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We calculate the high-order post-Newtonian (PN) expansion of the energy and angular momentum
fluxes onto the horizon of a nonspinning black hole primary in eccentric-orbit extreme-mass-ratio inspirals.
The first-order black hole perturbation theory calculation uses Mathematica and makes an analytic
expansion of the Regge-Wheeler-Zerilli functions using the Mano-Suzuki-Takasugi formalism. The
horizon absorption, or tidal heating and torquing, is calculated to 18PN relative to the leading horizon flux
(i.e., 22PN order relative to the leading quadrupole flux at infinity). Each PN term is a function of
eccentricity e and is calculated as a series to e10. A second expansion, to 10PN horizon-relative order
(or 14PN relative to the flux at infinity), is computed deeper in eccentricity to e20. A number of resummed
closed-form functions are found for the low PN terms in the series. Using a separate Teukolsky perturbation
code, numerical comparisons are made to test how accurate the PN expansion is when extended to a close
p ¼ 10 orbit. We find that the horizon absorption expansion is not as convergent as a previously computed
infinity-side flux expansion. However, given that the horizon absorption is suppressed by 4PN, useful
results can be obtained even with an orbit as tight as this for e ≲ 1=2. Combining the present results with
our earlier expansion of the fluxes to infinity makes the knowledge of the total dissipation known to 19PN
for eccentric-orbit nonspinning extreme-mass-ratio inspirals.

DOI: 10.1103/PhysRevD.108.044039

I. INTRODUCTION

In the past eight years nearly one hundred compact-
binary mergers have been observed as gravitational-wave
events with LIGO and Virgo [1]. When the launch of
LISA occurs [2] we anticipate added gravitational-wave dis-
coveries, including extreme-mass-ratio inspirals (EMRIs).
Theoretical modeling of EMRIs is important for both source
detection and parameter estimation [3–6]. For EMRIs,
the small mass ratio ϵ ¼ μ=M ≪ 1 (e.g., secondary mass
μ ∼ 10M⊙ and primary mass M ∼ 106M⊙) serves as an
expansion parameter and the theoretical calculation utilizes
black hole perturbation theory (BHPT) and gravitational
self-force [7] techniques. Example calculations of full EMRI
inspirals can be found in [8–11]. In the early inspiral, when
the orbit is wide (irrespective ofmass ratio), post-Newtonian
(PN) theory [12] can be applied. When both limits pertain,
self-force quantities (e.g., gravitational-wave fluxes and
conservative sector gauge invariants) can be found as
analytic PN expansions. Early examples include plucking
off [13] the apparent (later verified [14,15]) analytic coef-
ficient in the 1.5PN tail in the energy flux using a numerical
BHPT calculation and the leading few terms in the redshift
invariant for circular-orbit EMRIs [16].

This paper addresses the horizon absorption of energy
and angular momentum in eccentric-orbit EMRIs onto a
nonspinning (Schwarzschild) primary. The horizon fluxes
are given in analytic form as a simultaneous high-order PN
expansion and expansion in powers of eccentricity e. This
work is the latest in a sequence of papers that have made
similar expansions of other physical quantities in eccentric-
orbit EMRIs in the PN limit using symbolic or extremely
high precision numerical BHPT calculations. Initially,
Forseth, Evans, and Hopper [17] used a numerical imple-
mentation of the MST (Mano-Suzuki-Takasugi) method
[18,19] in Mathematica to solve the Regge-Wheeler-Zerilli
(RWZ) equations [20,21] to extremely high numerical
precision (e.g., 200 digits). Energy fluxes at infinity were
calculated on a two-dimensional grid of orbits over
separation p and eccentricity e. These data were fit to an
understood general form of the PN expansion, generating
numerical coefficients through 7PN order. The underlying
analytic form (e.g., rational numbers or rationals times
transcendental numbers) of the coefficients were then
determined using PSLQ, an integer relation algorithm
[22]. A following paper [23] made significant improvement
to the method by fitting individual lmn modes separately,
allowing energy and angular momentum fluxes to be found
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to 9PN and high order in e. A third paper [24] extended
those results via a fully symbolic approach (originally
developed in [25–30]), reaching 19PN at e10 and 10PN at
e20. The depth of the expansion in e revealed closed-form
functions in eccentricity at numerous PN orders, and led to
an understanding of the form of certain logarithmic PN
sequences to arbitrarily high PN order [31,32]. Lately, we
have applied these techniques to the conservative sector,
computing the redshift invariant to 10PN and e20 [33] and
the spin-precession invariant to 9PN and e16 [34], with
additional PN terms found to yield closed-form functions
of e.
Our calculation of the horizon absorption applies the

same techniques but looks instead at the asymptotic
behavior of the downgoing wave at the horizon. To
understand the PN depth of our calculation, we first recall
the relative magnitudes of leading-order fluxes at infinity
and the horizon. The leading quadrupole energy flux at
infinity scales with the fifth power of the PN compactness
parameter (i.e., 1=p5). Higher multipoles, corrections, and
tail effects appear at still higher integer and half-integer PN
orders. It is typical to refer to higher-order terms by their
PN order relative to the dominant infinity-side quadrupole
flux. For example, when we say we computed the infinity-
side flux to 19PN, that would be a term scaling as 1=p24.
On the horizon side, early work on circular orbits by
Gal’tsov [35] (for nonspinning and spinning primary),
Poisson and Sasaki [36] (nonspinning), and Tagoshi,
Mano, and Takasugi [37] (spinning), showed that the
leading flux is suppressed by 4PN relative to the infin-
ity-side flux in the Schwarzschild case and by 2.5PN
relative in the Kerr case. Our calculations in this paper
are restricted to the Schwarzschild case. With this preface,
in this paper we give the horizon fluxes in analytic form to
14PN (in an e20 eccentricity expansion) and to 22PN (in an
e10 expansion) relative to the leading infinity-side flux.
Alternatively, these results can be thought of as 10PN (in
the e20 expansion) and 18PN (in the e10 expansion) relative
to the leading horizon flux.
Most of our results come from use of the fully symbolic

approach [24], but some of the lowest-order terms were
found by Forseth by fitting [22] and then tantalizingly
resummed into closed-form expressions in e (see also
[38,39]). Earlier, Shah [40] had used high-precision fitting
to find the circular-orbit horizon flux expansion past 20PN
in a mixed numeric-analytic form. Then, Fujita [41] derived
an entirely analytic expansion for the horizon energy flux
for circular orbits about a nonrotating black hole to 22.5PN
relative order (i.e., to 18.5PN order relative to the leading
horizon term). For the case of a Kerr primary, Fujita [41]
computed the expansion to 11PN relative (8.5PN relative to
the leading Kerr horizon flux). The effects of eccentricity
and inclination were then found [42] to 4PN relative (1.5PN
past leading horizon term) and e6. This result was later
extended to 5PN relative (2.5PN past leading horizon term)

and e10 in [43,44]. Reducing our results to the circular-orbit
limit, we match Fujita [41] completely to 22PN relative to
the dominant flux to infinity. Recently, horizon fluxes (tidal
heating) have been discussed as a means to distinguish
black holes from exotic compact objects in coalescing
binaries [45]. See [46] for a calculation of tidal heating and
torquing in a generic binary encounter and [47] for the case
of a quasicircular orbit.
The depth of our calculations precludes us publishing

here the full PN expansions. Instead, we detail in this paper
the form of the eccentricity dependence of each term
through 8PN relative to the leading horizon flux (12PN
relative to the full flux). The full expansions are posted
online [48], including on the Black Hole Perturbation
Toolkit website [49]. The results displayed here are
sufficient to note similarities with the infinity-side fluxes
discussed previously [23,31,32]. Using the full expressions,
we evaluate the PN expansions numerically at a separation
of p ¼ 10 and a set of different eccentricities and compare
those values to accurate horizon fluxes derived from a full
Teukolsky BHPT code. This is analogous to the compu-
tation done in [24] to determine the fidelity and conver-
gence of the PN expansions of the infinity-side fluxes. A set
of different resummations of the series is examined. We
find the series exhibit useful convergence at p ¼ 10 for low
eccentricity orbits (e ¼ 0.01 and e ¼ 0.1) but cease to
converge for an orbit this tight beyond a few orders of
magnitude when the eccentricity reaches e ∼ 1=4 and is
essentially useless at e ∼ 1=2. At e ¼ 1=4 the best frac-
tional error reaches 10−3 or slightly better, which can still
be useful for inspiral simulations since at this orbital
separation the horizon flux will be suppressed by four
orders of magnitude compared to the infinity-side flux.
The structure of this paper is as follows. Section II briefly

outlines the notation and formalism used for our analytic
expansion procedure. In Sec. III we present the PN and e
expansions of the energy flux at the horizon, making note
of which terms are completely known in e dependence
(closed forms) and which are known in accurate power
series. Section IV gives the equivalent expansion of the
angular momentum flux at the horizon. Section V gives a
general discussion of both the energy and angular momen-
tum flux results. Following that, Sec. VI presents compar-
isons to numerical flux data to test the validity of the PN
expansion.
Throughout this paper we adopt units such that

c ¼ G ¼ 1, though η ¼ 1=c is briefly reintroduced as a
PN-expansion bookkeeping device. We use metric signa-
ture ð−þþþÞ. Our notation for the RWZ formalism
follows that found in [17,23], which in part derives from
notational changes for tensor spherical harmonics and
perturbation amplitudes made by Martel and Poisson
[50]. For the MST formalism, we largely follow the
discussion and notation found in the review by Sasaki
and Tagoshi [51].
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II. BRIEF REVIEW OF RWZ AND MST
FORMALISMS

Our formalism for solving the first-order black hole
perturbation problem for eccentric-orbit EMRIs on a
Schwarzschild background has been detailed previously
[17,24,52], including the added requirements in obtaining
fully analytic forms for the PN expansions [24], which is
based on earlier work in [25–30]. We have used the
approach in a series of recent papers [23,24,33,34]. We
provide, therefore, only a brief overview of the method.

A. Bound orbits and PN compactness parameters

The perturbation is treated as being sourced by a point
mass μ in a bound eccentric geodesic motion about a
Schwarzschild black hole of mass M, with μ=M ≪ 1. We
use Schwarzschild coordinates xμ ¼ ðt; r; θ;φÞ with the
line element

ds2 ¼ −fdt2 þ f−1dr2 þ r2ðdθ2 þ sin2 θdφ2Þ; ð2:1Þ

where f ¼ 1–2M=r. The coordinates are aligned so that the
motion is in the equatorial plane, with four-velocity

uαðτÞ ¼ dxαpðτÞ
dτ

¼
�
E
fp

; ur; 0;
L
r2p

�
; ð2:2Þ

where E and L are the specific energy and angular
momentum, respectively. We transform from parameters
τ, E, L to Darwin [53] parameters χ, p, e [54,55] via

E2 ¼ ðp − 2Þ2 − 4e2

pðp − 3 − e2Þ ; L2 ¼ p2M2

p − 3 − e2
;

rpðχÞ ¼
pM

1þ e cos χ
: ð2:3Þ

One radial libration corresponds to a 2π advance in the
relativistic anomaly χ. The other three coordinates (and τ)
can be related to χ via ordinary differential equations
(ODEs) [17,52]. The function φpðχÞ can be expressed
analytically in terms of the incomplete elliptic integral of
the first kind FðxjmÞ [56,57] and then PN expanded in
powers of 1=p. In contrast, the integrand for tpðχÞ is first
PN expanded and then the result is integrated analytically
term by term.
This representation provides simple means to compute

the fundamental frequencies for radial libration, Ωr, and
mean azimuthal motion, Ωφ (per radial cycle). Explicitly,
the radial period can be derived from

Tr ¼
Z

2π

0

rpðχÞ2
Mðp − 2 − 2e cos χÞ

� ðp − 2Þ2 − 4e2

p − 6 − 2e cos χ

�
1=2

dχ;

with Ωr ¼ 2π=Tr. The integrand is readily PN expanded.
The mean azimuthal frequency follows as

Ωφ ¼ 4

Tr

�
p

p − 6 − 2e

�
1=2

K

�
−

4e
p − 6 − 2e

�
; ð2:4Þ

where KðmÞ is the complete elliptic integral of the first kind
[57], which is also then PN expanded in 1=p. Finally, the
alternative compactness parameter, y ¼ ðMΩφÞ2=3, can be
obtained in terms of an expansion in 1=p and inverted for
pðyÞ as an expansion in y. For eccentric motion, each PN
order will itself be an added expansion in powers of
eccentricity e.

B. The RWZ master equations

In the RWZ formalism [20,21], the first-order perturba-
tion of Schwarzschild spacetime is encoded by a pair of
master equations (one for each parity) that take the
frequency-domain (FD) form

�
d2

dr2�
þ ω2 − VlðrÞ

�
XlmnðrÞ ¼ ZlmnðrÞ: ð2:5Þ

Here r� ¼ rþ 2M ln jr=2M − 1j is the tortoise coordinate,
Xlmn are the mode functions, and the frequencies ω≡
ωmn ¼ mΩφ þ nΩr form a discrete spectrum derived from
the periodicities in the geodesic motion. The FD source
term follows as a Fourier series amplitude:

Zlmn ¼
1

Tr

Z
2π

0

ðGlmðtÞδ½r − rpðtÞ�

þ FlmðtÞδ0½r − rpðtÞ�Þeiωtdt: ð2:6Þ

Several variants of the master equations exist, and we
utilize the Zerilli-Moncrief equation for even-parity modes
and the Cunningham-Price-Moncrief equation for odd-
parity modes [50,52]. These choices in turn give rise to
particular forms for GlmðtÞ and FlmðtÞ. Due to symmetries
in the equatorial source motion, for a given l and m only an
even-parity or odd-parity mode will exist depending upon
whether lþm is an even or odd integer, respectively. The
potential VlðrÞ is also parity dependent, being either the
Zerilli (even) or Regge-Wheeler (odd) potential.
The homogeneous form of these equations yields two

independent solutions: X−
lmn ¼ Xin

lmn, with causal (down-
going wave) behavior at the horizon, and Xþ

lmn ¼ Xup
lmn,

with causal (outgoing wave) behavior at infinity. The
odd-parity homogeneous functions can be determined
directly using the MST formalism [18], which we sum-
marize next. The even-parity counterparts are derived using
the trick [17,24] of solving the Regge-Wheeler equation
for the “wrong parity” and then using those solutions to
derive the even-parity modes through use of the Detweiler-
Chandrasekhar transformation [58–61].
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C. The MST solutions to the homogeneous master equation

The MST solution [18,51] for Xþ
lmn can be expressed as

Xþ
lmn ¼ eizzνþ1

�
1 −

ϵ

z

�
−iϵ X∞

j¼−∞
aνjð−2izÞj

Γðb − 2ÞΓðbÞ
Γðb� þ 2ÞΓðb�ÞUðb; c;−2izÞ; ð2:7Þ

where b ¼ jþ νþ 1 − iϵ and c ¼ 2jþ 2νþ 2 (see also [29]). In this equation,U is the irregular confluent hypergeometric
function, ϵ ¼ 2Mωη3, z ¼ rωη, with η ¼ 1=c being a reintroduced (0.5)PN parameter. To find a solution, ν (the
renormalized angular momentum) and series coefficients aj are ascertained through a continued fraction method [18,51],
with the eigenvalue for ν allowing the series to converge on both ends. As previously discussed in earlier applications
[24,33,34], these parameters and coefficients are (PN) expanded in powers of ϵ, and the full solutions have expansions in
both z and ϵ.
In a similar fashion the inner, or horizon, solution, X−

lmn, is given by

X−
lmn ¼ e−iz

�
ϵ

z

�
iϵþ1

�
1 −

ϵ

z

�
−iϵ X∞

j¼−∞
aνj

ΓðgÞΓðhÞ
ΓðkÞ 2F1ðg; h; k; 1 − z=ϵÞ; ð2:8Þ

where g ¼ jþ ν − 1 − iϵ; h ¼ −j − ν − 2 − iϵ, and k ¼ 1–2iϵ. The quantities ν and aj appearing here are the same as those
that arise in the outer solution (2.7). The process of PN expanding both of these homogeneous solutions by collecting on
powers of η is fully described in [24], based on the methods presented in [29].
When the RWZmode functions are computed in this manner, the normalization is typically set by having taken a0 ¼ 1 at

the start of the recursion calculation. The resulting amplitudes at infinity and the horizon

X�
lmn ∼ A�

lmne
�iωr� ; ð2:9Þ

will be such that jA�
lmnj ≠ 1. To simplify (at least the presentation of) the flux calculations, it is convenient to adopt unit-

normalized modes, with X̂�
lmn ∼ expð�iωr�Þ [17,52]. The initial amplitudes can be found, respectively, by taking the limit

as z in (2.7) goes to infinity and as z in (2.8) approaches the horizon. Then, we find

X̂þ
lmn ¼

eizð−2izÞνþ1

Aþ;sum
lmn

ð−2iϵÞ−iϵ
�
1 −

ϵ

z

�
−iϵ X

j¼−∞
aνjð−2izÞj

Γðb − 2ÞΓðbÞ
Γðb� þ 2ÞΓðb�ÞUðb; c;−2izÞ;

Aþ;sum
lmn ¼

X
j¼−∞

aνn
Γðjþ ν − 1 − iϵÞΓðjþ νþ 1 − iϵÞ
Γðjþ νþ 3þ iϵÞΓðjþ νþ 1þ iϵÞ ;

X̂−
lmn ¼ X−

lmn=A
−
lmn; A−

lmn ¼
X
j¼−∞

aνj
Γðjþ ν − 1 − iϵÞΓð−j − ν − 2 − iϵÞ

Γð1 − 2iϵÞ : ð2:10Þ

The renormalized mode functions, X̂þ
lmn and X̂−

lmn, can be
PN expanded just as with the original modes. However,
while it is convenient to think of X̂þ

lmn and X̂−
lmn for

purposes of introducing the flux calculations, from a
symbolic computational standpoint it is more efficient to
work with specific factorized versions of these functions, as
described in the next subsection.

D. The horizon fluxes

Using the unit-normalized homogeneous solutions for the
mode functions to construct the Green function, integration
over the point-particle source yields the following set of
normalization coefficients (or asymptotic amplitudes):

C�
lmn ¼

1

WlmnTr

Z
Tr

0

�
dt
dχ

��
1

fp
X̂∓
lmnGlm

þ
�

2M
r2pf2p

X̂∓
lmn −

1

fp

dX̂∓
lmn

dr

�
Flm

�
eiωtdχ: ð2:11Þ

Here, Wlmn is the Wronskian

Wlmn ¼ fX̂−
lmn

dX̂þ
lmn

dr
− fX̂þ

lmn
dX̂−

lmn

dr
: ð2:12Þ

Once the C�
lmn amplitudes are computed, the time

domain solutions and fluxes can be obtained. In principle,
to expand (2.11) analytically, the homogeneous solutions are
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evaluated at the location of the particle using the PN-
expanded and e-expanded geodesicmotion of the secondary.
Then, expansions in y (or 1=p) and e are generated for the
remaining parts of the integrand. Integration term by term
produces a double expansion for each C�

lmn. See [24,30] for
more details.
Our concern in this paper is with the horizon-side

coefficients, C−
lmn, which can be used to obtain the rate

at which energy and angular momentum are absorbed by
the black hole according to

�
dE
dt

�
H
¼

X
lmn

ω2

64π

ðlþ 2Þ!
ðl − 2Þ! jC

−
lmnj2

�
dL
dt

�
H
¼

X
lmn

mω

64π

ðlþ 2Þ!
ðl − 2Þ! jC

−
lmnj2: ð2:13Þ

However, as discussed in [24], the straightforward
implementation of this procedure produces symbolic
expressions of unwieldy size, limiting the attainable PN
order and order in the eccentricity expansion. The com-
putational task is reduced drastically by removing certain
z-independent factors from the homogeneous solutions
prior to calculating the source integrals, and then multi-
plying those factors back in at the end. The factors for Xþ

lmn,
relevant to computing the flux at infinity, are given in [24]
and exactly match the Slmn tail factorization (N. Johnson-
McDaniel, private communication) that generalized for
eccentric orbits the circular-orbit Slm factorization explored
by Johnson-McDaniel in [62]. Not surprisingly, a simi-
lar factorization exists on the horizon side. Removing
the z-independent factors from X−

lmn, which affects the

Wronskian, modifies (2.11) and leads to an altered set of
coefficients C̃−

lmn. The factor pulled out is seen in the
relationship

C−
lmn ¼

�
2

p

�
Δν Γð1þ Δν − iϵÞ2

Γð1þ 2ΔνÞΓð1 − 2iϵÞ C̃
−
lmn: ð2:14Þ

Here, Δν ¼ ν − l. The fluxes, for each mode, are then
recovered by multiplying back in the complex square of
this factor

jC−
lmnj2 ¼

�
2

p

�
2Δν Γð1þ Δν − iϵÞ2Γð1þ Δνþ iϵÞ2

Γð1þ 2ΔνÞ2Γð1 − 2iϵÞΓð1þ 2iϵÞ
× jC̃−

lmnj2: ð2:15Þ

Note that in the PN limit, complex values of ν are never
encountered. The use of this factorization significantly
improves our ability to reach high PN order. A few
computational benchmarks using this procedure are given
in Table I.

III. PN EXPANSION OF THE HORIZON
ENERGY ABSORPTION TO 18PN

Asmentioned in Sec. I, recent work by Isoyama et al. [44]
found and utilized the horizon flux for eccentric-orbit EMRIs
to 5PN, at e10, relative to the leading flux at infinity. Recall
that for a Kerr primary, this result is 2.5PN relative to the
leading horizon flux. For a Schwarzschild primary, it is only
1PN relative to the dominant horizon flux. Less well known
is that Forseth, in his thesis [22] (see Secs. 7.3 and 7.4; also
see the posted APS talk [38] and Capra talk [39]), found the
exact-in-e horizon absorption for nonspinning EMRIs (at
lowest order in the mass ratio) through 2PN relative to the
leading horizon flux (which we will henceforth refer to as
horizon-relative) and a couple additional exact-in-e terms
and accurate numerical coefficients to high order in e up to
7PN horizon-relative. In other words, Forseth’s work already
had mixed analytic/numerical understanding of the eccen-
tric-orbit horizon flux to 11PN.
To begin enumeration of our findings, it is useful to recall

that high-order work on circular-orbit horizon fluxes
[40,41] determines the expected form of the PN expansion.
However, individual coefficients at each PN order are now
replaced by functions of e in the eccentric-orbit case. The
leading part of the horizon energy flux is given by the
expansion

�
dE
dt

�
H
¼ 32

5

�
m2

m1

�
2

y9½B0 þ yB1 þ y2B2 þ y3ðB3 þ B3L log yÞ þ y4ðB4 þ B4L log yÞ

þ y5ðB5 þ B5L log yÞ þ y11=2B11=2 þ y6ðB6 þ B6L log yþ B6L2log2yÞ
þ y13=2B13=2 þ y7ðB7 þ B7L log yþ B7L2log2yÞ þ � � ��; ð3:1Þ

TABLE I. Overview of the computational time needed for
expansion of various even-parity normalization constants to high
PN order. Expansions were found for specific l but generalm and
n on the UNC Longleaf cluster. The third and fourth columns
indicate the time and memory, respectively, needed for the
calculation. The fifth column gives the approximate size of a
text file holding the output. In each case the comparable odd-
parity computation is simpler and faster.

Coefficient
Relative
order

CPU time
(hours) Memory

Text file
size

C−
2mn 18PN=e10 81.7 5GB 140MB

C−
4mn 14PN=e10 21.1 3GB 50MB

C−
2mn 10PN=e20 3.3 2GB 120MB
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where the Bk, BkL, BkL2, etc., are functions of e. The
structure of this expansion differs from that of the flux at
infinity, principally with the half-integer (tail) term not
showing up until 5.5PN horizon-relative, which is at 9.5PN
in the total flux. This contrasts with the infinity-side flux
where the tail appears at 1.5PN.
In discussing the horizon fluxes, we find it convenient to

refer to terms by their horizon-relative order. Thus, in our
labeling of the eccentricity enhancement functions, Bk,
BkL, etc., the integer or half-integer k reads out directly the
horizon-relative order. From this point on we will implicitly
refer to PN terms by their horizon-relative order. The
structure beyond what is displayed in (3.1) is clear; at
integer orders, a new power of log y shows up every 3PN in
the expansion and the first log y term at half-integer order
will appear at 8.5PN, with added powers of log at 11.5PN,
14.5PN, etc.
In 2016, Forseth [22] used the numeric-analytic fitting

procedure discussed in [17] to fit for coefficients in power
series expansions in e2 of a number of these enhancement
functions. The accurate numerical results reached 7PN
order. For energy fluxes, he found closed-form expressions
for B0ðeÞ, B1ðeÞ, B2ðeÞ, B3LðeÞ, and B4LðeÞ. He then
extracted analytic coefficients for terms in truncated power
series expansions in e2 for many of the remaining terms to
7PN, specifically computing B3ðeÞ to e40, B4ðeÞ to e4,

B5LðeÞ to e30, B11=2ðeÞ to e12, B6L2ðeÞ to e12, B13=2ðeÞ to
e4, and B7L2ðeÞ to e6. No new analytic coefficients were
found in B5ðeÞ, B6ðeÞ, B6LðeÞ, B7ðeÞ, or B7LðeÞ beyond the
already known circular-orbit limit, but additional accurate
numeric coefficients were found.
This paper now extends the work in [22] using the

analytic expansion methods of [24,29,30]. The result is a
pair of expansions, with one derived to e20 through 10PN
and the other to e10 through 18PN. (These results require
doing extensive symbolic computations with Mathematica
on a cluster computer and we found it useful to press the
expansions as deeply as possible alternately in PN order
and in powers of e.) Again, because the horizon flux is
suppressed by 4PN, our calculations go to 14PN and 22PN,
respectively, relative to the leading L0ðeÞ and J 0ðeÞ
quadrupole fluxes [23].
We now step through a presentation of each energy flux

eccentricity enhancement function through 8PN order. Each
function was computed through e20, but some were found to
resum into closed-form expressions and several are truncated
here to fewer terms than e20 for brevity. The full results
through 10PN=e20 and 18PN=e10 are posted online [48,49].
As we mentioned, a subset of these coefficients were
presented in [22]. At the lowest few orders, closed-form
expressions were found through 2PN [22]

B0 ¼
1

ð1 − e2Þ15=2
�
1þ 31

2
e2 þ 255

8
e4 þ 185

16
e6 þ 25

64
e8
�
; ð3:2Þ

B1 ¼
1

ð1 − e2Þ17=2
�
4þ 147

2
e2 þ 799

8
e4 −

2635

16
e6 −

13515

128
e8 −

275

64
e10

�
; ð3:3Þ

B2 ¼
1

ð1 − e2Þ19=2
�
−
181

14
þ 1336

21
e2 þ 25097

24
e4 þ 42743

48
e6 þ 489245

768
e8

þ 360197

768
e10 þ 6025

256
e12

�
þ 75

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p B0: ð3:4Þ

Interestingly, the B0ðeÞ enhancement function has been
recently separately uncovered by Datta [63]. The 2PN
function is given here in a form that is slightly different
from what was shown in [22]. As with the 2PN flux at
infinity [23], the polynomial attached to the subdominant
singular factor can be manipulated into a term proportional
to a lower-order function, in this case B0ðeÞ.
A brief reminder is in order about the enhancement

functions. In a PN expansion using y (based on azimuthal
frequency) as the compactness parameter, the enhancement
functions become infinite in the limit as e → 1. This is
because, at fixed frequency and as e → 1, the pericentric
distance goes to zero. The eccentricity singular factor—
factoredout power of1 − e2 in each function—represents the
(leading) singular behavior of the enhancement function [64].

The remaining polynomial, or more generally the remain-
ing infinite series, then limits on a nonzero constant as e → 1.
In certain cases it has been possible to identify these
eccentricity singular factors separately via asymptotic analy-
sis [17] (see also discussion in [32]). Occasionally, there are
identifiable subdominant singular terms, like that found
in (3.3).
At 3PN we found that the nonlog series, already known

to e40 [22], could be put into a closed form. Among several
steps in this reduction, we first notice that the 3PN log term
reappears in the 3PN nonlog function. The overall com-
plicated closed-form expression at 3PN is reminiscent of
the 3PN flux at infinity [31], though the present one lacks a
χðeÞ-like [64] (infinite series) function. The 3PN nonlog
and 3PN log functions are
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B3 ¼
1

ð1 − e2Þ21=2
�
−
9530309

51975
−
14041757e2

4725
−
81025787e4

8400
−
102162779e6

3600
−
188105821e8

5760
−
4984577e10

600

−
2917799e12

2048
−
82525e14

1024
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p �
4348832

14553
þ 4081074097e2

727650
þ 29035617361e4

2910600
−
6084796133e6

2328480

þ 115633347503e8

18627840
þ 230334470711e10

46569600
þ 12625e12

64

��
−
�
35

107
π2 þ log

�
1 − e2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
��

B3L; ð3:5Þ

B3L ¼ −1
ð1 − e2Þ21=2

�
1712

105
þ 79822

105
e2 þ 393867

70
e4 þ 110103

10
e6 þ 100687

16
e8 þ 287937

320
e10 þ 3745

256
e12

�
: ð3:6Þ

The 4PN nonlog term marks the first appearance of additional transcendental numbers, such as γE and log 3. This series
has no overall closed form. However, there are parts within it proportional to π2 and γE that do terminate in finite
polynomials, which can be seen in the following expansion truncated at e16:

B4 ¼
1

ð1− e2Þ23=2
�
10859497

22050
þ 52

3
π2 −

1024

15
γE −

3980

21
logð2Þ þ

�
6799223

420
þ 420π2 −

14992

3
γE

−
77324

15
logð2Þ− 30618

5
logð3Þ

�
e2 þ

�
16251413749

176400
−
4045

3
π2 −

293664

5
γE −

12610811

35
logð2Þ

þ 98415 logð3Þ
�
e4 þ

�
8038555537

16800
−
975574γE

5
−
100681π2

4
þ 2565846047 logð2Þ

540
−
118403451 logð3Þ

160

−
1650390625 logð5Þ

864

�
e6 þ

�
122640123477

89600
−
1083614γE

5
−
1767591π2

32
−
77581480669 logð2Þ

1440

−
8528452173 logð3Þ

640
þ 36513671875 logð5Þ

1152

�
e8 þ

�
112982456593

89600
−
3195171γE

40
− 32732π2

þ 12472278232151 logð2Þ
27000

þ 280561035495519 logð3Þ
1024000

−
18301802734375 logð5Þ

73728
−
3160616408486747 logð7Þ

27648000

�
e10

þ
�
3835468188137

6451200
−
39893γE

5
−
152859π2

32
−
4696393122910219 logð2Þ

972000
−
4645413320517747 logð3Þ

2048000

þ 4858337978515625 logð5Þ
3981312

þ 330478628708225893 logð7Þ
165888000

�
e12

þ
�
1532279204891

4515840
þ 12163662267614069749 logð2Þ

254016000
−
6125γE
64

þ 8312610758654209851 logð3Þ
1605632000

−
6592628145458984375 logð5Þ

1560674304
−
262549480209071768377 logð7Þ

15925248000
−
40425π2

512

�
e14

þ
�
19581861707467

82575360
−
844848484081061147 logð2Þ

2381400
þ 195002386788591269793 logð3Þ

2569011200

−
13605756642412109375 logð5Þ

4161798144
þ 439388545040978324393 logð7Þ

5096079360

�
e16 þ � � �

�
: ð3:7Þ

The 4PN log term has the previously known closed form

B4L ¼ 1

ð1 − e2Þ23=2
�
−
9148

105
−
11348

3
e2 −

2650657

105
e4 −

412167e
20

e6 þ 9681067

160
e8 þ 4810141

80
e10

þ 1698271

160
e12 þ 99085

512
e14

�
: ð3:8Þ
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At 5PN, the nonlog function is similar in form to its 4PN counterpart, though without any apparent truncation in the parts
of the series attached to π2 and γE. As a result, we only present the first few powers of e2 here. We find that the 5PN log term
can be put into a closed-form expression, with a subdominant singular term that involves the recurrence of the 3PN log
function

B5 ¼
1

ð1 − e2Þ25=2
�
2547493

1372
þ 2528

35
γE þ 780

7
π2 −

425612

2205
logð2Þ

þ
�
1328278289

61740
þ 1281872γE

45
þ 359584π2

63
þ 8972492 logð2Þ

735
þ 137781 logð3Þ

5

�
e2

þ
�
−
1304314425913

1234800
þ 210446456γE

315
þ 12945643π2

252
þ 22816656827 logð2Þ

8820
−
7158051 logð3Þ

20

�
e4

þ
�
−
1963383791933

231525
þ 61546622γE

15
þ 9407723π2

56
−
4622401802581 logð2Þ

158760
þ 4851838359 logð3Þ

2240

þ 660796484375 logð5Þ
36288

�
e6 þ

�
−
91961130977371

3763200
þ 936331714γE

105
þ 38160541π2

96
þ 13904921619359 logð2Þ

30240

þ 349567982667 logð3Þ
1792

−
15006157421875 logð5Þ

48384

�
e8 þ � � �

�
; ð3:9Þ

B5L ¼ 1

ð1 − e2Þ25=2
�
27212

49
þ 15715351e2

441
þ 1829922349e4

4410
þ 9960979829e6

5880
þ 9496143917e8

3360

þ 3196758989e10

1920
þ 952203067e12

5376
−
205586393e14

7168
−
4047085e16

4096

�
þ 105

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p B3L: ð3:10Þ

As already known from the circular-orbit limit, 5.5PN marks the first appearance of a half-integer flux term. As expected
from our experience with the infinity-side flux, the 5.5PN term appears to be an infinite series with rational number
coefficients (once an overall factor of π is pulled out)

B11=2 ¼
π

ð1 − e2Þ13
�
−
109568

1575
−
72974

9
e2 −

11159458

75
e4 −

2064646855

2592
e6 −

556894606109

362880
e8

−
1634615689436141

1451520000
e10 −

647533375166093

2177280000
e12 −

614373168703875323e14

27311800320000

−
139393544295440923e16

655483207680000
þ 6810696714424201e18

3398024948613120000
þ 261931344108584947e20

84950623715328000000
þ � � �

�
: ð3:11Þ

At 6PN, in the nonlog term, there is a significant increase in coefficient complexity. Only a few coefficients are listed here
for brevity, with the rest available elsewhere [48,49]. Experience leads us to believe that the 6PN log term will likely yield a
closed form, but the expansions would have to be computed beyond e20 to confirm the conjecture and to solve for the
(presumed) rational number polynomial. A key part of that belief is that we are able to simplify the appearance of the full
term by isolating the transcendental numbers. The 6PN log2 term, meanwhile, is an additional closed-form function, which
reappears in the 6PN log term

B6 ¼
1

ð1 − e2Þ27=2
�
278408801583211

48134047500
−
594376γE
2835

þ 17112988π2

33075
−
256π4

45
−
1485396268 logð2Þ

694575
−
27392

315
π2 logð2Þ

þ 1465472log2ð2Þ
11025

−
54784ζð3Þ

105
þ
�
−
3184621738776971

96268095000
−
209233244γE

2835
þ 488155076π2

33075
−
30992π4

45

−
29196601796 logð2Þ

231525
−
3316144

315
π2 logð2Þ þ 177413704log2ð2Þ

11025
−
592677 logð3Þ

7
−
6632288ζð3Þ

105

�
e2
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þ
�
−
3155544818212373

729303750
−
534255044γE

189
−
7719987437π2

44100
−
195424π4
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−
30309834111577 logð2Þ

2778300

−
20910368
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π2 logð2Þ þ 1118704688log2ð2Þ

3675
þ 385509051 logð3Þ

280
−
41820736ζð3Þ

35

�
e4

þ
�
2981094178946939

466754400
−
9377211302γE

315
−
28572566131π2

10584
− 71670π4

þ 216371435533139 logð2Þ
2000376

−
7668690

7
π2 logð2Þ þ 82054983log2ð2Þ

49
−
24002939547 logð3Þ

2240

−
27901272734375 logð5Þ

326592
−
46012140ζð3Þ

7

�
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�
; ð3:12Þ

B6L ¼ 1

ð1 − e2Þ27=2
�
−
1265945848

694575
−
69768064262e2

694575
−
1168647880507e4

926100
−
16908108709883e6

1852200

−
286763142507587e8

7408800
−
69524389377859e10

1008000
−
206416658766499e12

4704000
−
417391782384293e14

56448000

þ 40129383119743e16

52684800
þ 14409668299744981e18

22759833600
þ 192650436984624487e20

455196672000
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�
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�
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π2 þ log

�
1 − e2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
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B6L2; ð3:13Þ

B6L2 ¼
1

ð1 − e2Þ27=2
�
1465472

11025
þ 177413704

11025
e2 þ 1118704688

3675
e4 þ 82054983

49
e6 þ 9729806711

2940
e8

þ 995250121

400
e10 þ 5650230337

8400
e12 þ 24483033907e14

470400
þ 515205e16

1024

�
: ð3:14Þ

Like the function at 5.5PN order, the 6.5PN enhancement function is an apparently infinite series with rational number
coefficients

B13=2 ¼
π

ð1 − e2Þ14
�
7239376

33075
þ 2576822347e2
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þ 327802444819e4

132300
þ 58650165206431e6
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þ 5301531761061667e8
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−
99566880013911101100559e20

14271704784175104000000
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�
: ð3:15Þ

At 7PN we see echoes of lower-order behavior. First, the 7PN log2 term is found to have a closed form. Then the 7PN log
term is found to have a structure similar to B4ðeÞ. Finally, the 7PN nonlog function displays another increase in complexity,
which requires us to truncate its presentation here to just the first few coefficients

B7 ¼
1

ð1 − e2Þ29=2
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139830180452857
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−
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−
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B7L ¼ 1
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�
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�
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B7L2 ¼
1
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�
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The flux function at 7.5PN order is another infinite series with rational number coefficients, similar to those at 5.5PN and
6.5PN orders

B15=2 ¼
π

ð1 − e2Þ15
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−
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−
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−
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−
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�
: ð3:19Þ

Finally, the 8PN flux terms are similar in complexity to
their 7PN counterparts. We first consider the 8PN log2

term. By comparison with the infinity-side flux [23], this
term would be expected to have a closed-form expression,
with polynomials multiplying dominant and subdominant
eccentricity singular factors. This conjecture is supported

by finding a closed-form expression of exactly this type for
the 8PN log2 angular momentum absorption, D8L2 [see
Eq. (4.22)]. Doing the same for energy absorption is
unfortunately just out of reach since our symbolic com-
putation stopped at e20. To the depth we calculated, the
series is
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B8L2 ¼
1
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Next, the 8PN log term features numerous transcendental numbers, which even a truncated display of the function to e4

reveals. Finally, the 8PN nonlog function displays another increase in complexity, with new terms with products of
transcendental numbers
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γE logð3Þ − 8089713π2 logð3Þ þ 6245376534

175
logð2Þ logð3Þ þ 1917380079log2ð3Þ

350

þ 49326171875 logð5Þ
54432

þ 88623623464ζð3Þ
2205

�
e4 þ � � �

�
; ð3:21Þ

B8L ¼ 1

ð1 − e2Þ31=2
�
−
94860587410858

3476347875
−
6486848γE
11025

−
3434432π2

2205
þ 270364544 logð2Þ

77175

þ
�
3471216185138587

834323490
−
2503138384γE

1323
þ 74170048π2

1323
−
97943219824 logð2Þ

46305
− 1850202 logð3Þ

�
e2

þ
�
23616087848898761017

83432349000
−
3174674232748γE

33075
þ 44311811732π2

6615
−
28546607371664 logð2Þ

77175

þ 10573372989 logð3Þ
350

�
e4 þ � � �

�
: ð3:22Þ
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IV. PN EXPANSION OF THE HORIZON ANGULAR MOMENTUM ABSORPTION TO 18PN

Prior results on the circular-orbit limit imply that the horizon angular momentum flux will have a series of the form

�
dL
dt

�
H
¼ 32

5

μ2

M
y15=2½D0 þ yD1 þ y2D2 þ y3ðD3 þD3L log yÞ þ y4ðD4 þD4L log yÞ

þ y5ðD5 þD5L log yÞ þ y11=2D11=2 þ y6ðD6 þD6L log yþD6L2log2yÞ
þ y13=2D13=2 þ y7ðD7 þD7L log yþD7L2log2yÞ þ � � ��: ð4:1Þ

As with the absorbed energy, Forseth [22] used numeric-
analytic fitting to find eccentricity coefficients in these
angular momentum flux functions to 7PN horizon-relative
order. In particular, he found closed-form expressions for
D0ðeÞ, D1ðeÞ, D2ðeÞ, D3LðeÞ, D4LðeÞ, D6L2ðeÞ. He then
extracted analytic finite-order series in e2 for many of the
remaining terms, specifically findingD3ðeÞ to e40,D4ðeÞ to
e6, D5ðeÞ to e2, D5LðeÞ to e32, D11=2ðeÞ to e14, D6LðeÞ to

e4, D13=2ðeÞ to e4, and D7L2ðeÞ to e6. No additional
analytic coefficients were found in D5ðeÞ, D6ðeÞ, D7ðeÞ,
D7LðeÞ beyond the known circular-orbit terms.
Just as with the energy flux, we have extended the

angular momentum absorption to e20 through 10PN and e10

through 18PN horizon-relative order, displaying a subset of
the results to 8PN here. The first three functions again yield
closed forms [22]:

D0 ¼
1

ð1 − e2Þ6
�
1þ 15

2
e2 þ 45

8
e4 þ 5

16
e6
�
; ð4:2Þ

D1 ¼
1

ð1 − e2Þ7
�
4þ 42e2 þ 15

4
e4 − 40e6 −

195

64
e8
�
; ð4:3Þ

D2 ¼
1

ð1 − e2Þ8
�
−
38

7
þ 197e2 þ 7965

16
e4 þ 1175

16
e6 þ 37825

256
e8 þ 495

32
e10

�
þ 30ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e2
p D0: ð4:4Þ

The remaining flux terms exhibit the same patterns and structure as their energy flux counterparts. We find closed-form
expressions at 3PN and 3PN log, with the discussion surrounding (3.5) and (3.6) pertaining:

D3 ¼
1

ð1 − e2Þ9
�
−
633427

4725
−
1148221e2

2100
−
61667e4

100
−
5046283e6

720
−
2070809e8

640
−
736891e10

1536
−
26905e12

512

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p �
8252956

33075
þ 333023069e2

132300
þ 48324481e4

88200
−
566970143e6

1058400
þ 411843863e8

264600
þ 7425e10

64

��

−
�
35

107
π2 þ log

�
1 − e2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
��

D3L; ð4:5Þ

D3L ¼ −1
ð1 − e2Þ9

�
1712

105
þ 15622

35
e2 þ 9202

5
e4 þ 3531

2
e6 þ 749

2
e8 þ 535

64
e10

�
: ð4:6Þ

The 4PN log term was known to be closed. The 4PN nonlog structure is similar to the description of (3.7):

D4 ¼
1

ð1 − e2Þ10
�
10859497

22050
þ 52

3
π2 −

1024

15
γE −

3980

21
logð2Þ

þ
�
3562043

294
þ 352π2 −

15296

5
γE −

108896

35
logð2Þ − 20412

5
logð3Þ

�
e2

þ
�
1914399217

58800
− 239π2 −

109224

5
γE −

18556441

105
logð2Þ þ 297432

5
logð3Þ

�
e4
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þ
�
638653199

5600
− 6503π2 −

206752

5
γE þ 297014537

135
logð2Þ − 6446547

16
logð3Þ

−
330078125
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logð5Þ

�
e6 þ

�
3562043
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−
15296γE

5
þ 352π2 −

108896 logð2Þ
35

−
20412 logð3Þ

5

�
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þ
�
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−
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−
28273π2

16
þ 8187206373887 logð2Þ

54000
þ 41897616724017 logð3Þ

512000

−
3012572265625 logð5Þ
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−
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13824000

�
e10

þ
�
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129024
−
805γE
16

−
2625π2

64
−
2551616060639357 logð2Þ

1944000
−
318863338438527 logð3Þ

512000

þ 359725572265625 logð5Þ
995328

þ 4314758300454931 logð7Þ
8294400

�
e12

þ
�
62126611699

1505280
þ 1119978423832346 logð2Þ

99225
þ 233938946375256303 logð3Þ

160563200
−
290951443134765625 logð5Þ

260112384

−
3466444202976331129 logð7Þ

884736000

�
e14 þ � � �

�
; ð4:7Þ

D4L ¼ 1

ð1 − e2Þ10
�
−
9148

105
−
18240

7
e2 −

356711

35
e4 −

3973

5
e6 þ 388523

32
e8 þ 304913

80
e10 þ 6415

64
e12

�
: ð4:8Þ

From this point on, the angular momentum absorption terms continue to display structures that are parallel to those found in
the horizon energy flux functions, with the descriptions surrounding equations (3.9) through (3.21) being also relevant here:

D5 ¼
1

ð1 − e2Þ11
�
2547493

1372
þ 780

7
π2 þ 2528

35
γE −

425612

2205
logð2Þ

þ
�
17459549369

617400
þ 84776

21
π2 þ 75928

5
γE þ 2876344

735
logð2Þ þ 71442

5
logð3Þ

�
e2

þ
�
−
327317515241

823200
þ 8364304γE

35
þ 602645π2

28
þ 961194533 logð2Þ
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−
777114 logð3Þ

5

�
e4

þ
�
−
295832552489

141120
þ 6758639γE

7
þ 76395π2

2
−
60714697927 logð2Þ

5670
þ 869840613 logð3Þ

1120

þ 107205390625 logð5Þ
18144

�
e6 þ � � �

�
; ð4:9Þ

D5L ¼ 1

ð1 − e2Þ11
�
21220

49
þ 10568546e2

735
þ 105391081e4

980
þ 9248095e6

28
þ 49336999e8
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þ 33176401e10
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−
22547523e12
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−
254885e14
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�
þ 45ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e2
p D3L; ð4:10Þ

D11=2 ¼
π

ð1 − e2Þ23=2
�
−
109568

1575
−
2673716

525
e2 −

10478082

175
e4 −

45144231221

226800
e6 −

1487314873

6720
e8

−
59287955317343

725760000
e10 −
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4354560000
e12 −
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−
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�
; ð4:11Þ
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D6 ¼
1

ð1 − e2Þ12
�
278408801583211

48134047500
−
594376γE
2835

þ 17112988π2

33075
−
256π4

45
−
1485396268 logð2Þ

694575

−
27392

315
π2 logð2Þ þ 1465472log2ð2Þ

11025
−
54784ζð3Þ
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þ
�
85821442460021

2917215000
−
6942352γE
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þ 49728058π2

3675
−
6488π4
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−
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−
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π2 logð2Þ þ 37140556log2ð2Þ

3675
−
1689822 logð3Þ
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−
1388432ζð3Þ
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�
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þ
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−
5240369975829997

2333772000
−
121960978γE

135
−
113474836π2
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−
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−
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−
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π2 logð2Þ þ 89966242log2ð2Þ
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þ 230612589 logð3Þ

280
× −

3363224ζð3Þ
7

�
e4 þ � � �

�
; ð4:12Þ

D6L ¼ 1

ð1 − e2Þ12
�
−
1265945848

694575
−
16493890982e2
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−
104951231074e4
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−
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−
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−
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−
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D6L2 ¼
1
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�
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�
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D13=2 ¼
π

ð1 − e2Þ25=2
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−
225861941667542473117e20

1189308732014592000000
þ � � �
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; ð4:15Þ

D7 ¼
1
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Finally, as we mentioned in the discussion of (3.20), the 8PN log2 angular momentum term did settle into a resummed
closed-form function:
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1
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1196416933477e6

8575

−
4391775215885e8

10976
−
598457874498e10

1225
−
76198202080153e12

313600
−
9321366120429e14

219520

−
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−
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V. DISCUSSION

The results presented in the previous two sections, and at
the online repositories [48,49], have pushed the knowledge
of the black hole horizon absorption in eccentric-orbit
nonspinning EMRIs to 10PN (in an e20 expansion) and to
18PN (in an e10 expansion) relative to the leading horizon
contribution. Between our new fully symbolic calculations
and earlier numerical high-precision fitting [22], we have
been able to discover closed-form eccentricity dependence
for a host of terms: B0, B1, B2, B3, B3L, B4L, B5L, B6L2,
B7L2, D0, D1, D2, D3, D3L, D4L, D5L, D6L2, D7L2, D8L2.
Closed forms can likely also be found for B8L2 and D9L3,
but our present expansions stop just short of providing
confirmation that the series are finite. The other terms up
to 10PN horizon-relative order are apparent infinite
series and our eccentricity expansions go deep enough

to reveal structures resembling those seen in the infinity-
side fluxes.
Particularly of note are the log sequences that appear in

the infinity-side fluxes, which we defined and discussed
previously [23,31,32]. The leading-log (also called 0PN
log) sequence, for example, starts with the Peters-Mathews
term, L0ðeÞ, includes the first appearance of a log, at
L3LðeÞ, and continues with each new power of log at 6PN,
9PN, etc. In other words, the terms in this sequence have
PN orders y3k logk y (k ≥ 0). There is a companion half-
integer-order leading log sequence [31] that is made up of
the terms y3kþ3=2 logk y (k ≥ 0), which starts (log0) with the
1.5PN tail. There are also integer and half-integer 1PN [32],
2PN, 3PN [31], 4PN [32], log sequences.
In the horizon fluxes, the same set of integer-order

log sequences appear and half-integer-order logs show
up as well, with an important caveat (discussed below).
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Our results show that, just as was found in the fluxes at
infinity, the leading-, 1PN-, and 2PN-log series have
purely rational number coefficients, with the first appear-
ance of transcendental numbers occurring in the 3PN log
sequence. As [31,32] showed, the presence of only
rational number coefficients indicates that these terms
arise merely from low-multipole-order source moments.
Furthermore, the 2PN logarithms once again display a
dominant-subdominant eccentricity singular factor struc-
ture, with the subdominant term being proportional to the
corresponding leading-log flux [see e.g., (3.10) with the
appearance of (3.6)].
A significant difference, however, is the delay in the

appearance of half-integer-order flux terms in the horizon
absorption. On the infinity-side, the first half-integer
contribution is the tail term at 1.5PN order. In the horizon
fluxes, the first appearance of a half-integer term is at
5.5PN order (which, of course, is at 9.5PN relative to the
leading flux at infinity). The tail contribution at infinity
stems from a nonlinear interaction between the outgoing
(Newtonian) quadrupole wave and the static mass monop-
ole [64,65]. It appears that the combination of weak
backscatter toward the primary black hole and the small
cross section leads to an 8PN suppression of the tail flux at
the horizon.
The horizon flux terms at 5.5PN, 6.5PN, and 7.5PN

horizon-relative order all involve rational number series
(once an overall factor of π is pulled out). If the infinity-
side fluxes are any guide, it may be that these half-integer
leading-log, 1PN-log, and 2PN-log sequences, respec-
tively, can be linked to the 0PN, 1PN, and 2PN horizon-
relative flux terms. Stated another way, we showed in [31]
and [32] that all leading logarithms (integer and half-
integer) are determined completely by certain sums over
the Newtonian mass quadrupole power spectrum gðn; eÞ,
which completely determines the dominant Peters-
Mathews flux, L0ðeÞ. Similarly, all terms in the 1PN-
log sequence are determined solely by the power spectra
of the 1PN multipoles (i.e., the Newtonian mass octupole,
Newtonian current quadrupole, and 1PN correction to the
mass quadrupole), which are the sole ingredients that
determine the 1PN flux, L1ðeÞ. It is possible that a FD
multipole formulation of the horizon fluxes could show
similar linkage between leading integer and half-integer
logarithms. A multipole formulation might also lead to
horizon-flux analogs of the 3PN enhancement functions
χðeÞ and χ̃ðeÞ [32], which could aid in finding compact
forms for complicated functions like B4. On the infinity-
side, the function χðeÞ shows up in the 3PN nonlog flux. It
is interesting to note that a comparable infinite series does
not appear in the 3PN nonlog horizon flux, nor is there an
appearance of the Euler gamma constant, γE. Lack of these
terms greatly facilitated the process of extracting the
closed forms for B3 and D3 found in (3.5) and (4.5),
respectively.

VI. TESTING CONVERGENCE OF THE HORIZON
FLUX PN EXPANSIONS ON A CLOSE ORBIT

We now use the expansions laid out in the preceding
sections to make comparisons with numerical horizon flux
data to assess their accuracy and convergence. We confine
the presentation here to the energy flux case but note that
the angular momentum expansion yields similar results. To
prepare for the numerical comparison, we assemble a net
expansion by combining flux terms from three sources.
First, some of the PN terms are closed-form expressions in
e and these provide exact inputs. Second, in cases of
flux terms that are not closed-form, out to 10PN horizon-
relative order we use the full e20 eccentricity expansions.
Finally, beyond 10PN out to 18PN, we use the full e10

eccentricity expansions. A separate Teukolsky code was
used (J. Castillo, private communication) and specialized
to a ¼ 0. Horizon flux data were generated for p ¼ 10
separation orbits with eccentricities of e ¼ f1=100; 1=10;
1=4; 1=2g to mirror the similar comparisons made in [24]
for the energy flux at infinity. The Teukolsky code is
Mathematica-based and was run with 20 digits of accuracy.
Its accuracy has been benchmarked against flux results
published earlier [66] and through comparison with a
C code written by Z. Nasipak. The comparisons between
the accurate numerical fluxes and the PN series evaluations
are given in Fig. 1.
When we compare to [24], we find that the horizon flux

expansions exhibit worse fidelity for p ¼ 10 than their
counterpart infinity-side fluxes, particularly as e grows
large. Whereas the flux at infinity demonstrated steady
average reduced error with increasing PN order all the way
to e ¼ 1=2, the horizon flux breaks down beyond e ∼ 1=4.
At e ¼ 1=4, the error decreases roughly monotonically
until 8PN, after which point it begins to fluctuate or grow
(typical of an asymptotic series). The evaluation at e ¼ 1=2
is worse, disconnected from any convergent behavior at and
beyond 7PN order. At e ¼ 1=2, the expansion only briefly
exhibits an error less than 1%. It is likely that this is due, in
part, to the fact that the eccentricity enhancement functions
in the expansion take on increasingly large numerical
values as e → 1 in the expansion that uses y as the
compactness parameter. Lending support to this claim is
that the expansion in 1=p (blue curve) is better behaved.
It may be that taking the eccentricity expansions only out

to e20 is insufficient for generating accurate values at e≳
1=2 on p ¼ 10 orbits. One way to see this is to compare
how the frequency-domain Teukolsky code generates
accurate values for high-eccentricity orbits. In that code,
lmn modes are computed, with n being the harmonics of
the radial libration frequency. At high eccentricity, increas-
ingly large numbers of n modes are required to reach, for
example, 12 digits of accuracy in the flux. The fully
symbolic PN expansion code is similar, where the PN
expansions must be built out of MST modes and where we
are required to compute n modes with jnj up to half the
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desired maximum eccentricity order. To be specific, the
eccentricity expansion of each amplitude C�

lmn begins at
ejnj. Once squared, the partial fluxes, proportional to
jC�

lmnj2, each have expansions that begin with e2jnj (see
for example discussion in [23], Sec. 4C). In other words, if
one is content with stopping the eccentricity expansion at a
certain order e2p, there is no need to compute mode
functions with jnj > p. Conversely, to go to higher order
in eccentricity in the symbolic PN expansion, more �n
modes are required, as otherwise the coefficients on the
higher-order terms will be in error. When the Teukolsky
code is run, the algorithm judges how many modes are
necessary for a given expected accuracy based on the
chosen orbital parameters. Thus, if the Teukolsky code is
using a greater number of modes at an eccentricity of e≳
1=2 than our symbolic code is, it may indicate we need to
likewise compute more n modes and take the e expansion
to higher order. Insufficient mode representation has also

been noted as a limiting factor for small p [41,68].
Nevertheless, it is encouraging that the accuracy of the
infinity-side full-flux expansion was fairly strong even for
the p ¼ 10; e ¼ 1=2 orbit, owing to the use of arbitrary-
order eccentricity expansions at low PN and the use of
eccentricity resummations throughout, and for e≲ 1=4 our
horizon fluxes could be usefully added to produce a net
energy loss.

VII. CONCLUSIONS

This paper has described new high-PN-order results for
the tidal heating and torquing (also referred to as horizon
fluxes or horizon absorption) onto a nonspinning primary
black hole in an eccentric-orbit EMRI. The present work
extends earlier calculations [25,29,41] to orbits with
eccentricity and gives analytic expressions for the fluxes
in two expansions: one to 10PN horizon-relative order in an
e20 eccentricity expansion and the other to 18PN in an e10

FIG. 1. Accuracy of the tidal heating PN expansion and several resummations for a set of close orbits. An orbital separation of p ¼ 10
is chosen. Four different eccentricities are tested: e ¼ 1=100; 1=10; 1=4; 1=2 (each a separate panel). The numerical values generated by
inserting the orbital parameters into our PN expansion are plotted against accurate numerical flux values obtained from a Teukolsky
code. The Teukolsky code is written in Mathematica and was run with 20 decimal places of precision during this test. Thus differences in
the comparison are completely ascribable to the PN expansion. Each plot shows the relative error as a function of stepping toward higher
PN order. The multiple curves on each plot follow from using PN expansions computed with different compactness parameters (i.e., 1=p
and y) and with and without the use of logarithmic and reciprocal resummations. (These resummations were used in [24] and inspired by
alternatives explored in [67].) The asymptotic PN series for the horizon energy flux breaks down for an orbit as tight as p ¼ 10when the
eccentricity is higher than e ∼ 1=4. However, at e ≃ 1=4 and lower, useful accuracy is available in the expansions if summed through a
number of PN orders.
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expansion. These calculations represent a significant exten-
sion over previous work with numeric-analytic fitting,
which was available only in Forseth’s thesis [22] and
several online talks [38,39]. Taken together with high-order
expansions of the infinity-side fluxes [24], the full dis-
sipation in eccentric-orbit nonspinning EMRIs is now
known to 19PN order.
Several remarkable features exist in the form of the

horizon absorption expansions, especially the presence at
low PN order of a number of closed-form-in-e terms with
simple rational number coefficients and the delayed appear-
ance (to 5.5PN horizon-relative order) of the first half-
integer (likely tail) term. The combined structure suggests
that a focused calculation using post-Newtonian theory
might allow some of these low-order terms to be calculated
directly, rather than extracted from first-order black hole
perturbation theory, as was possible with certain PN-log
sequences in the flux to infinity [31,32]. Of course, a direct
PN calculation must deal with the fact that the primary
black hole horizon and nearby region do not naturally and
immediately fit within PN theory.
We also tested numerically the convergence (i.e., in the

sense of an asymptotic series) of the tidal heating PN
expansion when extended to close orbits with p ¼ 10. We
found the results to be less convergent than was the case
with the infinity-side flux [24], especially for eccentricities
approaching e ∼ 1=4 and higher. However, at e ¼ 1=4 and
p ¼ 10 it is possible to achieve a calculation of the flux
with less than 1% error using the full PN expansion, and
even e ¼ 1=2 at p ¼ 10 can yield a 90% accurate result

with the best-case resummation of the series. When we
account for the fact that the tidal heating is suppressed
by 4PN in the nonspinning primary case, the fractional
errors in using the PN expansion for this size orbit would
be of order 10−5 or less in the total dissipation. Use of
the PN expansion improves rapidly with increased orbital
separations.
Our fully symbolic calculations used Mathematica in

parallel on a cluster computer. As with the expansion at
infinity [24], the bottleneck step in the procedure was the
calculation of the even-parity asymptotic amplitudes for
l ¼ 2. Part of the calculation is sequential and part can be
made parallel, by splitting over modes. To give a sense of
the speed of the code, our 18PN horizon-relative calcu-
lations on the UNC cluster (Longleaf) were measured in
days. The attempt to reach 19PN order failed to complete in
under 10 days.
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