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This work provides gravitational-wave energy and angular momentum asymptotic fluxes from a
spinning body moving on generic orbits in a Kerr spacetime up to the linear-in-spin approximation. To
achieve this, we have developed a new frequency-domain Teukolsky equation solver that calculates
asymptotic amplitudes from generic orbits of spinning bodies with their spin aligned with the total orbital
angular momentum. However, the energy and angular momentum fluxes from these orbits in the linear-in-
spin approximation are appropriate for adiabatic models of extreme-mass-ratio inspirals even for spins
nonaligned to the orbital angular momentum. To check the newly obtained fluxes, they are compared with
already known frequency-domain results for equatorial orbits and with results from a time-domain
Teukolsky equation solver called TEUKODE for off-equatorial orbits. The spinning-body framework of our
work is based on the Mathisson-Papapetrou-Dixon equations under the Tulczyjew-Dixon spin supple-
mentary condition.
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I. INTRODUCTION

Future space-based gravitational-wave (GW) detectors,
like the Laser Interferometer Space Antenna (LISA) [1],
TianQin [2], and Taiji [3], are designed to detect GWs from
sources emitting in the mHz bandwidth like the extreme-
mass-ratio inspirals (EMRIs). An EMRI consists of a
primary supermassive black hole and a secondary compact
object, like a stellar-mass black hole or a neutron star,
which is orbiting in close vicinity around the primary. Due
to gravitational radiation reaction, the secondary slowly
inspirals into the primary, while the EMRI system is
emitting GWs to infinity. Since signals from EMRIs are
expected to overlap with other systems concurrently emit-
ting GWs in the mHz bandwidth [1], matched filtering will
be employed for the detection and parameter estimation of
the received GW signals. This method relies on comparison
of the signal with GW waveform templates and, thus, these
templates must be calculated in advance and with an
accuracy of the GW phases up to fractions of radians
[4]. With this level of accuracy, it is anticipated that the
detection of GWs from EMRIs will provide an opportunity
to probe in detail the strong gravitational field near a
supermassive black hole [4].

Several techniques have been employed to model an
EMRI system and the GWs it emits. The backbone of these
techniques is the perturbation theory [5–7] in which the
secondary body is treated as a point particle moving in a
background spacetime. Such an approach is justified
because the mass ratio q ¼ μ=M between the mass of
the secondary μ and the mass of the primaryM lies between
10−7 and 10−4. The particle acts as a source to a gravita-
tional perturbation to the background spacetime and
conversely the perturbation exerts a force on the particle
[7]. After the expansion of the perturbation in q, the first-
order perturbation is the source of the first-order self-force
and both first- and second-order perturbations are sources
of the second-order self-force. These parts of the self-force
are expected to be sufficient to reach the expected accuracy
needed to model an EMRI [6].
Another technique, which is widely used in EMRI

modeling, is the two-time-scale approximation [8,9].
This approximation relies on the separation between the
orbital time scale and the inspiral time scale. In an EMRI
the rate of energy loss _E over the energy E is _E=E ¼ OðqÞ,
which implies that the time an inspiral lasts is Oðq−1Þ.
Hence, the inspiraling time is much longer than the orbital
time scale Oðq0Þ. Moreover, since the mass ratio q is very
small, the deviation from the trajectory that the secondary
body would follow without the self-force is very small as
well. Hence, an EMRI can be modeled as a secondary body*skoupy@asu.cas.cz
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moving on an orbit in a given spacetime background with
slowly changing orbital parameters; this type of modeling
is called the adiabatic approximation [10–13].
For a nonspinning body inspiraling into a Kerr black

hole the phases of the GW can be expanded in the mass
ratio as [8]

ΦμðtÞ ¼
1

q
Φ0

μðqtÞ þΦ1
μðqtÞ þOðqÞ; ð1Þ

where the first term on the right-hand side is called the
adiabatic term and the second is called the postadiabatic
term. The adiabatic term can be calculated from the
averaged dissipative part of the first-order self-force, while
the postadiabatic term is calculated from several other parts
of the self-force, namely, from the rest of the first-order
self-force, i.e., the oscillating dissipative part and the
conservative part, and from the averaged dissipative part
of the second-order self-force [6]. To accurately model the
inspiral up to radians, the postadiabatic term cannot be
neglected.
So far we have discussed the case of a nonspinning

secondary body; however, to accurately calculate wave-
forms for an EMRI, one must also include the spin of the
secondary. To understand why, it is useful to normalize the
spin magnitude of the secondary S ¼ Oðμ2Þ as σ ¼
S=ðμMÞ ¼ OðqÞ [14]. For example, if the spinning body
is set to be an extremal Kerr black hole, i.e., S ¼ μ2, then
σ ¼ q. Thus, the contribution of the spin of the secondary
to an EMRI evolution is of postadiabatic order.
The adiabatic term in the nonspinning case can be found

from the asymptotic GW fluxes to infinity and to the
horizon of the central back hole. This stems from the flux-
balance laws which have been proven for the evolution of
energy, angular momentum, and the Carter constant for
nonspinning particles in Ref. [15]. For spinning bodies in
the linear-in-spin approximation the flux-balance laws have
been proven just for the energy and angular momentum
fluxes in Refs. [16,17]. In the nonlinear-in-spin case the
motion of a spinning body in a Kerr background is
nonintegrable [14], i.e., there are more degrees of freedom
than constants of motion. The authors of Ref. [18] showed
that the motion of a spinning particle in a curved spacetime
can be expressed by a Hamiltonian with at least five degrees
of freedom. Hence, since this Hamiltonian system is
autonomous, i.e., the Hamiltonian itself is a constant of
motion, four other constants of motion are needed to
achieve integrability. In the Kerr case, there is the energy
and angular momentum along the symmetry axis for the
full equations, while in the linear-in-spin approximation
Rüdiger [19,20] found two quasiconserved constants
of motion [21]. These quasiconserved constants can
be interpreted as a projection of the spin to the orbital
angular momentum and a quantity similar to the Carter

constant [22]. If the evolution of these quantities could be
calculated from asymptotic fluxes, then one could calculate
the influence of the secondary spin on the asymptotic GW
fluxes. This, in turn, would allow us to capture the
influence of the secondary spin on the GW phase for
generic inspirals.
Fully relativistic GW fluxes from orbits of nonspinning

particles along with the evolution of the respective inspirals
were first calculated in Ref. [23] for eccentric orbits around
a Schwarzschild black hole and in Ref. [24] for circular
equatorial orbits around a Kerr black hole. Fluxes from
eccentric orbits in the Kerr spacetime were calculated in
Refs. [25,26], while the adiabatic evolution of the inspirals
was presented in Ref. [10]. Fully generic fluxes from a
nonspinning body were calculated in Ref. [27] and were
employed in Ref. [11] to adiabatically evolve the inspirals.
The spin of the secondary was included in the fluxes in
Refs. [16,28–31] from circular orbits in a black hole
spacetime and in the quasicircular adiabatic evolution of
the orbits in Refs. [32–35]. In Ref. [17] the first-order self-
force was calculated for circular orbits in the Schwarzschild
spacetime. Finally, the fluxes from spinning bodies on
eccentric equatorial orbits around a Kerr black hole were
calculated in Ref. [36] and the adiabatic evolution in the
linear-in-spin approximation was calculated in Ref. [12].
In this work, we follow the frequency-domain method to

calculate generic orbits of spinning bodies around a Kerr
black hole developed in Refs. [37,38] and use it to find
asymptotic GW fluxes from these orbits in the case when
the spin is aligned with the orbital angular momentum. The
results are valid up to linear order in the secondary spin,
since the orbits are only calculated up to this order.
The rest of our paper is organized as follows. Section II

introduces the motion of spinning test bodies in the Kerr
spacetime and describes the calculation of the linear-in-spin
part of the motion in the frequency domain. Section III
presents the computation of GW fluxes from the orbits
calculated in Sec. II. Section IV describes the numerical
techniques we employ to calculate the aforementioned orbits
and fluxes, and presents comparisons of the new results with
previously known equatorial-limit results and time-domain
results for generic off-equatorial orbits. Finally, Sec. V
summarizes our work and provides an outlook for possible
extensions.
In this work, we use geometrized units where c ¼ G ¼ 1.

Spacetime indices are denoted by greek letters and go from 0
to 3, null-tetrad indices are denoted by lowercase latin letters
a; b; c;… and go from 1 to 4, and indices of theMarck tetrad
are denoted by uppercase latin lettersA;B;C;… and go from
0 to 3. A partial derivative is denoted with a comma as
Uμ;ν ¼ ∂νUμ, whereas a covariant derivative is denoted by a
semicolon as Uμ;ν ¼ ∇νUμ. The Riemann tensor is defined
as Rμ

νκλ ¼ Γμ
νλ;κ − Γμ

νκ;λ þ Γμ
ρκΓρ

νλ − Γμ
ρλΓρ

νκ, and the
signature of the metric is ð−;þ;þ;þÞ. The Levi-Civita
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tensor ϵαβγδ is defined as ϵ0123 ¼ 1=
ffiffiffiffiffiffi−gp

for rational poly-
nomial coordinates.1

II. MOTION OF A SPINNING TEST BODY

The motion of an extended test body in the general
relativity framework was first addressed by Mathisson in
Refs. [39,40] where he introduced the concept of a
“gravitational skeleton,” i.e., an expansion of an extended
body using its multipoles. If we wish to describe the motion
of a compact object like a black hole or a neutron star, we
can restrict ourselves to the pole-dipole approximation
[14], where the aforementioned expansion is truncated to
the dipole term and all of the higher multipoles are ignored.
In this way, the extended test body is reduced to a body
with spin and the respective stress-energy tensor can be
written as [41]

Tμν ¼
Z

dτ

�
PðμvνÞ

δ4ðxρ − zρðτÞÞ
ffiffiffiffiffiffi−gp

−∇α

�
SαðμvνÞ

δ4ðxρ − zρðτÞÞ
ffiffiffiffiffiffi−gp

��
; ð2Þ

where τ is the proper time, Pμ is the four-momentum, vμ ¼
dzμ=dτ is the four-velocity, Sμν is the spin tensor, and g is
the determinant of the metric. Note that xμ denotes an
arbitrary point of the spacetime and zμðτÞ denotes the
position of the body parametrized by the proper time.
From the conservation law Tμν

;ν ¼ 0, the Mathisson-
Papapetrou-Dixon (MPD) equations [40,42,43] can be
derived as

DPμ

dτ
¼ −

1

2
Rμ

νρσvνSρσ; ð3aÞ

DSμν

dτ
¼ Pμvν − Pνvμ; ð3bÞ

where Rμ
νρσ is the Riemann tensor. However, this system of

equations is underdetermined because one has the freedom
to choose the center of mass which is tracked by the
solution of these equations. To close the system, a so-called
spin supplementary condition (SSC) must be specified. In
this work we use the Tulczyjew-Dixon (TD) [43,44] SSC

SμνPμ ¼ 0: ð4Þ

Under this SSC, the mass of the body

μ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−PμPμ

p ð5Þ

and the magnitude of its spin

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SμνSμν=2

q
ð6Þ

are conserved. The relation between the four-velocity and
four-momentum reads [45]

vμ ¼ m
μ

�
uμ þ

1
2
sμνRνρκλuρsκλ

1þ 1
4
Rαβγδsαβsγδ

�
; ð7Þ

where

uμ ¼ Pμ

μ
; sμν ¼ Sμν

μ
ð8Þ

are specific momenta and m ¼ −pμvμ is a mass definition
with respect to vμ which is not conserved under the TD
SSC. Note that fixing the center of mass as a reference point
for the body allows us to view it as a particle. Hence, quite
often the term “spinning particle” is used instead of
“spinning body.”
From the spin tensor sμν and the specific four-momen-

tum uμ we can define the specific spin four-vector

sμ ¼ −
1

2
ϵμνρσuνsρσ; ð9Þ

for which the evolution equation

Dsμ

dτ
¼ −uμR�

αβγδs
αvβuγsδ ð10Þ

holds [46], where the right dual of the Riemann tensor has
the form

R�
αβγδ ¼

1

2
Rαβ

μνϵμνγδ: ð11Þ

Note that from Eq. (9) and the properties of ϵμνρσ it is clear
that sμuμ ¼ 0.
In the context of an EMRI, it is convenient to define the

dimensionless spin parameter

σ ¼ S
μM

; ð12Þ

since one can show that σ is of the order of the mass ratio
q ¼ μ

M [14]. Having established that σ ≲ q, one sees that
this parameter is very small in the context of EMRI. Since
the adiabatic order is calculated from the geodesic fluxes
[27], every correction to the trajectory and the fluxes of the
order of q influences the first postadiabatic order and
higher-order corrections are pushed to second postadiabatic
order and further. By taking into account that the current
consensus is that for the signals observed by LISAwe need

1Note that for Boyer-Lindquist coordinates the sign is opposite
since the coordinate frame in Boyer-Lindquist coordinates is
right-handed, whereas the coordinate frame in rational polyno-
mial coordinates is left-handed.
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an accuracy in the waveforms up to the first postadiabatic
order, it is reasonable to linearize the MPD equations in the
secondary spin and discard all of the terms of the order
Oðσ2Þ and higher. Note that in Refs. [37,38] a different
dimensionless spin parameter was used, which is defined as

s ¼ S
μ2

: ð13Þ

It is related to σ by s ¼ σ=q and its magnitude is bounded
by one.
After the linearization in σ the relation (7) reads

vμ ¼ uμ þOðs2Þ ð14Þ

and the MPD equations themselves simplify to

Duμ

dτ
¼ −

1

2
Rμ

νρσuνsρσ; ð15aÞ

Dsμν

dτ
¼ 0; ð15bÞ

and

Dsμ

dτ
¼ 0: ð16Þ

Equation (16) is the equation of parallel transport along the
trajectory. After rewriting this equation using the total
derivative

dsμ

dτ
þ Γμ

αβuαsβ ¼ 0; ð17Þ

it can be seen that to keep the equation truncated to OðσÞ,
the Christoffel symbol Γμ

αβ and the four-momentum have
to be effectively taken at the geodesic limit [37]. Thus, the
parallel transport of the spin has to take place along a
geodesic.

A. Spinning particles in Kerr spacetime

In this work we treat the binary system as a spinning
body moving on a Kerr background spacetime, whose line
element in “rational polynomial” coordinates [47] reads

ds2 ¼ −
�
1 −

2Mr
Σ

�
dt2 −

4aMrð1 − z2Þ
Σ

dtdϕ

þ ðϖ4 − a2Δð1 − z2ÞÞð1 − z2Þ
Σ

dϕ2

þ Σ
Δ
dr2 þ Σ

1 − z2
dz2; ð18Þ

where

Σ ¼ r2 þ a2z2;

Δ ¼ r2 − 2Mrþ a2;

ϖ2 ¼ r2 þ a2:

These coordinates are derived from the Boyer-Lindquist
ones with z ¼ cos θ and are convenient for manipulations
in an algebraic software such as Mathematica.
The outer horizon of a Kerr black hole is located at

rþ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
. A Kerr spacetime is equipped with

two Killing vectors, ξμðtÞ ¼ δμt and ξðϕÞ ¼ δμϕ, which are

related to the stationarity and axisymmetry of the space-
time, respectively. Additionally, for the Kerr spacetime,
there is also a Killing-Yano tensor in the form

Yμνdxμ ∧ dxν ¼ azdr ∧ ðdt − að1 − z2ÞdϕÞ
þ rdz ∧ ðadt −ϖ2dϕÞ; ð19Þ

from which a Killing tensor can be defined as

Kμν ¼ Yμ
κYνκ: ð20Þ

Thanks to these symmetries, there exist two constants of
motion for the spinning particle in the Kerr background,

E ¼ −uμξ
μ
ðtÞ þ

1

2
ξðtÞμ;νsμν; ð21aÞ

Jz ¼ uμξ
μ
ðϕÞ −

1

2
ξðϕÞμ;ν sμν; ð21bÞ

which can be interpreted as the specific total energy
measured at infinity and the component of the specific
total angular momentum parallel to the axis of symmetry of
the Kerr black hole measured at infinity, respectively.
Apart from the aforementioned constants, there are also a

couple of quasiconserved quantities [19,20],

CY ¼ Yμνuμsν; ð21cÞ

KR ¼ Kμνuμuν − 2uμsρσðYμρ;κYκ
σ þ Yρσ;κYκ

μÞ; ð21dÞ

for which it holds that

dKR

dτ
¼ Oðσ2Þ; dCY

dτ
¼ Oðσ2Þ: ð22Þ

The existence of these quasiconserved quantities causes the
motion of a spinning particle in a Kerr background to be
nearly integrable to linear order in σ [21]. Actually, for a
Schwarzschild background (a ¼ 0) it has been shown that
the nonintegrability effects appear at Oðσ2Þ [48]. KR is
analogous to the geodesic Carter constant K ¼ Kμνuμuν ¼
lμlμ (see Appendix A), where lμ ¼ Yν

μuν can be interpreted
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as the total specific (geodesic) orbital angular momentum.
Because of this, CY can be interpreted as a scalar product of
the spin four-vector with the total orbital angular momen-
tum. In other words, CY can be seen as a projection of the
spin onto the total orbital angular momentum.
The four-vector lμ was used by Marck [49] and van de

Meent [50] to find a solution to a parallel transport along a
geodesic in the Kerr spacetime, i.e., a solution to Eq. (16).
The resulting sμ can be written as

sμ ¼ Mðσ⊥ðcosψpẽ
μ
1 þ sinψpẽ

μ
2Þ þ σke

μ
3Þ; ð23Þ

where we introduced σ⊥ and σk, which are decompositions
of the spin four-vector to a perpendicular component and to
a parallel one, respectively, to the total orbital angular
momentum, while ẽμ1, ẽ

μ
2, and eμ3 ¼ lμ=

ffiffiffiffi
K

p
are the legs of

the Marck tetrad [50]. (Note that the zeroth leg of the tetrad
is taken to be along the four-velocity of the orbiting body:
eμ0 ¼ uμ. Because sμuμ ¼ 0, this tetrad leg does not appear
in sμ.) Similarly to Refs. [37,38] we define eμ3 with opposite
sign from that in Ref. [50]. The definition of CY implies
that σk ¼ CY=

ffiffiffiffi
K

p
.

Equation (23) describes a vector precessing around eμ3
with precession phase ψp, which fulfils the evolution
equation

dψp

dλ
¼

ffiffiffiffi
K

p �ðr2 þ a2ÞE − aLz

K þ r2
þ a

Lz − að1 − z2ÞE
K − a2z2

�
;

ð24Þ

where λ is the Carter-Mino time, related to the proper time
along the orbit by dλ ¼ dτ=Σ. An analytic solution for ψpðλÞ
can be found in Ref. [50]. The precession introduces a new
frequency ϒs into the system. Since the perpendicular
component σ⊥ is multiplied by the sine and cosine of the
precession phase, the contribution of this component in the
linear order is purely oscillating. Therefore, the constants of
motion and the frequencies depend only on the parallel
component σk as well as the GW fluxes of the energy and
angular momentum to linear order in spin. Because of this,
we neglect the perpendicular component and focus on a
trajectory of a spinning body with spin aligned to the total
orbital angular momentum.

B. Linearized trajectory in frequency domain

We follow the procedure of Refs. [37,38], where the
bounded orbits of a spinning particle were parametrized in
Mino-Carter time as

ut ¼ −Êþ uSt ðλÞ; ð25aÞ

uϕ ¼ L̂z þ uSϕðλÞ; ð25bÞ

r ¼ p
1þ e cosðϒrλþ δχ̂rðλÞ þ δχSr ðλÞÞ

þ rSðλÞ; ð25cÞ

z ¼ sin I cosðϒzλþ δχ̂zðλÞ þ δχSz ðλÞÞ þ zSðλÞ; ð25dÞ

with

ϒr ¼ ϒ̂r þϒS
r ;

ϒz ¼ ϒ̂z þϒS
z ;

where the hatted quantities denote geodesic quantities and
quantities with index the S are proportional to σ.2

This parametrization assumes that the particle oscillates
between its radial and polar turning points, but, unlike in
the geodesic case (described in Appendix A), the radial
turning points depend on z and the polar turning points
depend on r. This dependence is encoded in the corrections
rS and zS, respectively. ϒr and ϒz are the radial and polar
frequency, but because of the corrections rS and zS the
radial and polar motion also has a small contribution from a
combination of all of the frequencies, nϒr þ kϒz þ jϒs,
where n, k, and j are integers. This parametrization
assumes that a reference geodesic is given by the semilatus
rectum p, eccentricity e, and inclination I (see Appendix A
for their definitions), and the trajectory of a spinning
particle has the same turning points after averaging.
With these frequencies in hand, the quantities in Eq. (25)

parametrized with respect to λ can be expanded in the
frequency domain as

fðλÞ ¼
X

n;k;j

fnkje−inϒrλ−ikϒzλ−ijϒsλ: ð26Þ

In particular, δχSr is summed only over positive and
negative n; δχSz is summed only over positive and negative
k; and k and j cannot be simultaneously zero for rS and n
and j cannot be simultaneously zero for zS. In our
numerical calculations we truncate the n and k sums at
�nmax and �kmax. These maxima are determined empiri-
cally from the convergence of contributions to the total flux
from each mode, as well as from the mode’s numerical
properties; more details are shown in Sec. IV. The index j is
summed from −1 to 1.
After introducing the phases

wr ¼ ϒrλ; ð27aÞ

wz ¼ ϒzλ; ð27bÞ

ws ¼ ϒsλ; ð27cÞ

2ϒs does not need to be expanded to first order in σ because it
appears in terms proportional to σ.
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we can write the inverse expression for Eq. (26) as

fknj ¼
Z

dwrdwzdws

ð2πÞ3 fðwr; wz; wsÞeinwrþikwzþijws : ð28Þ

Equation (15a) together with the normalization of the four-
velocity uμuμ ¼ −1 are then used to find the quantities (25)
in the frequency domain.
The coordinates can then be linearized with fixed phases

as rðwr; wz; wsÞ ¼ r̂ðwrÞ þ rSðwr; wz; wsÞ, zðwr; wz; wsÞ ¼
ẑðwzÞ þ zSðwr; wz; wsÞ, where the linear-in-spin parts can
be expressed as [37,38]

rS ¼ epδχSr sinðwr þ δχ̂rÞ
ð1þ e cosðwr þ δχ̂rÞÞ2

þ rS; ð29Þ

zS ¼ − sin IδχSz sinðwz þ δχ̂zÞ þ zS: ð30Þ

For the calculation of GW fluxes we also need the
coordinate time and azimuthal coordinate. Both can be
expressed as a secularly growing part plus a purely
oscillating part, i.e.,

t ¼ Γλþ Δtðϒrλ;ϒzλ;ϒsλÞ; ð31Þ

ϕ ¼ ϒϕλþ Δϕðϒrλ;ϒzλ;ϒsλÞ; ð32Þ

where the oscillating parts Δt and Δϕ cannot be separated,
unlike in the geodesic case in Eq. (A6) where they are
broken up into r and z parts [51]. These oscillating parts
can be calculated from the four-velocity with respect to
Carter-Mino time, Uμ ≡ dxμ=dλ ¼ Σuμ ≡ Σdxμ=dτ. After
integrating

dt
dλ

¼ Ut ¼
X

n;k;j

Ut
nkje

−inϒrλ−ikϒzλ−ijϒsλ; ð33Þ

the n, k, j mode of ΔtðλÞ in the frequency domain (26)
reads

Δtnkj ¼
Ut

nkj

−inϒr − ikϒz − jϒs
; ð34Þ

where Ut
nkj is the harmonic mode of the four-velocity. By

linearizing the above equation in spin, we obtain

ΔtSnkj ¼
iUt

S;nkj

nϒ̂r þ kϒ̂z þ jϒs

−
iÛt

nkjðnϒS
r þ kϒS

z Þ
ðnϒ̂r þ kϒ̂zÞ2

: ð35Þ

The second term is zero for j ¼ �1 and ϒS
s is not needed,

since the geodesic motion is independent of ϒs. The linear-
in-spin part of the t component of the four-velocity can be
expressed as

Ut
S ¼

∂Vt

∂r
rS þ ∂Vt

∂z
zS −

∂Vt

∂E
uSt þ

∂Vt

∂Lz
uSϕ; ð36Þ

where Vt is given in Eq. (A5a). Similarly as for ΔϕS, we
use Uϕ to get Δϕnkj and consequently ΔϕS

nkj, in which Uϕ
S

is as in Eq. (36), but instead of Vt we use Vϕ.
The linear-in-spin parts of Γ and ϕ are Ut

S;000 and U
ϕ
S;000,

respectively [38]. The coordinate-time frequencies read

Ωr ¼
ϒ̂r þϒS

r

Γ̂þ ΓS
; ð37aÞ

Ωz ¼
ϒ̂z þϒS

z

Γ̂þ ΓS
; ð37bÞ

Ωϕ ¼ ϒ̂ϕ þϒS
ϕ

Γ̂þ ΓS
; ð37cÞ

Ωs ¼
ϒ̂s

Γ̂þ ΓS
: ð37dÞ

III. GRAVITATIONAL-WAVE FLUXES

In this work we calculate the GWs generated by a
spinning particle moving on a generic orbit around a Kerr
black hole using the Newman-Penrose (NP) formalism. We
calculate a perturbation of the NP scalar

Ψ4 ¼ −Cαβγδnαm̄βnγm̄δ; ð38Þ

where Cαβγδ is the Weyl tensor and nμ and m̄μ are part
of the Kinnersley tetrad ðλμ1; λμ2; λμ3; λμ4Þ ¼ ðlμ; nμ; mμ; m̄μÞ
defined as

lμ ¼
�
r2 þ a2

Δ
; 1; 0;

a
Δ

�
; ð39aÞ

nμ ¼ 1

2Σ
ðϖ2;−Δ; 0; aÞ; ð39bÞ

mμ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
ffiffiffi
2

p
ζ̄

�
ia; 0;−1;

i
1 − z2

�
; ð39cÞ

m̄μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
ffiffiffi
2

p
ζ

�
−ia; 0;−1;−

i
1 − z2

�
; ð39dÞ

with

ζ ¼ r − iaz:

From the NP scalar (38) we can calculate the strain at
infinity using the equation
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Ψ4ðr → ∞Þ ¼ 1

2

d2h
dt2

; ð40Þ

where h ¼ hþ − ih⨯ is expressed using the two polar-
izations of the GW. The NP scalar Ψ4 can be found using
the Teukolsky equation [52],

−2O−2ψðt; r; θ;ϕÞ ¼ 4πΣT; ð41Þ

where −2ψ ¼ ζ4Ψ4, −2O is a second-order differential
operator and T is the source term defined from Tμν.
We solve the Eq. (41) in frequency domain, where it can

be decomposed as

−2ψ ¼
X∞

l;m

1

2π

Z
∞

−∞
dωψ lmωðrÞ−2Saωlm ðzÞe−iωtþimϕ: ð42Þ

Then, Eq. (41) can be separated into two ordinary differ-
ential equations, one for the radial part ψ lmωðrÞ and one for
the angular part −2Saωlm ðzÞ, which is called the spin-weighted
spheroidal harmonics and is normalized as

Z
1

−1
j−2Saωlm ðzÞj2dz ¼

1

2π
: ð43Þ

The radial equation reads

Dlmωψ lmωðrÞ ¼ T lmω; ð44Þ

where Dlmω is a second-order differential operator that
depends on r, and T lmω is the source term which we will
describe later. Because the source term is zero around the
horizon and infinity, the function ψ lmωðrÞ must satisfy
boundary conditions at these points for the vacuum case
that read [11]

ψ lmωðrÞ ≈ Cþ
lmωr

3eiωr
�
; r → ∞; ð45aÞ

ψ lmωðrÞ ≈ C−
lmωΔe−ikHr

�
; r → rþ; ð45bÞ

where kH ¼ ω −ma=ð2MrþÞ is the frequency at the
horizon and r� ¼ R

ϖ2=Δdr is the tortoise coordinate.
The amplitudes at infinity and at the horizon C�

lmω can
be determined using the Green function formalism as

C�
lmω ¼ 1

W

Z
∞

rþ

R∓
lmωT lmω

Δ2
dr; ð46Þ

where R∓
lmωðrÞ are the solutions of the homogeneous

radial Teukolsky equation satisfying boundary conditions
at the horizon and infinity, respectively, and W ¼
ðð∂rRþ

lmωÞR−
lmω − Rþ

lmω∂rR
−
lmωÞ=Δ is the invariant

Wronskian.
According to Ref. [32], the source term can be written as

T lmω ¼
Z

dtdθdϕΔ2
X

ab

T abeiωt−imϕ; ð47Þ

where ab ¼ nn; nm̄; m̄ m̄ and

T ab ¼
XIab

i¼0

∂
i

∂ri

�
fðiÞab

ffiffiffiffiffiffi
−g

p
Tab

�
; ð48Þ

with Inn ¼ 0, Inm̄ ¼ 1, Im̄ m̄ ¼ 2. Note that the functions

fðiÞab (defined in Appendix B) are slightly different than the
definition in Ref. [32]. The projection of the stress-energy
tensor into the tetrad can be written as [53]

ffiffiffiffiffiffi
−g

p
Tab ¼

Z
dτððAm

ab þ Ad
abÞδ4 − ∂ρðBρ

abδ
4ÞÞ; ð49aÞ

where

Am
ab ¼ PðavbÞ; ð49bÞ

Ad
ab ¼ ScdvðbγaÞdc þ ScðaγbÞdcvd; ð49cÞ

Bρ
ab ¼ SρðavbÞ; ð49dÞ

and the spin coefficients are defined as

γadc ¼ λaμ;ρλ
μ
dλ

ρ
c: ð50Þ

After substituting Eqs. (47)–(49) into Eq. (46) and
integrating over the delta functions, the amplitudes C�

lmω
can be computed as

C�
lmω ¼

Z
∞

−∞

dτ
Σ
eiωtðτÞ−imϕðτÞI�lmωðrðτÞ; zðτÞ; uaðτÞ; SabðτÞÞ;

ð51Þ

where I�lmω is defined as

Iþlmω ¼ Σ
W

X

ab

XIab

i¼0

ð−1Þi
��

ðAm
abþAd

abþ iðωBt
ab−mBϕ

abÞÞfðiÞabþBr
ab
∂fðiÞab
∂r

þBz
ab
∂fðiÞab
∂z

�
diR∓

lmω

dri
þBr

abf
ðiÞ
ab
diþ1R∓

lmω

driþ1

�
: ð52Þ

Explicit expressions for Am
ab, A

d
ab, and Bμ

ab are given in Appendix B.
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Following a similar procedure as in Ref. [27], it can be proven that the amplitudes can be written as a sum over discrete
frequencies,

C�
lmω ¼

X

m;n;k;j

C�
lmnkjδðω − ωmnkjÞ with

ωmnkj ¼ mΩϕ þ nΩr þ kΩz þ jΩs: ð53Þ

The partial amplitudes are given by

C�
lmnkj ¼

1

ð2πÞ2Γ
Z

2π

0

dwr

Z
2π

0

dwz

Z
2π

0

dwsI�lmnkjðwr; wz; wsÞ

× expðiωmnkjΔtðwr; wz; wsÞ − imΔϕðwr; wz; wsÞ þ inwr þ ikwz þ ijwsÞ; ð54Þ

where I�lmnkjðwr; wz; wsÞ ¼ I�lmωmnkj
ðrðwr; wz; wsÞ; zðwr; wz;

wsÞ; uaðwr; wz; wsÞ; Sabðwr; wz; wsÞÞ.
The strain at infinity can be expressed from Eq. (40) as

h ¼ −
2

r

X

l;m;n;k;j

Cþ
lmnkj

ω2
mnkj

SlmnkjðθÞe−iωmnkjuþimϕ; ð55Þ

where u ¼ t − r� is the retarded coordinate and
SlmnkjðθÞ ¼ −2S

aωmnkj

lm ðθÞ.
From the strain h and the stress-energy tensor of a GW,

the averaged energy and angular momentum fluxes can be
derived as

hFEi ¼
X

l;m;n;k;j

FE
lmnkj; ð56aÞ

hF Jzi ¼
X

l;m;n;k;j

F Jz
lmnkj; ð56bÞ

with

FE
lmnkj ¼

jCþ
lmnkjj2 þ αlmnkjjC−

lmnkjj2
4πω2

mnkj

; ð56cÞ

F Jz
lmnkj ¼

m

�
jCþ

lmnkjj2 þ αlmnkjjC−
lmnkjj2

�

4πω3
mnkj

; ð56dÞ

where

αlmnkj ¼
256ð2MrþÞ5kHðk2H þ 4ϵ2Þðk2H þ 16ϵ2Þω3

mnkj

jClmωmnkj
j2 ;

ð57Þ

ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
=ð4MrþÞ, and the Teukolsky-Starobinsky

constant is

jClmωj2 ¼ ððλlmω þ 2Þ2 þ 4aωðm − aωÞÞ
× ðλ2lmω þ 36aωðm − aωÞÞ
− ð2λlmω þ 3Þð48aωðm − 2aωÞÞ
þ 144ω2ðM2 − a2Þ: ð58Þ

Since all of the terms proportional to the perpendicular
component σ⊥ are purely oscillating with frequency Ωs, the
only contribution to the fluxes from σ⊥ comes from the
modes with j ¼ �1. The amplitudes C�

lmnkj for j ¼ �1 are
proportional to σ⊥ and, therefore, the fluxes for j ¼ �1 are
quadratic in σ⊥. We can neglect them in the linear order in σ
and sum over l, m, n, and k with j ¼ 0. In this work we
focus on the contribution of the parallel component σk to
the fluxes and, therefore, calculate only the j ¼ 0 modes.
For simplicity, in the rest of the article we omit the j index
and write ωmnk, F lmnk.
Note that since the trajectory is computed up to linear

order in σ, the amplitudes or the fluxes are valid up toOðσÞ
as well.

IV. NUMERICAL IMPLEMENTATION
AND RESULTS

In this section we describe the process of numerically
calculating the orbit and fluxes described in the previous
sections. If not stated otherwise, all calculations are done in
Mathematica. In some parts of these calculations we use the
BLACK HOLE PERTURBATION TOOLKIT (BHPT) [54].

A. Calculating the trajectory

Our approach to calculating the linear-in-spin parts of the
trajectory is the same as the approach described in
Refs. [37,38]. We managed to simplify the equations given
in these papers, and the respective details are given in
Appendix C. To calculate the geodesic motion we employ
the KERRGEODESICS package of BHPT.
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Using the aforementioned simplifications, we first cal-
culate uSt;nk and uSϕ;nk as

uSt;nk ¼
iRt;nk

nϒ̂r þ kϒ̂z

; uSϕ;nk ¼
iRϕ;nk

nϒ̂r þ kϒ̂z

ð59Þ

for n ≠ 0 or k ≠ 0, where Rt;nk and Rϕ;nk are Fourier
coefficients of the functions given in Eq. (C5). Then, the
Fourier coefficients uSt;00, u

S
ϕ;00, δχ

S
r;n, δχSz;k, r

S
nk, z

S
nk and the

frequencies’ components ϒS
r , and ϒS

z are calculated
as the least-squares solution to the system of linear
equations [37]

M · v þ c ¼ 0: ð60Þ

In the system of equations (60), the columnvector v contains
the unknown coefficients, the columnvector c is given by the
Fourier expansion components of the functions J , V, and P
in Eq. (C5) that are not coefficients of the unknown
quantities, and the elements of the matrix M are calculated
from the Fourier coefficients of the functions F r;r, Gr;r;θ;z,
Hr;r;θ;z, I1r;1θ;2;3,Qθ;z, Sr;r;θ;z, T r;r;θ;z, U1r;1θ;2;3, Kr;r;θ;z,
Mr;r;θ;z, N 1r;1θ, which are functions of the geodesic
quantities and are given in the supplemental material
of Ref. [37].
In particular, the Fourier coefficients are calculated as, e.g.,

Rt;nk ¼
X

a;b

Rtðr̂ðwa
r Þ; ẑðwb

z ÞÞFa
nGb

k; ð61Þ

whereFa
n andGb

k arematrices of a discrete Fourier transform,

Fa
n ¼ exp

�
πin
Nr

ð1þ 2aÞ
�

1

Nr
; ð62aÞ

Gb
k ¼ exp

�
πik
Nz

ð1þ 2bÞ
�

1

Nz
; ð62bÞ

and Nr (Nz) is the number of points along wr (wz). Each
function Rt is evaluated at equidistant points along wr
and wz as

wa
r ¼

2π

Nr

�
1

2
þ a

�
; ð63aÞ

wb
z ¼

2π

Nz

�
1

2
þ b

�
; ð63bÞ

where a ¼ 0; 1;…; Nr − 1, b ¼ 0; 1;…; Nz − 1. The num-
bers of steps along wr and wz are chosen according to the
orbital parameters, i.e., a higher number of steps is needed for
higher eccentricity and higher inclination.
Actually, not all of the Fourier coefficients can be

calculated accurately enough for highly eccentric and
inclined orbits, as can be seen in Fig. 1, where the

coefficients δχSr;n are plotted for different eccentricities.
Figure 1 shows that after a certain value of n the coefficients
stop decreasing. This is caused by the truncation of the
series and by the fact that the system of equations is solved
approximately using least squares. Similar behavior occurs
for δχSz;k and other Fourier series.

B. Gravitational-wave fluxes

After calculating the orbit, the partial amplitudes C�
lmnk

are evaluated by numerically calculating the two-
dimensional integral (54). The integral in Eq. (54) is
computed over one period of wr and of wz; hence, we
employ the midpoint rule, since the convergence is expo-
nential [55]. The number of steps for the integration is been
chosen as follows. We assume that the main oscillating part
of the integrand comes from the exponential term. The
number of oscillations in wr and wz is n and k, respectively.
However, because of Δt and Δϕ, the “frequency” of the
oscillations can be higher at the turning points, as can be
seen in Fig. 3 in Ref. [36]. In order to have enough steps in
each oscillation, the number of steps in wr is calculated
from the frequency of the oscillations at the pericenter
(wr ¼ 0) and apocenter (wr ¼ π) as

maxfj16⌈φ0
rð0Þ þ n⌉j; j16⌈φ0

rðπÞ þ n⌉j; 32g: ð64Þ

Similarly, the number of steps in wz comes from the
frequency at the turning point (wz ¼ 0; π) and the equato-
rial plane (wz ¼ π=2) as

maxfj8⌈φ0
zð0Þ þ k⌉j; j8⌈φ0

zðπ=2Þ þ k⌉j; 32g; ð65Þ

where φyðwyÞ ¼ ωmnkΔt̂yðwyÞ −mΔϕ̂yðwyÞ, y ¼ r, z. The
integration over ws is trivial for j ¼ 0, since the function is
independent of ws.

–15 –10 –5 0 5 10 15
10–22

10–17

10–12

10–7

0.01

FIG. 1. Fourier coefficients δχSr;n for generic orbits with
a ¼ 0.9M, p ¼ 15, I ¼ 15°, and different eccentricities. Because
the Fourier series is truncated at nmax ¼ 16 and the coefficients
are calculated approximately using least squares, the convergence
stops at certain �n.
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The homogeneous radial Teukolsky equation solutions
R�
lmnω have been calculated using the Teukolsky package

of BHPT. There the radial Teukolsky equation is numeri-
cally integrated in hyperboloidal coordinates [56] and the
initial conditions are calculated using the Mano-Sasaki-
Takasugi method [57]. On the other hand, the spin-
weighted spheroidal harmonics −2Saωlm are calculated using
the SPINWEIGHTEDSPHEROIDALHARMONICS package of
BHPT, where Leaver’s method [58] is employed.
Similarly as in Ref. [27], we use the symmetries

of the motion to reduce the integral (54) to a sum of four
integrals over 0 < wr < π, 0 < wz < π. Apart from the
geodesic symmetries ŷðwyÞ¼ ŷð2π−wyÞ, Δx̂yðwyÞ ¼
−Δx̂yð2π − wyÞ, and UyðwyÞ ¼ −Uyð2π − wyÞ, where
x ¼ t;ϕ, y ¼ r, z, we also use symmetries of the linear-
in-spin parts, which read fðwr; wzÞ ¼ fð2π − wr; 2π − wzÞ
for rS and zS andfðwr; wzÞ ¼ −fð2π − wr; 2π − wzÞ forUr

S,
Uz

S,ΔtS, andΔϕS. Thanks to the reflection symmetry around
the equatorial plane, there is also a symmetry fðwr; wzÞ ¼
fðwr; wz þ πÞ for rS, Ur

S, ΔtS, and ΔϕS and fðwr; wzÞ ¼
−fðwr; wz þ πÞ for zS andUz

S. Combining these symmetries,
it is sufficient to evaluate the linear-in-spin parts only for
0 < wr < π, 0 < wz < π, which reduces the computational
costs, since the evaluation of the Fourier series (26) is slow.
After these optimizations, calculating one mode takes
seconds for low eccentricities, inclinations, and mode num-
bers, while it takes tens of seconds for high eccentricities,
inclinations, and mode numbers.
To extract the linear-in-spin part of the partial amplitudes

or fluxes, i.e., their derivative with respect to σ, we use the
fourth-order finite-difference formula

fS ¼
1
12
fð−2σÞ − 2

3
fð−σÞ þ 2

3
fðσÞ − 1

12
fð2σÞ

σ
; ð66Þ

where f ¼ C�
lmnk, F

E, or F Jz and σ ¼ 0.5 in our calcu-
lations. This is necessary for comparisons with other
results, since the Oðσ2Þ part of the fluxes is invalid due
to the trajectory being linearized in spin.
Because the Fourier series (26) of the linear-in-spin part

of the trajectory is truncated at �nmax and �kmax, only a
finite number of n and kmodes of the amplitudes C�

lmnk and
of the fluxes can be calculated accurately. In Fig. 2 we show
the dependence of the absolute value of the linear-in-spin
parts of the amplitudes jCþ

S;lmnkj on n and k for different
nmax and kmax. The top panel shows amplitudes for an orbit
with high eccentricity (e ¼ 0.5). If the Fourier series in n is
truncated at lower nmax, the amplitudes stop being accurate
after a certain value of n. Similarly, for an orbit with higher
inclination (I ¼ 60°), as shown in the bottom panel of
Fig. 2, when the series is truncated at lower kmax the
amplitudes stop converging with k. Such issues were
already reported for geodesic fluxes in Ref. [59].

Near the separatrix the calculations are difficult because of
the divergence of some quantities, as was already shown in
the equatorial case [12]. In Fig. 3 we show the dependence of
jCþ

S;lmnkj on n and k for orbits near the separatrix ps, namely,
p − ps ¼ 0.19866 for the top panel and p − ps ¼ 0.22076
for the bottom panel. We can see that Figs. 2 and 3 are
qualitatively the same. This is because in both cases the
dominant source of the error is the linear part of the trajectory
caused by the behavior of the Fourier coefficients shown in
Fig. 1. Since the coefficients δχSr;n, etc., are accurate only for
jnj ≤ 3 for nmax ¼ 8, jnj ≤ 6 for nmax ¼ 16, and jnj ≤ 9 for
nnamx ¼ 24, the linear parts of the amplitudes are unreliable
outside these bounds. Thus, although the linear parts of the
amplitudes for nmax ¼ 16 and 24 seem to coincide and
converge to zero, they are not trustworthy. The same argu-
ments hold for the bottom panel of Fig. 3. For better analysis,
the higher-frequency modes of the trajectory must be
calculated with higher accuracy. Because this task is com-
putationally expensive, we leave it for future work.

C. Comparison with the equatorial limit

To verify our results with the equatorial limit (I → 0), we
compare the frequency-domain results for several

FIG. 2. Top: dependence of the linear-in-spin parts of the partial
amplitudes for k ¼ 0 and different nmax for an orbit with
a ¼ 0.9M, p ¼ 15, e ¼ 0.5, I ¼ 15°. Bottom: dependence of
the linear-in-spin parts of the partial amplitudes on k for n ¼ 0
and different kmax for an orbit with a ¼ 0.9M, p ¼ 12, e ¼ 0.2,
I ¼ 60°. Note that the numbers n and k refer to the modes Cþ

lmnk
and nmax and kmax refer to the trajectory.
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inclinations with a frequency-domain code for equatorial
orbits [36]. First, we calculate the sum of the total energy
flux over l and m for nearly spherical orbits with inclina-
tions I ¼ 0.5°; 1°; 2°; 4°; 8°. We plot the relative difference

ΔFE
S ¼ j1 − FE

S=F
E
S;I¼0j against I on a logarithmic scale

on both axes in Fig. 4. This way, we verify that the linear-
in-spin part FE

S asymptotically approaches the equatorial
limit as I → 0 with an OðI2Þ difference convergence.
A similar procedure is used for the eccentric orbits. We

compute the l, m, n with k ¼ 0 modes of the energy flux
FE

S;lmnk for different inclinations I and plot the relative
differences ΔFE

S;lmnk ¼ j1 − FE
S;lmnk=F

E
S;lmnk;I¼0j in Fig. 5.

We again see that for all of the modes the relative difference
in fluxes FE

S;lmnk follows an OðI2Þ convergence as I → 0.
This behavior agrees with the behavior of a Post-
Newtonian expansion of nearly equatorial geodesic fluxes
in Refs. [15,60], because the parameters y and Y in these
references are OðI2Þ.

D. Comparison of frequency- and time-domain results

To further verify the frequency-domain calculation of the
fluxes FE and F Jz , we compare them with fluxes calcu-
lated using the time-domain Teukolsky equation solver
TEUKODE [61]. This code solves the (2þ 1)-dimensional
Teukolsky equation with a spinning-particle source term in
hyperboloidal horizon-penetrating coordinates. The fluxes
of energy and angular momentum are extracted at the future
null infinity. The numerical scheme consists of a method of

FIG. 4. Relative differences of the linear-in-spin part of the total
energy flux FE

S between equatorial and nearly equatorial cases of
nearly spherical orbits for a ¼ 0.9M and different semilatus
rectum p. The dashed gray lines indicate the OðI2Þ behavior.

FIG. 5. Relative differences of the linear-in-spin part of the total
energy flux FE

S;lmn0 between equatorial and nearly equatorial
eccentric orbits with a ¼ 0.9M, p ¼ 12, e ¼ 0.3. The top panel
shows modes with l ¼ 2, m ¼ 2 and the bottom panel shows
l ¼ 5, m ¼ 4. The dashed gray lines show the OðI2Þ behavior.

FIG. 3. Dependence of the linear parts of the amplitudes on n
for different nmax (top) and on k for different kmax (bottom) for
orbits near the separatrix. The orbital parameters are a ¼ 0.9M,
p ¼ 3.1, e ¼ 0.5, I ¼ 15° (top) and a ¼ 0.9M, p ¼ 4.2, e ¼ 0.2,
I ¼ 60° (bottom). Note that in the top panel the nmax ¼ 16 and
nmax ¼ 24 almost coincide; the same holds for the kmax ¼ 16 and
kmax ¼ 24 in the bottom panel.
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lines with sixth-order finite-difference formulas in space
and a fourth-order Runge-Kutta scheme in time.
First, we compare the computation of energy fluxes to

infinity from nearly spherical orbits, i.e., orbits with e ¼ 0.
For details about the time-domain calculation of the trajec-
tory and the fluxes, see Appendix D. Since the time-domain
outputsm modes of the flux, we sum the frequency-domain
flux over l and k (for spherical orbits, only the n ¼ 0modes
are nonzero). In Fig. 6 we show the relative difference
between the time-domain- and frequency-domain-computed
linear-in-spin part of the energy flux ΔFE

S;m ¼ j1 − FE;fd
S;m =

FE;td
S;m j for several inclinations I and azimuthal numbers m.

The top panel shows the dependence of the relative difference
on I for prograde orbits and the lower panel shows the
dependence on m for retrograde orbits. We can see that the
error is at most 6 × 10−3 which is around the reported
accuracy of TEUKODE in our previous paper [36]. The error
of the frequency domain comes from the truncation of the
Fourier expansion to nmax and kmax and from the summation
of the fluxes over l and k. On top of that, one has to take into
account that based on the order of the method and the length
of the step we estimate that the relative error of linearization
of both the time-domain and frequency-domain flux using
the fourth-order finite-difference formula should be around

10−5. This estimation holds not only for the nearly spherical
orbits, but for the generic orbits as well.
Next we move to generic orbits. We sum the energy flux

over l, n, and k for given m and orbital parameters, in order
to calculate the relative difference between the linear part of
frequency-domain fluxes and time-domain fluxes ΔFE

S;m.
The results are presented in Table I. In this case, the relative
difference is at most 3 × 10−3.
Appendix E shows plots of linear-in-spin calculations of

the amplitudes and of the fluxes and some reference data
tables.

V. SUMMARY

In this work we provided asymptotic GW fluxes from
off-equatorial orbits of spinning bodies in the Kerr space-
time. In our framework the spin of the small body is parallel
to the orbital angular momentum and the calculations are
valid up to linear order in the spin.
We employed the frequency-domain calculation of the

orbits of spinning particles which was introduced in
Refs. [37,38]. In this setup, the linear-in-spin part of the
trajectory is solved in the frequency domain using MPD
equations under the TD SSC. We extended this setup to
calculate the corrections to the coordinate time ΔtS and the
azimuthal coordinate ΔϕS.
We calculated GW fluxes from the aforementioned orbits

using the Teukolsky equation. To do that, we constructed the
source of the Teukolsky equation for off-equatorial orbits of
spinning particles for spin parallel to the orbital angular
momentum. Then, by using this source, we developed a new
frequency-domain inhomogeneous Teukolsky equation
solver in Mathematica, which delivers the GW amplitudes
C�
lmnk at infinity and at the horizon. Having these amplitudes

allowed us to calculate the total energy and angular momen-
tum fluxes, whose validity is up to linear order in the spin.
Since at the linear order in spin the fluxes are independent of
the precessing perpendicular component of the spin, our
approach to compute the fluxes is sufficient for any linear-in-
spin configuration.
We numerically linearized the fluxes and compared the

results for nearly equatorial orbits with previously known

FIG. 6. Relative differences of the linear-in-spin part of the
fluxes FE

S;m between time-domain and frequency-domain calcu-
lations for different inclinations and m for nearly spherical orbits
with a ¼ 0.9M and p ¼ 10. The top panel shows prograde orbits
and the bottom panel shows retrograde orbits.

TABLE I. Relative differences ΔFE
S;m of the linear-in-spin part

of the energy flux FE
S;m between frequency-domain and time-

domain computations for given orbital parameters and azimuthal
number m. All orbits have a ¼ 0.9M.

p e I=° m FE
S;m ΔFE

S;m

10 0.1 15 2 −2.8259 × 10−6 1 × 10−3

12 0.2 30 1 −1.1954 × 10−7 2 × 10−5

12 0.2 30 2 −1.0488 × 10−6 1 × 10−3

12 0.2 30 3 −1.4210 × 10−7 3 × 10−3

12 0.2 60 2 −8.0550 × 10−7 5 × 10−4

15 0.5 15 2 −4.2936 × 10−7 2 × 10−3
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frequency-domain results [36] for equatorial orbits to verify
their validity in the equatorial limit. We found that the
difference of the off-equatorial and equatorial flux behaves
as OðI2Þ. Furthermore, we compared the off-equatorial
results with time-domain results obtained using the time-
domain Teukolsky equation solver TEUKODE. For different
orbital parameters and azimuthal numbers m the relative
difference is around 10−3, which is the current accuracy of
computations produced by TEUKODE.
This work is part of an ongoing effort to find the

postadiabatic terms [11,12,17,62–64] needed to model
EMRI waveforms accurately enough for future space-based
GWobservatories like LISA. Our work can be extended to
model adiabatic inspirals of a spinning body on generic
orbits in a Kerr background as we have done for the
equatorial-plane case in Ref. [12]; however, to achieve this
the flux of the Carter-like constants KR and the parallel
component of the spin CY must be derived first. In the near
future, we plan to publish the new frequency-domain
Teukolsky equation solver Mathematica code in the
BLACK HOLE PERTURBATION TOOLKIT repository.
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APPENDIX A: GEODESIC MOTION
IN KERR SPACETIME

In this appendix we briefly discuss aspects of geodesic
motion in the Kerr spacetime.
The specific energy

E ¼ −ut ðA1Þ

and the specific angular momentum along the symmetry
axis

Lz ¼ uϕ ðA2Þ

are conserved thanks to two respective Killing vectors. In
Ref. [22] Carter found a third constant,

K ¼ Kμνuμuν; ðA3Þ

and formulated the equations of motion as

dt
dλ

¼ Vtðr; z; E; LzÞ; ðA4aÞ

dr
dλ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rðr; E; Lz; KÞ

p
; ðA4bÞ

dz
dλ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zðz; E; Lz; KÞ

p
; ðA4cÞ

dϕ
dλ

¼ Vϕðr; z; E; LzÞ; ðA4dÞ

where

Vt ¼ r2 þ a2

Δ
ððr2 þ a2ÞE − aLzÞ − a2Eð1 − z2Þ þ aLz;

ðA5aÞ

R ¼ ððr2 þ a2ÞE − aLzÞ2 − ΔðK þ r2Þ; ðA5bÞ

Z ¼ −ðð1 − z2ÞaE − LzÞ2 þ ð1 − z2ÞðK − a2z2Þ; ðA5cÞ

Vϕ ¼ a
Δ
ððr2 þ a2ÞE − aLzÞ þ

Lz

1 − z2
− aE: ðA5dÞ

These equations are parametrized with Carter-Mino time
dτ=dλ ¼ Σ. The motion in r oscillates between its radial
turning points r1 and r2 with frequency ϒr and, similarly,
the z motion oscillates between its polar turning points�z1
with frequency ϒz. Moreover, the evolution of t and ϕ can
be written as

tðλÞ ¼ Γλþ ΔtrðλÞ þ ΔtzðλÞ; ðA6aÞ

ϕðλÞ ¼ ϒϕλþ ΔϕrðλÞ þ ΔϕzðλÞ; ðA6bÞ

where Γ and ϒϕ are average rates of change of t and ϕ,
while Δtr with Δϕr are periodic functions with frequency
ϒr, and Δtz with Δϕz are periodic functions with fre-
quency ϒz.
It is convenient to define frequencies with respect to

coordinate (Killing) time as

Ωr ¼
ϒr

Γ
; ðA7aÞ

Ωz ¼
ϒz

Γ
; ðA7bÞ

Ωϕ ¼ ϒϕ

Γ
; ðA7cÞ

but the system is not periodic in coordinate time and these
frequencies should be understood as average frequencies.
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The motion is often parametrized by its orbital
parameters—the semilatus rectum p, eccentricity e, and
inclination angle I—which are defined from the turning
points as

r1 ¼
Mp
1 − e

; r2 ¼
Mp
1þ e

; z1 ¼ sin I; ðA8Þ

where 0 < I < π=2 for prograde orbits and π=2 < I < π for
retrograde orbits. Analytic expressions for the constants of
motion in terms of the orbital parameters can be found in

Ref. [27]. Fujita and Hikida gave analytical expressions for
the frequencies and coordinates in Ref. [51].

APPENDIX B: SOURCE TERM

In this appendix we present explicit expressions for the
functions appearing in the source term for the calculation of
the partial amplitudes in Eq. (52).
Whereas Am

ab is entirely given by Eq. (49b) with Pa ¼
μua and va ¼ ua in the linear order, the terms in Ad

ab can be
expressed with NP spin coefficients as

Scdγndc ¼ Slnðγ þ γ̄Þ þ Snm̄ð−π̄ þ ᾱþ βÞ þ Snmð−π þ αþ β̄Þ þ Smm̄ð−μþ μ̄Þ; ðB1aÞ

Scdγm̄dc ¼ Slnðπ þ τ̄Þ þ Snm̄ρ̄þ Snmðαþ β̄Þ þ Slm̄ð−γ̄ þ γÞ þ Smm̄ð−αþ β̄Þ; ðB1bÞ

Scnγndcud ¼ Slnðγ þ γ̄Þun þ Snm̄ððᾱþ βÞun − μumÞ þ Snmððαþ β̄Þun þ μ̄um̄Þ; ðB1cÞ

Scm̄γm̄dcud ¼ Snm̄ð−πulÞ þ Slm̄ðτ̄un − ðγ̄ − γÞum̄Þ − Smm̄ð−ð−αþ β̄Þum̄Þ; ðB1dÞ

Scðnγm̄Þdcud ¼ ðSlnðτ̄un − ðγ̄ − γÞum̄Þ þ Snm̄ðρ̄un − μul − ðᾱ − β þ π̄Þum̄ − πumÞSnmð−ð−αþ β̄Þum̄Þ
þ Slm̄ðγ þ γ̄Þun − Smm̄ððαþ β̄Þun − μ̄um̄ÞÞ=2: ðB1eÞ

The tetrad components of the spin tensor for σ⊥ ¼ 0 can
be expressed as

Sln ¼ −σk
rðK̂ − a2z2Þffiffiffiffi

K̂
p

Σ
; Snm ¼ σk

ζffiffiffiffi
K̂

p umun; ðB2aÞ

Slm̄ ¼ −σk
ζffiffiffiffi
K̂

p ulum̄; Smm̄ ¼ σk
iazðK̂ þ r2Þffiffiffiffi

K̂
p

Σ
; ðB2bÞ

while the terms from the partial derivative for the dipole
term have the form

iðωStn −mSϕnÞ ¼
aωð1 − z2Þ −mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1 − z2Þ
p

Σ
ðζSnm̄ − ζ̄SnmÞ

−
iK
2Σ

Sln; ðB3aÞ

iðωStm̄ −mSϕm̄Þ ¼ −iK
�
Snm̄
Δ

þ Slm̄
2Σ

�

þ aωð1 − z2Þ −mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − z2Þ

p
ζ

Smm̄; ðB3bÞ

Srn ¼
Δ
2Σ

Sln; ðB3cÞ

Srm̄ ¼ −Snm̄ þ Δ
2Σ

Slm̄; ðB3dÞ

Szn ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
ðSnm̄ζ þ Snmζ̄Þffiffiffi

2
p

Σ
; ðB3eÞ

Szm̄ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
Smm̄ffiffiffi

2
p

ζ
; ðB3fÞ

where K ¼ ðr2 þ a2Þω − am. The functions fðiÞab are
given by

fð0Þnn ¼ −
2ζ2

Δ2
ðL†

1L
†
2 − 2iaζ−1

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
L†
2ÞS; ðB4aÞ

fð0Þnm̄ ¼ 2
ffiffiffi
2

p
ζ2

ζ̄Δ

��
iK
Δ

þ ζ−1 þ ζ̄−1
�
L†
2

− a
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p K
Δ
ðζ̄−1 − ζ−1Þ

�
S; ðB4bÞ

fð1Þnm̄ ¼ 2
ffiffiffi
2

p
ζ2

ζ̄Δ

�
L†
2 þ ia

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
ðζ̄−1 − ζ−1Þ

�
S; ðB4cÞ

fð0Þm̄ m̄ ¼ ζ2

ζ̄2

�
i∂r

�
K
Δ

�
− 2iζ−1

K
Δ
þ
�
K
Δ

�
2
�
S; ðB4dÞ

fð1Þm̄ m̄ ¼ −
2ζ2

ζ̄2

�
ζ−1 þ i

K
Δ

�
S; ðB4eÞ

VIKTOR SKOUPÝ et al. PHYS. REV. D 108, 044041 (2023)

044041-14



fð2Þm̄ m̄ ¼ −
ζ2

ζ̄2
S; ðB4fÞ

where

L†
n ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p �
∂z −

m − nz
1 − z2

þ aω

�
: ðB5Þ

APPENDIX C: TRAJECTORY

In this appendix we present some formulas we derived to
calculate the linear-in-spin contribution to the trajectory.

We use the tetrad from Eqs. (47)–(51) in Ref. [50] where ẽμ2
and eμ3 have opposite sign to align eμ3 with the total angular
momentum and to have a right-handed system. Then, the
right-hand side of the MPD equations can be written as

fμMPD ¼ −
1

2
eμAη

ABRB0CDSCD; ðC1Þ

where RB0CD are components of the Riemann tensor in the
Marck tetrad. Because of the way this tetrad is constructed
[21] and the fact that the Riemann tensor has a simple form in
the Kinnersley tetrad, the components can be simplified to

R1012 ¼
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK̂ þ r2ÞðK̂ − a2z2Þ

q ��
a2z2ðK̂ þ r2Þ − r2ðK̂ − a2z2Þ

�
I1 þ arzð2K̂ þ r2 − a2z2ÞI2

�

K̂Σ2
; ðC2aÞ

R3012 ¼
6arzðK̂ þ r2ÞðK̂ − a2z2ÞI1

K̂Σ2
þ
�
1þ 3

−a2z2ðK̂ þ r2Þ2 þ r2ðK̂ − a2z2Þ2
K̂Σ2

�
I2; ðC2bÞ

R2013 ¼ −I2; ðC2cÞ

R1023 ¼ −R3012 þ R2013; ðC2dÞ

R3023 ¼ R1012; ðC2eÞ

and R2012 ¼ R1013 ¼ R3013 ¼ R2023 ¼ 0, where

I1 ¼
Mrðr2 − 3a2z2Þ

Σ3
; ðC3Þ

I2 ¼
Mazð3r2 − a2z2Þ

Σ3
: ðC4Þ

The functionsRt;ϕ,J ,V, andP fromEqs. (3.24), (4.62), and
(4.63) in Ref. [38] can be simplified to

Rt ¼ ΣfMPD
t ; ðC5aÞ

Rϕ ¼ ΣfMPD
ϕ ; ðC5bÞ

J ¼ −Σ2frMPD þ I2δuSt þ I3δuSϕ; ðC5cÞ

V ¼ −Σ2fθMPD þ U2δuSt þ U3δuSϕ; ðC5dÞ

P ¼ N 2δuSt þN 3δuSϕ; ðC5eÞ

where I2;3, U2;3, andN 2;3 can be found in the supplemental
material of Ref. [37]. These simplifications make the
calculation of the trajectory significantly faster.

APPENDIX D: TRAJECTORIES AND FLUXES
IN THE TIME DOMAIN

In this appendix we describe our procedure to calculate
trajectories and GW fluxes in the time domain in order to
compare them with the frequency-domain results.

FIG. 7. Difference between the time domain calculation of r
with the full MPD equations and linearized in spin frequency
domain calculation of r for a ¼ 0.9M, p ¼ 12.0, e ¼ 0.2, I ¼
60° and different spins. The difference behaves as Oðσ2Þ and
grows linearly in λ on average, because of theOðσ2Þ difference in
the frequencies.
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First, we calculate the orbits using the full (nonlinearized
in spin) MPD equations (3) in the time domain. The initial
conditions are chosen such that the orbits are at mostOðσ2Þ
from orbits with given orbital parameters in the frequency
domain. As initial conditions we choose E, Jz, r, θ, ur, sr,
and sθ according to the values computed in the frequency
domain. Then, we find the other initial conditions from
Eqs. (4)–(6), and (21). For the evolution we use an implicit
Gauss-Runge-Kutta integrator, which is described in
Ref. [65]. In Fig. 7 we plot for several spins the difference

Δr ¼ rtdðλÞ − r̂ðϒrλÞ − rSðϒrλ;ϒzλÞ;

where rtdðλÞ is the evolution computed in the time domain.
It can be seen that the difference for σ ¼ �0.1 is 4 times
larger than the difference for σ ¼ �0.05, and thus it is
indeed Oðσ2Þ.
This trajectory is then used as an input to TEUKODE

which numerically solves the Teukolsky equation. The
output is the energy flux at infinity which must be averaged
to compare it with the frequency-domain result. For nearly
spherical orbits it is straightforward since at linear order in
spin the flux has period 2π=Ωz. Thus, we can average the
flux over several periods which have been calculated using
the frequency-domain approach.
For generic orbits the averaging procedure is more

challenging, since the flux is not strictly periodic and it
contains contributions from all of the combinations of the
frequencies Ωr and Ωz. This issue is resolved by consecu-
tive moving averages with different periods. The main
contribution to the oscillations of the flux comes from the
radial motion between the pericenter and apocenter. Thus,
we first compute the moving average of the time series with
period 2π=Ωr to smooth out the data. Then, we perform
several other moving averages with periods 2π=Ωz and
combinations 2π=ðnΩr þ kΩzÞ. After several such aver-
ages, the time series is too short for another moving
average, so we average all of the remaining data points.
This procedure appears to be reliable, since the results
match the frequency-domain calculations.

APPENDIX E: PLOTS AND DATA TABLES

In this appendix we show several plots of our frequency-
domain results and list the values for reference.
In Fig. 8 we plot the linear-in-spin part of the total energy

flux from a nearly spherical orbit for different l, m, and k.
From these plots we can see that the linear-in-spin part of
the flux has a global maximum at k ¼ l −m and a local
maximum around k ¼ −l −m. This behavior is similar to
the behavior of geodesic flux that was reported in Ref. [59].
In Fig. 9 we plot them, n, and k modes of the linearized-

in-spin flux summed over l for a generic orbit. Because of
the computational costs, we calculate only some of the l,m,
n, k modes. We can see that the maximal mode is at n ¼ 1
and k ¼ 2 −m.

For reference, we list the m modes of the linear-in-spin
part of the energy flux for spherical orbits in Table II and
some of the l, m, n, k modes from generic orbits
in Table III.

FIG. 8. Linear-in-spin parts of the energy fluxes from nearly
spherical orbits with a ¼ 0.9M, p ¼ 10.0, I ¼ 30° for different l,
k modes and m ¼ 1; 2; 3.
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FIG. 9. Linear-in-spin parts of the energy fluxes from generic orbits log10j
P

l F
E
S;lmnkjwith a ¼ 0.9M, p ¼ 12.0, e ¼ 0.2, I ¼ 30° for

different n, k modes summed over l for m ¼ 1 (top left), m ¼ 2 (top right), and m ¼ 3 (bottom).

TABLE II. Linear-in-spin parts of the total energy fluxes and the angular momentum fluxes from nearly spherical
orbits for given inclination I and azimuthal number m. The fluxes are summed over l and k.

I½°� m FE
S;m F Jz

S;m

30 1 −2.642 × 10−7 −2.446 × 10−6

30 2 −2.702 × 10−6 −6.431 × 10−5

30 3 −3.921 × 10−7 −1.016 × 10−5

60 1 −1.533 × 10−6 −1.891 × 10−5

60 2 −2.177 × 10−6 −5.110 × 10−5

60 3 −2.223 × 10−7 −5.463 × 10−6

120 1 −4.175 × 10−6 3.021 × 10−5

120 2 −1.796 × 10−6 3.597 × 10−5

120 3 −1.730 × 10−7 4.020 × 10−6

150 1 −2.859 × 10−6 3.280 × 10−5

150 2 −6.930 × 10−6 1.658 × 10−5

150 3 −1.069 × 10−6 2.723 × 10−5
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