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We derive the time dilation formula for charged quantum clocks in electromagnetic fields. As a concrete
example of noninertial motion, we consider a cyclotron motion in a uniform magnetic field. Applying the
time dilation formula to coherent state of the charged quantum clock, we evaluate the time dilation quantum
mechanically.
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I. INTRODUCTION

Motivated by the tests of the weak equivalence principle
in quantum regime, in our previous study we derived a
formula of the averaged proper time read by one clock
conditioned on another clock reading a different proper
time in a weak gravitational field [1] by extending the
proper time observable proposed in [2]. The time dilation
measured by these quantum clocks is found to have the
same form as that in classical relativity. There, clocks are
assumed to be in their inertial motion and their classical
trajectories are the geodesics of the spacetime, that is, the
clocks are always free-falling.
Then, it would also be interesting to study what would

happen for clocks in noninertial motion. Any noninertial
motion should be caused by other external force than
gravitational interaction, and it is not a priori clear whether
the formalism in [2] can be extended to such situations. In
classical relativity, we are allowed to assume a noninertial
trajectory without the equation of motion, so that we can
evaluate its proper time kinematically. On the other hand,
in quantum theory we need to solve quantum dynamics to
determine a trajectory.
In order to study the effect of noninertial motion on

the time dilation of quantum clocks, we consider charged
quantum clocks interacting with the external electromag-
netic fields as a concrete example. The study of a quantum
charged particle is also interesting in the light of quantum
mechanics in a rotating frame because there exists a close
analogy between the motion in a rotating frame and the
motion in a magnetic field [3]. Also, a new class of optical
clocks with highly charged ions has been received interest
in recent years as references for highest-accuracy clocks
and precision tests of fundamental physics [4,5]. Such an
optical clock based on a highly charged ion was recently
realized [5]. Our study may be applicable to such clocks.
The paper is organized as follows. In Sec. II, we

derive the time dilation formula for charged particles in

electromagnetic fields and weak gravitational fields as the
average of a proper time observable for a quantum clock.
We extend the formalism given in [2] to include the shift
vector as well as the electromagnetic field which is
essential to treat a rotational motion and a rotating frame.
In Sec. III, as a noninertial motion, we consider the
cyclotron motion in a uniform magnetic field. We
evaluate the quantum time dilation by using the coherent
state. In the Appendix, we summarize the several results
of the coherent state for the cyclotron motion in quantum
mechanics and the discussion of the time dilation in a
rotating frame.

II. CHARGED QUANTUM CLOCK PARTICLES
IN SPACETIME

A. Classical particles

We consider a system of N charged massive particles.
Each particle whose mass and charge are mn and
qnðn ¼ 1;…; NÞ has a set of internal degrees of freedom,
labeled by the configuration variables χn and their con-
jugate momenta Pχn [2]. These internal degrees of freedom
are supposed to represent the quantum clock.
The action of such a system in a curved spacetime

with the metric gμν and an electromagnetic field Aμ is
given by

S ¼
X
n

Z
dτn

�
−mnc2 þ qnAμ

dxμn
dτn

þ Pχn

dχn
dτn

−Hclock
n

�
;

ð1Þ

where τn is the proper time of the nth particle and
Hclock

n ¼ Hclock
n ðχn; PχnÞ is a Hamiltonian for its internal

degrees of freedom.
Let xμn denote the spacetime position of the nth particle.

The trajectory of the nth particle xμnðtÞ is parametrized
by an arbitrary external time parameter t. Noting that
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cdτn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνẋ

μ
nẋνn

q
dt≡ ffiffiffiffiffiffiffiffi

−ẋ2n
p

dt, where a dot denotes

differentiation with respect to t, the action is rewritten as

S ¼
Z

dt
X
n

1

c

ffiffiffiffiffiffiffiffi
−ẋ2n

q �
−mnc2 þ qnAμ

ẋμncffiffiffiffiffiffiffiffi
−ẋ2n

p
þ Pχn

χ̇ncffiffiffiffiffiffiffiffi
−ẋ2n

p −Hclock
n

�
≕
Z

dtL: ð2Þ

The momentum conjugate to xμn is given by

Pnμ ¼
∂L
∂ẋμn

¼ gμνẋνn

c
ffiffiffiffiffiffiffiffi
−ẋ2n

p ðmnc2 þHclock
n Þ þ qnAμ: ð3Þ

Then the Hamiltonian associated with the Lagrangian L is
constrained to vanish:

H ¼
X
n

ðPnμẋ
μ
n þ Pχn χ̇nÞ − L ≈ 0: ð4Þ

In terms of the momentum, the constraints can be expressed
in the form

CHn
≔ gμνðPnμ − qnAμÞðPnν − qnAνÞc2
þ ðmnc2 þHclock

n Þ2 ≈ 0: ð5Þ

Using the (3þ 1) decomposition of the metric in terms of
the lapse function α, the shift vector βi and the three-metric
γij such that [6]

ds2 ¼ −α2c2dt2 þ γijðdxi þ βicdtÞðdxj þ βjcdtÞ; ð6Þ

the constraint is factorized in the form

CHn
¼ −α−2

�
Pn0 − qnA0 − βiðPni − qnAiÞ

�
2
c2

þ γijðPni − qnAiÞðPnj − qnAjÞc2
þ ðmnc2 þHclock

n Þ2
¼ −α−2Cþ

n C−
n ≈ 0; ð7Þ

where C�
n is defined by

C�
n ≔

�
Pn0 − qnA0 − βiðPni − qnAiÞ

�
c� hn; ð8Þ

hn ≔ α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γijðPni−qnAiÞðPnj−qnAjÞc2þðmnc2þHclock

n Þ2
q

:

ð9Þ

Note that we have set x0 ¼ ct. Hereafter we assume that
the spacetime is stationary. The coordinates xμn and their
conjugate momenta Pnμ satisfy the fundamental Poisson
brackets: fxμm; Pnνg ¼ δmnδ

μ
ν . The canonical momentum

Pnμ generates translations in the spacetime coordinate xμn.
Therefore, if C�

n ≈ 0, then �hn − qnA0c − βicðPni − qnAiÞ
is the generator of translation in the nth particle’s time
coordinate and is the Hamiltonian for both the external and
internal degrees of freedom of the nth particle.

B. Quantization

We canonically quantize the system of N particles by
promoting the phase space variables to operators acting
on appropriate Hilbert spaces: x0n and Pn0 become
canonically conjugate self-adjoint operators acting on
the Hilbert space H0

n ≃ L2ðRÞ associated with the nth
particle’s temporal degree of freedom; operators xin
and Pni acting on the Hilbert space Hext

n ≃ L2ðR3Þ
associated with the particle’s external degrees of freedom;
operators χn and Pχn acting on the Hilbert space Hclock

n

associated with the particle’s internal degrees of freedom.
Then the Hilbert space describing the nth particle is
Hn ≃H0

n ⊗ Hext
n ⊗ Hclock

n .
The constraint equations (7) now become operator

equations restricting the physical state of the theory,

Cþ
n C−

n jΨ⟫ ¼ 0; ∀ n; ð10Þ

where jΨ⟫ ∈ Hphys is a physical state of a clock C and a
system S and lives in the physical Hilbert space Hphys.
To specify Hphys, the normalization of the physical state

in Hphys is performed by projecting a physical state jΨ⟫
onto a subspace in which the temporal degree of freedom
of each particle (clock C) is in an eigenstate jtni of the
operator x0n associated with the eigenvalue t ∈ R in the
spectrum of x0n: x0njtni ¼ ctjtni. The state of S by con-
ditioning jΨ⟫ on C reading the time t is then given by

jψSðtÞi ¼ htj ⊗ ISjΨii; ð11Þ

where jti ¼⊗n jtni and IS is the identity on H≃
⊗n Hext

n ⊗ Hclock
n . We demand that the state jψSðtÞi is

normalized as hψSðtÞjψSðtÞi ¼ 1 for ∀ t ∈ R on a space-
like hypersurface defined by all N particles’ temporal
degree of freedom being in the state jtni. The physical
state jΨ⟫ is thus normalized with respect to the inner
product [2]:

⟪ΨjΨ⟫PW ≔ ⟪Ψjjtihtj ⊗ ISjΨ⟫ ¼ hψSðtÞjψSðtÞi ¼ 1;

ð12Þ

and the physical state jΨ⟫ can be written as

jΨ⟫ ¼
Z

dtjtihtj ⊗ ISjΨ⟫ ¼
Z

dtjtijψSðtÞi: ð13Þ

Hereafter, we consider physical states that satisfy
Cþ
n jΨ⟫ ¼ 0 for all n ∈ N. It can be shown that the
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conditioned state jψSðtÞi satisfies the Schrödinger equation
with t as a time parameter [2]:

iℏ
d
dt

jψSðtÞi ¼ HSjψSðtÞi; ð14Þ

where HS is given by

HS ¼
X
n

�
hn − qnA0c − βicðPni − qnAiÞ

�
⊗ IS−n

≡X
n

ehn ⊗ IS−n ð15Þ

with IS−n being the identity on ⊗m≠n Hext
m ⊗ Hclock

m .
Therefore, jψSðtÞi can be regarded as the time-dependent
state of the N-particles with the Hamiltonian HS evolved
with the external time t.

C. Probabilistic time dilation

Consider two clock particles A and B with internal
degrees of freedom. Each clock is defined to be the
quadrupole fHclock

n ; ρn; Hclock
n ; Tng, where ρn is a fiducial

state and Tn is proper time observable for n ∈ fA;Bg. The
proper time observable is defined as a positive operator
valued measure (POVM)

Tn ≔
�
EnðτÞ ∀ τ ∈ G s:t:

Z
G
dτEnðτÞ ¼ In

�
; ð16Þ

where EnðτÞ ¼ jτihτj is a positive operator on Hclock
n , G is

the group generated by Hclock
n , and jτi is a clock state

associated with a measurement of the clock yielding the
time τ.
To probe time dilation effects between two clocks, we

consider the probability that clock A reads the proper time
τA conditioned on clock B reading the proper time τB [7,8].
This conditional probability is given in terms of the
physical state as

Prob½TA ¼ τAjTB ¼ τB� ¼
⟪ΨjEAðτAÞEBðτBÞjΨ⟫

⟪ΨjEBðτBÞjΨ⟫
: ð17Þ

Consider the case where two clock particles A and B are
moving in a curved spacetime. Suppose that initial con-
ditioned state is unentangled, jψSð0Þi ¼ jψSAijψSBi, and
that the external and internal degrees of freedom of both
particles are unentangled, jψSni ¼ jψ ext

n ijψ clock
n i. Then,

from Eq. (13), the physical state takes the form

jΨ⟫ ¼
Z

dtjtijψSðtÞi

¼
Z

dt ⊗
n∈fA;Bg

e−ih̃nt=ℏjψ ext
n ijψ clock

n i; ð18Þ

where h̃n is defined in Eq. (15). Further suppose that
Hclock

n ≃ L2ðRÞ so that we may consider an ideal clock
such that Pn ¼ Hclock

n =c and cTn are the momentum and
position operators on Hclock

n . The canonical commutation
relation yields ½cTn; Pn� ¼ ½Tn;Hclock

n � ¼ iℏ. Then, the
clock states are orthogonal hτjτ0i ¼ δðτ − τ0Þ and satisfy
the covariance relation jτ þ τ0i ¼ e−iH

clock
n τ0=ℏjτi. The condi-

tional probability (17) becomes

Prob½TA ¼ τAjTB ¼ τB�

¼
R
dt tr½EAðτAÞρAðtÞ�tr½EBðτBÞρBðtÞ�R

dt tr½EBðτBÞρBðtÞ�
; ð19Þ

where ρnðtÞ is the reduced state of the internal clock
degrees of freedom defined as [2]

ρnðtÞ ¼ trHSnHclock
n

�
e−iHSt=ℏjψSnihψSn jeiHSt=ℏ

�
ð20Þ

with the trace over the complement of the clock
Hilbert space.
We assume that the fiducial states of the internal clock

degrees of freedom are the Gaussian wave packets centered
at τ ¼ 0 with width σ:

jψclock
n i ¼ 1

π1=4σ1=2

Z
dτe−

τ2

2σ2 jτi: ð21Þ

Note that in evaluating the conditional probability (19)
by using Eqs. (20) and (21), the terms in the
Hamiltonian HS (15) which involve both the clock
Hamiltonian Hclock

n and the external degrees of freedom
survive. Therefore, as in our previous study [1], the
conditional probability depends only on hn defined in
Eq. (9) and is independent of the terms in Hamiltonian
HS which depend only on the external degrees of
freedom (such as A0 and βi).

D. Time dilation

In order to find the coupling of the clock Hamiltonian
Hclock

n and the external degrees of freedom, we expand ehn in
the effective Hamiltonian (15) according to the power of
Hclock

n assuming Hclock
n ≪ mnc2

ehn ¼ α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γijðPni − qnAiÞðPnj − qnAjÞc2 þm2

nc4
q

− qnA0c − βicðPni − qnAiÞ

þ αm2
nc4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γijðPni − qnAiÞðPnj − qnAjÞc2 þm2
nc4

q Hclock
n

mnc2

þOððHclock
n =mnc2Þ2Þ: ð22Þ
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The term in the third line which involves both the clock
Hamiltonian Hclock

n and the external degrees of freedom is
relevant in calculating the conditional probability. One may
recognize that the coefficient of Hclock

n is (minus of) the
kinetic term of the nth particle in the Lagrangian (2), that is,
mnc

ffiffiffiffiffiffiffiffi
−ẋ2n

p
¼ mnc2dτn=dt. This implies that the average of

the time dilation would be given by the same form as the
classical time dilation formula in the leading order of the
clock Hamiltonian. In other words, regardless of inertial or
noninertial motions, the time dilation would be given by
difference of the proper time and distance between trajec-
tories of each particle.
As a concrete example, in the Newtonian approximation

of spacetime, the metric is given by g00 ¼ −α2 ¼
−ð1þ 2ΦðxÞ=c2Þ; γij ¼ δij, and βi ¼ 0, where ΦðxÞ is

the Newtonian gravitational potential. ehn is then further
expanded according to the number of the inverse power
of c2 as

ehn ¼ mnc2 þHclock
n þHext

n þHint
n þOðc−4Þ; ð23Þ

where the rest-mass energy termmnc2 is a constant and can
be disregarded in hn. The external HamiltonianHext

n and the
interaction Hamiltonian Hint

n are given by

Hext
n ≔

δijðPni − qnAniÞðPnj − qnAnjÞ
2mn

þmnΦn − qnAn0c

≡ ðPn − qnAnÞ2
2mn

þmnΦn − qnAn0c; ð24Þ

Hint
n ≔ −

ðPn − qnAnÞ2Hclock
n

2m2
nc2

þΦnHclock
n

c2

−
1

2mnc2

�ðPn − qnAnÞ2
2mn

−mnΦn

�
2

þOðc−4Þ;

ð25Þ

where Anμ ≔ AμðxnÞ;Φn ≔ ΦðxnÞ.
The reduced state of the internal clock becomes

ρnðtÞ ¼ trHSnHclock
n

h
e−iHSt=ℏjψSnihψSn jeiHSt=ℏ

i
¼ ρnðtÞ− ittrextð½Hint

n ; ρ̄extn ðtÞ⊗ ρ̄nðtÞ�þO
�
ðHint

n tÞ2Þ
�

¼ ρ̄nðtÞþ it

�hðPn −qnAnÞ2i
2m2

nc2
−
hΦni
c2

�
½Hclock

n ; ρ̄nðtÞ�

þOðc−4Þ; ð26Þ

where ρ̄nðtÞ ¼ e−iH
clock
n t=ℏρneiH

clock
n t=ℏ and ρ̄extn ðtÞ ¼

e−iH
ext
n t=ℏρextn eiH

ext
n t=ℏ. The conditional probability (17) is

evaluated to leading relativistic order as

Prob½TA ¼ τAjTB ¼ τB� ¼
e−

ðτA−τBÞ2
2σ2ffiffiffiffiffiffi
2π

p
σ

"
1þ

�hðPA − qAAAÞ2i
4m2

Ac
2

−
hðPB − qBABÞ2i

4m2
Bc

2
−
hΦAi
2c2

þ hΦBi
2c2

��
1 −

τ2A − τ2B
σ2

�#
; ð27Þ

where hHext
n i ¼ hψ ext

n jHext
n jψ ext

n i. Then the average proper time read by clock A conditioned on clock B indicating the
time τB is

hTAi ¼
Z

dτ Prob½TA ¼ τjTB ¼ τB�τ

¼ τB

"
1 −

�hðPA − qAAAÞ2i
2m2

Ac
2

−
hΦAi
c2

�
þ
�hðPB − qBABÞ2i

2m2
Bc

2
−
hΦBi
c2

�#
: ð28Þ

This is the quantum analog of time dilation formula for the
charged particles in the Newtonian gravity, extending
the time dilation formula for neutral particles derived
in [1]. Noting that the time evolution of the position

ẋn ¼ ½xn;Hext
n �

iℏ ¼ Pn−qnAn
mn

from the Heisenberg equation,1

one may recognize that this time dilation formula has
the same form as the classical time dilation in the
Newtonian gravity. The time dilation formula of Eq. (28)

can also be regarded as the extension of the proper time
observable proposed in [2] to noninertial motion. The time
dilation of a clock, regardless of whether it is in inertial
motion or noninertial motion, is induced by its velocity and
gravitational potential.

III. TIME DILATION IN A UNIFORM
MAGNETIC FIELD

As an application of the time dilation formula of
Eq. (28), we consider the motion of a charged particle
in a uniform magnetic field B along the z direction.

1Note that the equation becomes ẋn ¼ Pn−qnAn
mn

− βc in the
presence of the shift vector.
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The quantum mechanics of the charged particle and the
coherent state are discussed in detail in the Appendix. For
the particle moving in the xy-plane in the flat spacetime, the
Hamiltonian is given by

Hext
n ¼ ðPn − qnAnÞ2

2mn
: ð29Þ

The time dilation formula (28) is reduced to the difference
of the Hamiltonian

hTAi ¼ τB

�
1 −

hHext
A i

mAc2
þ hHext

B i
mBc2

�
: ð30Þ

Although Eq. (30) has the same form as the time dilation for
neutral particles in inertial motion [2], the interpretation is
different: the former is the time dilation for particles in
noninertial motion while the latter is for particles in inertial
motion. Since Hext

n does not depend on the external time t
explicitly, the expectation value of Hext

n is conserved.
Therefore, the time dilation does not depend on t in contrast
to the gravitational time dilation [1]. In the following,
we calculate the time dilation between a charged quantum
clock A (with its charge qA) and an uncharged (qB ¼ 0)
quantum clock B for coherent state. We also note that as
explained in the Appendix the time dilation formula (30)
does not change even if we move to a rotating frame.

A. Time dilation in coherent state

It is known that the cyclotron motion of a charged
particle in a uniform magnetic field can be quantum
mechanically well-described by the coherent state. We
consider the coherent state jα; βi defined by Eq. (A14)
for the charged clock A.2 Introducing the cyclotron
frequency ωA ¼ qAB=mA and the radius of the cyclotron
motion r0, the center of the cyclotron motion ðX0; Y0Þ is

related to β as X0 − iY0 ¼
ffiffiffiffiffiffiffiffiffi
2ℏ

mAωA

q
β and the relative

position ðr0 cos θ0; r0 sin θ0Þ is related to α as

r0eiθ0 ¼
ffiffiffiffiffiffiffiffiffi
2ℏ

mAωA

q
α. The expectation value of the position

of the charged particle rotates clockwise with the angular
velocity ωA about the center [see Eqs. (A20) and (A21)].
Note that the uniform magnetic field B is given by the
vector potential A ¼ B

2
ð−y; x; 0Þ in the symmetric gauge.

From Eq. (A22), the expectation value of the external
Hamiltonian of the clock A becomes

hα; βjHext
A jα; βi ¼ ℏωA

�
jαj2 þ 1

2

�
¼ 1

2
mAω

2
Ar

2
0 þ

1

2
ℏωA:

ð31Þ

On the other hand, we assume that the state of the
uncharged clock B is a Gaussian state centered at ðxB; yBÞ ¼
ðxB0; yB0Þ with width σB, whose wave function is

hxBjψBi ¼ ðπσ2BÞ−1=2 exp
	
−
ðxB − xB0Þ2 þ ðyB − yB0Þ2

2σ2B



:

ð32Þ

Then, the expectation value of the external Hamiltonian of
the clock B becomes

hψBjHext
B jψBi ¼

ℏ2

2mBσ
2
B
: ð33Þ

Putting these together, the observed average time dilation
between two clocks is given by

hTAi ¼ τB

�
1 −

hHext
A i

mAc2
þ hHext

B i
mBc2

�
¼ τB

�
1 −

ω2
Ar

2
0

2c2
−

ℏωA

2mAc2
þ ℏ2

2m2
Bc

2σ2B

�
: ð34Þ

B. Superposition

Next, we consider two clocks A and B and suppose
that initially clock A is in a superposition of two coherent
state [9]:

jψAi ¼
1ffiffiffiffi
N

p ðjα; βi þ eiϕjα0; βiÞ: ð35Þ

Two coherent states are assumed to have the same center of
circle, namely the same β, but have different positions on
the circle as shown in Fig. 1:

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mAωA

2ℏ

r
r0eiθ0 ; ð36Þ

α0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mAωA

2ℏ

r
r0e−iθ0 ¼ α�; ð37Þ

which means the angular separation is 2θ0 for 0 ≤ θ0 < π.
Two clocks rotate about the center clockwise with the
angular velocity ωA. The normalization factorN is given by

N ¼ 2þ 2Reðe−iϕhα0; βjα; βiÞ ¼ 2þ 2Reðe−iϕeα2−jαj2Þ:
ð38Þ

Then, the average of Hext
A is2α should not be confused with the lapse function in Eq. (6).
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hψAjHext
A jψAi ¼ ℏωA

�
jαj2 þ 1

2

�
þ 2ℏωA

N
Reððα2 − jαj2Þe−iϕeα2−jαj2Þ

¼ 1

2
mAωAr20 þ

1

2
ℏωA

þ 2 sin θ0
mAω

2
Ar

2
0

N
Reðieiðθ0−ϕÞeα2−jαj2Þ:

ð39Þ

Hence the time dilation between two clocks becomes

hTAi ¼ τB

�
1 −

ω2
Ar

2
0

2c2
−

ℏωA

2mAc2

− 2 sin θ0
ω2
Ar

2
0

Nc2
Reðieiðθ0−ϕÞeα2−jαj2Þ þ ℏ2

2m2
Bc

2σ2B

�
:

ð40Þ

The term proportional to sin θ0 arises from quantum
interference due to the superposition and may be regarded
as the quantum time dilation.
To make the effect of quantum time dilation manifest,

as in [1] we split the time dilation formula (40) into KC
and KQ as hTAi ¼ τBð1 − KC − KQÞ. KC is given by the
contribution of a statistical mixture of the coherent states
of clock A and clock B, and KQ is the term due to the
interference effect

KC ¼ ω2
Ar

2
0

2c2
þ ℏωA

2mAc2
−

ℏ2

2m2
Bc

2σ2B
; ð41Þ

KQ ¼ 2 sin θ0
ω2
Ar

2
0

Nc2
Reðieiðθ0−ϕÞeα2−jαj2Þ: ð42Þ

Positive KQ implies the enhanced time dilation. In Fig. 2,
KQ normalized by the classical time dilation factor
ω2
Ar

2
0=2c

2 is shown. In this example, the charged clock
particle is supposed to be 40Ar13þ as in [5], and we assumed
qA ¼ 13e, mA ¼ 6.6 × 10−26 kg, B ¼ 1.0 T and r0 ¼
1.0 × 10−7 m, so that the classical time dilation factor

FIG. 2. KQ=ðω2
Ar

2
0=2c

2Þ as a function of θ0 for several ϕ.

| , ⟩

| ∗, ⟩

FIG. 1. The superposition of two coherent states jα; βi and
jα�; βi. The radius of the circle is r0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ℏ=mAωA

p jαj and the
angular separation is 2θ0 ¼ 2 tan−1ðImα=ReαÞ.
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becomes ω2
Ar

2
0=2c

2 ¼ 5.5 × 10−17. The quantum effect can
either enhance or reduce the time dilation and can be as
large as 10% of the classical time dilation. The coherence
time of several seconds for maintaining the superposition
may be required to observe a quantum time dilation effect,
which is an experimental challenge but is well within the
measurement capability of state-of-the-art clocks [10].

IV. SUMMARY

As an extension of the proper time observable proposed
in [2] and applied to a weak gravitational field [1], we
studied charged quantum clocks interacting with the external
electromagnetic fields. We derived a formula of the average
proper time read by one clock conditioned on another clock
reading a different proper time, Eq. (28), which has the same
form as that in classical relativity consisting of kinetic part
(velocity squared term) and gravitational part (gravitational
redshift term). We found that the time dilation is given by
difference of velocity and distance between trajectories of
each clock, regardless of whether the clock is in inertial
motion or noninertial motion.
When applied to a charged quantum clock in a uniform

magnetic field, we considered the case in which the state of
oneclock is in a superposition.We found that the effect arising
from quantum interference appears in the time dilation which
can be as large as 10% of the classical time dilation.
According to the proper time observable, the time dilation

is given by the expectation value depending on how one
prepared clock particle states as in Eq. (28). In this paper,
to analytically estimate deviation from the classical time
dilation on the basis of the derived formula, we have
considered the simplest clock model and have employed
the coherent states which follow trajectories of semi-classical
cyclotron motion. However, adopting other states or settings,
such as eigenstates of the Hamiltonian and so on, may make
it more advantageous to experimentally implement within
reach of currently established technologies. For example,
Bushev et al. [11] have proposed an experiment with a single
electron in a Penning trap to probe the time dilation
depending on the radial cyclotron state of the electron by
using the electronic spin precession as an internal clock.
Optical clocks based on highly charged ions have

been considered as a new class of references for highest-
accuracy clocks and precision tests of fundamental
physics [4]. Moreover, such an optical clock based on a
highly charged ion was realized recently [5]. Our study may
be relevant in interpreting the measurements of the time
dilation of a highly charged optical clock.
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APPENDIX: QUANTUM MECHANICS OF A
CHARGED PARTICLE IN A UNIFORM

MAGNETIC FIELD

Here, we summarize the basic results on quantum
mechanics of a charged particle in a uniform magnetic
field [12,13].

1. Hamiltonian and relative coordinate

Consider a particle with the mass m and the charge q
moving in a uniform magnetic field B. Take the z-axis in
the direction of the magnetic field and assume that the
particle moves in the xy-plane.
The Hamiltonian in the symmetric gauge

A ¼ 1

2
B × x ¼ B

2
ð−y; x; 0Þ ðA1Þ

is given by

H ¼ ðp − qAÞ2
2m

¼ 1

2m

�
px þ

mω

2
y

�
2

þ 1

2m

�
py −

mω

2
x

�
2

; ðA2Þ

where we have introduced the cyclotron frequency
ω ¼ qB=m.
Since the time evolution of position operator is given

from the Heisenberg equation by ẋi ¼ ½xi;H�
iℏ ¼ pi−qAi

m , con-
sidering the classical cyclotron motion, we introduce the
position operators X and Y corresponding to the center of
the circle

X ¼ py þmωx=2

mω
; Y ¼ −

px −mωy=2
mω

; ðA3Þ

and the operators ξ and η corresponding to the relative
coordinates

ξ ¼ x − X ¼ −
py −mωx=2

mω
;

η ¼ y − Y ¼ px þmωy=2
mω

: ðA4Þ

Note that both X and Y commute with the Hamiltonian,
½X;H� ¼ 0 ¼ ½Y;H�, and hence they are conserved, but X
and Y do not commute with each other, ½X; Y� ¼ −iℏ=mω.

2. Creation and annihilation operators

We introduce the following creation and annihilation
operators

a ¼
ffiffiffiffiffiffiffi
mω

2ℏ

r
ðξþ iηÞ

¼
ffiffiffiffiffiffiffi
mω

2ℏ

r  �
x
2
þ i

px

mω

�
þ i

�
y
2
þ i

py

mω

�!
; ðA5Þ
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a† ¼
ffiffiffiffiffiffiffi
mω

2ℏ

r
ðξ − iηÞ

¼
ffiffiffiffiffiffiffi
mω

2ℏ

r  �
x
2
− i

px

mω

�
− i

�
y
2
− i

py

mω

�!
; ðA6Þ

b ¼
ffiffiffiffiffiffiffi
mω

2ℏ

r
ðX − iYÞ

¼
ffiffiffiffiffiffiffi
mω

2ℏ

r  �
x
2
þ i

px

mω

�
− i

�
y
2
þ i

py

mω

�!
; ðA7Þ

b† ¼
ffiffiffiffiffiffiffi
mω

2ℏ

r
ðX þ iYÞ

¼
ffiffiffiffiffiffiffi
mω

2ℏ

r  �
x
2
− i

px

mω

�
þ i

�
y
2
− i

py

mω

�!
; ðA8Þ

where a and b commute with each other and obey the usual
commutation relations

½a; a†� ¼ 1; ½b; b†� ¼ 1: ðA9Þ

Then, the Hamiltonian and the z component of the angular
momentum Lz are written in terms of a and b in simple
form as

H ¼ ℏω

�
a†aþ 1

2

�
; ðA10Þ

Lz ¼ xpy − ypx ¼ ℏð−a†aþ b†bÞ: ðA11Þ

From Eqs. (A5)–(A8), the number operator a†a corre-
sponds to the squared distance from the center of the circle

and b†b corresponds to the squared distance of the center
from the origin of the coordinates.
We also note that the center of the circle and the relative

coordinates are written in terms of creation and annihilation
operators as

X ¼ 1

2

ffiffiffiffiffiffiffi
2ℏ
mω

r
ðbþ b†Þ; Y ¼ i

2

ffiffiffiffiffiffiffi
2ℏ
mω

r
ðb − b†Þ; ðA12Þ

ξ¼1

2

ffiffiffiffiffiffiffi
2ℏ
mω

r
ðaþa†Þ; η¼ i

2

ffiffiffiffiffiffiffi
2ℏ
mω

r
ð−aþa†Þ: ðA13Þ

3. Coherent state

As in the case of one-dimensional harmonic oscillator,
we introduce the coherent state jα; βi such that ajα; βi ¼
αjα; βi and bjα; βi ¼ βjα; βi, which is constructed by
applying the operators eαa

†
and eβb

†
on the ground state

j0i as

jα; βi ¼ e−
jαj2þjβj2

2 eαa
†
eβb

† j0i: ðA14Þ

Then, from Eqs. (A5) and (A7), the eigenvalues α and β
corresponding to the relative coordinate ðr0 cos θ0; r0 sin θ0Þ
and the center of the circle ðX0; Y0Þ are given by

α ¼
ffiffiffiffiffiffiffi
mω

2ℏ

r
r0eiθ0 ; ðA15Þ

β ¼
ffiffiffiffiffiffiffi
mω

2ℏ

r
ðX0 − iY0Þ: ðA16Þ

The wave function of the coherent state is given by

hxjα; βi ¼
ffiffiffiffiffiffiffiffi
mω

2πℏ

r
exp

�
−
mω

4ℏ

h
ðx − r0 cos θ0 − X0Þ2 þ ðy − r0 sin θ0 − Y0Þ2

i�
× exp

�
i
mω

2ℏ

h
ðr0 sin θ0 − Y0Þx − ðr0 cos θ0 − X0Þy − r0ðX0 sin θ0 − Y0 cos θ0Þ

i�
: ðA17Þ

aðtÞ and bðtÞ evolve according to the Heisenberg equation as

iℏȧðtÞ ¼ ½aðtÞ; H� ¼ ℏωaðtÞ; ðA18Þ

iℏḃðtÞ ¼ ½bðtÞ; H� ¼ 0: ðA19Þ

Hence, we have aðtÞ ¼ e−iωta and bðtÞ ¼ b. Then, from Eq. (A13), the expectation values of ξðtÞ and ηðtÞ in the coherent
state are given by

hξðtÞi ¼ 1

2

ffiffiffiffiffiffiffi
2ℏ
mω

r
hα; βj

�
aðtÞ þ a†ðtÞ

�
jα; βi ¼ 1

2

ffiffiffiffiffiffiffi
2ℏ
mω

r
ðαe−iωt þ α�eiωtÞ ¼ r0 cosðθ0 − ωtÞ; ðA20Þ
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hηðtÞi ¼ i
2

ffiffiffiffiffiffiffi
2ℏ
mω

r
hα; βj

�
−aðtÞ þ a†ðtÞ

�
jα; βi ¼ 1

2

ffiffiffiffiffiffiffi
2ℏ
mω

r
ð−αe−iωt þ α�eiωtÞ ¼ r0 sinðθ0 − ωtÞ: ðA21Þ

This corresponds to the position of a charged particle
orbiting clockwise about the center with the angular
velocity ω.3 The expectation values of XðtÞ and YðtÞ do
not depend on time: hXðtÞi ¼ X0 and hYðtÞi ¼ Y0.
The expectation value of the Hamiltonian becomes

hα;βjHjα;βi¼ℏω

�
jαj2þ1

2

�
¼1

2
mω2r20þ

1

2
ℏω: ðA22Þ

4. Time dilation in a rotating frame

We show that the time dilation Eq. (30) is invariant even
if we move to a rotating frame.
Consider a frame ðx0; y0Þ which rotates with the angular

velocity Ω about the z axis with respect the inertial frame
ðx; yÞ. The two coordinates are related by

�
x0

y0

�
¼
�

cosΩt sinΩt
− sinΩt cosΩt

��
x

y

�
: ðA23Þ

Then, the shift vector appears in the rotating frame

−c2dt2 þ dx2 þ dy2 ¼ −c2dt2 þ ðdx0 −Ωy0dtÞ2
þ ðdy0 þ Ωx0dtÞ2; ðA24Þ

that is, βx
0
c ¼ −Ωy0 and βy

0
c ¼ Ωx0. In the presence of

the shift vector, the (external) Hamiltonian becomes

H ¼ ðP−qAÞ2
2m − βc · ðP − qAÞ, so that the time evolution

of the position vector is given by

ẋ0 ¼ ½x0; H�
iℏ

¼ P − qA
m

− βc: ðA25Þ

Moreover, from Eqs. (A23) and (A4), we have

ẋ0 ¼ Ωy0 þ ωðη cosΩt − ξ sinΩtÞ; ðA26Þ

ẏ0 ¼ −Ωx0 − ωðξ cosΩtþ η sinΩtÞ: ðA27Þ

Hence

ðP − qAÞ2
m2

¼ ðẋ0 þ βx
0
cÞ2 þ ðẏ0 þ βy

0
cÞ2

¼ ω2ðξ2 þ η2Þ ¼ ẋ2 þ ẏ2: ðA28Þ

Therefore, the time dilation formula Eq. (30) holds in a
rotating frame. This implies, in particular, that even if we
move to a rotating frame with Ω ¼ −ω so that a particle is
at rest (classically), the time dilation does not change.
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