
Exterior field of neutron stars: The singularity structure
of vacuum and electrovac solutions

V. S. Manko ,1 I. M. Mejía ,2 C. I. Ramos ,1 and E. Ruiz 3

1Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN,
Apartado Postal 14-740, 07000 Ciudad de México, Mexico
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07738 Ciudad de México, Mexico
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In the present paper we study the singularity structure of the exterior field of neutron stars with the aid
of the four-parameter exact solution of the Einstein-Maxwell equations. The complete analysis of this
problem in the generic case becomes possible due to the implementation of the novel analytical approach
to the resolution of the singularity condition, and it shows the absence of the ring singularities off the
symmetry axis in the positive mass case, as well as the possibility of the removal of the ring singularity by a
strong magnetic field in the negative mass case. The solution takes an extraordinarily simple form in the
equatorial plane, very similar to that of the Kerr solution, which makes it most suitable for astrophysical
applications as the simplest model of a rotating magnetized deformed mass and hence of the exterior of a
neutron star. It also provides a nontrivial example confirming a recent claim that the φ component of the
electromagnetic four-potential has features inconsistent with the intrinsic properties of the electrovac
metric, while the magnetic field is represented correctly by the t component of the dual electromagnetic
four-potential.
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I. INTRODUCTION

The singularity structure of the Kerr solution [1] describ-
ing the exterior field of the “most elementary” rotating
astrophysical objects is well known and quite simple: the
black-hole branch of the solution possesses a ring singu-
larity covered by the regular event horizon, while in the
hyperextreme sector of the solution, characterized by the
absence of the event horizon, the ring singularity becomes
“naked”, i.e., visible to a distant observer. The simplicity of
one of the basic characteristics of the Kerr spacetime is
intrinsically and uniquely1 defined by a specific set of the
relativistic Geroch-Hansen multipole moments [3–5], con-
cisely given by the formula mn ¼ mðiaÞn, n ¼ 0; 1; 2;…,
the parameter m denoting the mass of the source and a the
angular momentum per unit mass [4]. The above mn are
coefficients in the expansion of the function

ξðzÞ ¼ 1 − eðzÞ
1þ eðzÞ ¼

X∞
n¼0

mn

znþ1
; eðzÞ ¼ z −m − ia

zþm − ia
; ð1Þ

when z → ∞, and the knowledge of these mn, calculated
on the symmetry axis, is sufficient to construct the
corresponding metric in the whole space by means of
Sibgatullin’s integral method [6,7]. The fact that all mn are
functions of m and a only is to some extent reflected in the
“no-hair” theorem [8] according to which the mass and
angular momentum fully characterize the Kerr black hole
spacetime.
Next to black holes (BHs), neutron stars (NSs) are

second densest (and simplest) astrophysical objects in
nature, and the exterior field of NSs requires at least one
more arbitrary physical parameter, the mass quadrupole
moment [9], which takes into account the deformation of
the source. An extensive study of the NS models with the
aid of the analytical and numerical approaches carried out
in recent decades [10–18] has eventually led to a remark-
able discovery that the first few lowest multipole moments
in fact determine entirely the geometry around NSs, which
constitutes the essence of the Yagi et al. “NS no-hair
conjecture” [19]. The latter conjecture in turn naturally
singles out the six-parameter equatorially symmetric two-
soliton solution [20] of the Einstein-Maxwell equations
(henceforth referred to as MMR) as a generic analytical
model for the exterior geometry of a NS, which also
includes the parameters of electric charge and magnetic

1The claim about nonuniqueness of the multipole moments of
the Kerr solution recently made in the paper [2] is wrong because
of the uniqueness of the expansion (1) below.
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dipole moment. For the pure vacuum specialization [21,22]
of the solution [20] it has been shown [23] that the explicit
form of the multipole moments higher than quadrupoles
can be read off from the degeneration condition of the
determinant Ln involved in the description of the axis data
defining the general N-soliton vacuum metric [24]; the
expressions for the electromagnetic multipoles are obtain-
able from the expansions of the electromagnetic potential
via standard procedures [25–29].
One may expect that the singularity structure of the exact

solutions representing NSs, which are defined by the Yagi
et al. NS no-hair conjecture, is reacher compared to that of
Kerr due to the presence of some additional parameters and
a more complicated form of the respective metrical fields.
Indeed, already the well-known Tomimatsu-Sato δ ¼ 2
(TS2) solution [30], which is a particular case of the
double-Kerr solution of Kramer and Neugebauer [31]
and of the MMR spacetime and hence could in principle
describe the exterior of a specific NS, is endowed with a
massless ring singularity outside the symmetry axis accom-
panied by a region with causality violation [32], and its
origin was attributed in the paper [33] to the presence of
negative mass. Moreover, the appearance of ring singular-
ities in various particular 2-soliton spacetimes has been
routinely analyzed in a number of papers [13,34–38],
where it has been shown, in particular, that in the binary
configurations of Kerr sources the constituent with negative
Komar [39] mass develops a massless ring singularity
outside the symmetry axis which is needed to prevent
disintegration of that constituent, remembering that the single
Schwarzschild and Kerr sources of negative mass are known
to be unstable [40,41]. Such ring singularities can also be
present when the two constituents have positive masses, in
which case they do not allow the dynamical nonregular
evolution of the joint stationary limit surfaces [42,43].
It may be observed that up to now the ring singularities

arising in binary systems and in the NS exterior have been
usually analyzed numerically because of the complexity of
the explicit algebraic expressions involved in the analysis.
In this respect, it turns out surprising that the singularity

problem, as will be shown in the present paper, can be
solved analytically in the case of the four-parameter
subfamily of the MMR metric—a NS solution elaborated
and studied a few years ago [43] that we are going to
rewrite in the extended parameter space in a manner
slightly different from the e ¼ 0 specialization of the
electrovac metric considered in [29]. Remarkably, this will
permit us to establish the absence of the massless ring
singularities outside the symmetry axis when the NS
solution has positive mass, and also to see that the ring
singularity emerging in the negative mass case can be
removed by a strong magnetic field. Additionally, we shall
obtain a very simple form of the NS solution in the
equatorial plane and discuss the difference between the
singularities of the metric coefficients of the solution and
those of the corresponding component Aφ of the electro-
magnetic four-potential.
Our paper is organized as follows. In the next section

we will consider the extended version of the solution [43]
in which the free parameters correspond to arbitrary
relativistic multipole moments, as well as the conditions
defining the singularities of the solution. In Sec. III we
solve analytically the condition for ring singularities on and
off the equatorial plane in the general case of that solution,
and compare the singularity structure of its extreme vacuum
limiting case with that of the well-known Tomimatsu-Sato
δ ¼ 2 metric. The results obtained are discussed in Sec. IV,
where in particular we present a very simple form of the
NS solution in the equatorial plane, and briefly comment on
a better description of the magnetic field by the t compo-
nent of the dual electromagnetic potential than by the φ
component of the usual electromagnetic four-potential.

II. THE EXTENDED 4-PARAMETER SOLUTION
FOR THE NS EXTERIOR AND THE SINGULARITY

CONDITION

We remind that the NS solution [43] is determined by the
axis values of the Ernst complex potentials [44] E and Φ of
the form

Eðρ ¼ 0; zÞ≡ eþðzÞ ¼
ðz −m1Þðz −m2Þ − iaðm1 þm2Þ þ a2 − μ2

ðzþm1Þðzþm2Þ þ iaðm1 þm2Þ þ a2 − μ2
;

Φðρ ¼ 0; zÞ≡ fþðzÞ ¼
iμðm1 þm2Þ

ðzþm1Þðzþm2Þ þ iaðm1 þm2Þ þ a2 − μ2
; ð2Þ

where the parameters m1, m2, a, and μ take arbitrary real
values.
One can easily see that the mass parameters m1 and m2 in

(2) occur only in the combinationsm1 þm2 andm1m2, which
suggests that the extension of the parameter set can be
achieved by allowing for m1 and m2, in addition to the real

values they can take, to be also a pair of complex conjugate
quantities. In thisway it turns out possible to introduce, instead
of m1 and m2, the total mass m and the mass quadrupole
moment Q of the source as arbitrary real parameters of the
solution. Indeed, sincem ¼ m1 þm2 andQ ¼ −mðm1m2 þ
a2 − μ2Þ [43], then the substitution formulas take the form
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m1 ¼ ðmþ dÞ=2; m2 ¼ ðm − dÞ=2;
d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 4ðκ þ a2 − μ2Þ

q
; κ ≡Q=m; ð3Þ

where the quantity d may take either real or pure imaginary
values, depending on the interrelations of the arbitrary
parameters. Then the axis data (2) assume the form

eþðzÞ ¼
zðz −mÞ − κ − ima
zðzþmÞ − κ þ ima

;

fþðzÞ ¼
imμ

zðzþmÞ − κ þ ima
; ð4Þ

andone can see that these define a four-parameter subfamily of
the solution [20]when the parametersb,q in [20] are restricted
to b ¼ a, q ¼ 0, while the constants k, c are chosen there in

the form k ¼ κ þ a2 and c ¼ mμ. So, the four roots αi of the
algebraic equation

eþðzÞ þ ēþðzÞ þ 2fþðzÞf̄þðzÞ ¼ 0; ð5Þ

entering the final formulas of the solution, are given by

α1 ¼ −α2 ¼ σþ; α3 ¼ −α4 ¼ σ−;

σ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
ðm� dÞ2 − a2 þ μ2

r
; ð6Þ

where σ� are not restricted to only the real values and can take
complex values too. The corresponding Ernst potentials of the
solution [43] hence can be rewritten as

E ¼ ðA − BÞ=ðAþ BÞ; Φ ¼ C=ðAþ BÞ;
A ¼ 2σþσ−½ðm2 þ d2ÞðRþ þ R−Þðrþ þ r−Þ − 2ðm2 − d2ÞðRþR− þ rþr−Þ� − ½ðmþ dÞ2σ2− þ ðm − dÞ2σ2þ�

× ðRþ − R−Þðrþ − r−Þ þ 4imad½σþðRþ þ R−Þðrþ − r−Þ − σ−ðRþ − R−Þðrþ þ r−Þ�;
B ¼ 4mdfσþσ−½ðmþ dÞðrþ þ r−Þ − ðm − dÞðRþ þ R−Þ� þ ia½σþðmþ dÞðrþ − r−Þ − σ−ðm − dÞðRþ − R−Þ�g;
C ¼ 4imμd½σ−ðmþ dÞðRþ − R−Þ − σþðm − dÞðrþ − r−Þ�;

R� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz� σþÞ2

q
; r� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz� σ−Þ2

q
; ð7Þ

and the extended metric functions from the line element

ds2 ¼ f−1½e2γðdρ2 þ dz2Þ þ ρ2dφ2� − fðdt − ωdφÞ2 ð8Þ

have the form

f ¼ AĀ − BB̄þ CC̄
ðAþ BÞðĀþ B̄Þ ; e2γ ¼ AĀ − BB̄þ CC̄

256d4jσþj2jσ−j2RþR−rþr−
; ω ¼ −

Im½GðĀþ B̄Þ þ CĪ�
AĀ − BB̄þ CC̄

;

G ¼ −2zBþ 2mdfσþ½ðm − dÞ2 þ 2μ2�ðRþ þ R−Þðrþ − r−Þ − σ−½ðmþ dÞ2 þ 2μ2�ðRþ − R−Þðrþ þ r−Þ
− 4imadðRþ − R−Þðrþ − r−Þ − 4σ−½ðm − dÞσ2þ −mμ2�ðRþ − R−Þ þ 4σþ½ðmþ dÞσ2− −mμ2�ðrþ − r−Þ
− 4iaσþσ−½ðm − dÞðRþ þ R−Þ − ðmþ dÞðrþ þ r−Þ�g;

I ¼ 2imμf½ðm − dÞσ2þ þ ðmþ dÞσ2−�ðRþ − R−Þðrþ − r−Þ − 2σþσ−½mðRþ þ R−Þðrþ þ r−Þ
− 2ðmþ dÞRþR− − 2ðm − dÞrþr−� − 2iad½σþðRþ þ R−Þðrþ − r−Þ − σ−ðRþ − R−Þðrþ þ r−Þ�
þ 2dσþσ−½ð3mþ dÞðRþ þ R−Þ − ð3m − dÞðrþ þ r−Þ þ 4md� þ 4imad½σ−ðRþ − R−Þ − σþðrþ − r−Þ�g; ð9Þ

where jxj2 means xx̄. Note also that formulas for two nonzero components of the electromagnetic four-potential remain the
same as in [43]:

At ¼ −Re
�

C
Aþ B

�
; Aφ ¼ Im

�
I − zC
Aþ B

�
: ð10Þ

The Kerr solution is contained in the above formulas (7)–(9) as the particular case μ ¼ 0, κ ¼ −a2.
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Turning now to the analysis of the singularity structure of
our 4-parameter solution outside the symmetry axis, we
begin by remarking that the ring singularities are roots of
the algebraic equation

Aþ B ¼ 0; ð11Þ

and these are located on the stationary limit surface (SLS)
f ¼ 0 in the pure vacuum case (μ ¼ 0), or outside the SLS
when the electromagnetic field is present, similar to the
case of the Kerr-Newman solution [45] endowed with
negative mass (see, e.g., Ref. [46]). We find it plausible to
first analyze the appearance of ring singularities in the
equatorial (z ¼ 0) plane, their habitual location in the
spacetimes with reflection symmetry [47–50]. This, on
the one hand, will help the reader understand a special
character of the singularity structure of the solution (7) and,
on the other hand, will simplify the consideration of the
general case where, as will be seen later on, the singularities
off the equatorial plane can only occur on the symmetry
axis. The reader will also see that one of the conditions
defined by Eq. (11), namely the condition (14) below,
should be excluded from the subsequent singularity analy-
sis due to the degeneration of our solution on the equa-
torial plane.
As a preliminary, we first observe that in the equatorial

plane

Rþ ¼ R− ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ σ2þ

q
; rþ ¼ r− ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ σ2−

q
; ð12Þ

and the condition (11) takes the form

½ðm − dÞR− − ðmþ dÞr−�½ðmþ dÞR− − ðm − dÞr−
þ 2md�σþσ− ¼ 0: ð13Þ

The above condition will be fulfilled if one of the factors on
the left-hand side of (13) takes zero value. In what follows
we exclude the cases σþ ¼ 0 and σ− ¼ 0 as leading to the
double roots of Eq. (5) and hence to indetermination of the
potentials E and Φ in (7). The remaining two conditions to
investigate are therefore

ðm − dÞR− − ðmþ dÞr− ¼ 0; ð14Þ

and

ðmþ dÞR− − ðm − dÞr− þ 2md ¼ 0: ð15Þ

Wemention that out of these two it is the condition (14) that
might give rise to the ring singularity outside the symmetry
axis independently of the sign of the mass parameterm, the
location of the singularity being defined by

ρS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − μ2

q
; zS ¼ 0; a2 > μ2: ð16Þ

In particular, the above formula is verified by the singu-
larity shown in Fig. 3 of [43] for the parameter choice
m ¼ 2.5, a ¼ 0.5, μ ¼ 0.25. To see that (14) is verified
by (16) for positive and negative values ofm, it is sufficient
to substitute (16) into (12) and then check that R− ¼
ðmþ dÞ=2, r− ¼ ðm − dÞ=2 for m ≥ jdj > 0 (d2 > 0) and
R− ¼ −ðmþ dÞ=2, r− ¼ −ðm − dÞ=2 for m ≤ −jdj < 0

(d2 > 0) satisfy identically (14).
It is remarkable, however, that after a considerable effort

spent on identifying in a rigorous way of all the occasions
when the singularity (16) is present in the solution in the
positive mass case, we have eventually discovered, to our
big surprise, that the condition (14) is not in fact involved in
the analysis of the singularity problem (and hence should
be excluded from the further consideration) because the
complex potentials (7) degenerate in the equatorial plane to
the expressions

E ¼ ðmþ dÞR− − ðm − dÞr− − 2md
ðmþ dÞR− − ðm − dÞr− þ 2md

; Φ ¼ 0; ð17Þ

due to appearance, at z ¼ 0, of the factor ðm − dÞR− −
ðmþ dÞr− both in the denominator and numerator of E. As
a result, the singularity problem in the equatorial plane
considerably simplifies and reduces to analyzing the con-
dition (15) alone. In what follows we shall demonstrate that
although the latter condition can also give rise to a singular
point defined by (16), this point ðρS; zSÞ is a solution of (15)
for the negative values of m only.

III. SOLVING THE SINGULARITY PROBLEM
IN AND OFF THE EQUATORIAL PLANE

Fortunately, the analysis of the condition (15), whose
roots, if exist, will define the genuine ring singularities, is
straightforward. Indeed, solving (15) for r−, we get

r− ¼ R−ðmþ dÞ þ 2md
m − d

; ð18Þ

and this must be substituted into the equality

R2
− − r2− − σ2þ þ σ2− ¼ 0; ð19Þ

which is a direct consequence of (12), thus leading to the
equation

−
mdð2R− þmþ dÞ2

ðm − dÞ2 ¼ 0; ð20Þ

with the obvious solution

R− ¼ −
1

2
ðmþ dÞ: ð21Þ

Then the substitution of (21) into (18) yields
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r− ¼ −
1

2
ðm − dÞ; ð22Þ

so that (21) and (22) define the location of the singularity in
the equatorial plane.
Our further estimations must take into account that all

four square roots R� and r� entering the solution (7)
are understood as the positive branch of these functions:
ReðR�Þ > 0, Reðr�Þ > 0. We should also bear in mind that
the quantity d can assume (positive) real or pure imaginary
values, i.e., distinguish between the cases d2 > 0 and
d2 < 0. Then the former case implies that the inequalities

mþ d < 0 and m − d < 0 ð23Þ

must be satisfied simultaneously, whence we get immedi-
ately

m < 0: ð24Þ

On the other hand, the latter case d2 < 0 also leads directly
to the condition (24) by applying the above mentioned
criterion on the square roots to the expressions (21) and
(22). Therefore, we can conclude that our solution does not
develop singularities in the equatorial plane for the positive
values of m.
The value of ρ in the z ¼ 0 plane at which the singularity

occurs in the negative mass case is readily obtainable from
(12), (21), and (22), and it is given by the above for-
mula (16) for ρS and zS. It suggests that negative mass of

the source itself is not yet a guarantee for the formation of a
ring singularity. Indeed, it is clear that for the values μ2 >
a2 of the magnetic dipole parameter μ the singularity does
not arise, which means that the magnetic field plays a
stabilizing role in the NS solution.
Another restriction on the singularity in the m < 0 case

follows from the first inequality in (23):

d < −m ⇒ κ < μ2 − a2; ð25Þ

which means in particular that the oblate configurations of
the negative mass source in our solution, corresponding
to positive κ, do not develop a ring singularity in the
equatorial plane. Recalling that the Kerr solution with
negative mass is always accompanied by a massless ring
singularity outside the symmetry axis [33], we can draw a
conclusion that NSs might probably be more stable
negative mass configurations than the m < 0 Kerr source
due to presence of an arbitrary mass quadrupole moment.

A. The extreme case

We find it very instructive to compare the singularity
structure of the extreme case of the solution (7) with that
of the Tomimatsu-Sato δ ¼ 2 spacetime [30] which was
historically the first nontrivial example of an asymptotically
flat stationary axisymmetric solution constructed within the
framework of the Ernst formalism [51]. Written in the
prolate ellipsoidal coordinates (x, y), the Ernst potential of
the TS2 solution has the form

E ¼ ðA − BÞ=ðAþ BÞ;
A ¼ p2x4 þ q2y4 − 1 − 2ipqxyðx2 − y2Þ;
B ¼ 2pxðx2 − 1Þ − 2iqyð1 − y2Þ;

x ¼ 1

2k0
ðrþ þ r−Þ; y ¼ 1

2k0
ðrþ − r−Þ; r� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz� k0Þ2

q
; ð26Þ

where the real constants p and q are subject to the constraint p2 þ q2 ¼ 1, and k0 is an arbitrary real positive parameter. The
total mass of this solution is M ¼ 2k0=p, so, with account of the positivity of k0, the positive or negative values of M are
determined by the positive or negative values of p, respectively. As had been pointed out by Tomimatsu and Sato
themselves, their solution (for q ≠ 0) always has a ring singularity in the equatorial plane (y ¼ 0), the exact location of
which in the positive-mass case being given by the formula [33]

x0 ¼
1

2p

 
χ − 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − χ2 −

2

χ
ð1 − 2p2Þ

s !
; y0 ¼ 0; χ ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2pÞ2=3ðp2 − 1Þ1=3

q
; ð27Þ

while for the locus of the singularity in the negative-mass case we refer the reader to Ref. [33].
On the other hand, the special case σþ ¼ σ−, or d ¼ 0, corresponding to a pair of equal α’s in (6) was worked out in [43],

and in the absence of the magnetic field (μ ¼ 0) it is defined by the Ernst potential of the form
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E ¼ ðA − BÞ=ðAþ BÞ;
A ¼ m4ðx4 − 1Þ þ a4ðx2 − y2Þ2 − 2m2ax½axðx2 − y2Þ − 2iσyð1 − y2Þ�;
B ¼ 2mfm2½σxðx2 − 1Þ þ iayð1 − y2Þ� − aσðx2 − y2Þðax − iσyÞg;

x ¼ 1

2σ
ðrþ þ r−Þ; y ¼ 1

2σ
ðrþ − r−Þ; r� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz� σÞ2

q
; σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p
; ð28Þ

where the parameter m is now half the m that appears in
the general solution (7). It was shown in [52] that the
subextreme branch of the solution (28) belongs to the
Kinnersley-Chitre family of the vacuum spacetimes [53].
It is easy to check that, similar to the generic case, the

Ernst potential (28) considerably simplifies in the equato-
rial plane, taking the form

E ¼
�
σx −m
σxþm

�
2

; ð29Þ

and hence the singularity occurs at

x ¼ −m=σ; ð30Þ

so that the ring singularity outside the symmetry axis
requiring x > 1 (i.e. ρ > 0) can only be developed by a
negative mass. It is worth noting that in the case of the TS2
solution a similar simplification of the Ernst potential does
not take place, and we have

ETSðy ¼ 0Þ ¼ p2x4 − 2pxðx2 − 1Þ − 1

p2x4 þ 2pxðx2 − 1Þ − 1
; ð31Þ

that is the quartic polynomials in x both in the numerator
and denominator of E, like in the general formulas (26).
Fortunately, the singularity problem of the extreme

solution (28) can be solved analytically in the entire space
too due to exceptional factorization properties of this
solution. In the generic case, the system of equations to
be solved is

ReðAþ BÞ ¼ 0; ImðAþ BÞ ¼ 0; ð32Þ

and the first equation, as it follows from (28), takes the form

ðσ2x2 þ a2y2 −m2Þ½ðσxþmÞ2 þ a2y2� ¼ 0; ð33Þ

while the second equation yields

2amy½ðσxþmÞðσx − 2my2 þmÞ þ a2y2� ¼ 0: ð34Þ

Actually, we must be only interested in the first factor in
(33) and the last factor in (34) since the condition y ¼ 0
leads to the “equatorial” case already considered above,
whereas the second factor on the left-hand side of (33) is a
positive quantity for y ≠ 0. Moreover, if in addition, instead

of equating to zero the last factor in (34), we shall consider
the difference of that factor with the first factor in (33),
then the system to be solved becomes eventually composed
of the following two equations:

σ2x2 þ a2y2 −m2 ¼ 0; ð1 − y2ÞðσxþmÞ ¼ 0; ð35Þ

and besides the solution y ¼ 0, x ¼ −m=σ involving the
equatorial plane, we arrive at the off-plane solutions

y ¼ 1; x ¼ �1 and y ¼ −1; x ¼ �1: ð36Þ

Apparently, these solutions do not represent the ring
singularities outside the symmetry axis.

B. The general case

It is remarkable that the generic analysis of the ring
singularities outside the symmetry axis admits in the case
of the solution (7) a purely analytical treatment. However,
since it does not lead to the new singularities in addition
to the already considered in the equatorial plane, in what
follows we shall restrict ourselves to the description of the
general scheme of our novel approach to the resolution of
the condition (11), omitting numerous mathematical details
which do not give us an extra physical information. As a
sort of a compensation, we shall also consider a curious
case of a line singularity on the symmetry axis covered by
our general scheme for a special relation of the parameters
of the solution.
Obviously, the system of algebraic equations defining

the singularities on and off the equatorial plane that must be
solved by us is composed of the conditions for vanishing
real and pure imaginary parts of (11), i.e.,

2σþσ−f½ðm2 þ d2ÞðRþ þ R−Þðrþ þ r−Þ − 2ðm2 − d2Þ
× ðRþR− þ rþr−Þ� þ 2md½ðmþ dÞðrþ þ r−Þ
− ðm − dÞðRþ þ R−Þ�g − ½ðmþ dÞ2σ2− þ ðm − dÞ2σ2þ�
× ðRþ − R−Þðrþ − r−Þ ¼ 0; ð37Þ

and
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σþðrþ − r−ÞðRþ þ R− þmþ dÞ − σ−ðRþ − R−Þ
× ðrþ þ r− þm − dÞ ¼ 0: ð38Þ

Note that one also can easily arrive at the system (37) and
(38) by merely exploring the equatorial symmetry of the
solution (7), which implies that if the point ðρS; zSÞ satisfies
Eq. (11) then the point ðρS;−zSÞ will satisfy this equa-
tion too.
Though the resolution of the above system may look

impossible analytically since the dependence in it on the
coordinates ðρ; zÞ is not direct but through the square roots
R� and r�, we still have been able to find a way out of this
unpleasant situation by considering that R� and r� enter
Eqs. (37) and (38) as independent variables, which requires
to supplement the latter equations with two additional
conditions/constraints that must verify R� and r� as
functions of ρ and z. Thus, using the definition (7) of
R� and r�, we can express ρ and z, say, in terms of R� as

ρ2 ¼ R2
− −

ðR2
− − R2þ þ 4σ2þÞ2

16σ2þ
; z ¼ R2þ − R2

−

4σþ
; ð39Þ

and then, with the aid of r�, we get the following two extra
conditions

ðσþ − σ−ÞR2þ þ ðσþ þ σ−ÞR2
− − 2σþðr2− þ σ2þ − σ2−Þ ¼ 0;

ðσþ − σ−ÞR2
− þ ðσþ þ σ−ÞR2þ − 2σþðr2þ þ σ2þ − σ2−Þ ¼ 0;

ð40Þ

which complement the system (37) and (38). Of course,
once the particular values of the functions R� and r�
defining the singularities are found, the corresponding
ðρS; zSÞ should be obtained by means of formulas (39).
The advantage of solving the system of four equa-

tions (37), (38), (40) for R� and r� instead of directly
solving the two equations (37) and (38) for ðρ; zÞ turns out
significant, as now we can obtain from (37) and (38), via
standard substitutions, the following four analytical sol-
utions for R�, r�:

Solution 1.

R� ¼ 1

2
½hðm − dÞð�2kσþ − 1Þ −m − d�;

r� ¼ 1

2
½hðmþ dÞð�2kσ− − 1Þ −mþ d�: ð41Þ

Solution 2.

R� ¼ −
1

2
ðmþ dÞ½hð�2kσþ − 1Þð4k2σ2− − 1Þ þ 1�;

r� ¼ −
1

2
ðm − dÞ½hð�2kσ− − 1Þð4k2σ2þ − 1Þ þ 1�:

ð42Þ

Solution 3.

R� ¼ 1

2
½�2hðm − dÞσþ −m − d�;

r� ¼ 1

2
½�2hðmþ dÞσ− −mþ d�: ð43Þ

Solution 4.

R� ¼ −
1

2
ðmþ dÞð�2hσ− þ 1Þ;

r� ¼ −
1

2
ðm − dÞð�2hσþ þ 1Þ: ð44Þ

The above solutions contain the arbitrary (real or com-
plex) constants h and k, which in our scheme would be
better regarded as arbitrary variables, whose particular form
should be found from the constraint equations (40). The
evaluation of these h and k in each case is straightforward
and does not represent difficulties. Thus, the substitution of
(41) and (42) into (40) yields the following four solutions of
the general system (37), (38), and (40):

ðIÞ Rþ ¼ R− ¼ −
1

2
ðmþ dÞ;

rþ ¼ r− ¼ −
1

2
ðm − dÞ;

ðIIÞ Rþ ¼ R− ¼ 1

2
ðmþ dÞ;

rþ ¼ r− ¼ 1

2
ðm − dÞ;

ðIIIÞ Rþ ¼ −R− ¼ −
1

2
ðmþ dÞϵ; ðϵ2 ¼ 1Þ

rþ ¼ r− ¼ −
1

2
ðm − dÞ;

ðIVÞ Rþ ¼ R− ¼ −
1

2
ðmþ dÞ;

rþ ¼ −r− ¼ −
1

2
ðm − dÞϵ; ðϵ2 ¼ 1Þ

where (I) is a corollary of either (41) or (42), while (II)–(IV)
of exclusively (42), and all of these lead to the same
singular point (16) located in the equatorial plane.
However, the solutions (III) and (IV) are not admissible
because they do not ensure the positivity of the real parts of
all R�, r�, and in view of the degeneration of the Ernst
potentials (7) in the equatorial plane the solution (II) must
be also discarded as satisfying the condition (14) and not
satisfying the condition (15). The remaining solution (I) has
already been considered at the beginning of this section and
it coincides with the formulas (21) and (22) leading to the
singularity (16) in the negative mass case m < 0.
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On the other hand, the substitution of the solutions (43)
and (44) into the constraints (40) does not permit to fix h,
the constraints being satisfied only at the concrete param-
eter choice μ2 ¼ a2 independently of the value of h.
Although the latter choice, as will be seen later on,
determines a singularity on the symmetry axis (while we
are interested in the singularities off the symmetry axis), we
still find it instructive to study this curious particular case,
common to the two solutions, as a nontrivial application of
the general scheme. When μ2 ¼ a2, the expressions of σ�
simplify to the form

σ� ¼ 1

2
ϵ�ðm� dÞ; ϵ2� ¼ 1; ð45Þ

so that the corresponding R� and r� of the solution (43)
become

R� ¼ 1

2
ðmþ dÞ½�ϵþhðm − dÞ − 1�;

r� ¼ 1

2
ðm − dÞ½�ϵ−hðmþ dÞ − 1�; ð46Þ

or, equivalently, after expressing m and d in terms of σ�
with the aid of (45),

R� ¼ σþð�2hϵ−σ− − ϵþÞ;
r� ¼ σ−ð�2hϵþσþ − ϵ−Þ: ð47Þ

Now we can identify the location of the singularity by
substituting R� from (47) into (39), yielding

ρ ¼ 0; z ¼ −2hϵþϵ−σþσ−: ð48Þ

Using the explicit form (45) for σ� in the μ2 ¼ a2 case,
(48) also rewrites as

ρ ¼ 0; z ¼ 2hκ; ð49Þ

which shows in particular that the singularity’s locus
reduces to the origin ρ ¼ z ¼ 0 in the case of vanishing κ.
However, when κ ≠ 0, one could think that the singularity
extends along the whole symmetry axis, as h can take
arbitrary real values, thus suggesting that the solution (7)
might be not asymptotically flat at least in the special
μ2 ¼ a2 case.
The issue of the above singularity can be clarified after

recalling that the roots R� and r� are defined under the
positive branch criterion. Therefore, the values (47) which,
after changing h to z by means of (48), take the form

R� ¼∓ ϵþðz� σþÞ; r� ¼∓ ϵ−ðz� σ−Þ; ð50Þ

must be consistent with the axis values R�ð0; zÞ, r�ð0; zÞ
that follow from their definition (7), i.e.,

R�ð0; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz� σþÞ2

q
; r�ð0; zÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz� σ−Þ2

q
:

ð51Þ

Then, for instance, if σ� are real-valued and σþ>σ−>0,
we get on the upper part of the symmetry axis (z > σþ)

R�ð0; zÞ ¼ z� σþ; r�ð0; zÞ ¼ z� σ−; ð52Þ

and a simple inspection shows that there is no choice of ϵ�
for which R� and r� in (50) would fully coincide with
R�ð0; zÞ and r�ð0; zÞ in (52). The same is true for the lower
part of the symmetry axis (z < −σþ), and also for the parts
σ− < z < σþ and −σþ < z < −σ−. However, on the inter-
mediate part −σ− < z < σ− of the z-axis, formulas (51)
assume the form

R�ð0; zÞ ¼ �zþ σþ; r�ð0; zÞ ¼ �zþ σ−; ð53Þ

and now the choice ϵþ ¼ ϵ− ¼ −1 makes the expressions
(50) and (53) identical, which means that the singularity
defined by formulas (49) occupies exclusively the finite
interval (−σ−; σ−) of the symmetry axis. In addition, it is
not difficult to see that this singularity is developed by the
negative mass. Indeed, under the above choice ϵ� ¼ −1
and our supposition σ� > 0, formulas (45) imply that

mþ d < 0; m − d < 0; ð54Þ

whence we immediately arrive at m < 0.

IV. DISCUSSION

The analysis carried out in the present paper shows that
the singularity structure of the exterior field of NSs defined
by the solution (7) is quite similar to that of black holes: no
ring singularities are present outside the symmetry axis in
the positive mass case, and a ring singularity located in the
equatorial plane arises in the case of negative mass. To
some extent, the singularity of NSs in the latter case has a
more benign character than that of black holes because
in the Kerr and Kerr-Newman solutions with negative mass
the singularity is irremovable [33,46], while a strong
magnetic field μ2 > a2 in the solution (7) removes the
ring singularity. This could be interpreted, bearing in mind
the generic instability of the negative mass sources [40,41]
(the singularities thus preserving the stationarity of the
sources), as a stabilization effect exerted by the magnetic
field on the massive sources of NSs. In other words, NSs
carrying negative mass and magnetic dipole moment are
more stable objects than the “black holes” of negative mass.
Interestingly, the location of the ring singularity defined by
formula (16) does not depend on the mass quadrupole
parameter κ. It is also clear from our analysis that the
angular momentum plays a key role in developing ring
singularities in the solution (7), so that for instance the
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exterior field of a nonrotating NS is free of the ring
singularities completely.
The analytical approach to the singularity problem of

NSs developed in the present paper has allowed us to
rectify some incorrect statements about the presence of the
ring singularities made earlier in the literature [43] on the
basis of the numerical analysis of the condition (11). As a
matter of fact, the idea to resort to analytical study of the
singularity problem came to us only after we were able to
clearly realize that the numerical methods were failing in

the vicinity of singular points and were often producing
some exotic unrealistic results that could be erroneously
taken for the genuine ring singularities.
An important outcome of our consideration is a surpris-

ingly simple form of the neutron star metric (9) in the
equatorial plane (z ¼ 0). Thus, for the metric functions f
and ω taking part in the analysis of the behavior of test
particles and study of various phenomena occurring in
this plane, formulas (9) give us the following simple
expressions:

f ¼ A − B
Aþ B

; ω ¼ −
W

Aþ B
;

A ¼ ðmþ dÞrþ − ðm − dÞr−; B ¼ 2md; W ¼ 4mad;

r� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ 1

2
ðm2 þ 2κ �mdÞ

r
; d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 4ðκ þ a2 − μ2Þ

q
; ð55Þ

which are by far simpler than the analogous expressions for
f and ω obtained in the papers [11,22] (pure vacuum case)
and [54] (the electrovac case); (55) also improve and
generalize the “equatorial” formulas of the paper [52]
for which the possibility of further simplifications was
previously overlooked. Actually, the above formulas (55)
are practically as simple as in the case of the Kerr solution
due to the linear dependence of A on r� and constant values
of B and W, the latter black hole case being contained in
(55) just as the d ¼ m (i.e., κ ¼ −a2, μ ¼ 0) specialization.
At the same time, compared to the Kerr case, Eqs. (55)
represent much more generic sources, as they contain two
additional independent parameters κ and μ that allow one to
take account of an arbitrary quadrupole mass deformation
and of the dipole magnetic field of neutron stars. As a
curiosity, we find it worth noting that the constant object d
entering (55) can take arbitrary real or pure imaginary
values, leaving the functions f and ω to be real-valued in
both cases.
It is also remarkable that the solution (7) can be

considered as providing a nontrivial evidence in favor of
the recent claim [55,56] that the component Aφ of the
electromagnetic four-potential does not describe correctly
the magnetic field of the Einstein-Maxwell spacetimes.
Although in the aforementioned papers the claim was made
about the asymptotically nonflat potential Aφ linked to the
magnetic charge and possessing two semi-infinite singu-
larities, so that the claim looks quite natural, the function
Aφ of the solution (7), on the other hand, is defined by
formula (10) and is asymptotically flat, thus presumably
looking well-behaved and reflecting correctly the proper-
ties of the metric (9). However, our study of the singular-
ities of the solution (7) in the equatorial plane makes it
possible to establish a not very conspicuous inconsistency
between the singularity structures of the metric (9) and the

corresponding potential Aφ. Indeed, it follows from the
formulas (7), (9), and (10) that in the equatorial plane the
potential Aφ takes the form

Aφ ¼ 2mμðrþ − r− þ dÞ
ðd −mÞrþ þ ðdþmÞr−

; ð56Þ

where r� and d are the same as in (55). The above
formula (56) means that the simplification of the expression
of Aφ at z ¼ 0 occurs differently than in the case of the
functions f and ω: while the formulas (55) have been
obtained after canceling out the common factor ðd −
mÞrþ þ ðdþmÞr− in the numerators and denominators
of f and ω, the common factor leading to (56) is
ðmþ dÞrþ − ðm − dÞr− þ 2md. As a result, the singularity
structure of Aφ in (56) is defined by the roots of Eq. (14),
whereas the singularities of f and ω in (55) emerge as the
roots of Eq. (15). Therefore, the singularity structure of Aφ

turns out to be inconsistent with that of the metric functions
f and ω because, as we have already mentioned, the
singularity (16) satisfies the condition (14) for the positive
values of m too. The correct description of the magnetic
field in the solution (7) is provided by the well-behaved t
component Bt ¼ ImðΦÞ of the dual electromagnetic four-
potential Bμ which is devoid of the undesirable singularities
of the potential Aφ since, according to (17), Bt vanishes in
the equatorial plane.
As a final remark we would like to mention that the

similarity in the singularity structures of the black-hole and
NS solutions looks also extending to their multipole
structures. Indeed, the complex moments mn determining
the mass and angular momentum distributions of the NS
solution obtainable from (1) and (4) have a very simple
form
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m2n ¼ mκn; m2nþ1 ¼ imaκn; n ¼ 0; 1; 2;… ð57Þ

quite comparable in simplicity with those of the Kerr
solution, while for the electromagnetic moments qn arising
as coefficients in the expansion (z → ∞)

ηðzÞ ¼ 2fðzÞ
1þ eðzÞ ¼

X∞
n¼0

qn
znþ1

; ð58Þ

we get from (4) and (58) the expressions

q2n ¼ 0; q2nþ1 ¼ imμκn; n ¼ 0; 1; 2;… ð59Þ

which even exceed in simplicity the corresponding qn of
the Kerr-Newman black hole whose q2n are all nonzero.
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