
Gravitational energy problem and the energy of photons

J. B. Formiga * and João A. C. Duarte
Departamento de Física, Universidade Federal da Paraíba,
Caixa Postal 5008, 58051-970 João Pessoa, Paraíba, Brazil

(Received 1 May 2023; accepted 31 July 2023; published 22 August 2023)

The lack of a well-established solution for the gravitational energy problem might be one of the reasons
why a clear road to quantum gravity does not exist. In this paper, the gravitational energy is studied in detail
with the help of the teleparallel approach that is equivalent to general relativity. This approach is applied to
the solutions of the Einstein-Maxwell equations known as pp-wave spacetimes. The quantization of the
electromagnetic energy is assumed and it is shown that the proper area measured by an observer must
satisfy an equation for consistency. The meaning of this equation is discussed and it is argued that the
spacetime geometry should become discrete once all matter fields are quantized, including the constituents
of the frame; it is shown that for a harmonic oscillation with wavelength λ0, the area and the volume take the
form A ¼ 4ðN þ 1=2Þl2p=n and V ¼ 2ðN þ 1=2Þl2pλ0, where N is the number of photons, lp the Planck
length, and n is a natural number associated with the length along the z-axis of a box with cross-sectional
area A. The localization of the gravitational energy problem is also discussed. The stress-energy tensors for
the gravitational and electromagnetic fields are decomposed into energy density, pressures, and heat flow.
The resultant expressions are consistent with the properties of the fields, thus indicating that one can have a
well-defined energy density for the gravitational field regardless of the principle of equivalence.
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I. INTRODUCTION

There exist two problems in gravity that have not been
solved yet and are frequently treated as uncorrelated,
namely, a full description of the gravitational energy and
a full quantum theory of gravity. Although apparently
uncorrelated, they both have something in common, their
tension with the principle of equivalence [1,2]. We will
investigate the gravitation energy problem from many
different aspects: the gravitational 4-momentum, the
stress-energy tensor, and the problem of localizing the
energy. We also investigate the impact that the quantization
of the energy of the electromagnetic field may have on the
spacetime geometry. In doing so, we specialize to the pp-
waves that are solutions of the Einstein-Maxwell equations.
We show that both the cross-sectional area and the volume
must satisfy some constraints for consistency with the
quantization of the electromagnetic energy.
The first attempt to find the gravitational stress-energy

tensor was done by Einstein in 1915 [3]. His definition was
considered unsatisfactory, because it was not a tensor under
coordinate transformations. This started a quest for the right
approach to the gravitation energy, which ended up giving a
zoo of pseudotensors [4–8], all of which suffer from the
same disease, coordinate dependence. Eventually, the belief
that the principle of equivalence prevents one from

localizing the gravitational energy spread, and most physi-
cist interpreted this belief as being equivalent to the
impossibility of having a well-defined stress tensor (See,
e.g., Sec. 20.4 of Ref. [2]).
As a result, the focus was shifted toward the definition of

the total spacetime energy-momentum, such as the ADM
approach [9], and quasilocal definitions [10,11], which
define the spacetime 4-momentum as a surface term. But
those definitions are not considered satisfactory. The ADM
is considered too limited, since it is well established only
for asymptotically flat spacetimes, and the quasilocal
approaches are ambiguous.
An interesting approach was initiated by Møller in 1961

[12,13]. In this approach, Møller uses the teleparallel theory
that Einstein developed between 1928 and 1931 [14] to deal
with the problem of the gravitational energy. Although his
approachwas not successful, it gave a complete differentway
of tackling the problem, namely, using the tetrad formalism
to remove the coordinate dependence.
The teleparallel theory invented by Einstein was based

on a non-Riemannian geometry known as Weitzenböck
geometry. Einstein’s goal was to unify gravity with
electromagnetism, but he soon realized that was not
possible in this geometry. Teleparallelism was revived
many times and has been used for many different purpose:
dealing with the gravitational energy problem [15,16],
formulating the gauge theory of the translation group
[17–19], applications to cosmology [20–23]; it has been*jansen@fisica.ufpb.br
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used by Mashhoon in his nonlocal general relativity [24,25]
etc. However, here we focus only on its role in solving the
energy problem.
In the case of the energy problem, some approaches to

motivate the gravitational energy has been adopted within
teleparallelism [15,26,27]. Here, wewill consider Maluf and
collaborators approach [28–32]. In this approach, Maluf
et al. use the teleparallel theory that is equivalent to general
relativity (TEGR for short) to define not only the spacetime
and gravitational 4-momenta, but also the stress tensors. In
doing so, they use theHamiltonian formulation of theTEGR.
The main difference between this Hamiltonian approach and
that of Nester (see, e.g., Ref. [26]) is that Maluf really treats
the gravitation field as being represented by the tetrad field,
while Nester removes the tangent-space index in the defi-
nition of the 4-momentum, which in turn changes the
motivation for the definition of the stress tensors (see
Sec. VI of Ref. [33] for a brief discussion about that point).
Furthermore, the 4-momentum and the gravitational
stress-energy tensor of this approach gives consistent results
[34–36], and generalizes the 4-momentum of the ADM
approach [33].
Quantum gravity started in the 1930s [37] and, from

there on, numerous proposals toward a quantization of
gravity have been made. There are so many of them that we
can go from theories with many extra dimensions, such as
string theory, to theories where the spacetime geometry is
discrete, such as loop quantum gravity. Here we use a
semiclassical approach to argue in favor of theories with
discrete spacetime geometries. In doing so, we use sol-
utions of the pp-wave spacetimes to show that the
quantization of the electromagnetic energy leads to a kind
of quantization of the area, and also the volume. We discuss
the real meaning of this quantization in the context of our
semiclassical approach and argue that, if all matter fields
are quantized, then the discreteness of geometry should be
a fundamental property of spacetime.
In the next section we review the TEGR and present two

types of irreducible decompositions, one to study the con-
gruence of the observers’ trajectories and other to obtain the
energy densities, pressures and heat flows of the stress-
energy tensors. We specialize to the pp-wave spacetimes
with plus polarization in Sec. III, where general results are
obtained and discussed. Two applications are given in Sec. V.
We first apply our analysis to an electromagnetic pulse in a
spacetime that is asymptotically flat along the z direction.
Thenwe perform the same analysis to the case of a sinusoidal
electromagnetic wave oscillating in phase with the metric
components. We also show that by a suitable choice of the
electric field, Einstein equations become the modified
Mathieu equation. Concluding remarks are made in Sec. VI.

II. THE TEGR

There are many different theories that can be called
“teleparallel theory” [15,27,38–40]. This is so because the

concept of parallelism depends on the concept of affine
connection, and there are many types of connections. The
necessary and sufficient condition for teleparallelism was
established by Eisenhart in 1927 [41]. It basically states that
any affine connection with vanishing curvature has parallel-
ism, i.e., a set of n linearly independent fields of parallel
vectors. As a result, any theory based on a n-dimensional
manifold endowed with a connection ∇ that has vanish
curvature can be called teleparallel. Neglecting the trivial
case (Minkowski spacetime), we can separate these theories
in three major classes: theories with torsion and vanishing
nonmetricity (those are the most common ones) [15,23,42];
theories with nonmetricity and vanishing torsion [27,38,39];
theories with both torsion and nonmetricity.1

We believe that the best teleparallel theory to deal with
the problem of describing the gravitational energy is the
TEGR. This theory is endowed with two affine connec-
tions, the Levi-Civita and Weitzenböck2 one. The latter is
responsible for the teleparallelism, is also a metric con-
nection, and has torsion.

A. The teleparallel frame

In any spacetime with teleparallelism, there exists a
frame where the connection coefficients vanish. We call
this frame the teleparallel frame and denote it by ea, where
Latin indices from the beginning of the alphabet run from3

(0) to (3), while those from the middle of the alphabet run
from 1 to 3 and represent tangent space indices only when
written in the form (i), (j), etc. The coframe is denoted by
ϑa, and its relation with the frame is given by the condition
ϑaðebÞ ¼ δab. The frame and the coframe are simply called
tetrad field, and their components in the coordinate bases ∂μ
and dxμ are eaμ and eaμ, respectively; mathematically, we
have ea ¼ eaμ∂μ and ϑa ¼ eaμdxμ, where the Greek indices
run from 0 to 3.
In a teleparallel theory with a Weitzenböck connection,

one can choose the teleparallel frame as a set of four
orthonormal vector fields, i.e., we can choose ea in such a
way that the scalar product satisfies the relation gðea; ebÞ ¼
ηab, where ηab ¼ diagð−1;þ1;þ1;þ1Þ is the Minkowski
metric. In terms of components, the orthonormality condition
can be expressed as eaμebμ ¼ ηab.
If we write the torsion tensor in this frame, we will find

that the components take the form

1As far as we know, this kind of theory is not very common in
the literature. A limited version of this type of teleparallelism can
be found in Ref. [43]. In this reference, only the cases in which
the Weyl 1-form is integrable represent teleparallel theories.

2Roland Weitzenböck is considered to be the first one to
have arrived at this connection [44]. For a historical review, see
Sauer [14].)

3Parentheses are used to avoid confusion with the spacetime
indices. However, we do not use them when writing deltas; for
example, δa0 is used in place of δað0Þ.
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Ta
μν ¼ ∂μeaν − ∂νeaμ; ð1Þ

which coincide with the object of anholonomity. From
these components, one defines the torsion scalar as
T ≡ ΣabcTabc, where

Σλμν ≡ 1

4

�
Tλμν þ 2T ½μjλjν�

�
þ gλ½νTμ� ð2Þ

is the superpotential. (In the expression above, we are
using Tλ

μν ¼ eaλTa
μν and the definition Tμ ≡ Tλ

λ
μ.) The

Lagrangian density is defined as L ¼ −keT − LM, where
LM is the matter Lagrangian density, and k≡ c4=ð16πGÞ
(c and G are the speed of light and the gravitational
constant, respectively); the quantity e stands for the
determinant of the tetrad field eaμ.

4 From L one constructs
the action and obtains the field equations by taking
variations with respect to the tetrad field.

B. Field equations

In GR, Einstein’s equations are written in the form

Gμν ¼ 1

2k
T μν; ð3Þ

where T μν is the matter stress-energy tensor.
The field equations of the TEGR coincide with those of

GR, but they are written in such a way that shows explicitly
the gravitational energy content. By using the Hamiltonian
formulation of the TEGR, Maluf and collaborators defined
a 4-momentum Pa for the spacetime, and were led to
writing Einstein’s equations in the alternative form

∂αðeΣaμαÞ ¼ e
4k

ðtμa þ T μaÞ; ð4Þ

where the quantity tμa is given by

tμa ¼ kð4ΣbcμTbc
a − eaμTÞ ð5Þ

and is interpreted as the stress-energy tensor of the
gravitational field.
Since the Weitzenböck connection coefficients in the

teleparallel basis ea vanish, one can recast Eqs. (2) and (5)
solely in terms of the Levi-Civita connection coefficients.

Let ∇
∘
and ω

∘ a
bc represent the Levi-Civita connection and its

coefficients in the tetrad basis,5 respectively. Our definition

for these coefficients are6 ω
∘ a

bc ≡ ϑað∇∘ becÞ. The super-
potential and the gravitational stress-energy can be

rewritten as (see, e.g., Section 3.5.1 of Ref. [45]; see also
Ref. [46])

Σabc ¼
1

2
ω
∘
cab þ ω

∘ d
d½cηb�a; ð6Þ

tba ¼ 2k
�
2ω
∘ c

½ad�ω
∘ b

c
d − 2ω

∘ b
½ad�ω

∘ c
c
d − ω

∘ c
caω

∘ d
d
b

þ δbaω
∘ c

½cjfω
∘ d

jd�
f
�
; ð7Þ

where ω
∘ a

bc can be written in terms of the Weitzenböck
torsion as

ω
∘ a

bc ¼
1

2
ðTbc

a þ Tcb
a − Ta

bcÞ: ð8Þ

Equation (8) holds only if the torsion tensor is written in the
teleparallel frame.
These expressions are particularly good for studying the

relation between the chosen teleparallel frame and the
predicted gravitational energy; they are also useful when
comparing with GR. For instance, it has been shown that
tba vanishes along an observer worldline regardless of its
acceleration if the teleparallel frame is the observer’s proper
reference frame (theorem 2 of Ref. [36]).
This theorem may be seen as an indication that the

gravitational energy is nonlocal. And the advantage of this
result over the vanishing of pseudotensors only in local
Lorentz frames is that it does not depend on the observers
motion. In this sense, the gravitational stress-energy tensor
of the TEGR is more compatible with the modern view, due
to Synge, that the gravitational interaction is a consequence
of the Levi-Civita curvature, and not a consequence of
inertia (or acceleration), as the pseudotensors suggest.
There are many other advantages of tμa over the so-called

pseudotensors [33]. As an example, we can see from Eq. (5)
and the definition of T that tμa is traceless, which is
compatible with the fact that it is supposed to represent the
stress-energy tensor of a massless field. As far as we know,
the other approaches, such as Einstein’s and Landau-
Lifshitz’s pseudotensors [see, e.g., Eqs. (20b) and (7.75)
of Refs. [3,47], respectively], do not yield a traceless
pseudotensor.

C. 4-momentum

Following the TEGR approach, we interpret tμa as being
the stress-energy tensor of the gravitational field, and τμν ≡
tμν þ T μν as the spacetime one. The spacetime, gravita-
tional, a matter 4-momenta are defined as

Pa ¼
Z
V
d3xeτ0a; ð9Þ

Pa
g ¼

Z
V
d3xet0a; Pa

M ≡
Z
V
d3xeT 0a: ð10Þ

4When the triad eðiÞ is right-handed and eð0Þ points toward the
future, we can use e ¼ þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

− det g
p

.
5These coefficients are frequently called “spin connection.”
6It is also common in the literature to use the notation ω

∘ a
bc ≡

hϑa;∇
∘
beci to indicate the action of the 1-form ϑa on ∇

∘
bec.
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The integrals are over a region V, a hypersurface defined
by x0 ¼ constant.
If eτ0a is not singular in the region V, we can use Stokes’

theorem in Eq. (4) and the identity Σa00 ¼ 0 to recast
Eq. (9) as a surface integral. The result is

Pa ¼ 4k
I
S
dSieΣa0i; ð11Þ

where S is the boundary of V.
In particular, if the spacetime is such that the metric

becomes that of Minkowski when a certain radial coor-
dinate r goes to infinity, then the spacetime total
4-momentum can be given by

Pa
total ¼ 4k lim

r→∞

I
Se

dSieΣa0i; ð12Þ

where the integral is calculated over the external boundary
Se. If there is no singularity at all, then Se ¼ S and Pa

total is
just limr→∞ Pa.
However, in case there are singularities, to keep the

region V free from singularities, we surround all of them
with inner boundaries and rewrite the equation Pa ¼ Pa

g þ
Pa
M as7 Pa

e ¼ Pa
g þ Pa

M − Pa
I , where Pa

I ¼ 4k
H
SI
dSieΣa0i

is the integral over the inner boundaries, and Pa
g and Pa

M are
calculated in the region V. Of course, in some cases Pa

g ,
Pa
M, and P

a
I may be divergent. But in an asymptotically flat

spacetime, one expects Pa
total ≡ limr→∞ Pa

e to converge for a
proper choice of the teleparallel frame.
To finish this section, we point out that it has recently

been shown that Eq. (12) generalizes the ADM 4-momen-
tum, Eqs. (5.1) and (5.2) of Ref. [9]. (See Ref. [33], for
proof of this assertion.) This and the fact that the TEGR
yields a stress-energy tensor with interesting properties,
such as being traceless, justify taking this theory seriously
when working with the gravitational energy problem.

D. Irreducible decomposition of ∇
∘
βeð0Þ

Since both τμν and tμν depend on the teleparallel frame
we choose to work with, different frames give different
results, and some of these results are clearly meaningless
[36]. There are some attempts to circumvent this problem,
but they all seem to fail [48]. This means that the
interpretation of τμν and tμν as the spacetime and gravita-
tional stress-energy tensors is still an open question.
Because of that, studying the relation between the tele-
parallel frame and the predictions made by τμν and tμν is
important to the understanding of the gravitational energy
problem.
In studying this relation, it is interesting to understand

the properties of the observer congruence. We can analyze a

congruence of curves whose tangent vector field is a 4-
velocity field u by decomposing ∇∘ βuα into its irreducible
parts with respect to the rotation group [49,50]. (Keep in
mind that, in the language we use in this paper, the

expression ∇∘ βuα represents the components of the covar-
iant derivative; it can be obtained from the scalar product

between ∂α and ∇
∘
βu.) This decomposition takes the form

∇∘ βuα ¼ ωαβ þ θαβ −
1

c2
aαuβ; ð13Þ

θαβ ≡ σαβ þ
1

3
θhαβ; ð14Þ

hαβ ¼ gαβ þ uαuβ=c2; ð15Þ

where aα ≡ uβ∇∘ βuα is the acceleration vector field, ωαβ ≡
ð1=2Þðhμβ∇

∘
μuα − hμα∇

∘
μuβÞ is the vorticity tensor, and

θαβ ≡ ð1=2Þðhμβ∇
∘
μuα þ hμα∇

∘
μuβÞ is the expansion tensor.

The trace-free tensor σαβ is the shear tensor, while the
trace of θαβ, denoted by θ, measures the expansion
of the congruence. From σαβ and ωαβ, one defines
½ð1=2Þσαβσαβ�1=2 and ½ð1=2Þωαβωαβ�1=2 as the shear and
the vorticity, respectively.
If the coordinate system ðct; xjÞ and the vector field eð0Þ

are such that eð0Þ ¼ ∂0, then the congruence whose tangent
vector field is u ¼ ceð0Þ corresponds to the worldlines of
the particles with constant spatial coordinates, i.e.,
xj ¼ constant; furthermore, t is the particles’ proper time.
We assume that we can treat these particles as a fluid and
their worldlines as the fluid flow lines. It follows then that,
during a small time interval, the effect of θ alone is to
change a fluid sphere to a similar sphere with a different
volume but with the same orientation. In turn, the effect of
σαβ alone is to distort the sphere without changing the
volume. Finally, the vorticity tensor ωαβ produces a rigid
rotation about some axis. (See Fig. 1 of Ref. [50] for a
geometrical picture of these effects.)
For u ¼ ceð0Þ, we have∇

∘
βuα ¼ ceaαe b

βω
∘ a

bð0Þ. Then we
can recast Eq. (13) as

ω
∘
abð0Þ ¼

1

c
ðωab þ θabÞ þ

1

c2
aaδ0b; ð16Þ

θab ¼ σab þ
1

3
θhab: ð17Þ

Note that hab ¼ δiaδ
i
b ¼ δ1aδ

1
b þ δ2aδ

2
b þ δ3aδ

3
b, where we

omit the “parentheses” in the deltas for convenience,

i.e., δð0Þa ¼ δ0a. Since θαβuα ¼ 0 and θαβ ¼ θβα, i.e., θð0Þb ¼
θbð0Þ ¼ 0, we only need the spatial part,7We have used Pa ¼ Pa

e þ Pa
I .
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θðiÞðjÞ ¼
c
2

�
ω
∘
ðiÞðjÞð0Þ þ ω

∘
ðjÞðiÞð0Þ

�
; ð18Þ

to calculate θab. (Note that θ ¼ cω
∘
ðiÞðiÞð0Þ.) The same holds

for the vorticity tensor:

ωðiÞðjÞ ¼
c
2

�
ω
∘
ðiÞðjÞð0Þ − ω

∘
ðjÞðiÞð0Þ

�
: ð19Þ

E. Decomposition of the energy-momentum tensor

It is also interesting to decompose the stress-energy
tensors to analyze their properties from known quantities
such as heat and pressure. Here, we use the decomposition
of Refs. [50,51]. Since, in general, τμν and tμν are not
necessarily symmetric, we apply this decomposition to the
symmetric part.8

The decomposition of these tensors with respect to eð0Þ
can be written as [50,51]

τðμνÞ ¼ ρeð0Þμeð0Þν þ phμν þ 2

c
qðμeð0ÞνÞ − Pμν; ð20Þ

and

tðμνÞ ¼ ρgeð0Þμeð0Þν þ pghμν þ
2

c
qðμg eð0ÞνÞ − Pμν

g ; ð21Þ

where

ρ≡ τðμνÞeð0Þμeð0Þν; p≡ 1

3
τðμνÞhμν;

qμ ≡ −chαμτðαβÞeð0Þβ; Pμν ≡ −hαμhβντðαβÞ þ phμν:

ð22Þ

One can easily show that qμeð0Þμ ¼ 0, Pμ
μ ¼ 0, and

Pμνeð0Þν ¼ 0. (The definitions of ρg, pg, q
μ
g , and Pμν

g are
analogous.)
We assume that we can interpret ρ, p, qμ, and Pμν

respectively as energy density, isotropic pressure, energy
flux (heat flow), and anisotropic pressure (viscous stress
tensor).

F. Material reference systems

General relativity (and also TEGR) is seen as a gauge
theory and, because of this, one assumes that only gauge
invariant quantities can be measured. However, as pointed
out by Rovelli in Ref. [53], many authors reject this idea
because the gauge in this theory reflects the choice of a
particular reference system in which the measurements are
made. Rovelli summarizes these two point of views as “the
nonlocal point of view” and “the local point of view.” In the
former, spacetime points are not a priori distinguishable.
On the other hand, in the latter, they are distinguishable. As
a result, quantities such as the metric components gμν are
not observable in the former viewpoint, but are observable
in the latter. The latter interpretation is necessary if the
spacetime manifold is interpreted as being the set of
physically determined events, as many textbooks do.
Although these two point of views are in apparent contra-
diction, Rovelli shows that they can be reconciled if we take
into account the physical system that is used as the
reference frame.
Rovelli’s idea is that spacetime points are a priori

indistinguishable, but we can use matter to localize them.
So, once a physical frame of reference is established, we
have a definition of physical spacetime points, and quan-
tities such as gμν can be an observable.
To establish such a physical frame without any approxi-

mation, we must take into account the energy-momentum
tensor of the frame in Einstein’s field equations, and also
consider the equations that determine the motion of the
frame. Nevertheless, in some situations, we can neglect
them. Throughout this paper we will neglect only the frame
energy-momentum tensor, but not the frame motion.
We will assume that the three-dimensional space is filled

with particles, each carrying a clock, that can be treated as
test particles in the sense that their effects on the back-
ground geometry is negligible. However, as pointed out by
Rovelli, the degree of freedom of those particles cannot be
neglected, they enter in the definition of the observable
quantities. In the case of the TEGR, they will play an
important role in the calculation of quantities such as the
gravitational energy.

III. pp-WAVE SPACETIME

The metric of the pp-wave spacetime we are going to
work with can be written in the form

ds2 ¼ −c2dt2 þ fðuÞ2dx2 þ gðuÞ2dy2 þ dz2; ð23Þ

u≡ t − z=c: ð24Þ

This metric can be used to describe spacetimes with waves
propagating along the z axis and with plus polarization.
These waves can be gravitational waves, electromagnetic
waves, or both. Here, however, we will be more interested

8As pointed out by Bergmann and Thomson [5], there is no
need to require that any stress tenor be symmetric, unless a net
torque could appear in the absence of external forces. Further-
more, tμa corresponds to the components of the canonical energy-
momentum Eα defined in the context of the metric-affine gauge
theory of gravity (see, e.g., Sec. 5.9 of Ref. [52]); so, the
interpretation of its antisymmetric part is similar to that of
ordinary canonical energy-momentum tensors. (For the decom-
position of its antisymmetric part in the cosmological context, see
Ref. [35]) In any case, the stress tensors of the pp-waves
considered here are symmetric.
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in the case in which the curvature vanishes when the
electromagnetic wave is not present; this case is charac-
terized by f ¼ g, but we leave this specialization to
Sec. IVA.

A. Choosing the teleparallel frame

We believe that, in analyzing the gravitational energy, it
is better to work with a system of freely falling test particle
as the constituents of the reference frame. The reason for
this is that it is easier to interpret the gravitational energy
when nongravitational interactions are not part of the
frame. Furthermore, the frame must also be free from
artificial properties (For a discussion about the ideal frame
to interpret the predictions of tμa, see Sec. Vof Ref. [33] or
Sec. 3 of Ref. [36].)
It can be easily shown that the coordinate system xμ ¼

ðct; x; y; zÞ is adapted to a system of freely falling particles,
i.e., the curves with constant values of xi represent timelike
geodesics. A frame that is adapted to these coordinates, and
therefore is a freely falling frame,9 is

ea ¼
�
1

c
∂t;

1

f
∂x;

1

g
∂y; ∂z

�
; ð25Þ

ϑa ¼ ðcdt; fdx; gdy; dzÞ; ð26Þ

where ϑa represents the coframe.
In the general way that Eqs. (25) and (26) are written, the

frame is not yet free from artificial properties (free from
rotations that are neither a consequence of gravity nor the
motion of the observers, such as the rotations of the tetrad
of the spherical coordinate system). To remove, or at least
decrease, the artificiality of the frame, we demand that the
frame become a global inertial frame of reference in the
absence of gravity. We will come back to this point in
Sec. IVG.
To obtain the Weitzenböck torsion, we substitute the

components of Eq. (26) into Eq. (1). The result is

Ta
bc ¼

1

c
f0

f
δa1ðδ0bδ1c − δ1bδ

0
c þ δ1bδ

3
c − δ3bδ

1
cÞ

þ 1

c
g0

g
δa2ðδ0bδ2c − δ2bδ

0
c þ δ2bδ

3
c − δ3bδ

2
cÞ: ð27Þ

From Eq. (8), we obtain the Levi-Civita “spin connection”

ω
∘
abc ¼

1

c

�
f0

f
δ1bðδ1aδ0c − δ0aδ

1
c þ δ3aδ

1
c − δ1aδ

3
cÞ

þ g0

g
δ2bðδ2aδ0c − δ0aδ

2
c þ δ3aδ

2
c − δ2aδ

3
cÞ
�
: ð28Þ

The primes indicate differentiation with respect to u.
The relation between the acceleration tensor ϕab and

ω
∘
abc is ϕa

b ¼ cω
∘ b

ð0Þa. Therefore, from the expression
above, we see that ϕa

b ¼ 0. This means that the particles
that compose the frame are freely falling and the frame is
Fermi-Walker transported along the particles’ trajectories
(the triad eðiÞ does not rotate).
We can infer the properties of the congruence from

Eqs. (18), (19), and (28). From Eq. (28), we find that

ω
∘
ðiÞðjÞð0Þ ¼ ð1=cÞ½ðf0=fÞδ1i δ1j þ ðg0=gÞδ2i δ2j �. It is clear that

ω
∘
ðiÞðjÞð0Þ ¼ ω

∘
ðjÞðiÞð0Þ, which implies that the flow is irrota-

tional [see Eq. (19)].We find that the expansion tensor is just

θðiÞðjÞ ¼ ðf0=fÞδ1i δ1j þ ðg0=gÞδ2i δ2j ; ð29Þ

leading to the expansion

θ ¼ ðln fgÞ0; ð30Þ
and the shear tensor

σðiÞðjÞ ¼
1

3

	�
ln

�
f2

g

��0
δ1i δ

1
j þ

�
ln

�
g2

f

��0
δ2i δ

2
j

− ½ln ðfgÞ�0δ3i δ3j


: ð31Þ

It is interesting to note that the determinant of the tetrad
field is given by

e ¼ fg: ð32Þ
In other words, the expansion is just the rate of change
of ln e.

B. Field equations

If we calculate Einstein’s tensor in the form Gμa and
substitute it into Eq. (3), we will find that the matter stress-
energy tensor satisfies the equation

T μa ¼ −
c2

8πG

�
f00

f
þ g00

g

�
Δμa

03 ; ð33Þ

Δμa
03 ≡ ðδμ0 þ δμ3Þðδa0 þ δa3Þ: ð34Þ

On the other hand, the gravitational stress-energy
tensor is10

9Be aware that a freely falling frame is not necessarily a local
inertial frame of reference (see, e.g., Ref. [54]).

10This result was first obtained in Ref. [55]. See the details of
the calculation there.
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tμa ¼ −
c2

4πG
f0g0

fg
Δμa

03: ð35Þ

From Eqs. (33) and (35), we find that

eτμa ¼ −
c2

8πG

�
∂
2

∂t2
fg

�
Δμa

03 : ð36Þ

Recall that the quantity τμa represents the total stress-
energy tensor, i.e., τμa ≡ tμa þ T μa.

C. Proper area and the spacetime energy

Let us now rewrite Eq. (36) in terms of the proper area
measured by a particular observer and obtain the spacetime
energy.
Suppose that an observerO located at ðx0; y0; z0Þ wishes

to calculate the proper distance from two freely falling
particles at a certain instant t, one located at ðxp; y0; z0Þ and
the other at ðxq; y0; z0Þ, where xq > xp. From Eq. (23) we
see that this proper distance is sx ¼ fðu0ÞΔx, where u0 ≡
t − z0=c and Δx ¼ xq − xp.
Analogously, the proper distance between two freely

falling particles located at ðx0; yr; z0Þ and ðx0; ys; z0Þ, with
ys > yr, is given by sy ¼ gðu0ÞΔy, where Δy ¼ ys − yr.
The observer O can then define the proper area

A≡ sxsy ¼ fðu0Þgðu0ÞΔxΔy ð37Þ

and, using Eq. (32), recast Eq. (36) as

τμa ¼ −
c2

8πGA
∂
2A
∂t2

Δμa
03 : ð38Þ

(Since z0 is arbitrary, we omit the fact that τμa above is
evaluated at this location.) Hence, the tensor τμa depends
only on the area A.
To evaluate the spacetime energy inside the region

xp < x < xq, yr < y < ys, and z< < z < z>, we can use
the identity ∂

2fg=∂t2 ¼ c2∂2fg=∂z2. Using this identity in
Eq. (36) and performing the integration with μ ¼ 0, we
obtain

Pa ¼ −
c4

8πG
ðδa0 þ δa3Þ

× ΔxΔy
��

∂fg
∂z

�
ðz>Þ −

�
∂fg
∂z

�
ðz<Þ

�
: ð39Þ

An observer located at z measures a cross-sectional area
given by A ¼ fðuÞgðuÞΔxΔy. Consider two observers, one
at z> and the other at z<. These observers can measure the
rate of change of the areas fðt − z>=cÞgðt − z>=cÞΔxΔy
and fðt − z<=cÞgðt − z<=cÞΔxΔy, where the value of
ΔxΔy is chosen to be the same for both observers.
Writing Eq. (39) in terms of these areas, we obtain

Pa ¼ −
c4

8πG
ðδa0 þ δa3Þ

�
∂A
∂z

����
z>

−
∂A
∂z

����
z<

�
: ð40Þ

In the limit as z> (z<) goes to þ∞ (−∞), the areas
become the proper area measured by the observers far away
from the “source.” In case there is no localization, but the
field is periodic, we can take z> − z< as representing a
wavelength (or a multiple of it). In this last case, the areas in
Eq. (40) are measured by observers located at opposite
faces of a box that is one wavelength long. So, it is clear
that, if the rate of change of these areas are the same, then
the total spacetime energy in the box is zero. These will be
exactly the cases considered in Sec. V.
A comment is in order here regarding the periodic case.

In this case, we will find more convenient to write the final
results for Pa

g and Pa
M in terms of the proper area measured

by an observer at the center of the box.

D. The gravitational energy density

The issue of localizing the gravitational energy is a
controversial one, mainly because of the principle of
equivalence. Most physicists do not believe that we can
detect the gravitational field locally (see, e.g., Section 20.4
of Ref. [2]); there is even a debate over the real meaning of
the term “gravitational field” (see, e.g., Ref. [56]; see also
Section 16.5 of Ref. [2]). However, it seems to be clear that
we do find “gravitational entities” that can be defined at a
specific location: the curvature tensor is defined at a point,
the metric tensor components at an event does not have to
be that of Minkowski, etc; Ohanian has even claimed that
gravity can be detected locally [57] (see also Section I.7 of
Ref. [58]). Furthermore, Rovelli showed how we can
localize the spacetime points by treating the frame as a
real physical entity [53], and not as a mere abstraction.
Following these lines, we wish to find an expression for the
gravitational energy density at each point of the spacetime
manifold in terms of the observer’s measurements, regard-
less of whether this is a local density or just a nonlocal
phenomenon due to some composite system (as those
discussed in Ref. [59]).
We can rewrite Eq. (35) in terms of the proper area A and

the proper lengths sx and sy measured by an observer
located at z0. Recall that these quantities are defined by
sx ≡ fðu0ÞΔx, sy ≡ gðu0ÞΔy and A≡ sxsy. Using these
definitions in Eq. (35), we find that

tμa ¼ −
c2

4πGA

�
∂sx
∂t

��
∂sy
∂t

�
Δμa

03 : ð41Þ

One can argue that, in some sense, this equation realizes
the localization of the gravitation energy, thus showing that
the principle of equivalence does not prevent us from
localizing this energy. The observer can detect this energy
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by just measuring the proper distances sx and sy and their
rate.11

Of course, if we had used a system with nongravitational
interactions as part of the frame, we could have obtained a
vanishing energy density along the freely falling observer
at z0. This is so because gravity could be suppressed by
other interactions. The vanishing of tμa along the observer’s
worldline when the teleparallel frame is the observer’s
proper reference frame (theorem 2 of Ref. [36]) strongly
supports that interpretation. However, in a frame with
nongravitational interactions, the meaning of tμa as a pure
description of the gravitational energy density would be
questionable, as discussed in Refs. [33,36].
It is interesting to note that the gravitational energy will

be negative whenever the rates of change of sx and sy have
the same sign, and positive when they do not. As we will
see, in the pure electromagnetic case, the gravitational
energy density is always negative.

E. Decomposition of the energy-momentum tensors

Since the components of these tensors are coordinate
dependent, we present here the quantities given by Eq. (22)
multiplied by e. From Eqs. (22) and (36), we find that

ρ̃≡ eρ ¼ −2
k
c2

ðfgÞ00; p̃ ¼ 1

3
ρ̃; q̃μ ¼ cρ̃δμ3;

P̃ab ¼ ρ̃

3
ðδa1δb1 þ δa2δ

b
2 − 2δa3δ

b
3Þ; ð42Þ

where we have written the viscous stress tensor in the tetrad
basis to avoid a possible divergence due to a coordinate
singularity.
Now, from Eqs. (22), (32), and (35), we find that

ρ̃g ¼ −4
k
c2

f0g0; p̃g ¼
1

3
ρ̃g; q̃μg ¼ cρ̃gδ

μ
3;

P̃ab
g ¼ ρ̃g

3
ðδa1δb1 þ δa2δ

b
2 − 2δa3δ

b
3Þ: ð43Þ

For T μν, we use Eqs. (22) and (33). The result is

ρ̃M ¼ −2
k
c2

ðgf00 þ fg00Þ; p̃M ¼ 1

3
ρ̃M; q̃μM ¼ cρ̃Mδ

μ
3;

P̃ab
M ¼ ρ̃M

3
ðδa1δb1 þ δa2δ

b
2 − 2δa3δ

b
3Þ: ð44Þ

Notice that ρ̃ ¼ ρ̃g þ ρ̃M.
As expected, they all satisfy a radiationlike equation of

state and the heat flow is in the z direction.

Denoting the temperature, entropy and volume by T, S
and V, respectively, Ulhoa et al. proposed an expression to
calculate Tð∂S=∂VÞT in the context of the TEGR [60]. They
applied that expression to pp-wave spacetimes using a
frame that is not adapted to freely falling particles and
obtained a negative result. This result seems to suggest that
an isothermal propagation is not allowed. On the other
hand, one can show that Tð∂S=∂VÞT vanishes when the
teleparallel frame is given by12 Eq. (25). Therefore, it is
possible that the result Tð∂S=∂VÞT < 0 obtained by Ulhoa
et al. is a consequence of neglecting the degrees of freedom
of the nongravitational fields responsible for the frame
accelerations. (Of course, there is always the possibility
that the frame possesses some kind of artificial property.)

F. Classical analogue of the number
of photons/gravitons

As is well known the relation E=ω, where E is the energy
of a photon and ω its angular frequency, remains the same
for all inertial observers in Minkowski spacetime (see, e.g.,
Sec. 4.5 of Ref. [61]; see also Ref. [62]). Here, we show
that this property remains true for pp-waves when the
observers are related to each other through a global Lorentz
transformation that represents a boost along the z-direction.
Let Pa represent a quantity that satisfies the properties

Pð0Þ ¼ Pð3Þ and Pð1Þ ¼ Pð2Þ ¼ 0. (Pa, Pg, and PM have
these properties.) Consider a new frame ea related to ea by
ea ¼ Λa

beb, where Λa
b is the boost

Λa
b ¼ ðγδ0a þ βγδ3aÞδb0 þ ðβγδ0a þ γδ3aÞδb3 þ δ1aδ

b
1 þ δ2aδ

b
2:

ð45Þ

(This is a boost along the z-axis.)
Applying the properties of Pa to P̄a ¼ Λa

bPb, we find
that P̄ð0Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − βÞ=ð1þ βÞp

Pð0Þ. In turn, if we assume
that β and γ are constant, then the new frame can be written
as eð0Þ ¼ ∂=∂t̄, eð3Þ ¼ ∂=∂z̄, eð1Þ ¼ ð1=fÞ∂=∂x̄, eð2Þ ¼
ð1=gÞ∂=∂ȳ, where t̄ ¼ γðt − βzÞ, z̄ ¼ γðz − βtÞ, x̄ ¼ x,
and ȳ ¼ y are the usual Lorentz transformations. (Note
that we are using c ¼ 1 here; note also that t̄ and z̄ are the
proper coordinates of the observers adapted to the new
frame.) It follows from the coordinate changes that
u¼t−z¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1−βÞ=ð1þβÞp

ū, where ū≡ t̄ − z̄. Therefore,
the function fðuÞ ¼ FðωuÞ will become fðuÞ ¼
Fðω ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − βÞ=ð1þ βÞp

ūÞ. (The same holds for gðuÞ.)
This means that the new observers will perceive the angular
frequency of the wave as ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − βÞ=ð1þ βÞp
. In other

words, ω transforms in the same way as the energy. So, we
conclude that Pð0Þ=ω ¼ constant.

11Recall that we are taking step 1 of Ref. [53], p. 304, i.e., we
are neglecting the stress-energy tensor of the free particles. This is
clear in Eq. (33): since T μa is traceless, it cannot account
for massive particles. Hence, in this sense, Eq. (41) is an
approximation.

12Equation (18) in Ref. [60] can be recast as
Tð∂S=∂VÞT ¼ eðτ0ð0Þ − eðiÞjτjðiÞÞ. From Eqs. (26) and (36), we
find that Tð∂S=∂VÞT ¼ 0.
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Generalization of the above result to the case where β is
not constant may not be possible, and we will not pursue
this issue here.
For observers that are related to each other by the above

transformations, we can write E=ω ¼ Cℏ, where ℏ is the
reduced Planck constant and C is a constant that, in
principle, depends on the system. In Sec. IV, we will
assume that C is related to the number of photons/gravitons
and show that this assumption leads to a sort of “quantiza-
tion of area.”

G. Maxwell energy-momentum tensor

The stress-energy tensor of the electromagnetic field can
be written in SI units as

T μν ¼ ϵ0
4π

�
FμαFνβgαβ −

1

4
gμνFαβFαβ

�
; ð46Þ

where Fμν ¼ ∂νAμ − ∂μAν, and we use the 4π in the
denominator for convenience. Here, we deal only with
the cases where Aμ ¼ AðuÞδ1μ, which satisfy Maxwell’s
equations in the spacetime (23) with vanishing current. For
this case, we must have

T μa ¼ ϵ0
4πc2

ðA0Þ2
f2

Δμa
03 : ð47Þ

The only nonvanishing components of the electromag-
netic fields are Ex ¼ A0=c and By ¼ A0=c2. So, the electro-
magnetic wave is linearly polarized along the x-coordinate
direction.
Since Ex depends on the coordinate system, it will be

interesting for us to work with Eð1Þ ¼ Fð1Þð0Þ. The relation
between Eð1Þ and Ex is Ex ¼ fEð1Þ.

IV. PURE ELECTROMAGNETIC WAVES

In this section we specialize to the case of “pure13”
electromagnetic waves, and study the consequences of the
hypothesis that the energy of photons is quantized.

A. Electromagnetic wave

In describing a pure electromagnetic wave, we take14

gðuÞ ¼ fðuÞ. From Eqs. (33) and (47), we see that this
choice leads to the equation

f00 ¼ −
ϵ0G
c2

E2
ð1Þf; ð48Þ

where we have used A0 ¼ cfEð1Þ. In turn, from Eq. (35),
we see that the gravitational stress-energy becomes

tμa ¼ −
c2

4πG
ðf0Þ2
f2

Δμa
03 : ð49Þ

Note that the gravitational energy is always negative
in this case. However, this does not mean that the space-
time energy is negative everywhere. Since the electromag-
netic energy is positive, we may still have regions with
positive energy.
One of the advantages of a negative gravitational energy

is the possibility of having a universe with zero energy, as
postulated by Tryon [64]. Tryon’s idea is that the universe
may be just a vacuum fluctuation. The solutions we will be
dealing with in the next sections are not supposed to be
cosmological models, but the total spacetime energy turned
out to be zero, thus allowing us to see them as possible
vacuum fluctuations.

B. The energy of photons

Herewe show that the hypothesis of the quantization of the
energy of photons leads to a sort of quantization of the area.
Then, we discuss the real meaning of this quantization.
Substituting Eqs. (47) and (49) into Eq. (10), we find that

EM ¼ ϵ0
4π

Z
d3xE2

x; ð50Þ

and

Eg ¼ −
c2

4πG

Z
d3xðf0Þ2; ð51Þ

where we have used Eq. (32) and EM ≡ Pð0Þ
M etc. The

similarity between these two expressions is astonishing
(recall that Ex ¼ A0=c); furthermore, they remind us of
energies defined in Minkowski spacetime. It is highly
unlikely that one will find similar expressions for the
electromagnetic and gravitational energies in a frame that
is not a frame of freely falling particles. This suggests that
we are on the right track.
To analyze the hypothesis that EM is quantized, we need

to think about the physically meaningful quantities that are
present in the electric field. Since we are dealing with
waves, there must exist at least two constants, sayω and E0,
such that ωu is dimensionless and E0 is somehow related to
the amplitude of the electric field. Since, by definition, u
has dimension of time, ω has units of inverse time (units of
frequency). Next, we proceed to write some expressions in
terms of ω and E0 explicitly.
We can, without loss of generality, rewrite Eð1Þ and f as

Eð1ÞðuÞ ¼ E0F1ðθÞ; ð52Þ

13The word “pure” here means that there is no gravitational
field (vanishing Levi-Civita curvature) when the electromagnetic
wave vanishes.

14For more details about this choice, see, e.g., Sec. 35.11 of
Ref. [2] or chapter 4 of Ref. [63].
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fðuÞ ¼ F2ðθÞ; ð53Þ

ω2
0 ≡ ϵ0GE2

0

c2
; ð54Þ

where F1ðθÞ and F2ðθÞ are dimensionless functions to be
determined, and θ ¼ ωu. We assume that ω0, ω, and E0

are all positive. The meaning of the frequency ω0

is not clear, but we will use the definition (54) to recast
Eq. (48) in a more convenient form. As is clear from
ω0 ≈ 10−19 ½m=V · s�E0, the value of this frequency is
small, unless E0 is huge.15

To calculate the energy, we use the same box discussed
in Sec. III C. The area A, which is given by Eq. (37), can be
recast as A ¼ fðu0Þ2ΔxΔy (recall that u0 ¼ t − z0=c,
where z0 is the location of the observer at the instant t).
Using Ex ¼ fEð1Þ and substituting Eqs. (52) and (53) into
(50) and (51), respectively, we find that

EM ¼ α1c3

G
A
ω2
0

ω
; ð55Þ

Eg ¼ −
α2c3

G
Aω; ð56Þ

where α1 and α2 are dimensionless constants given by

α1 ≡ I1
4πfðu0Þ2

; α2 ¼
I2
I1
α1; ð57Þ

and I1 and I2 are given by the integrals

I1 ≡ −
Z

θðz>Þ

θðz<Þ
dθF1ðθÞ2F2ðθÞ2; ð58Þ

I2 ≡ −
Z

θðz>Þ

θðz<Þ
dθ

�
d
dθ

F2ðθÞ
�
2

: ð59Þ

The values of z< and z> is chosen in a convenient way. In
the examples of Sec. V, we will use z< → −∞ and z> → ∞
for the asymptotically flat case, and z> − z< ¼ nλ (a
natural number times the wavelength) for the periodic one.
Let us assume that the dependence of F2 on ω is of the

form F2ðθÞ ¼ F3ðωÞFðθÞ, where FðθÞ depends on ω only
through θ ¼ ωu. In this case, the constant α2 will not
depend on F3 because of the term I2=f2ðu0Þ present in α2.
Furthermore, if both θðz<Þ and θðz>Þ are such that I2 do not
depend on ω, then α2 will be completely independent of ω.
Therefore, for this type of solution, the gravitational energy

will be proportional to ω and will resemble the energy of
particles in quantum mechanics.
On the other hand, the assumption that α1 does not

depend on ω ensures that the electromagnetic energy is not
exactly proportional to ω if ω ≠ ω0. Nevertheless, for the
cases in which α1 ∝ ω2=ω2

0, the energy EM will also
resemble ℏω.
As shown in Sec. III F, the relation Pð0Þ

M =ω is a constant
for all sets of freely falling observers that are related to each
other through a boost along the z-axis with constant
velocity. We do not know the value of this constant.
But, if this constant were derived from quantummechanics,
its value would probably be a function of the number of
photons. If the electromagnetic energy inside the box is
quantized in the same fashion as in Minkowski spacetime,
then it is natural to assume that EM ¼ CðNÞℏω, where
CðNÞ is a function of the number of photons N inside the
box. (In principle, C can only be determined from a
quantum theory of gravity.) From this assumption and
Eqs. (54) and (55), we obtain

E0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ
ϵ0c

CðNÞ
α1A

s
ω: ð60Þ

Since E0 is a constant, any change in the value of Amust be
followed by an equal change in CðNÞ. Of course, if we
increase the size of the box, the number of photons inside
the box will also increase. The problem, however, is that
CðNÞ cannot change continuously. This means that the
expression above is well defined only for discrete changes
of A. To be more precise, we must have A ∝ CðNÞ. Another
way of seeing this is to note that CðNÞ=A must be a
constant. So, if we demand that Eq. (60) be always well
defined, then we would have to use only these values for
the area.
The “quantization” given by Eq. (60) is not a funda-

mental property of the spacetime. It is possible that it is
saying that, for the system we are considering here, we
cannot find a certain number of photons inside a box that
has an arbitrary small area in the xy plane. For instance, for
one photon, we could say that this photon “occupy” a
minimal area given by N ¼ 1 (assuming that C increases
with N); for the ground state, the minimal area for this
system to have a measurable energy would be given by
N ¼ 0. But the spacetime may still allow for the measure-
ment of smaller areas by using the test particles of the
reference frame, which are not quantized here.
However, this result is suggesting an interesting pos-

sibility: if we quantize all nongravitational fields, including
those that are the constituents of the frame, we might end
up with a quantum theory for gravity. The metric would be
a quantized field because it comes from the frame, and the
frame is adapted to some matter field, which is supposed to
be quantized. This means that we should identify the
physical system behind eaμ and then quantize it. The result

15To get an idea of how small ω0 is, consider an electric field
with the amplitude 100 V=m. Assume that we have a periodic
wave with angular frequency ω0. The period associated with this
amplitude is of the order of the age of the universe.
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would be a quantum frame16 and a possible consistent
theory for quantum gravity.
The reader might not like the idea of a photon “occupy-

ing a certain region” referred to above. Nevertheless, by
following quantum philosophy, one might avoid this idea
by exchanging it for “having a well-defined value.” For
instance, if the observer measures an area that does not
satisfy Eq. (60), then one could say that the number of
photons inside the box will be undetermined. In this case, it
is not clear whether the spacetime would be the same. For
consistency, it would probably be slightly different.
The idea that A has to be discrete, for a well-defined

number of photons inside the box, will become much
clearer in the following sections.

C. Quantum hypothesis for the gravitational energy

Let us assume that the gravitational energy is also
quantized and can be given by jEgj ¼ CgðNgÞℏω, where
Ng is the number of gravitons inside the box. (Like the
electromagnetic case, Cg can be determined only from a
quantum theory of gravity.) Applying this assumption to
Eq. (56), we obtain

A ¼ CgðNgÞ
α2

l2p; ð61Þ

where lp ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏG=c3

p
is the Planck length. We have again a

sort of “quantization of the area.”
For consistency, if the observer measures the gravita-

tional and the electromagnetic energies simultaneously, and
the number of photons and gravitons are well defined, then
both Eqs. (60) and (61) must also hold simultaneously. This
leads to

I1
I2

¼ CðNÞ
CgðNgÞ

ω2

ω2
0

: ð62Þ

This constraint is identically satisfied for spacetimes
with vanishing energy. To see this, consider Eqs. (55) and
(56) and their quantum versions. Since the spacetime
energy is just E ¼ Eg þ EM, we have E ¼ −α2c3Aω=Gþ
α1c3Aω2

0=ðGωÞ and E ¼ −CgðNgÞℏωþ CðNÞℏω. Taking
E ¼ 0 in both expressions, we obtain α1=α2 ¼ ω2=ω2

0 and
CgðNgÞ ¼ CðNÞ. Using these expressions and Eq. (57), one
sees that Eq. (62) is satisfied.

D. Spacetimes with vanishing energy

Let us now assume that we do not know whether
gravitons exist, but we know that EM ¼ CðNÞℏω and

E¼0. In this case, we must have Eg¼−EM¼−CðNÞℏω,
i.e., the gravitational energy is also quantized. As a result,
we find that the area must satisfy

A ¼ CðNÞ
α2

l2p ð63Þ

for consistency.
We will explore the consequences of Eq. (63) in the

examples of Sec. V.

E. Energy densities

In order to rewrite Eqs. (47) and (49) in terms of F1 and
F2, we use Eqs. (52)–(54). The result is

eT μa ¼ ρ̃0F2ðθÞ2F1ðθÞ2Δμa
03 ; ð64Þ

etμa ¼ −
c2ω2

4πG

�
d
dθ

F2ðθÞ
�
2

Δμa
03 ; ð65Þ

where

ρ̃0 ¼
ϵ0E2

0

4π
; ð66Þ

and we have multiplied the expressions by e ¼ f2; we have
also used the fact that A0 ¼ cfEð1Þ.

F. Field equations

Now we rewrite the field equations in terms of F1 and
F2. Substitution of Eqs. (52) and (53) into Eq. (48) gives

ω2
d2

dθ2
F2ðθÞ ¼ −ω2

0F1ðθÞ2F2ðθÞ: ð67Þ

This equation will be used to find some particular
solutions. In what follows, we use it to analyze the limit
where gravity is absent.

G. Absence of gravity

We demand that the teleparallel frame should become
holonomic (a global inertial frame of reference) when the
curvature of the Levi-Civita connection vanishes (absence
of gravity). A necessary and sufficient condition for this to
hold is that ω

∘ a
bc vanishes (see, e.g., pages 14 and 15 of

Ref. [36]) in the absence of gravity.
It is clear from Eq. (28) that the connection coefficients

ω
∘ a

bc are all proportional to f0=f, where we are using g ¼ f
here. In turn, the absence of gravity can be defined by the
limit ω0 → 0 (Recall that ω0 ∝ E0). Therefore, we demand
that limω0→0 f0=f ¼ 0.
It is more convenient, though, to write this limit in terms

of ω. From Eq. (67), we see that ω2d2F2=dθ2 ¼ 0 when
ω0 ¼ 0. The solution for ω different from zero yields

16The idea of a quantum frame of reference is not a new one.
See, for example, Rovelli’s argument for taking the bodies used in
the system of reference seriously [53]. For more ideas about this
issue, see also Refs. [65,66].
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F2 ¼ C1uþ C2, where C1 ∝ ω. Since fðuÞ ¼ F2ðωuÞ, we
have fðuÞ ¼ C1uþ C2, which leads to f0=f ¼
C1=ðC1uþ C2Þ. It is clear that the frame will not be
holonomic unless ω ¼ 0 (the same as C1 ¼ 0) and
C2 ≠ 0. So, in the absence of gravity, we demand that

lim
ω→0

f0

f
¼ 0: ð68Þ

This condition is independent of the coordinate system,

since the coefficients ω
∘ a

bc are scalars under coordinate
transformations.
Due to technical difficulties, we relax this condition in

the asymptotically flat example of the next section.

V. WORKED EXAMPLES

In this section we will analyze the spacetime, gravita-
tional, and electromagnetic energies of two special cases: a
electromagnetic wave that is asymptotically flat along the
z-axis, and a “pure” sinusoidal electromagnetic wave.

A. An asymptotically flat case

By asymptotically flat, here, we mean that the metric
becomes the Minkowski metric when u goes to �∞ (or,
equivalently, z → ∓∞ with t fixed). This limit represents a
region far away from the source, which will be localized in
the neighborhood of u ¼ 0.
To ensure that the spacetime is asymptotically flat, we

first choose F2 and only then search for the F1 that
satisfies Eq. (67).
Let us search for a solution with

F2 ¼ tanh ðωuÞ: ð69Þ

This choice describes a pulse in the neighborhood of u ¼ 0
moving along the z-axis in the positive direction (see
Fig. 1). Unfortunately, this choice does not lead to a
holonomic frame in the limit ω → 0, because the constant
C2 defined in Sec. IVG is zero. However, we will use it as
an example because the frame becomes holonomic in the
absence of gravity when u goes to �∞ and, as we will see,
the densities will vanish in the absence of gravity.
Substitution of Eq. (69) into Eq. (67) yields F1 ¼

ð ffiffiffi
2

p
ω=ω0Þsechθ. There is a subtlety in this result: sub-

stituting it in Eq. (52) and using (54), we see that E0 will
disappear, and ω will become the “amplitude.” This means
that ω and E0 are not independent parameters. We can,
however, choose the relation between them. If we want F1

to be just sechθ, we must take
ffiffiffi
2

p
ω=ω0 ¼ 1. So, we have

F1 ¼ sechðωuÞ; ð70Þ

and

ω ¼ ω0ffiffiffi
2

p ;

�
E0 ¼ cω

ffiffiffiffiffiffiffiffi
2

ϵ0G

s �
: ð71Þ

In other words, there is only one free parameter in this
solution.
Recalling that Eð1Þ ¼ E0F1, we find that the maximum of

Eð1Þ occurs at u ¼ 0, as shown in Fig. 2. Now, recalling that
Ex ¼ fEð1Þ, we find that Ex ¼ E0 tanhðθÞsechðθÞ. The
maximum and minimum values of Ex are �E0=2 and they
are at ωu� ¼ �arctanhð ffiffiffi

2
p

=2Þ. As expected, the source is
located around u ¼ 0. In terms of z, we have
z� ¼ ct� ðc=ωÞarctanhð ffiffiffi

2
p

=2Þ, where we are using the
convention u� ¼ t − z∓=c. The distance between the maxi-
mum and the minimum of Ex is 2ðc=ωÞarctanhð

ffiffiffi
2

p
=2Þ. It is

FIG. 1. The behavior of F2
2 as a function of u. We have used

ω ¼ 1.

FIG. 2. The behavior of Eð1Þ is shown for ω ¼ 1 and E0 ¼ 1.
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clear that the bigger ω is, the more localized the source is.
The shape of Ex is shown in Fig. 3.

1. Energies

Substitution of Eqs. (69) and (70) into Eqs. (58) and (59)
yields I1 ¼ 2=3 and I2 ¼ 4=3, wherewe have used z> → ∞
and z< → −∞. Assuming that the observer who measures A
is located at infinity, then we will have f2ðu0Þ ¼ 1. From
Eq. (57), we see that α1 ¼ 1=ð6πÞ and α2 ¼ 1=ð3πÞ. Using
these values and Eq. (71) in Eqs. (55) and (56), we find that

EM ¼ −Eg ¼ c3Aω=ð3πGÞ: ð72Þ

Note that the spacetime energy vanishes.
Now, if we assume that the energies are quantized, we

find from Eq. (62) that Cg ¼ C. It is possible that this
equality would imply that the number of gravitons equals
that of photons. However, since we do not have a special
reason to believe that the functional forms of Cg and C in
this particular spacetime will yield this equality, we will not
make this assumption here. In any case, the quantum
energies will be well defined only for areas with the values
given by A ¼ 3πCðNÞl2p [see Eq. (63)].
We proceed now to the analysis of the frame.

2. Analysis of the frame

For this case, Eqs. (30) and (31) give the expansion θ ¼
2ω=ðsinhðωuÞ coshðωuÞÞ and the shear tensor σðiÞðjÞ ¼
ðθ=3Þ½ð1=2Þðδ1i δ1j þ δ2i δ

2
jÞ − δ3i δ

3
j �. The behavior of θ as a

function of t in the plane z ¼ 0 is sketched in Fig. 4. Since
the wave is at z ¼ ct, the negative values of t in this figure

represent the behavior of θ in the plane z ¼ 0 before the
pulse has reached this plane, while the region t > 0 shows
the behavior of the expansion after the pulse has passed. As
it is clear in Fig. 4, as the wave gets closer and closer the
volume of the fluid contracts (θ < 0); after the wave has
passed, the opposite happens. In fact, there is a change of
relative orientation between eð1Þ and ∂x, also between eð2Þ
and ∂y [see Eq. (25)], because f changes its sign. (But e, the
tetrad determinant, does not change sign.) It is clear that the
coordinate system becomes problematic at u ¼ 0. This
occurs because the geodesic lines of the free particles
intersect one another, sx ¼ sy ¼ 0 for anyΔx andΔy. [This
is a coordinate singularity. One can show this by using the
coordinate transformation given by Eqs. (4.4), (4.9), and
(4.10) in Ref. [63] to eliminate the singularity.]
Note that, although the frame given by Eq. (25) is a

freely falling frame for the specific case considered here, it
is not a local inertial frame of reference for any finite value
of u. This is clear from the fact that f0 ≠ 0 for u finite [see
Eq. (69)], i.e., the Christoffel symbols do not vanish, unless
one takes the limit u → �∞.

3. Energy densities

We already know that the spacetime energy vanishes, in
fact the 4-momentum Pa vanishes. Now we focus on the
densities. As we will see, none of the densities vanish.
Substitution of Eqs. (69) and (70) into Eqs. (64) and (65)

yields

FIG. 3. The behavior of Ex is shown for ω ¼ 1 and E0 ¼ 1.
The maximum and minimum occur at arctanhð ffiffiffi

2
p

=2Þ and
−arctanhð ffiffiffi

2
p

=2Þ, respectively. Their distance is Δz ¼
2ðc=ωÞarctanhð ffiffiffi

2
p

=2Þ.

FIG. 4. The behavior of the expansion of the congruence, θ, for
the test particles in the plane z ¼ 0 as a function of t. The wave
itself is at z ¼ ct. The left side represent the expansion when the
wave is approaching z ¼ 0, while the right side shows the
behavior of θ after the wave has passed. In t ¼ 0, all the particles
are at the same position, therefore producing a coordinate
singularity.
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eT μa ¼ ρ̃0tanh2ðωuÞsech2ðωuÞΔμa
03 ; ð73Þ

etμa ¼ −
ρ̃0
2
sech4ðωuÞΔμa

03 ; ð74Þ

where we have used Eq. (71). It is clear that tμa þ T μa ≠ 0.
Thus, there is an unbalance between the gravitational and
the electromagnetic energies “locally.”
From the definition of energy density given by Eq. (22)

and the frame components given by Eq. (26), we see that
ρg ¼ t0ð0Þ and ρM ¼ T 0ð0Þ; of course, ρ ¼ ρg þ ρM. From
Eqs. (73) and (74), we find that

ρ̃ ¼ ρ̃0

�
−
1

2
þ sinh2ðωuÞ

�
sech4ðωuÞ; ð75Þ

ρ̃g ¼ −
ρ̃0
2
sech4ðωuÞ; ð76Þ

ρ̃M ¼ ρ̃0 sinh2ðωuÞsech4ðωuÞ: ð77Þ

The pressures and the heat flow are obtained by substituting
Eqs. (75)–(77) into Eqs. (42)–(44). (Note that they are
proportional to the energy densities.)
The behavior of the energy densities is sketched in

Fig. 5. The maxima of ρ̃M occur at ωu� ¼ �arcsinhð1Þ and
their values are exactly ρ̃0=4. On the other hand, the
maxima of ρ occur at ωu� ¼ �arcsinhð ffiffiffi

2
p Þ and their

values are precisely ρ̃0=6. The gravitational energy density
reaches its minimum value at u ¼ 0 and tends to zero as u
goes to �∞.

Notice that the spacetime energy density is positive only
for juj > arcsinhð1= ffiffiffi

2
p Þ=ω ≈ 0.7=ω; by taking t ¼ 0, this

would given a distance of jzj > 0.7c=ω ≈ 0.1λ from the
pulse, where λ≡ 2πc=ω. For a λ comparable to the
wavelength of visible light, let us say λ ¼ 700 nm, this
gives jzj≳ 10−7 m.

B. Periodic electromagnetic wave

Consider now the case inwhichEð1Þ ¼ E0, i.e., the electric
field in the tetrad basis is constant. Equation (48) becomes
simply the harmonic oscillator equation f00 ¼ −ω2

0f, and we
take the solution as

f ¼ cosðω0uÞ; ðF2 ¼ cos θÞ; ð78Þ
where θ ¼ ω0u; obviously, we have ω ¼ ω0 in this case.
From Eq. (52) we see that the choice Eð1Þ ¼ E0 leads
to F1 ¼ 1.
What is interesting about this choice and which justifies

the name “periodic electromagnetic wave” is that the
component Ex is given by Ex ¼ E0 cosðω0uÞ. In other
words, the electric field component in the coordinate basis
of the free test particles oscillates with the same frequency
as that of the metric components, and is also in phase with
the metric. (Recall that Ex ¼ fEð1Þ.)
Some might say that those oscillations are meaningless

because they are coordinate dependent. In order to see that
this is not the case here, remember that the proper distance
between two particles located along the x axis is
sx ¼ fΔx ¼ cosðω0uÞΔx. (A similar expression holds
for sy) Furthermore, as we will see later on, the energy
densities will oscillate too. Therefore, this oscillation is a
fundamental property of the solution.

1. Energies

To calculate the energies, we use z> ¼ z< þ nλ0, where
λ0 ≡ 2πc=ω0 and n ¼ 1; 2; 3;…. This means that we are
going to calculate the energies inside a box with a length of
nλ0 along z and a cross-sectional area A.
Evaluating Eqs. (58) and (59), we obtain I1 ¼ I2 ¼ nπ

and α1 ¼ α2. From this equality, Eqs. (55) and (56), and
ω0 ¼ ω, we see that the spacetime energy vanishes.
Therefore, the hypothesis that the electromagnetic energy
is quantized will lead to Eq. (63).
Before we analyze the consequences of Eq. (63), let us

calculate the energies first. Tomeasure the areaA, we choose
an observer that is located at u0 ¼ 0 at an instant t, which
leads to fðu0Þ ¼ 1. So, Eq. (57) yields α1 ¼ α2 ¼ n=4.
Substitution into Eqs. (55) and (56) yields the energies

EM ¼ −Eg ¼
c3

4G
nAω0: ð79Þ

Now, substituting the value of α2 into Eq. (63), we find
that

FIG. 5. The behavior of Eqs. (75)–(77). The curve with positive
values (blue curve) corresponds to ρM, while the one with
negative values (the red curve) is ρg; the spacetime energy
density, ρ, is represented by the black curve. The spacetime
energy density is positive in the region juj > arcsinhð1= ffiffiffi

2
p Þ=ω.

(In this plot, ω ¼ 1 and ρ̃0 ¼ 2.).
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A ¼ 4CðNÞ l
2
p

n
: ð80Þ

We can also calculate the volume V ¼ R
d3xe and find that

V ¼ ð1=2Þnλ0A. So, using Eq. (80) we arrive at

V ¼ 2CðNÞλ0l2p: ð81Þ

Note that the volume of the box makes no reference to
spacetime parameters, such as A and n.17

We believe that we can interpret Eq. (80) in the following
way. By using the set of classical test particles that make up
the reference frame, the observer can measure any cross-
sectional area. However, if the observer measures an area
that cannot satisfy (80), then either the spacetime geometry
is not given by Eq. (78), in which case the observer’s choice
simply changed the spacetime geometry, or the energies are
not well defined. Since from the classical point of view test
particles do not change the geometry, the latter conclusion
is more suitable here. So, we will stick to the latter.
We are not literally saying that the area should be given

exactly by Eq. (80), in order to ensure that the energy is
well defined. We are saying that this semiclassical approach
is suggesting that the quantization of all nongravitational
fields require the discretization of geometry for consis-
tency. The exact value should be given by a quantum theory
of gravity, and not by the semiclassical approach consid-
ered here. [We would not be surprised, however, if the right
theory gave the relation (80) in some approximation.]
Nevertheless, let us take Eqs. (80) and (81) seriously and

see what the implications are. For the sake of completeness,
we will assume that CðNÞ ¼ N þ 1=2, in analogy with a
quantum harmonic oscillator. In this case, the area and the
volume are related to the number of photons by

A ¼ 4

�
N þ 1

2

�
l2p
n
; ð82Þ

V ¼ 2

�
N þ 1

2

�
l2pλ0: ð83Þ

Following the interpretation above, we could say that the
smallest area and the smallest volume for a well-defined
vacuum energy in the spacetime (78) are A ¼ 2l2p=n and
V ¼ λ0l2p, respectively. Note that the longer the box, the
smaller A becomes. Curiously enough, one finds that V
equals the Planck volume if λ0 ¼ lp.

18

Of course, the observer could use the test particles of the
frame to measure arbitrarily smaller areas without changing
the spacetime geometry. The question, however, is whether
this would be possible if the field describing these particles
were quantized. It seems that a state with well-defined
energy would be related to a state with well-defined area
and volume, and the area and the volume would be discrete.
From Eqs. (82) and (83), we can see that ANþ1 − AN ¼

ð4=nÞl2p and VNþ1 − VN ¼ 2λ0l2p, which suggest that each
additional photon requires an increasing of ð4=nÞl2p in the
cross-sectional area and an increasing of 2λ0l2p in the volume.
We also find that the density of photons is N=V≈
1=ð2λ0l2pÞ≈2×1069 ½photons=m2�=λ0, for V ≫ λ0l2p, which
is a high density for any “reasonable” wavelength.

2. Analysis of the frame

The expansion tensor of the congruence xj ¼ constant
(timelikegeodesics) is θðiÞðjÞ ¼ −ω0 tanðω0uÞðδ1i δ1j þ δ2i δ

2
jÞ.

So, the expansion is θ ¼ −2ω0 tanðω0uÞ, and the shear
tensor (traceless part) is σðiÞðjÞ ¼ ðω0=3Þ tanðω0uÞð−δ1i δ1j−
δ2i δ

2
j þ 2δ3i δ

3
jÞ. As expected, the volume keeps increasing

and decreasing periodically, and there is a coordinate
singularity19 every time ω0u equals mπ=2, for m odd.
(Note that f vanishes in these cases.)
Unlike the asymptotically flat frame of Sec. VA, here we

have a frame that is a local inertial frame at the events
where u ¼ 0: from Eq. (78), we see that the metric
components become that of Minkowski and its first
derivative vanishes when u ¼ 0. Since ea is adapted to
the coordinates ðct; x; y; zÞ, this means that ea becomes
ea ¼ ð∂x0 ; ∂x; ∂y; ∂zÞ and the connection coefficients vanish
when u ¼ 0 [see, e.g., Eqs. (25) and (28)]. As we will see,
the gravitational stress-tensor do vanish at these events.20

Finally, one can easily check that the limit (68) is
satisfied. So, in the absence of gravity, the frame becomes
a global inertial frame of reference.

3. Energy densities

Recalling that F1 ¼ 1 and using (78) in Eqs. (64) and
(65), we find that

eT μa ¼ ρ̃0 cos2ðω0uÞΔμa
03 ; ð84Þ

etμa ¼ −ρ̃0sin2ðω0uÞΔμa
03 ; ð85Þ

17Recall that the length of the box is Δz ¼ nλ. So, n is a free
parameter that is basically measuring distances along z.

18From Eq. (54) one can calculate the amplitude of the electric
field associated with λ0 ¼ lp. This gives E0 ∼ 1062 V=m, which
is a huge value.

19Again, we can prove that they are coordinate singularities by
removing them with the help of the coordinate transformation
given by Eqs. (4.4), (4.9), and (4.10) in Ref. [63].

20It is interesting to see that in this particular case the
gravitational energy naturally vanishes at these events: there is
no need to add any nongravitational interaction to make ρg
vanish.
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where we have used the fact thatω ¼ ω0, and also Eqs. (54)
and (66). The energy densities are

ρ̃M ¼ ρ̃0 cos2ðω0uÞ; ð86Þ

ρ̃g ¼ −ρ̃0 sin2ðω0uÞ; ð87Þ

ρ̃ ¼ ρ̃0 cosð2ω0uÞ: ð88Þ

As expected, ρ̃g vanishes when u ¼ 0.
The behavior of ρ̃, ρ̃g, and ρ̃M are sketched in Fig. 6. All

these densities reach their maxima at u ¼ 0;�π;�2π;….
In turn, the positive values of ρ̃ occur in the regions
ð2m − 1Þπ=ð4ω0Þ < u < ð2mþ 1Þπ=ð4ω0Þ, for m even.
The periodic solution we obtained here is a very special

case of more general solutions. For instance, by assuming
that F1 ¼ ðω=ω0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ − 2q cosð2θÞp

, where λ and q are
parameters such that λ − 2q cosð2θÞ ≥ 0 for all θ,
Eq. (67) becomes the well-known angular Mathieu equa-
tion [See, e.g., Eq. (13.181) of Ref. [67].], which admits
periodic solutions. (The case treated here can be obtained
from λ ¼ ω2

0=ω
2 and q ¼ 0.)

VI. CONCLUDING REMARKS

We have seen that the TEGR gives a consistent descrip-
tion of the stress-energy tensors for the solutions of the
Einstein-Maxwell equations known as pp-waves, at least
for the case of plus polarization. In doing so, we have
decomposed the stress tensors and shown that the energy
densities, the pressures, and the heat flows are all consistent
with the electromagnetic wave. For example, we showed
that the heat flow exhibits a energy flux along the z
direction, as expected.
This consistency was achieved by using a tetrad field that

is adapted to test particles in free fall. We believe that the
frames we used here are free from artificial properties and
reflect only the effects of gravity, with the possible
exception of the asymptotically flat case. It would be
interesting though to study other types of frame that are
also free from artificial properties but have nongravitational

interactions. This study could give us a better understand-
ing of how those interactions change the meaning of tμa.
The results obtained in this paper suggest that “area”

plays a fundamental role in gravity. We showed that the
spacetime energy of the pp-waves, with plus polarization,
and described in a freely falling frame, can be written in
terms of the proper areas measured by two different
observers located at opposite faces of a box. When the
rate of change of these areas are equal, the spacetime
energy vanishes. We have also been able to write the
gravitation and electromagnet 4-momenta in terms of the
proper area measured by an observer; in the “asymptoti-
cally flat” case, the observer was far away from the source,
while in the periodic case it was at the center of the box. In
all cases, area was playing an important role.
Another interesting role played by these areas was the

relations that they had to satisfy when we considered that
the electromagnetic energy is quantized. We found that
these areas had also to be quantized. Since the solutions of
Einstein-Maxwell equations are “blind” to test particles, at
least from the perspective of invariant properties such as the
spacetime curvature, one can always add test particles to
continuously measure areas without changing the space-
time geometry. However it seems that, for consistency with
the quantization of the electromagnetic energy, the boxes
cannot have a well defined number of photons, if the
measured areas differ from those of the quantized version.
Now, in quantum mechanics, the concept of “test

particles” is problematic [1]. We may not be able to build
a frame of reference with particles whose energies are as
small as desired, in order to neglect the stress-energy tensor
of the constituents of the frame (as is usually done in the
classical case). Furthermore, if all matter fields are quan-
tized, including the particles of the frame, one may find that
the measured area must always satisfy a relation like that of
Eq. (82). In this case, it would be natural to think that the
quantization of area is indeed a fundamental property of the
spacetime.
However, we do not know whether this type of relation is

just a particular feature of the solutions we obtained. In the
worked examples, we considered only cases where E0 is
uniquely determined by ω. It may be the case that other
solutions do not relate the area to a quantized quantity.
A curious feature of the toy model considered here is

that, although we have not localized a photon at a specific
spacetime point, we were able to localize it in a specific
volume for the periodic case. For this solution, we saw that
N photons “occupy” the volume V ¼ 2ðN þ 1=2Þl2pλ0.
This is a kind of localization because one photon of
wavelength λ0 would be inside the volume V ¼ 3l2pλ0 that
is centered at z0.
There is another important point to be made here.

Locality is one of those words that are frequently used,
sometimes even with different meanings, most people think
they know exactly what it is but, in fact, it seems that no one

FIG. 6. The behavior of Eqs. (86)–(88). The curve with positive
values (blue curve) corresponds to ρM, while the one with
negative values (the red curve) is ρg; the spacetime energy
density, ρ, is represented by the black curve. The spacetime
energy density is positive in the regions ð2m − 1Þπ=ð4ω0Þ <
u < ð2mþ 1Þπ=ð4ω0Þ, for m even. (We are taking ρ̃0 ¼ 1
and ω0 ¼ 1.).
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really knows exactly what it means. Although our intuition
of “locality” works very well in most cases, when it comes
to the principle of equivalence it does not seem to be
satisfactory. (See, e.g., Refs. [56–59].) In this paper, we
have expressed the gravitational energy-momentum tensor
in terms of quantities that, in principle, can be measured by
a freely falling observer. We use this result to discuss its
implications on the problem of localizing the gravitational
energy, and argued that it gives support to the idea that one
can build a consistent stress tensor for the gravitational field
regardless of what the word “locality” really means.
As is well known, the matter stress-energy tensor is

supposed to satisfy the so called energy conditions, both in
GR and in extended theories of gravity [68]. It is not clear,
though, whether the gravitational stress-energy tensor (and
the spacetime one) should satisfy similar conditions. Any
condition imposed on them will limit either the number of
possible tetrad fields or solutions of Einstein’s equations.
For example, if we demand that the gravitational energy
density be positive, then either the tetrads used here are not
suitable or the pp-wave solutions we considered cannot
exist in the real world.
Concerning the experimental test of quantum gravity, it

has been shown in Ref. [69] that preferred-frame effects in
quantum gravity can give rise to detectable Lorentz

violation. Based on this result, one may claim that the
model adopted here suffers from this problem. However,
we do not think that this is the case. First, TEGR field
equations do not depend on the tetrad field; we have used
the freely falling frame for convenience, not because the
theory is frame dependent. Second, the authors in Ref. [69]
approach the problem of Lorentz violation by adding a new
term, ΠðE; pÞ, to the relativistic dispersion relation, i.e.,
they write PμPμ ¼ m2 þ ΠðE; pÞ. In the present paper,
even after the “quantum hypothesis,” all 4-momenta con-
tinue to satisfy the relation PaPa ¼ 0, which is invariant
under global Lorentz transformations. Furthermore, as
far as we know, the accelerated frames also yield the
relativistic dispersion relation. (See, e.g., Section IV of
Ref. [36].)
The results obtained in this paper are limited to waves

with constant linear polarization. We believe, however, that
the extension to the general case of pp-waves will not
change the mains results.
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