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We derive the time dilation formula for charged quantum clocks in electromagnetic fields. As a concrete
example of noninertial motion, we consider a cyclotron motion in a uniform magnetic field. Applying the
time dilation formula to coherent state of the charged quantum clock, we evaluate the time dilation quantum

mechanically.
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I. INTRODUCTION

Motivated by the tests of the weak equivalence principle
in quantum regime, in our previous study we derived a
formula of the averaged proper time read by one clock
conditioned on another clock reading a different proper
time in a weak gravitational field [1] by extending the
proper time observable proposed in [2]. The time dilation
measured by these quantum clocks is found to have the
same form as that in classical relativity. There, clocks are
assumed to be in their inertial motion and their classical
trajectories are the geodesics of the spacetime, that is, the
clocks are always free-falling.

Then, it would also be interesting to study what would
happen for clocks in noninertial motion. Any noninertial
motion should be caused by other external force than
gravitational interaction, and it is not a priori clear whether
the formalism in [2] can be extended to such situations. In
classical relativity, we are allowed to assume a noninertial
trajectory without the equation of motion, so that we can
evaluate its proper time kinematically. On the other hand,
in quantum theory we need to solve quantum dynamics to
determine a trajectory.

In order to study the effect of noninertial motion on
the time dilation of quantum clocks, we consider charged
quantum clocks interacting with the external electromag-
netic fields as a concrete example. The study of a quantum
charged particle is also interesting in the light of quantum
mechanics in a rotating frame because there exists a close
analogy between the motion in a rotating frame and the
motion in a magnetic field [3]. Also, a new class of optical
clocks with highly charged ions has been received interest
in recent years as references for highest-accuracy clocks
and precision tests of fundamental physics [4,5]. Such an
optical clock based on a highly charged ion was recently
realized [5]. Our study may be applicable to such clocks.

The paper is organized as follows. In Sec. II, we
derive the time dilation formula for charged particles in
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electromagnetic fields and weak gravitational fields as the
average of a proper time observable for a quantum clock.
We extend the formalism given in [2] to include the shift
vector as well as the electromagnetic field which is
essential to treat a rotational motion and a rotating frame.
In Sec. III, as a noninertial motion, we consider the
cyclotron motion in a uniform magnetic field. We
evaluate the quantum time dilation by using the coherent
state. In the Appendix, we summarize the several results
of the coherent state for the cyclotron motion in quantum
mechanics and the discussion of the time dilation in a
rotating frame.

II. CHARGED QUANTUM CLOCK PARTICLES
IN SPACETIME

A. Classical particles

We consider a system of N charged massive particles.
Each particle whose mass and charge are m, and
g,(n =1, ...,N) has a set of internal degrees of freedom,
labeled by the configuration variables y, and their con-
Jugate momenta P, [2]. These internal degrees of freedom
are supposed to represent the quantum clock.

The action of such a system in a curved spacetime
with the metric g,, and an electromagnetic field A, is
given by

dxh dy,
5= [an(omet v an Ghep, ).
(1)

where 7, is the proper time of the nth particle and
Ho% = Ho%(y, P, ) is a Hamiltonian for its internal
degrees of freedom.

Let x}, denote the spacetime position of the nth particle.
The trajectory of the nth particle x}(¢) is parametrized
by an arbitrary external time parameter 7. Noting that
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cdr, = \/—guihihdt = \/—idt, where a dot denotes

differentiation with respect to ¢, the action is rewritten as

1 ihe
S = /dtZ—\/ —i2 (—mnc2 + an”L
w V _le

+p, A0 - H%“’Ck) = / diL. (2)

_xn

The momentum conjugate to x4 is given by

L g
T

P (m,c* + H*%) + q,A,. (3)

Then the Hamiltonian associated with the Lagrangian L is
constrained to vanish:

H =Y (P,ih+P,1,) - L~0. (4)

In terms of the momentum, the constraints can be expressed
in the form

CH,, = gﬂU(P}’lﬂ - anﬂ)(Pnl/ - QnAu)CZ
+ (m,c* + H§o%)?2 ~ 0. (5)
Using the (3 + 1) decomposition of the metric in terms of
the lapse function , the shift vector 4 and the three-metric
vij such that [6]
ds* = —a*c*di* +y;;(dx' + Piedt)(dx’ + piedr),  (6)

the constraint is factorized in the form

. 2
Cy =-a? (PnO = qnAo =P (P — C]nAi)) ¢
+ 7ij(Pni - ani)(Pnj - QHA/')CZ
+ (m,,cz + HZIOCk)Z
= —a2CiC; ~0, (7)

where Cif is defined by

le = (Pn() - QnAO _ﬂi(Pni - QnAi))c == h”’ (8)

hn = a\/yij(Pni - ani)(Pnj - QnAj)c2 + (mrzc2 +H5110(;k)2-
©)

Note that we have set x’ = ct. Hereafter we assume that
the spacetime is stationary. The coordinates x,, and their
conjugate momenta P,, satisfy the fundamental Poisson
brackets: {xp, P,,} = 8,,,5,. The canonical momentum

P, generates translations in the spacetime coordinate .xj.
Therefore, if C ~ 0, then +h,, — q,Agc — fic(P,; — q,A;)
is the generator of translation in the nth particle’s time
coordinate and is the Hamiltonian for both the external and
internal degrees of freedom of the nth particle.

B. Quantization

We canonically quantize the system of N particles by
promoting the phase space variables to operators acting
on appropriate Hilbert spaces: x) and P,, become
canonically conjugate self-adjoint operators acting on
the Hilbert space HY ~ L*(R) associated with the nth
particle’s temporal degree of freedom; operators x/,
and P,; acting on the Hilbert space HS ~ L?(R?)
associated with the particle’s external degrees of freedom;
operators y, and P, acting on the Hilbert space HGlock
associated with the particle’s internal degrees of freedom.
Then the Hilbert space describing the nth particle is
Hn ~ Hg ® Hs;,lxt ® HZIOCk.

The constraint equations (7) now become operator
equations restricting the physical state of the theory,

CiC,¥)=0, V n, (10)
where [¥)) € H,y, is a physical state of a clock C and a
system S and lives in the physical Hilbert space Hppys.

To specify Hpys, the normalization of the physical state
in H,pys is performed by projecting a physical state |'¥)
onto a subspace in which the temporal degree of freedom
of each particle (clock C) is in an eigenstate |z,) of the
operator x! associated with the eigenvalue ¢ € R in the
spectrum of x: x9|¢,) = ct|t,,). The state of S by con-
ditioning |¥)) on C reading the time ¢ is then given by

ws(2)) = (1| ® Is[¥)), (11)

where |f) =®, |t,) and Iy is the identity on H =~
®, H ® HSoK, We demand that the state |yg(1)) is
normalized as (y(7)|ws(¢)) =1 for V¢ € R on a space-
like hypersurface defined by all N particles’ temporal
degree of freedom being in the state |7,). The physical
state |¥)) is thus normalized with respect to the inner
product [2]:

(V) pw = (P[0) (1] & Is|¥)) = (ws(Dlws(1)) = 1.
(12)

and the physical state |¥)) can be written as
= [ @ 1wy = [ anilso). (3)

Hereafter, we consider physical states that satisfy
Cr|¥) =0 for all neN. It can be shown that the
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conditioned state |y (7)) satisfies the Schrodinger equation
with ¢ as a time parameter [2]:

in S ys(0)) = Hilys(0), (14)

where Hg is given by
Hy = Z(h” - an()C - ﬁic(Pni - ani)> ®Is_,

with Ig, being the identity on ®,,., Ho' ® Heok.
Therefore, |wg(t)) can be regarded as the time-dependent
state of the N-particles with the Hamiltonian Hy evolved
with the external time f.

C. Probabilistic time dilation

Consider two clock particles A and B with internal
degrees of freedom. Each clock is defined to be the
quadrupole {HI%K, p,, HK T, 1, where p, is a fiducial
state and T, is proper time observable for n € {A, B}. The
proper time observable is defined as a positive operator
valued measure (POVM)

T, = {En(r) VreGs.t.LdrEn(T) _1,,}, (16)

where E,(7) = |r)(z] is a positive operator on H*, G is
the group generated by HS°*, and |z) is a clock state
associated with a measurement of the clock yielding the
time .

To probe time dilation effects between two clocks, we
consider the probability that clock A reads the proper time
7,4 conditioned on clock B reading the proper time zg [7,8].
This conditional probability is given in terms of the
physical state as

_ (P|EA(7a)Eg (7))
«‘P|EB(TB)|T»

Consider the case where two clock particles A and B are
moving in a curved spacetime. Suppose that initial con-
ditioned state is unentangled, [y s(0)) = |ws,)|ws,), and
that the external and internal degrees of freedom of both
particles are unentangled, [y ) = [w$)|y5°*). Then,
from Eq. (13), the physical state takes the form

PrOb[TA = TA|TB = TB] (17)

Wy = / i) s (1)

— [ar @ ey, )
ne{A,B}

where £, is defined in Eq. (15). Further suppose that
HEok ~ L2(R) so that we may consider an ideal clock
such that P, = HS°*/c and ¢T, are the momentum and
position operators on HS°*. The canonical commutation
relation yields [cT,, P,] = [T,, HI°*] = ih. Then, the
clock states are orthogonal (z]7/) = §(z — /) and satisfy
the covariance relation |z + ') = e~*#:"*/%|¢)_ The condi-
tional probability (17) becomes

Prob[TA = TA‘TB = TB]

_ Jdttw[Ex(zp)pa(0)]tr[Eg(z5)pp (1))
Jdtr[Eg(zg)pg(1)] ’

(19)

where p,(f) is the reduced state of the internal clock
degrees of freedom defined as [2]

Pu(1) = s (€7 My ) s, le™sM) - (20)

with the trace over the complement of the clock
Hilbert space.

We assume that the fiducial states of the internal clock
degrees of freedom are the Gaussian wave packets centered
at 7 = 0 with width o:

1 2
cocky — —— [ dre” 27|1). 21
W) = s [ e FR. @)
Note that in evaluating the conditional probability (19)
by using Egs. (20) and (21), the terms in the

Hamiltonian Hg (15) which involve both the clock
Hamiltonian HS°* and the external degrees of freedom
survive. Therefore, as in our previous study [1], the
conditional probability depends only on £, defined in
Eq. (9) and is independent of the terms in Hamiltonian
Hg which depend only on the external degrees of
freedom (such as A, and f).

D. Time dilation

In order to find the coupling of the clock Hamiltonian
HEo* and the external degrees of freedom, we expand /1, in
the effective Hamiltonian (15) according to the power of
HEok assuming HO* < m,,c?

hn = a\/yij(Pni - QnAi)(Pnj - QnAj)Cz + m121C4
- cInAOC - ﬂiC(Pni - QnAi)

N am%lcél H;:llock
" 2
V7 (Pui = 0,A) (P = 9,4))¢% + mikct i€
+ O((H5°* /m,c*)?). (22)
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The term in the third line which involves both the clock
Hamiltonian H$°* and the external degrees of freedom is
relevant in calculating the conditional probability. One may
recognize that the coefficient of HS° is (minus of) the

kinetic term of the nth particle in the Lagrangian (2), that is,

m,c\/—x2 = m,c?dr,/dt. This implies that the average of

the time dilation would be given by the same form as the
classical time dilation formula in the leading order of the
clock Hamiltonian. In other words, regardless of inertial or
noninertial motions, the time dilation would be given by
difference of the proper time and distance between trajec-
tories of each particle.

As a concrete example, in the Newtonian approximation
of spacetime, the metric is given by gy = —a® =
—(14+2®(x)/c?).7;j = 8, and f' =0, where ®(x) is
the Newtonian gravitational potential. hNn is then further
expanded according to the number of the inverse power
of ¢? as

h~n :mnC2+H2100k+H§Xt+HLm+O(C_4), (23)

where the rest-mass energy term m, ¢ is a constant and can

be disregarded in £,,. The external Hamiltonian H¢*' and the
interaction Hamiltonian H™ are given by |

(ta-8)*
2

20

Prob[TA = TA|TB = TB] = ¢

(Sij(Pm' - (’InAni>(Pnj - annj>

Hslxt = m + mntl)n — annOC
Pn —-q An 2
- % +m, @, = q,Ac, (24)
n
Hint .— _ (Pn - ann)ZHt;llock N q)anlloCk
" 2m?c? c2
! P, - QnA 2 2 B
 2myc? <( . 2m 2 _mﬂq)n> +0(c™),
n n
(25)
where 4, i= 4,(x,). @, := O(x,).

The reduced state of the internal clock becomes

P (2) = Wy pyelock [e ~iHsi/h s, ) (ws,le iHst/ h}

= (1) — ittren ([H,55(0) @ 5, (1)) + O (1))

palt) + n<<<P 1= nhal) <¢;>) [H%, 5, (1)

2m2c? c

+0(c™), (26)

where (1) = e Hi"M1/hy QMR and  pE(r) =

e~ N 1/h pext pitli¥t/h - The conditional probability (17) is
evaluated to leading relativistic order as

\2ro

4m3 c?

14 <<(PA — gaAn)?)

<(PB4_’1§23BC?B)2> _ <i1;> + <ilz>) (1 - Ti;zT%)l . (27)

where (H$) = (we|HSM|ws™). Then the average proper time read by clock A conditioned on clock B indicating the

time 7g is

(Ta)

/drProb[TA =1|Tg = 157

. ll . («PA ~ 4AAL)?)

2m3; c?

This is the quantum analog of time dilation formula for the
charged particles in the Newtonian gravity, extending
the time dilation formula for neutral particles derived
in [1]. Noting that the time evolution of the position
= w = P”_m—":A" from the Heisenberg equation,1
one may recognize that this time dilation formula has
the same form as the classical time dilation in the

Newtonian gravity. The time dilation formula of Eq. (28)

'Note that the equation becomes X, = %—ﬂc in the
presence of the shift vector. !

(28)

can also be regarded as the extension of the proper time
observable proposed in [2] to noninertial motion. The time
dilation of a clock, regardless of whether it is in inertial
motion or noninertial motion, is induced by its velocity and
gravitational potential.

III. TIME DILATION IN A UNIFORM
MAGNETIC FIELD

As an application of the time dilation formula of
Eq. (28), we consider the motion of a charged particle
in a uniform magnetic field B along the z direction.
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The quantum mechanics of the charged particle and the
coherent state are discussed in detail in the Appendix. For
the particle moving in the xy-plane in the flat spacetime, the
Hamiltonian is given by

(Pn - ‘InAn>2

ext
HY =
2m,,

(29)

The time dilation formula (28) is reduced to the difference
of the Hamiltonian

<TA> = 1B <1 - <H?tz> + <H%Xt2>>- (30)

maC mgc

Although Eq. (30) has the same form as the time dilation for
neutral particles in inertial motion [2], the interpretation is
different: the former is the time dilation for particles in
noninertial motion while the latter is for particles in inertial
motion. Since HS does not depend on the external time ¢
explicitly, the expectation value of H™ is conserved.
Therefore, the time dilation does not depend on ¢ in contrast
to the gravitational time dilation [1]. In the following,
we calculate the time dilation between a charged quantum
clock A (with its charge g,) and an uncharged (g5 = 0)
quantum clock B for coherent state. We also note that as
explained in the Appendix the time dilation formula (30)
does not change even if we move to a rotating frame.

A. Time dilation in coherent state

It is known that the cyclotron motion of a charged
particle in a uniform magnetic field can be quantum
mechanically well-described by the coherent state. We
consider the coherent state |a, ) defined by Eq. (Al4)
for the charged clock A2 Introducing the cyclotron
frequency wp, = gaB/my, and the radius of the cyclotron
motion ry, the center of the cyclotron motion (X, Yy) is

. _ 2h .
related to f as Xo—iYy= mAwAﬂ and the relative
position  (rgcosy, rgsinfy) is related to a as
roe' = /-2 The expectation value of the position

MA®A

of the charged particle rotates clockwise with the angular
velocity w, about the center [see Eqgs. (A20) and (A21)].
Note that the uniform magnetic field B is given by the
vector potential A =5 (—y, x,0) in the symmetric gauge.
From Eq. (A22), the expectation value of the external
Hamiltonian of the clock A becomes

1 1 1
(15 = o (1 4 3) = SR + o

2
(31)

%a should not be confused with the lapse function in Eq. (6).

On the other hand, we assume that the state of the
uncharged clock B is a Gaussian state centered at (xg, yg) =
(xBo, Yo) With width o, whose wave function is

_ (xg —xpo)* + (v8 — ¥Bo)”
203 ’

~1/2

(xglywg) = (”0213) exp

(32)

Then, the expectation value of the external Hamiltonian of
the clock B becomes

hZ

—. 33
2mpoy (33)

(ws|HE" |ws) =

Putting these together, the observed average time dilation
between two clocks is given by

(HR') | (HE")
T =15(1—
< A> TB( mAC2 + m302

wiry  ho h?
—rp(1—-—A0_ A . (34
B ( 2¢r 2myc? * 2m3cloy (34)

B. Superposition

Next, we consider two clocks A and B and suppose
that initially clock A is in a superposition of two coherent
state [9]:

(

1 .y
va) =5 a.f) + e, f)). (35)

Two coherent states are assumed to have the same center of

circle, namely the same £, but have different positions on
the circle as shown in Fig. 1:

maw .

Ty 55 Toe™, (36)
nip@ .

N S

which means the angular separation is 26, for 0 < 6, < 7.
Two clocks rotate about the center clockwise with the
angular velocity w,. The normalization factor N is given by

N =2+ Re(e"#(d. fla.p)) = 2 + Re(e e loF),
(38)

Then, the average of HY" is
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FIG. 1. The superposition of two coherent states |a,f) and

|a*, ). The radius of the circle is ry = \/2h/maw,|al and the
angular separation is 26, = 2 tan~!(Ima/Req).

1
i) = o (| + 3

2hw
i A

Re((a2 _ |a|2)e—i¢ea2—|a|2)

= EmAa)Ar(z) + Eth

2.2
+25sin6, %Re( ieiO) g-lal .
(39)

Hence the time dilation between two clocks becomes

#=0

Kol(wa?re?12¢%)

0.1F

/AW\V

~0.1+

P="1/2
Kol(wa?r?12¢?
0.10

)
0.00 (\ /\va 5
-0.05| \/

-0.10"

FIG. 2.

2.2
wpry s

2c¢2 2mpc?
2.2 2

DATD Re el o) 4 hi) ,

N

2 2 .22
c 2mycog

(Ta) =18 <1 -

—2sin 90
(40)

The term proportional to sin6, arises from quantum
interference due to the superposition and may be regarded
as the quantum time dilation.

To make the effect of quantum time dilation manifest,
as in [1] we split the time dilation formula (40) into K.
and K as (Ty) = (1 — K¢ — Kp). K¢ is given by the
contribution of a statistical mixture of the coherent states
of clock A and clock B, and K, is the term due to the
interference effect

2.2 i hZ
Kc= wAZO wAz T 5222 (41)
2c 2mac”  2mgcoy
. CU%\’”(Z) ; 2|2
Ky = 2sin 6, N2 Re(ie!(00=¢) ga’~lal*), (42)
c

Positive K, implies the enhanced time dilation. In Fig. 2,
K, normalized by the classical time dilation factor
w}r3/2¢? is shown. In this example, the charged clock
particle is supposed to be “°Ar!3* as in [5], and we assumed
gan =13e, my =66x102%kg, B=10T and ry,=
1.0 x 1077 m, so that the classical time dilation factor

p=11/4
Kol(wa?re?12¢%)

03

0.2

0.1

NN\ : ‘
0.0 \ /01 02"
~04}

-0.2}

-03¢t
¢=311/4
Kol(wa?ry?12¢?)
0.3
02}
0.1} /\
0.0 /N 9

S o 0.2

-0.1+

-0.2}

-0.3"

Ko/(03r§/2¢?) as a function of 6, for several ¢.
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becomes w3 r3/2¢* = 5.5 x 1077, The quantum effect can
either enhance or reduce the time dilation and can be as
large as 10% of the classical time dilation. The coherence
time of several seconds for maintaining the superposition
may be required to observe a quantum time dilation effect,
which is an experimental challenge but is well within the
measurement capability of state-of-the-art clocks [10].

IV. SUMMARY

As an extension of the proper time observable proposed
in [2] and applied to a weak gravitational field [1], we
studied charged quantum clocks interacting with the external
electromagnetic fields. We derived a formula of the average
proper time read by one clock conditioned on another clock
reading a different proper time, Eq. (28), which has the same
form as that in classical relativity consisting of kinetic part
(velocity squared term) and gravitational part (gravitational
redshift term). We found that the time dilation is given by
difference of velocity and distance between trajectories of
each clock, regardless of whether the clock is in inertial
motion or noninertial motion.

When applied to a charged quantum clock in a uniform
magnetic field, we considered the case in which the state of
one clock is in a superposition. We found that the effect arising
from quantum interference appears in the time dilation which
can be as large as 10% of the classical time dilation.

According to the proper time observable, the time dilation
is given by the expectation value depending on how one
prepared clock particle states as in Eq. (28). In this paper,
to analytically estimate deviation from the classical time
dilation on the basis of the derived formula, we have
considered the simplest clock model and have employed
the coherent states which follow trajectories of semi-classical
cyclotron motion. However, adopting other states or settings,
such as eigenstates of the Hamiltonian and so on, may make
it more advantageous to experimentally implement within
reach of currently established technologies. For example,
Bushev ez al. [11] have proposed an experiment with a single
electron in a Penning trap to probe the time dilation
depending on the radial cyclotron state of the electron by
using the electronic spin precession as an internal clock.

Optical clocks based on highly charged ions have
been considered as a new class of references for highest-
accuracy clocks and precision tests of fundamental
physics [4]. Moreover, such an optical clock based on a
highly charged ion was realized recently [5]. Our study may
be relevant in interpreting the measurements of the time
dilation of a highly charged optical clock.
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APPENDIX: QUANTUM MECHANICS OF A
CHARGED PARTICLE IN A UNIFORM
MAGNETIC FIELD

Here, we summarize the basic results on quantum
mechanics of a charged particle in a uniform magnetic
field [12,13].

1. Hamiltonian and relative coordinate

Consider a particle with the mass m and the charge ¢
moving in a uniform magnetic field B. Take the z-axis in
the direction of the magnetic field and assume that the
particle moves in the xy-plane.

The Hamiltonian in the symmetric gauge

1

B
A=-Bxx=—(-y,x0)

> > (A1)

is given by

(p—qA)?
2m

1 mo \2 1 mo 2
=— — — -——x], (A2
2m(‘””Jr 2y> +2m<py 2x) (42)
where we have introduced the cyclotron frequency
w = gB/m.
Since the time evolution of position operator is given

from the Heisenberg equation by &; = beH]

H =

Pi—in7 con-
. . . . lh . m
sidering the classical cyclotron motion, we introduce the
position operators X and Y corresponding to the center of
the circle
7py+mwx/2 Dy — mwy/2

x=2 Ty P ,

A3
mw mw (A3)

and the operators £ and # corresponding to the relative
coordinates

Fox_xo _PyTmex/2
maw ’
Py + mwy/2

Note that both X and Y commute with the Hamiltonian,
[X,H| =0 = [Y, H|, and hence they are conserved, but X
and Y do not commute with each other, (X, Y| = —ifi/mw.

2. Creation and annihilation operators

We introduce the following creation and annihilation
operators

a= \/n?:l)(éﬂn)
- @(Gﬂ}iﬁu) +i<;+inlzz)>>, (A5)

044036-7
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a' =\
VaGee) 6

M
= 22X =iy
b Zh( iY)

fmo((x . p\ (v Py
2fz<( +Zma)) l<2+lma)>>’
b"':,/%@(ﬂy)
= mw f_l'px +iX_i&
20\ \2 mow 2 mw) )’

where a and b commute with each other and obey the usual
commutation relations

(A6)

(A7)

(A8)

[a,a’] =1, [b,b"] = 1. (A9)
Then, the Hamiltonian and the z component of the angular
momentum L, are written in terms of @ and b in simple

form as

and b'h corresponds to the squared distance of the center
from the origin of the coordinates.

We also note that the center of the circle and the relative
coordinates are written in terms of creation and annihilation
operators as

1 /2h . i [2h
X=—-\/—(b+b"), Y= b—b' Al2

A oeb 4B, Y =2\ b), (Al12)

1 /2nh i [2h

— = t —_ T
f=5\olatal), n=5\[= " (=a+al).  (A13)

3. Coherent state

As in the case of one-dimensional harmonic oscillator,
we introduce the coherent state |a, ) p) =
ala,f) and bla,f) = fla, ﬁ) which is constructed by
applying the operators ¢® and ¢*" on the ground state
|0) as

a2+

@) =

Then, from Egs. (AS5) and (A7), the eigenvalues a and f
corresponding to the relative coordinate (r cos 6y, ry sin 6;)
and the center of the circle (X, Y() are given by

 paal o |0). (A14)

1
H = hw (aTa + z) . (A10) a=, /%roe’g0 (A15)
L,=xp,—yp,=h(—a'a+b'D). (All) mo.. .
From Egs. (A5)—(A8), the number operator a'a corre-
sponds to the squared distance from the center of the circle =~ The wave function of the coherent state is given by
|
ma maw .
(x|a, p) = 4 /%exp { o [(x —rocosfy — Xo)? + (y — rosin Gy — YO)Z} }
X exp {z% [(ro sinfy — Yo)x — (rocos 6y — Xq)y — ro(Xo sinfy — Y cos 60)} } (A17)
a(t) and b(r) evolve according to the Heisenberg equation as
iha(t) = la(r), H] = hwa(t), (A18)
ihb(t) = [b(t),H] = 0. (A19)

Hence, we have a(t) = e™’a and b(t) = b. Then, from Eq. (A13), the expectation values of &(¢) and 7(¢) in the coherent

state are given by

60) =3 2t (a0 ) = &

2n ; ;
—(ae " + ae'") = rycos(6y — wt),

- (A20)
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)

) =52 i (-alt) + 1)

This corresponds to the position of a charged particle
orbiting clockwise about the center with the angular
velocity .’ The expectation values of X(r) and Y(z) do
not depend on time: (X(¢)) = X, and (Y (¢)) = Y.

The expectation value of the Hamiltonian becomes

(a,

1 1
, >:ha)(|a2+§> =5mw r0+2ha) (A22)

4. Time dilation in a rotating frame

We show that the time dilation Eq. (30) is invariant even
if we move to a rotating frame.

Consider a frame (x’, y') which rotates with the angular
velocity Q about the z axis with respect the inertial frame
(x,y). The two coordinates are related by

x' cosQtr  sinQr X
=( . (A23)
v —sinQr cosQr /) \y

Then, the shift vector appears in the rotating frame

3For a negatively charged particle w = gB/m < 0, the particle
orbits counterclockwise.

1 [2n
_ 5 _(_ae—zwt 1 ate zwt) =7 sin(@o — w[)_ (A21)
maw
[
—c2dP? + dx* + dy? = —c2d? + (dY' — Qy'd1)?
+ (dy + Q¥dr)?, (A24)

that is, f¥c = —Qy’ and "¢ = Qx’. In the presence of
the shift vector, the (external) Hamiltonian becomes
H= P_"A —pc-(P—gA), so that the time evolution
of the pos1t10n vector is given by

X = [X;’h H_P _qu — pe. (A25)
Moreover, from Egs. (A23) and (A4), we have
i = Qy + w(ncos Qt — Esin Qt), (A26)
V' =—Qx' — w(Ecos Qr + nsin Q). (A27)
Hence
A (v ey 4 (7 4 e
=X (& +n?) =+ (A28)

Therefore, the time dilation formula Eq. (30) holds in a
rotating frame. This implies, in particular, that even if we
move to a rotating frame with Q = —w so that a particle is
at rest (classically), the time dilation does not change.
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