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We perform the Batalin-Fradkin-Vilkovisky quantization of the anisotropic conformal Hořava theory in
d spatial dimensions. We introduce a model with a conformal potential suitable for any dimension.
We define an anisotropic and local gauge-fixing condition that accounts for the spatial diffeomorphisms
and the anisotropic Weyl transformations. We show that the BRST transformations can be expressed
mainly in terms of a spatial diffeomorphism along a ghost field plus a conformal transformation with
another ghost field as argument. We study the quantum Lagrangian in the d ¼ 2 case, obtaining that all
propagators are regular, except for the fields associated with the measure of the second-class constraints.
This behavior is qualitatively equal to the nonconformal case.
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I. INTRODUCTION

The Hořava theory [1] provides a scenario for studying
quantum gravity with anisotropic symmetries between time
and space, resulting in the breaking of the local Lorentz
symmetry. The anisotropy is introduced with the aim of
having a renormalizable theory of quantum gravity, which
is a fundamental open question in theoretical physics, and
simultaneously with quantum unitarity. The formulation of
the theory starts with the assumption of the existence of a
foliation of spatial slices along a given direction of time,
such that the foliation has an absolute physical meaning.
The gauge symmetry is restricted to the diffeomorphisms
that preserve the given foliation. On the basis of this
anisotropic gauge symmetry one may introduce terms in
the Lagrangian with higher order in spatial derivatives,
while keeping the time derivatives at order two. In this way,
the resulting theory is expected to be renormalizable and
unitary. Indeed, the renormalization of the projectable
version has been proven [2].
There is a formulation of the Hořava theory with a kind

of Weyl symmetry that is also anisotropic. This conformal
version was presented in the original formulation of the
theory in Refs. [1] and [3]. Thus, this formulation gives an

interesting model of study of the Weyl symmetry that is
qualitatively different to the case of the Weyl symmetry in
general relativity. As a consequence of its anisotropic
nature, the Lagrangian of the Hořava theory is divided
between its kinetic and potential parts. The anisotropic
Weyl symmetry in the kinetic part arises at a critical value
of the corresponding coupling constant. For the potential,
one must take models that are conformal. Since the Weyl
transformations in the potential concern only spatial deriv-
atives, the conformal potentials are rather different to the
case of conformal general relativity. A well-known model
on a foliation of three spatial dimensions is the square of the
Cotton tensor, introduced in [1].
In the context of the general Hořava theory without extra

gauge symmetries, there have been advances on its quan-
tization. The nonprojectable case is the version with the
richer dynamics and it is closer to general relativity at low
energies. An essential extension of the Lagrangian of
nonprojectable case was presented in Ref. [4]. We remark
that the anisotropic Weyl symmetry is defined exclusively
within the nonprojectable case. The nonprojectable case
has second-class constraints, a feature that demands a
careful treatment of the quantization. A central step to
achieve this is the incorporation of the quantum measure
associated with these constraints [5,6]. In this sense, a
general formalism is the Batalin-Fradkin-Vilkovisky (BFV)
quantization [7–9]. In previous papers we have undertaken
the quantization of the general Hořava theory under this
formalism [10–13]. The BFV formalism is suitable to
incorporate the second-class constraints together with the
appropriate gauge-fixing condition for renormalization.
This gauge-fixing condition is noncanonical in the sense
of the classical Hamiltonian formalism [2,11]. Therefore,

*jorge.bellorin@uantof.cl
†cl.borquezg@gmail.com
‡byrondroguett@santotomas.cl

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 108, 044035 (2023)

2470-0010=2023=108(4)=044035(12) 044035-1 Published by the American Physical Society

https://orcid.org/0000-0001-9449-7211
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.044035&domain=pdf&date_stamp=2023-08-16
https://doi.org/10.1103/PhysRevD.108.044035
https://doi.org/10.1103/PhysRevD.108.044035
https://doi.org/10.1103/PhysRevD.108.044035
https://doi.org/10.1103/PhysRevD.108.044035
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


the BFV formalism is a promissory scenario for the
consistent quantization of the (nonprojectable) Hořava
theory, in which the problem of its renormalization can
be addressed.
Following these advances, an interesting question is

whether the anisotropic Weyl symmetry can be incorpo-
rated in the consistent quantization. In this paper we
develop this study, by analyzing the BFV quantization
of the conformal Hořava theory in arbitrary d spatial
dimensions. Since the conformal theory belongs to the
nonprojectable version, it has second-class constraints.
Thus, the quantization program requires the handling of
the second-class constraints and a gauge fixing-condition
that takes into account the extra gauge symmetry of the
anisotropic Weyl transformations. Our approach consists of
making the required extension of the phase space for the
BFV quantization and studying the formulation of the path
integral. The presence of the extra gauge symmetry requires
a definition of the gauge-fixing condition different to the
general nonconformal case.
The anisotropic conformal Hořava theory has been

studied in several ways. A related version is when the
coupling constant of the kinetic term takes its critical value
(the theory is at the critical point); hence the kinetic term is
conformal, but the potential is not conformal (the name
kinetic-conformal Hořava theory has been used for this
version). Among the studies on these theories, an analysis
of the degrees of freedom was performed in Ref. [14],
taking the theory at the critical point and a combination of
conformal and nonconformal terms in the potential. Two of
us developed in Ref. [15] a comparative analysis between
the classical dynamics of the conformal theory and the
theory at the critical point. It is interesting that both theories
have many features in common. Mainly, in both cases the
extra mode typically associated with the Hořava theory is
eliminated, hence both version share the same number of
degrees of freedom with general relativity. In the case of the
exact conformal theory, this is a consequence of the extra
gauge symmetry of anisotropic Weyl transformations. In
the theory at the critical point, there is no such a symmetry
in an exact way, but there arise two extra second-class
constraints, one of them being the generator of the Weyl
transformations, that eliminate the extra mode [16].
Interestingly, the critical point for the anisotropic Weyl
symmetry has been found to be an UV fixed point in the
renormalization flow of the projectable Hořava theory in
2þ 1 dimensions [17].
It is widely known that in relativistic theory with

conformal symmetry the Weyl anomaly plays a prominent
role. The anomaly is also present in the anisotropic case: in
Ref. [18] the Weyl anomaly was found for the case of an
anisotropic theory of a scalar field (a Lifshitz scalar), living
on a Horava-gravity background. Hence, one expects that
the anisotropic Weyl symmetry of the conformal Horava
theory is anomalous. We remark that in this paper we study

the quantization of the purely gravitational theory. Other
studies of quantization of the gravitational theory with
coupling to matter fields and the Weyl anomaly can be
developed as well. Indeed, the anisotropic conformal
Hořava gravity has arisen in holography with asymptotic
Lifshitz scaling, where it seems to be a natural scenario for
the holographic duality. Holographic renormalization with
asymptotic Lifshitz scaling was studied in Ref. [19],
finding that the holographic counterterms are associated
to the Hořava gravity. In particular, in [19] it was found that
the anisotropic Weyl anomaly of the conformal field theory
at the boundary is related precisely to the action of the
conformal Hořava gravity. The general duality between
Hořava gravity in the bulk and field theories with Lifshitz
scaling at the boundary has been proposed in [20].
This paper is organized as follows. In Sec. II we

summarize the classical formulation of the anisotropic
conformal Hořava gravity, including the Hamiltonian
formulation, with a specific conformal potential. In
Sec. III we develop the BFV quantization of the same
model. In Sec. IV we study in detail the BRST symmetry
resulting from the quantization. In Sec. V we present the
quantum Lagrangian obtained by integration on the canoni-
cal momenta, with the propagators of the fields, in the case
of the 2þ 1 conformal theory. We finally present some
conclusions. In the appendix we develop the quantization
of model with broken conformal symmetry in 3þ 1
dimensions.

II. ANISOTROPIC WEYL SYMMETRY

The Hořava theory is based on the existence of a foliation
of d-dimensional spatial slices along a definite direction of
time. The foliation has an absolute physical meaning. In the
Lagrangian formulation, the fields representing the gravi-
tational interaction are the Arnowitt-Deser-Misner varia-
bles gij, N and Ni. The basic underlying gauge symmetry
on these variables is given by the diffeomorphisms that
preserve the foliation (FDiff).
The classical action of the general theory in Lagrangian

form over a foliation of d-dimensional spatial slices is [1,4]

S ¼
Z

dtddx
ffiffiffi
g

p
NðKijKij − λK2 − VÞ; ð2:1Þ

where Kij is the extrinsic curvature tensor of the spatial
slices,

Kij ¼
1

2N
ðġij − 2∇ðiNjÞÞ: ð2:2Þ

Thedot denotes derivativewith respect the time, as usual. λ is
the coupling constant of the kinetic term. Its value plays a
central role in the definition of the conformal theory. V
denotes the potential of the theory. For the case of the general
theory V contains all the nonequivalent terms compatible
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with the FDiff symmetry that depend on the spatial metric
gij and the FDiff-covariant vector ai¼∂i lnN. Spatial
derivatives are included in V up to the order 2z, where z¼d
as required by power-counting renormalization.
The definition of the (anisotropic) conformal theory [1]

starts with the observation that if λ takes its critical value

λ ¼ 1

d
; ð2:3Þ

then anisotropic Weyl scalings, defined by

g̃ij ¼ Θ2gij; Ñ ¼ ΘdN; Ñi ¼ Θ2Ni; ð2:4Þ

where Θ ¼ Θðt; x⃗Þ, render the kinetic term of the
Lagrangian conformally covariant,

K̃ijK̃ij −
1

d
K̃2 ¼ Θ−2d

�
KijKij −

1

d
K2

�
: ð2:5Þ

Since the volume element transforms as
ffiffiffĩ
g

p
Ñ ¼ Θ2d ffiffiffi

g
p

N,
the kinetic sector of the Lagrangian is left invariant by (2.4).
The conformal transformations in (2.4) are anisotropic
in the sense that the weight assigned to the scaling of
the lapse function differs from the ones of the spatial metric
and the shift vector. Note that this transformation applies
only to the nonprojectable Hořava theory, since N depends
both in time and space. Hence the nonprojectable case is
our subject of study in this paper.
To have a complete conformal theory, the potential V

must also be conformal. Awell-known case in d ¼ 3 is the
ðCotton-tensorÞ2 potential [1]. Here we present another
conformal potential, whose form can be adapted to any
spatial dimension d. An important feature of this model is
its dependence on the lapse function N, which is quite
relevant for the consistency of the dynamics (see Ref. [15]
for the d ¼ 3 case). According to (2.4), the conformal
transformation of the FDiff-covariant vector ai is given by

ãi ¼ ai þ d∂i lnðΘÞ: ð2:6Þ

This has the form of a conformal gauge connection. We
propose the following tensor

χij ¼ Rij þ α1aiaj þ α2∇ðiajÞ; ð2:7Þ

for any spatial dimension d. The constants α1, α2 are
parameters that can be adjusted to get the conformal
invariance. This tensor transforms under anisotropic con-
formal scalings as

χ̃ij ¼ χij þ ð2α1d − 2α2ÞΘ−1aði∇jÞΘþ α2gijΘ−1ak∇kΘ

þ ð2 − dþ α2dÞΘ−1∇i∇jΘ − gijΘ−1∇2Θ

þ ð2d − 4þ α1d2 − 3dα2ÞΘ−2∇iΘ∇jΘ

þ ð3 − dþ dα2ÞgijΘ−2∇kΘ∇kΘ: ð2:8Þ

Its trace χ ¼ gijχij transforms as

χ̃ ¼ Θ−2χ þ ð2α1dþ α2ðd − 2ÞÞΘ−3ak∇kΘ

þ ð2ð1 − dÞ þ α2dÞΘ−3∇2Θ

þ ðα1d2 þ α2dðd − 3Þ − ðd − 1Þðd − 4ÞÞ
× Θ−4∇kΘ∇kΘ: ð2:9Þ

The first term on the right-hand side suggests that the trace
can be a conformal object of conformal weight −1,
χ̃ ¼ Θ−2χ. To achieve this, the coefficients of the rest of
terms must vanish. It turns out that this is satisfied with the
setting

α1 ¼
ð2 − dÞðd − 1Þ

d2
; α2 ¼

2ðd − 1Þ
d

: ð2:10Þ

Once α1 and α2 are set to these values, we may define the
anisotropic conformal potential as

V ¼ ϱχd; ð2:11Þ

where ϱ is an arbitrary coupling constant. This potential
transforms as Ṽ ¼ Θ−2dV. Some cases of χ are

d ¼ 2∶ χ ¼ Rþ∇iai; ð2:12Þ

d ¼ 3∶ χ ¼ R −
2

9
aiai þ

4

3
∇iai: ð2:13Þ

The action of the anisotropic conformal Hořava theory with
this new conformal potential is given by

S ¼
Z

dt ddx
ffiffiffi
g

p
NðGijklKijKkl − ϱχdÞ; ð2:14Þ

where Gijkl ¼ 1
2
ðgikgjl þ gilgjkÞ − 1

d g
ijgkl.

The Hamiltonian formulation of the general nonproject-
able Hořava theory without extra symmetries was presented
in Refs. [21–23], showing the consistence of the classical
dynamics. The canonical momentum conjugated to the
metric is

πij ¼ δL
ġij

¼ ffiffiffi
g

p
GijklKkl: ð2:15Þ

The hypermatrix Gijkl is not invertible when λ ¼ 1=d,
since, in general,
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Gijklgij ¼ ð1 − dλÞgkl ¼ 0: ð2:16Þ

Therefore, for the formulation of the conformal Hořava
theory we must move λ to its critical point λ ¼ 1=d; hence
we obtain the primary constraint

π ¼ 0; π ≡ gijπij: ð2:17Þ
This is the generator of the conformal transformations on
the fields ðgij; πijÞ; hence it is expected to have it as part of
the constraints. The momentum conjugated to the lapse
function is

PN ¼ δL
δṄ

¼ 0 ð2:18Þ

which is another primary constraint. The conservation of
the PN ¼ 0 leads to the secondary constraint

θ1¼
Nffiffiffi
g

p πijπijþϱ
ffiffiffi
g

p
Nχd

þ2ϱðd−1Þ ffiffiffi
g

p �
∇2ðNχd−1Þþ1

d
ðd−2Þ∇kðakNχd−1Þ

�
:

ð2:19Þ
The last terms in Eq. (2.19) can be written in terms of a
conformal covariant derivative. The scalar factor Nχd−1 is
conformal

Ñχ̃d−1 ¼ Θ2−dNχd−1: ð2:20Þ

Therefore, the expression

DkðNχd−1Þ≡ ∂kðNχd−1Þ þ d − 2

d
akNχd−1; ð2:21Þ

transforms as

D̃kðÑχ̃d−1Þ ¼ Θ2−dDkðNχd−1Þ: ð2:22Þ

Hence the last term of Eq. (2.19) is equal to
2ϱðd − 1Þ ffiffiffi

g
p ∇iDiðNχd−1Þ. These results are useful to

check the conformal invariance of θ1 (see Ref. [15] for
the d ¼ 3 case). As a consequence of the conformal
symmetry, the preservation of the constraint π does not
yield new constraints. The dþ 1-dimensional conformal
nonprojectable theory has the following constraints

Hi ¼ −2gij∇kπ
jk ¼ 0; ð2:23Þ

π ¼ 0; ð2:24Þ

θ1 ¼
Nffiffiffi
g

p πijπij þ ϱ
ffiffiffi
g

p
Nχd þ 2ϱðd − 1Þ ffiffiffi

g
p ∇kDkðNχd−1Þ

¼ 0; ð2:25Þ

θ2 ¼ PN ¼ 0: ð2:26Þ

θ1 and θ2 are second-class constraints. The Hamiltonian
with all constraints incorporated is given by

H¼
Z

ddx

�
Nffiffiffi
g

p πijπijþϱ
ffiffiffi
g

p
N

�
Rþ 1

d2
ð2−dÞðd−1Þaiai

þ2

d
ðd−1Þ∇kak

�
d
þNiHiþμπþAθ1þBθ2

�
; ð2:27Þ

where Ni, μ, A, and B are Lagrange multipliers. Constraint
θ1 contains a total spatial derivative. Once we integrate it,
this term vanishes with appropriated boundary conditions.
Therefore, we can prove that the primary Hamiltonian is
equivalent to the integral of a second-class constraint,

H0 ¼
Z

ddxθ1: ð2:28Þ

The canonical formulation requires the extension of the
anisotropic conformal transformations in the way

g̃ij ¼ Θ2gij; π̃ij ¼ Θ−2πij;

Ñ ¼ ΘdN; P̃N ¼ Θ−dθ2;

Ñk ¼ Θ2Nk: ð2:29Þ

The invariance of the canonical action under these trans-
formations requires specific transformations of the rest of
Lagrange multipliers. Under a conformal transformation
the canonical action becomes

S̃ ¼
Z

dt ddx

�
PNṄ þ πijġij −

Nffiffiffi
g

p πijπij − ϱ
ffiffiffi
g

p
Nχd

− NiHi þ ðdΘ−1Θ̇N − B̃Θ−dÞθ2
þ πð2Θ−1Θ̇ − 2Θ−1Nk∂

kΘ − μ̃Þ − Ãθ1

�
: ð2:30Þ

Therefore, we require the Lagrange multipliers to trans-
form as

μ̃ ¼ μþ 2Θ−1Θ̇ − 2Θ−1Ni
∂iΘ; ð2:31Þ

B̃ ¼ ΘdB þ dNΘ̇Θd−1; ð2:32Þ

Ã ¼ A: ð2:33Þ

The phase space of the classical theory is spanned by the
variables ðgij; πijÞ and ðN;PNÞ, which contain dðdþ 1Þþ 2
degrees of freedom. There are two first-class constraints,
Hi and π, with two gauge symmetries associated, and two
second-class constraints, θ1 and θ2. Hence, 2ðdþ 1Þ
degrees must be eliminated as unphysical from the phase
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space. The resulting canonical theory has a number of
1
2
dðd − 1Þ − 1 physical modes. This number coincides with

general relativity; the so called extra mode of the Hořava
theory is eliminated by the gauge symmetry of anisotropic
conformal transformations. In d ¼ 2 the conformal theory
propagates no physical modes and in d ¼ 3 it propagates
two physical modes.

III. BFV QUANTIZATION

We utilize the definition of Dirac brackets,

fF;RgD ¼ fF;Rg − fF; θAgM−1
ABfθB; Rg;

MAB ¼ fθA; θBg: ð3:1Þ
The constraints that satisfy an involutive algebra with
respect to the Dirac brackets are Hi and π. Their brackets
are given by

fπðxÞ; πðyÞgD ¼ 0; ð3:2Þ

fπðxÞ;HiðyÞgD ¼ ∂δðx − yÞ
∂xi

πðyÞ; ð3:3Þ

fHiðxÞ;HjðyÞgD ¼ ∂δðx − yÞ
∂xi

HjðxÞ

−
∂δðx − yÞ

∂yj
HiðyÞ: ð3:4Þ

The coefficients of this involutive algebra enter in the
definition of the BRST charge.
The BFVextension of the phase space is done as follows:

the Lagrange multipliers of the involutive constraints Hi
and π are promoted to canonical variables together with
their conjugate momenta. They define the new canonical
pairs ðNi; πiÞ and ðμ; QÞ. The BFV ghosts associated with
spatial diffeomorphisms are ðCi;PiÞ and ðPi; C̄iÞ. The
BFV ghosts associated with the conformal symmetry are
ðC; P̄Þ and ðP; C̄Þ. A useful collective notation for all these
ghosts is ηa ¼ ðCi;Pi; C;PÞ, Pa ¼ ðP̄i; C̄i; P̄; C̄Þ. Thus,
the full phase space is given by the canonical pairs
ðgij; πijÞ, ðN;PNÞ, ðNi; πiÞ, ðμ; QÞ, and ðηa;PaÞ.
The BFV path integral of the nonprojectable Hořava

theory is given by

Z ¼
Z

DVeiS; ð3:5Þ
where themeasure and the canonical action are, respectively,

DV ¼ DgijDπijDNDPNDNkDπkDμDQDηaDPa

× δðθ1Þδðθ2Þ
ffiffiffiffiffiffiffiffiffiffiffi
detM

p
; ð3:6Þ

S ¼
Z

dtddxðπijġij þ PNṄ þ πkṄk þQμ̇þ Paη̇
a −HΨÞ:

ð3:7Þ

The quantum gauge-fixed Hamiltonian is

HΨ ¼ H0 þ fΨ;ΩgD; ð3:8Þ

where Ψ is the fermionic function chosen to fix the gauge
symmetry and Ω is the BRST charge. In the case of the
conformal Hořava theory, Ω admits an expansion up to
linear order on the BFV ghosts Pa (the theory is of order
one [9]). Its general definition, using symbolic notation, is

Ω ¼ Gaη
a −

1

2
Uc

abη
aηbPc; ð3:9Þ

where Ga denotes the functions Ga ¼ ðHi; πi; π; QÞ, and
Uc

ab denotes the coefficients of the algebra between the
constraints Hi and π, given in Eqs. (3.2)–(3.4). Explicitly,
the BRST charge results in

Ω ¼
Z

ddxðHkCk þ πkPk þ πCþQP

− Ck
∂kClP̄l − ∂kðCkP̄ÞCÞ: ð3:10Þ

Ω must satisfy the consistency conditions required in the
BFV formalism, which are

fΩ;ΩgD ¼ 0; fH0;ΩgD ¼ 0: ð3:11Þ

The first condition can be checked by direct computations,
whereas the second one holds due to that H0, taken as a
differentiable functional, it is equivalent to a second-class
constraint, hence its Dirac brackets are always zero.
To fix the gauge we use perturbative variables,

denoted by

gij¼δijþhij; πij¼pij; N¼1þn; Ni¼ni: ð3:12Þ

On the rest of field variables we keep the original notation,
with perturbative meaning. In the original BFV formulation
a generic form of the gauge-fixing condition (for an
arbitrary gauge symmetry) was introduced. Its functional
form was aimed to apply it to relativistic systems with
covariant (and noncanonical) gauge-fixing conditions. This
leads to a generic form of the fermionic function Ψ, which
we adopt for the conformal Hořava theory. Function Ψ is

Ψ ¼ P̄ini þ C̄iχ
i
1 þ P̄μþ C̄χ2; ð3:13Þ

where χi1 and χ2 are functionals of the canonical fields
to be chosen freely. It seems natural to take χi1 to fix the
symmetry of spatial diffeomorphisms, whereas χ2 does the
same for the conformal transformations (although these
symmetries are not independent). In previous analysis [11],
we have introduced a gauge-fixing condition for the
symmetry of the spatial diffeomorphisms that depends
on the momentum πi. The idea here is to follow the same
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strategy; hence we use πi in the sector of the spatial
diffeomorphisms and the momentum Q in the sector of the
conformal transformation. Thus, we set

χi1 ¼ σ1Dijπj þ Γi
1; ð3:14Þ

χ2 ¼ σ2ΔdQþ Γ2; ð3:15Þ

where

Δ ¼ ∂kk; Dij ¼ δijΔd−1 þ κΔd−2
∂ij; ð3:16Þ

Γi
1¼ 2c1Δd−1

∂jhijþ2c2Δd−1
∂ihþc3Δd−2

∂ijkhjk; ð3:17Þ

Γ2 ¼ c4Δdhþ c5Δd−1
∂ijhij: ð3:18Þ

Dij is the appropriate operator to connect with the nonlocal
quantum Lagrangian [2,11]. We have chosen Γi

1 and Γ2 in
the more general form allowed by the anisotropic scaling of
the fields. At this stage σ1, σ2, κ, and c1;…;5 are arbitrary
constants. Below we see that the setting [2,11]

c1 ¼ −σ1; c2 ¼ 0; c3 ¼ −2κσ1;

c4 ¼ σ2; c5 ¼ 0; ð3:19Þ

leads to an important simplification in the Lagrangian: odd
derivatives in time and space are eliminated. We use in
advance this fact, so the final form of the gauge-fixing
factors is

Γi
1 ¼ −2σ1ðΔd−1

∂jhij þ κΔd−2
∂ijkhjkÞ; ð3:20Þ

Γ2 ¼ σ2Δdh: ð3:21Þ

Notice that with this setting Γi
1 gets contributions of the

longitudinal sector of hij exclusively, which is related to
symmetry of spatial diffeomorphisms. Moreover, Γ2 only
involves the trace h, which is naturally associated to the
conformal symmetry, but it does not get contributions
from the vectorial longitudinal sector. The gauge-fixed
Hamiltonian take the form

HΨ¼H0þHknkþ P̄kPk− P̄iðnj∂jCiþni∂jCjÞ
þniP̄∂iCþμpþ P̄P−μ∂kðCkP̄Þþσ1πiDijπj

þπiΓi
1þ C̄ifΓi

1;HkgCkþσ2QΔdQþQΓ2

þ C̄fΓ2;HkgCkþ C̄kfΓk
1;pgCþ C̄fΓ2;pgC: ð3:22Þ

Explicitly, the brackets indicated in this Hamiltonian at
quadratic order in perturbations are

C̄ifΓi
1;HkgCk ¼ −σ1C̄kð2δklΔd þ ð2κ̄ − 1ÞΔd−1

∂klÞCl;

C̄fΓ2;HkgCk ¼ 2σ2C̄Δd
∂kCk;

C̄kfΓk
1; pgC ¼ −2σ1κ̄C̄kΔd−1

∂kC;

C̄fΓ2; pgC ¼ σ2dC̄ΔdC; ð3:23Þ

where κ̄ ¼ 1þ κ. We show the quadratic potential used in
(3.22) in d ¼ 2 spatial dimensions, using the decomposi-
tion (5.4),

V ¼ ϱðhTΔ2hT þ nΔ2n − 2hTΔ2nÞ: ð3:24Þ

IV. BRST SYMMETRY

The BRST symmetry in the BFV formalism is imple-
mented by the generator Ω in the form of transformations
with Dirac brackets,

φ̃ ¼ φþ fφ;ΩgDν; ð4:1Þ

where φ represents each one of the canonical fields of the
fully extended canonical phase space, and ν is the fermionic
global parameter of the transformation. On the canonical
fields gij and πij the result of the BRST transformation is
the combination of a diffeomorphism along the vector Ciν
and a conformal transformation with argument Cν,

δΩgij ¼ ∂kgijCkνþ 2gkði∂jÞCkνþ gijCν

≡ δdiffCkν
gij þ δconfCν gij; ð4:2Þ

δΩπ
ij ¼ ∂kπ

ijCkν − 2πkði∂kCjÞνþ πij∂kCkν − πijCν

≡ δdiff
Ckν

πij þ δconfCν πij: ð4:3Þ

The BRST transformation on N results

δΩN ¼ −Wfθ1;HiCi þ πCgν; ð4:4Þ

whereW ¼ ðδθ1δNÞ−1. This is close to be again a combination
of a spatial diffeomorphism and a conformal transformation
on θ1 (which is conformally invariant). The missing
parts are that Hi, defined in (2.23), is the generator of
the spatial diffeomorphisms only on the canonical pair
ðgij; πijÞ. The complete generator that also acts on the pair
ðN;PNÞ is

Hi þ θ2∂iN: ð4:5Þ

Similarly, the complete conformal generator on the pairs
ðgij; πijÞ and ðN;PNÞ is

π þ d
2
Nθ2 ð4:6Þ
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(see Ref. [15]). Therefore, by adding and subtracting in
Eq. (4.4) the required terms to form these generators, we
may write the transformation of N as

δΩN ¼ −WδdiffCiν
θ1 þWfθ1; θ2∂iNCiνg þ d

2
Wfθ1; θ2NCνg

¼ −WδdiffCiν
θ1 þ ∂iNCiνþ d

2
NCν

¼ −WδdiffCiν
θ1 þ δdiffCiν

N þ δconfCν N: ð4:7Þ

The BRST transformations of the ghosts Ci and C can be
interpreted as spatial diffeomorphisms along the vectorCiν:

δΩCi ¼ ∂jCiCjν≡ 1

2
δdiffCjν

Ci; ð4:8Þ

δΩC ¼ Ckν∂kC ¼ δdiffCjν
C: ð4:9Þ

This diffeomorphism of Ci along itself is not zero due the
Grassmann nature of Ci and ν. The transformations of their
conjugate momenta are given by

δΩP̄i ¼ ð∂jP̄iCj þ P̄j∂iCj þ P̄i∂jCjÞνþHiνþ P̄∂iCν

¼ δdiffCiν
P̄i þHiνþ P̄∂iCν; ð4:10Þ

δΩP̄ ¼ πνþ ðCkν∂kP̄ þ ∂kCkνP̄Þ ¼ δdiff
Ckν

P̄ þ πν: ð4:11Þ

In summary, the BRST transformations of the fields in the
extended phase space are

δΩgij ¼ δdiff
Ckν

gij þ δconfCν gij; δΩπ
ij ¼ δdiff

Ckν
πij þ δconfCν πij;

δΩN ¼ −WδdiffCiν
θ1 þ δdiffCiν

N þ δconfCν N; δΩPN ¼ 0;

δΩNk ¼ Pkν; δΩπk ¼ 0; δΩμ ¼ Pν; δΩQ ¼ 0;

δΩCi ¼ 1

2
δdiffCjν

Ci; δΩP̄i ¼ δdiffCiν
P̄i þHiνþ P̄∂iCν;

δΩPk ¼ 0; δΩC̄k ¼ πkν:

δΩC ¼ δdiffCjν
C; δΩP̄ ¼ πνþ δdiff

Ckν
P̄;

δΩP ¼ 0; δΩC̄ ¼ Qν: ð4:12Þ

V. QUANTUM LAGRANGIAN

Our aim in this section is to study the quantum
Lagrangian, which we obtain by integration on all canoni-
cal momenta. In particular we focus on the nonlocalities
and the propagators of the quantum fields. In this aspect the
dimensionality of the space is very relevant, due to the
conformal symmetry. We see below that we may obtain a
complete set of propagators for all quantum fields in d ¼ 2,
taking the conformal potential given in Eqs. (2.11) and
(2.12). For d ≥ 3, some fields lack their contribution to the
quadratic action, due to the high order of the conformal
potential and its derivatives. Hence, we cannot define

propagators for these fields in perturbative theory.
Motivated by this, we develop the d ¼ 2 case. The d¼2
conformal theory has no local physical degrees of freedom,
as general relativity. Hence, although propagators and
vertices can be defined for all quantum fields, one expects
that there are cancellations among the interactions of all
these modes. We present the propagators of the d ¼ 2 case
as a formal evidence of the consistency of the quantization
of the theory with conformal symmetry. In the appendix we
present a study of a d ¼ 3 conformal model deformed by
nonconformal terms of lower order (that is, with explicit
soft breaking of the conformal symmetry). In that model, a
complete set of propagators can be obtained.
First, we can do the integration on the BFV ghost

momenta Pi; P̄i;P; P̄ by completing the bilinear terms
where they arise in the canonical action (3.7) and (3.22).
The integration on them is Gaussian and produces terms
that are bilinear on the time derivatives Ċi; ˙̄Ci; Ċ;

˙̄C. Next,
we integrate in πk and Q, which leads to nonlocalities on
the quantum Lagrangian,

Z
Dπk exp

�
i
Z

dt d2xð−σ1πiDijπj þ πkðṅk − Γk
1ÞÞ

�

¼ exp

�
i
Z

dt d2x
1

4σ1
ðṅi − Γi

1ÞD−1
ij ðṅj − Γj

1Þ
�
; ð5:1Þ

Z
DQexp

�
i
Z

dtd2xð−σ2QΔ2QþQðμ̇−Γ2ÞÞ
�

¼ exp
�
i
Z

dtd2x
1

4σ2
ðμ̇−Γ2ÞðΔ2Þ−1ðμ̇−Γ2Þ

�
; ð5:2Þ

where

D−1
ij ¼ δij

Δ
−
κ

κ̄

∂ij

Δ2
: ð5:3Þ

The last integration is on pij. To do this we use the d ¼ 2

decomposition

hij ¼
�
δij −

∂ij

Δ

�
hT þ ∂ðihjÞ;

pij ¼
�
δij −

∂ij

Δ

�
pT þ ∂ðipjÞ: ð5:4Þ

In particular, the integration on the vector pi leads to more
nonlocalities in the quantum Lagrangian. Indeed, the
quadratic terms on pi arising in (3.7) and (3.22) can be
written as

1

2
Dij

0 ðpi þD−1
0ikBkÞðpj þD−1

0jlBlÞ −
1

2
BiD−1

0ijBj; ð5:5Þ

where
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Bk ¼ Dkj
0

�
−
ḣj
2
þ nj

�
þ ∂kμ; ð5:6Þ

Dij
0 ¼ δijΔþ ∂ij; D−1

0ij ¼
δij
Δ

−
1

2

∂ij

Δ2
: ð5:7Þ

We consider the measure of the second-class constraints
δðθ1Þδðθ2Þ

ffiffiffiffiffiffiffiffiffiffiffi
detM

p
included in (3.6). The matrix of Poisson

brackets of the second-class constraints has a triangular
form,

M ¼
� fθ1; θ1g fθ1; θ2g
−fθ1; θ2g 0

�
: ð5:8Þ

Hence the square-root factor simplifies to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detfθp; θqg

q
¼ detfθ1; θ2g: ð5:9Þ

This factor can be incorporated to the action by means of
fermionic ghost fields ηη̄,

detfθ1;θ2g¼
Z

Dη̄Dηexp

�
i
Z

dtddxη̄fθ1;θ2gη
�
: ð5:10Þ

The delta δðθ1Þ can also be incorporated by means of a
Lagrange multiplier A,

δðθ1Þ ¼
Z

DA exp

�
i
Z

dtddxAθ1

�
; ð5:11Þ

similarly to the classical theory in (2.27). Finally, the
quantum field PN can be eliminated by integration due
to the delta δðθ2Þ (the result of the bracket in (5.10) is
independent of PN).
After performing the above steps, we obtain the path

integral in Lagrangian variables. To present it at quadratic
order, we use the vectorial decomposition hi ¼ hTi þ
∂iΔ−1hL and ni ¼ niT þ ∂inL, with ∂ihTi ¼ ∂iniT ¼ 0, and
similarly for the ghost vector fields. The resulting path
integral with quadratic action is

Z ¼
Z

DV exp

�
i
Z

dtd2x

�
−
1

4
hTð∂2t − ðσ2 − 4ϱÞΔ2ÞhT þ 1

8
hTi ð∂2tΔþ 2σ1Δ3ÞhTi

−
1

4
hLð∂2t − ðσ2 − 4σ1κ̄ÞΔ2ÞhL þ σ2

2
hTΔ2hL −

1

4σ2
μð∂2tΔ−2 − 2σ2Þμþ μΔnL

−
1

4σ1
niTð∂2tΔ−1 þ 2σ1ΔÞniT þ 1

4σ1κ̄
nLð∂2t þ 4σ1κ̄Δ2ÞnL − ϱnΔ2nþ 2ϱhTΔ2n

− 2ϱAΔ2hT þ 2ϱAΔ2nþ 2ϱη̄Δ2ηþ C̄T
k ð∂2t þ 2σ1Δ2ÞCkT þ C̄ð∂2t − 2σ2Δ2ÞC

− C̄Lð∂2tΔþ 4σ1κ̄Δ3ÞCL − 2σ2C̄Δ3CL − 2σ1κ̄C̄LΔ2C

��
; ð5:12Þ

where

DV ≡DhTDhTi DhLDnDnkTDnLDμDCiTDC̄T
jDCLDC̄LDCDC̄DADη̄Dη: ð5:13Þ

From the above quantum Lagrangian we obtain the propagators of all fields. We present the propagators after performing
a Wick rotation,1

hhThTi ¼ hhTni ¼ hnni ¼ −2ðω2 þ ð4κ̄σ1 − σ2Þk4ÞS; hhThLi ¼ hhLni ¼ −2σ2k4S;

k2hhTi hTi i ¼ −8T 3; hhLhLi ¼ −2ðω2 − σ2k4ÞS; hnLnLi ¼ 2σ1κ̄ðω2 − 2σ2k4ÞS;
hnTi nTi i ¼ 4σ1k2T 3; hnLμi ¼ −4σ1σ2κ̄k6S; hμμi ¼ −2σ2k4ðω2 þ 4σ1κ̄k4ÞS;

hC̄T
kC

kTi ¼ −2T 3; k2hC̄LCLi ¼ −ðω2 − 2σ2k4ÞS; hC̄LCi ¼ 2σ2k4S;

hC̄CLi ¼ −2κ̄σ1k2S; hC̄Ci ¼ −ðω2 þ 4κ̄σ1k4ÞS; ð5:14Þ

and

1The propagators with indices are proportional to the propagators of the same objects with contracted indices. We show the contracted
form in (5.14) to reduce the size of these expressions.
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hAAi ¼ hnAi ¼ hηη̄i ¼ 1

ϱk4
; ð5:15Þ

where

T 1 ¼
h
ω2 þ

	
2σ1κ̄ − σ2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4κ̄2σ21 þ σ22

q 

k4
i−1

; ð5:16Þ

T 2 ¼
h
ω2 þ

	
2σ1κ̄ − σ2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4κ̄2σ21 þ σ22

q 

k4
i−1

; ð5:17Þ

T 3 ¼ ðω2 þ 2σ1k4Þ−1; ð5:18Þ

S ≡ 2T 1T 2: ð5:19Þ

The propagators T 1, T 2 and T 3 can be made regular (with
positive coefficients) [24] if the coupling constants satisfy

κ̄ > 0; σ1 > 0; σ2 < 0: ð5:20Þ

T 1, T 2, and T 3 determine the propagators of the fields in
(5.14); hence all propagators in (5.14) are regular if this
condition is satisfied. The auxiliary fields A and ηη̄ acquire
irregular propagators. These fields are associate to the
measure of the second-class constraints, and the irregularity
of their propagators was previously observed in the general
nonprojectable theory without the conformal symmetry.

VI. CONCLUSIONS

We have seen that the gauge symmetry of anisotropic
Weyl transformations can be incorporated to the BFV
quantization of the nonprojectable Hořava theory. This
provides a quantum theory with conformal transformations
different to the relativistic case. We have introduced a local
gauge-fixing condition for the symmetry of spatial diffeo-
morphisms and the Weyl transformations. The way we
introduce the gauge fixing is inspired by the nonlocal gauge
fixing-condition of the projectable case [2], which is known
to have a local counterpart in the BFV formalism [11]. The
gauge-fixing condition naturally splits the metric variables
between the vector longitudinal sector for the spatial
diffeomorphisms and the trace for the Weyl transforma-
tions. On top of this, we have seen that the quantization
with the two gauge symmetries is compatible with the
second-class constraints in the BFV formalism. We have
expressed the BRST transformations of the fields mainly in
terms of a spatial diffeomorphisms and an anisotropic Weyl
transformation, with the ghost fields entering in the argu-
ments of the transformations.
A feature of the quantization we have studied is the

Feynman rules. We have obtained the quantum Lagrangian
by integration on the BFV canonical path integral in the
2þ 1 case. We have found some features similar to the
case of the nonconformal theory. The quantum Lagrangian
gets nonlocalities as a consequence of the gauge-fixing

procedure. Most of the fields gets regular propagators [24],
a feature relevant for the renormalizability of the theory [2].
The only exception are the fields associated to the measure
of the second-class constraints. This behavior is qualita-
tively identical to the general nonprojectable theory without
the conformal symmetry. We have previously found that the
divergences coming from the irregular loops cancel each
other exactly in the nonprojectable theory [11]. Therefore, a
natural question for a future work is whether cancellations
of this kind can also occur in the conformal theory. In
the 3þ 1 case or higher the definition of Feynman rules
is more difficult since the conformal potentials do not
contribute to the quadratic action, hence some propagators
of fields are lacked (the propagators of the fields associated
with the measure of the second-class constraints, A and
η; η̄, cannot be defined since these fields decouple from the
quadratic action due to the order of the conformal potential
in 3þ 1 and higher).
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APPENDIX: BREAKING THE
CONFORMAL SYMMETRY

The potential V ¼ ϱχd in (2.11) contributes at quadratic
order in perturbations only for the spatial dimension d ¼ 2.
A technical issue with this is that the Lagrange multiplierA
contributes to the quadratic action only for the d ¼ 2
dimensionality; hence only in this case one may define
propagators for the A field. This is a consequence of the
fact thatAmultiplies the constraint θ1, which is a derivative
of the primary Hamiltonian, and hence of V. Therefore, the
conformal model we have presented in this paper, although
it is consistent in the d ¼ 2 case as we have shown, is not
totally suitable for doing Feynman diagrams in d ≥ 3
dimensionality, whenever one wants to use the A field.
On the other hand, in d ¼ 3 the conformal potential
ðCotton-tensorÞ2 does contribute to the quadratic action,
but this does not cure the problem of the decoupling ofA at
the quadratic level. The reason in this case is that the
ðCotton-tensorÞ2 potential does not depend on N at
quadratic level; hence θ1 does not get linear-order con-
tributions. Therefore, to have a well-posed perturbation
theory in d ¼ 3, we study explicit deformations of the
conformal symmetry.
The deformation we make on the conformal theory

consists of adding nonconformal terms of order z ¼ 1,
and moving the coupling constant λ from its critical value,
λ ≠ 1=d. At the end of the analysis we discuss on the limit
when λ goes back to its critical value. The constraint π ¼ 0
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does not arise in this modified theory, hence the theory does
not possess a conformal-symmetry generator.
For concreteness, we specialize to the d ¼ 3 case and

with the conformal potential made with the Cotton tensor
[1], which is given by

Cij ¼ 1ffiffiffi
g

p εklði∇kRjÞ
l: ðA1Þ

It transforms under Weyl transformation as C̃ij ¼ Θ−5Cij.
The conformal potential

V ¼ CijCij; ðA2Þ
whose conformal weight is −3, can be introduced in the
primary Hamiltonian. The deformation consists of includ-
ing in the potential the known z ¼ 1 terms of the non-
projectable Hořava theory. Thus, we take the primary
Hamiltonian density as

H0¼
Nffiffiffi
g

p πijπijþ ζ
ffiffiffi
g

p
NCijCij−

ffiffiffi
g

p
NðβRþαaiaiÞ: ðA3Þ

The deformed theory has the following constraints:

Hi ¼ −2gij∇kπ
jk; ðA4Þ

θ1 ¼
Nffiffiffi
g

p πijπij þ ζ
ffiffiffi
g

p
NCijCij −

ffiffiffi
g

p
NðβRþ αaiaiÞ

− 2α
ffiffiffi
g

p
ΔN; ðA5Þ

θ2 ¼ PN: ðA6Þ

We perform the BFV extension of the phase space. The
additional canonical pairs are ðNi; πiÞ and ηa ¼ ðCi;PiÞ,
Pa ¼ ðP̄i; C̄iÞ The BRST charge is given by

Ω ¼
Z

d3xðHkCk þ πkPk − Ck
∂kClP̄lÞ: ðA7Þ

For the gauge-fixing fermionic function we use the form
Ψ ¼ P̄ini þ C̄iχ

i
1. Since this is the gauge-fixing corre-

sponding to the symmetry of spatial diffeomorphisms, we
use the same factor χi1 given in (3.14). In this model we set
the constants c1 ¼ −σ1, c2 ¼ λκ̄σ1, c3 ¼ −2κσ1 to cancel
odd derivatives in the Lagrangian. Thus, the gauge-fixed
Hamiltonian takes the form

HΨ ¼ H0 þHknk þ P̄kPk − P̄iðnj∂jCi þ ni∂jCjÞ
þ σ1πiDijπj þ πiΓi

1 þ C̄ifΓi
1;HkgCk: ðA8Þ

To integrate all the canonical momenta we use the
following decomposition of tensors in d ¼ 3,

hij ¼ hTTij þ 1

2

�
δij −

∂ij

∂
2

�
hT þ ∂ðihjÞ; with

hTTii ¼ ∂ihTTij ¼ 0: ðA9Þ

To obtain the propagators we make the following
decomposition on vectors: hi ¼ hTi þ Δ−1

∂ihL and
ni ¼ niT þ ∂inL, with ∂ihTi ¼ ∂iniT ¼ 0. The decomposed
path integral is

Z ¼
Z

DhTTij DhTDhTi DhLDnDnkTDnLDCiTDC̄T
jDCLDC̄LDADη̄Dη

× exp

�
i
Z

dtd3x

�
1

4
hTTij ð−∂2t þ βΔþ ζΔ3ÞhTTij −

1

8
hT ½ð1 − 2λÞ∂2t þ βΔþ 8λ2κ̄σ1Δ3�hT þ 1

8
hTi ð∂2tΔþ 2σ1Δ4ÞhTi

−
ð1 − λÞ

4
hL½∂2t þ 4σ1κ̄ð1 − λÞΔ3�hL þ λ

2
hT ½∂2t þ 4σ1κ̄ð1 − λÞΔ3�hL − αnΔn − βnΔhT −

1

4σ1
niTð∂2tΔ−2 þ 2σ1ΔÞniT

þ 1

4σ1κ̄
nL½∂2tΔ−1 þ 4κ̄σ1ð1 − λÞΔ2�nL þ C̄T

k ð∂2t þ 2σ1Δ3ÞCkT − C̄L½∂2tΔþ 4σ1κ̄ð1 − λÞΔ4�CL

þAðβΔhT þ 2αΔnÞ − 2αη̄Δη
��

: ðA10Þ

The propagators of the deformed theory, after a Wick rotation, are given by

hhTTij hTTij i ¼ −4T 1; hhThTi ¼ −8ð1 − λÞT 2; k2hhTi hTi i ¼ −8T 3;

hhLhLi ¼ 4

�
ð2λ − 1Þω2 þ β

�
1 −

2β

α

�
k2 þ 8σ1κ̄λ

2k6
�
T 2T 4; hhThLi ¼ −8λT 2;

hhLni ¼ 4λβ

α
T 2; hhTni ¼ 4ð1 − λÞβ

α
T 2; hnni ¼ −

2ð1 − λÞβ2
α2

T 2;

hnTi nTi i ¼ −4σ1k4T 3; hnLnLi ¼ −4κ̄σ1k2T 4; hC̄T
kC

kTi ¼ −2T 3; k2hC̄LCLi ¼ −2T 4; ðA11Þ
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and

hAAi ¼ hnAi ¼ hη̄ηi ¼ −
1

αk2
; ðA12Þ

where

T 1 ¼ ðω2 þ βk2 þ ζk6Þ−1; ðA13Þ

T 2 ¼
�
ð1 − 3λÞω2 − βð1 − λÞ

�
1 −

2β

α

�
k2
�
−1
; ðA14Þ

T 3 ¼ðω2 − 2σ1k6Þ−1; ðA15Þ

T 4 ¼ðω2 − 4κ̄σ1ð1 − λÞk6Þ−1: ðA16Þ

In this deformed theory, the regularity of the propagators in
(A11) is achieved with the conditions

β > 0; ζ > 0; σ1 < 0; 1 − 3λ > 0;

κ̄ð1 − λÞ > 0; ð1 − λÞ
�
1 −

2β

α

�
< 0: ðA17Þ

We may regard as physical modes the ones corresponding
to the propagators T 1 and T 2, since T 3 and T 4 enter in the
propagators of the ghosts. T 1 yields the propagators of the
two tensorial modes in hTTij and T 2 is the so called extra
scalar mode of the Hořava theory (it arises it several
quantum fields due to the gauge we are using).
Now we can go to the critical point λ ¼ 1=3, where the

classical theory acquiresWeyl symmetry on its kinetic term.
T 2 lacks its temporal dependence in this limit. This is a
reminiscence of the dynamics of the critical theory, which
does not necessarily have a conformal potential. Due to the
critical value of λ, there arise more second-class constraints,
which is in agreement with the fact that the would be extra
scalar mode lacks its kinetic term. Therefore, a physical
mode in this limit is eliminated and there remains the modes
of T 1 as physical modes. This effect recalls that we are
approaching the conformal symmetry; hence the elimination
of the extra mode. Moreover, the T 1 propagator admits the
limit β ¼ α ¼ 0, where the exact conformal symmetry is
recovered. But the vanishing of α affects the definition of the
propagators involving the A field in (A12). This is natural,
since the z ¼ 1 terms of deformation were introduced to get
propagators for this field, as we have discussed.
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Rev. D 106, 044055 (2022).

[13] J. Bellorín, C. Bórquez, and B. Droguett, BRST symmetry
and unitarity of the Hořava theory, Phys. Rev. D 107,
044059 (2023).

[14] M. i. Park, Horava gravity and gravitons at a conformal
point, Gen. Relativ. Gravit. 43, 2979 (2011).

[15] J. Bellorín and B. Droguett, Dynamics of the anisotropic
conformal Horava theory versus its kinetic-conformal for-
mulation, Phys. Rev. D 98, 086008 (2018).

[16] J. Bellorín, A. Restuccia, and A. Sotomayor, Consistent
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