ V) SPS solutions for five values of the interaction coupling α.

Branch out point Terminal point

α V M Q f0 V M Q f0

1366 0.9964 0.2541 0.2544 0.0003 0.9188 1.1116 1.1350 5 × 10−5

100 0.9448 0.8782 0.8926 0.0226 0.8425 0.6432 0.6005 0.0152
90 0.9372 0.9183 0.9352 0.0285 0.8411 0.7466 0.7244 0.0253
80 0.9260 0.9663 0.9780 0.0369 0.8859 1.0041 1.0653 0.0686
70 0.9026 1.0306 1.0572 0.0595 0.8982 1.0385 1.0661 0.0645

FIG. 6. Same as in Fig. 5, but in a f0-effective frequency diagram (left) and in a RðfmaxÞ-effective frequency diagram (right) for:
α ¼ 1366 (solid red) maximum value numerically obtainable; α ¼ 100 (dotted green); α ¼ 90 (dashed orange); α ¼ 80 (dot-dashed
violet) and; α ¼ 70 (dotted gray) close to the minimum value of α for which synchronized solutions exist. Note that f has its maximum
at the origin for α ∈ f70; 80g. The decrease in f0 seems to be associated with the end of synchronized set of configurations shown
in Fig. 5.

POMBO, OLIVEIRA, and SANTOS PHYS. REV. D 108, 044044 (2023)

044044-8



existence starts again at a PS configuration and ends
abruptly without any distinctive feature.
SPSs branch out from PSs with increasing frequency as α

increases.11 This seems intuitive: a more dilute field
requires a stronger interaction to yield the same configu-
ration. This is in agreement with the trend in the mass,
which is greater for larger values of α (when comparable)
and can even be greater than that of a PS with the same
frequency. Although the solutions branch out from the PS
line, they do not join the SBS line,12 as opposed to
nonsynchronized configurations. For α ∈ f70; 80g, the
mass increases monotonically as one moves away from
the branch out point (i.e. as V decreases). However, for
α ∈ f90; 100g, it reaches a maximum and then decreases.
While f0 follows a similar trend—see Fig. 6 (left)—ϕ0

increases as V decreases regardless of the value α takes

(not shown). Figure 7 reveals the effects of changing α on
the compactness and (scalar and vector) Noether charges of
the solitonic stars. The compactness, defined as twice 99%
of the star’s mass divided by the perimetral radius that
contains it (C99 ¼ 2M=R99), increases with increasing α.
Nevertheless, the stars are always dilute and nonrelativistic
when V → μ. Figure 7 also shows that the scalar (vector)
Noether charge grows (drops) as α rises.
Also worth mentioning is the shift in the position of the

maximum of f, RðfmaxÞ, which becomes off-center for
sufficiently high values of the interaction coupling—see
Fig. 6 (right). This creates a ring-like structure for the
energy density contribution coming from the interaction
term—see Fig. 8 (right). Following the work done in [27],
one can also consider the presence of light rings and/or the
inner edge of the accretion disk associated with a bound in
the existence of a maximum of the angular velocityΩ along
the orbits (see [27,75] for a more details). None of the
solutions presented here possesses a light ring (in the case
of pure BSs, the light rings only start to exist well inside the
domain of existence spiral).

FIG. 7. Graphical representation of several characteristic quantities of nonminimally coupled, synchronized SPSs in Fig. 5:
compactness (left), scalar (middle) and vector (right) Noether charges for: α ¼ 1366 (solid red) maximum value numerically obtainable;
α ¼ 100 (dotted green); α ¼ 90 (dashed orange); α ¼ 80 (dot-dashed violet) and; α ¼ 70 (dotted gray) close to the minimum value of α
for which synchronized solutions exist.

FIG. 8. Nonminimally coupled, synchronized SPS with V ¼ 0.758 (γ=σ0 ¼ 1.500), α ¼ 1366, M ¼ 1.112 and Q ¼ 1.135. (Left)
metric and matter functions radial profile: (solid black) metric function σ; (Solid yellow) matter function m; (Solid green) vector field
function f; (Dot-dashed purple) energy density, ρ; (dotted red) scalar field amplitude, ϕ; And (dashed blue) vector field function g.
(Right) jϕ2A2j (min-max normalized), black (yellow) color represents the absence (maximum value) of jϕ2A2j. Observe that the
solution is regular everywhere.

11Since the neighborhood of ðω;MÞ ¼ ðμ; 0Þ is hard to probe,
it is not clear whether the frequency at the branch out approaches
μ when α tends to infinity or a finite value.

12No evidence for synchronized configurations branch out
from the SBS line was found.
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From previous works it is known that pure PSs possesses
an inner edge of the accretion disk in the stable branch
(while SBS do not). Our results show that SPS solutions,
where both corresponding pure BS configurations do not
have an inner edge of the accretion disk, also do not possess
one (there are stable circular orbits all the way to the center
of the BS); the same does not occur when the SPS
configurations branches out from a region where the
corresponding PS possesses an inner edge of the accretion
disk but the SBS does not. In this case, there exist SPS
solutions with an inner edge of the accretion disk close to
the pure PS configuration, and as the SPS configurations
tend to the SBS they lose the inner edge and gain stable
circular orbits for any value of the radial coordinate.
As for the case of synchronized SPSs, these do not

connect PSs to the SBS configurations, so the previous
arguments can not be made. In the synchronized SPS case,
while for α ¼ f70; 80; 90g there are no solutions with an
inner edge of the accretion disk—the angular velocity has its
maximum at the BS center—the same does not occur for the
higher coupling values—see Fig. 9. For α¼f100;1366g,
solutions start with a PS that contains an inner edge of the
accretion disk outside the center RΩ > 0 and this behavior
occurs for the associated SPSs. However, as one goes away
from the branch out point, one can observe that RΩ → 0 and
the SPS solutions lose the inner edge of the accretion disk.

2. Negative coupling (α < 0)

The direct interaction between the fields when α < 0 is
expected to be repulsive at the star’s core (at least for
sufficiently small jαj), thus counteracting their gravitational
attraction. In principle there should be a critical (negative)
value αc for which these opposite effects counterbalance
each other.
When α < αc, repulsion dominates and prevents SPSs

from forming. The critical value should depend on ω and γ,

thus being hard to determine. For nonsynchronized con-
figurations, the domain of existence is very similar to that
of SPSs with α > 0, as shown in Fig. 11 for α ¼ −10.
Fixing γ=σ0, the line moves toward higher effective
frequencies as jαj grows, scaling down the minimum mass
of SPSs. Despite the similitude, the radial profile of the
matter functions may differ considerably from those of
SPSs with α > 0, whereas A2 has an additional peak, also
close to r ¼ 0, as one can infer from Fig. 10. At last, we
would like to point out that, while in the case of α > 0, high
γ=σ0 solutions exist in the vicinity of the SBS line but not in
the vicinity of the PS line, for α < 0 the opposite occurs. In
fact, in both cases, when attempting to construct SPS
solutions close to the pure BS lines one observed that the
pure configuration is unable to sustain any significant
quantity of the other field. Which seems to indicate the
existence of SPS lines that start in one of the pure
configurations but do not end in the other.

3. Changing the coupling

So far the interaction coupling was kept fixed while
changing γ=σ0. It is also interesting to consider SBSs with
fixed ϕ0 (say) and examine the effects of varying α.
Figure 12 shows how ω depends on α for different
values of ϕ0. Starting from α ¼ −10 and for small values
of ϕ0, the frequency increases as α increases, reaching a

FIG. 9. Maximal value of the angular velocity radii, RΩ, of a
particle around a boson star as a function of the effective
frequency V for two values of the coupling interaction α ¼
1366 (solid red) and α ¼ 100 (dashed green).

FIG. 10. Domain of existence of nonminimally coupled, non-
synchronized SPSs with α ¼ −10 in a mass-effective frequency
diagram for: a solution with both ends in the stability region
γ=σ0 ¼ 1.100 (solid green); A solution that starts at the PS
maximum (PS stability transition) γ=σ0 ¼ 1.192 (dashed green);
A solution that starts in the unstable PS branch and ends in the
SBS stability transition (maximum SBS mass) γ=σ0 ¼ 1.243
(dotted green); A solution that starts in an energetic and
perturbatively unstable PS and ends in an energetically stable
SBS γ=σ0 ¼ 1.500 (solid red); and a set of configurations that
branch out from an unstable PS and do not end in an SBS
configuration γ=σ0 ¼ 1.750 (dashed red). The red dot represents
the last numerically obtainable solution for γ=σ0 ¼ 1.750 (sol-
ution profile graphically represented in Fig. 11).
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maximum and then decreasing toward ω ¼ 0 at α ≈ 43.
This behavior suggests the existence of configurations
featuring static (ω ¼ 0) scalar fields in equilibrium with
oscillating (γ ≠ 0) vector fields. In fact, the condition
ω ¼ 0 does not spoil the boundary conditions at both
the origin and infinity—see Sec. II C. Another evidence for
their existence is the regularity of the matter functions of a
SPS with a quasistatic scalar field, as shown in Fig. 13.
We can observe that, as ω → 0, the SPS seems to be

regular everywhere and no strange behavior of the matter
nor metric functions exist (in opposition to the spontaneous
matterized solutions). While the limit ω → 0 (a.k.a. real
scalar field solutions) seem to be important, no distinct
behavior exists.

IV. CONCLUSION AND FUTURE WORK

This paper reported the existence of macroscopic
self-gravitating Bose-Einstein condensates consisting of
two equal-mass bosonic fields (a scalar and a vector)

FIG. 12. Evolution of the scalar field frequency as a function of
the interaction coupling for a set of (non)minimally coupled SPS
solutions with fixed initial scalar field amplitude: ϕ0 ¼ 0.0002
(dot-dashed black); ϕ0 ¼ 0.0020 (dashed blue); ϕ0 ¼ 0.0200
(dotted red); and ϕ0 ¼ 0.2000 (solid green). Observe that, while
for positive values of α we manage to achieve ω → 0, no such
limit was possible to obtain for α < 0.

FIG. 11. Nonminimally coupled (α ¼ −10) SPS with ω ¼ 0.788 and γ ¼ 0.901 (V ¼ 0.771), M ¼ 0.639, Q ¼ 0.621 and γ=σ0 ¼
1.750 (red circle in Fig. 10). Left: metric and matter functions radial profile: (solid black) metric function σ; (Solid yellow) matter
function m; (Solid green) vector field function f; (Dot-dashed purple) energy density, ρ; (Dotted red) scalar field amplitude, ϕ; And
(dashed blue) vector field function g. Right: jϕ2A2j (min-max normalized), black (yellow) color represents the absence (maximum
value) of jϕ2A2j. Observe that the solution is regular everywhere.

FIG. 13. Nonminimally coupled SPS with α ¼ 43, ω ¼ 10−6, and γ=σ0 ¼ 1.750 (V ¼ 0.698), ϕ0 ¼ 0.020, M ¼ 0.851, and
Q ¼ 0.571. Left: metric and matter functions radial profile: (solid black) metric function σ; (Solid yellow) matter function m; (Solid
green) vector field function f; (Dot-dashed purple) energy density, ρ; (Dotted red) scalar field amplitude, ϕ; And (dashed blue) vector
field function g. Right: jϕ2A2j (min-max normalized), black (yellow) color represents the absence (maximum value) of jϕ2A2j. Observe
that the solution is regular everywhere.
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minimally coupled to Einstein’s gravity and either mini-
mally or nonminimally coupled to each other—here
dubbed scalaroca stars. They can be thought of as (non-
linear) superpositions of single-field BSs.
The family of minimally coupled (α ¼ 0) solutions is

likely one of the simplest examples of multifield self-
gravitating solitons in the literature. These stars were
constructed for different frequencies ω and γ, and different
massesM. For fixed values of γ=σ0 and varying ω, we have
obtained families of solutions with different masses that
branch out from the PS family and connect to the SBS
family. These solutions tend to have lower mass than the
corresponding PS but higher mass than the correspond-
ing SBS.
For the nonminimally coupled cases (α ≠ 0), we first

considered a positive coupling for both synchronized and
nonsynchronized frequencies. For the nonsynchronized
(ω ≠ γ) configurations, we fixed γ=σ0 and varied ω, just
like in the minimally coupled case. The obtained sol-
utions tend to exhibit similar qualitative behavior to the
minimally coupled case for low values of α. But, for
larger values of α, new branches of solutions appear,
some of which can have higher mass than the PSs they
branch out from. For the synchronized (ω ¼ γ) configu-
rations, both frequencies are fixed and instead we change
α. Larger values of α tend to correspond to families with
higher frequency. Also, unlike the nonsynchronized case,
the family of solutions that branch out from the PS
solution does not join the SBS line.
Lastly, we considered the effects of a negative coupling

α < 0. The domain of existence is very similar to the
positive coupling case, but the radial profile of the metric
and matter functions can differ significantly.
Extensions of the work presented herein are manifold. A

straightforward follow-up to it is to consider nonequal-
mass bosonic fields (partially addressed in [47]). The
existence of SPSs is expected to be very sensitive to the
ratio between their bare masses, especially when the fields
only interact gravitationally. It would be interesting to see if
they exist solely for a finite range of this ratio. If so, the size
of such interval may vary significantly with the coupling
strength α.
Another possible add-on to this work is to construct and

study rotating scalaroca stars. Although they are likely to
exist, just like the rotating counterparts of single-field BSs,
it remains unclear how the addition of rotation affect SPSs.
Furthermore, since spherically symmetric configurations
admit static scalar fields, it would be interesting to see
whether rotating PSs in equilibrium with nonrotating BSs
exist or not.

Yet another possible line of research is to consider adding
an event horizon to these rotating configurations. While
spherically symmetric black-hole solutions do not exist in
this model,13 rotating SPSs are expected to allow for black-
hole generalizations. Indeed, black holes gravitationally
bound to rotating single-fieldBSs are known to exist [29,76].
Finally, of paramount importance is an in-depth analysis

of the (linear and nonlinear) stability of SPSs. It was shown
that some families of solutions connect stable PSs to
unstable SBSs, which raises the question whether their
nonlinear combination yields a stable or an unstable
configuration. A look into their time evolution or their
spectrum of quasinormal modes could clarify this point and
reveal if new modes (i.e., absent in the spectra of single-
field BSs) appear.
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