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Quantization of the anisotropic conformal Horava theory
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We perform the Batalin-Fradkin-Vilkovisky quantization of the anisotropic conformal Horava theory in
d spatial dimensions. We introduce a model with a conformal potential suitable for any dimension.
We define an anisotropic and local gauge-fixing condition that accounts for the spatial diffeomorphisms
and the anisotropic Weyl transformations. We show that the BRST transformations can be expressed
mainly in terms of a spatial diffeomorphism along a ghost field plus a conformal transformation with
another ghost field as argument. We study the quantum Lagrangian in the d = 2 case, obtaining that all
propagators are regular, except for the fields associated with the measure of the second-class constraints.
This behavior is qualitatively equal to the nonconformal case.

DOI: 10.1103/PhysRevD.108.044035

I. INTRODUCTION

The Horava theory [1] provides a scenario for studying
quantum gravity with anisotropic symmetries between time
and space, resulting in the breaking of the local Lorentz
symmetry. The anisotropy is introduced with the aim of
having a renormalizable theory of quantum gravity, which
is a fundamental open question in theoretical physics, and
simultaneously with quantum unitarity. The formulation of
the theory starts with the assumption of the existence of a
foliation of spatial slices along a given direction of time,
such that the foliation has an absolute physical meaning.
The gauge symmetry is restricted to the diffeomorphisms
that preserve the given foliation. On the basis of this
anisotropic gauge symmetry one may introduce terms in
the Lagrangian with higher order in spatial derivatives,
while keeping the time derivatives at order two. In this way,
the resulting theory is expected to be renormalizable and
unitary. Indeed, the renormalization of the projectable
version has been proven [2].

There is a formulation of the Hotava theory with a kind
of Weyl symmetry that is also anisotropic. This conformal
version was presented in the original formulation of the
theory in Refs. [1] and [3]. Thus, this formulation gives an
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interesting model of study of the Weyl symmetry that is
qualitatively different to the case of the Weyl symmetry in
general relativity. As a consequence of its anisotropic
nature, the Lagrangian of the Hofava theory is divided
between its kinetic and potential parts. The anisotropic
Weyl symmetry in the kinetic part arises at a critical value
of the corresponding coupling constant. For the potential,
one must take models that are conformal. Since the Weyl
transformations in the potential concern only spatial deriv-
atives, the conformal potentials are rather different to the
case of conformal general relativity. A well-known model
on a foliation of three spatial dimensions is the square of the
Cotton tensor, introduced in [1].

In the context of the general Hotava theory without extra
gauge symmetries, there have been advances on its quan-
tization. The nonprojectable case is the version with the
richer dynamics and it is closer to general relativity at low
energies. An essential extension of the Lagrangian of
nonprojectable case was presented in Ref. [4]. We remark
that the anisotropic Weyl symmetry is defined exclusively
within the nonprojectable case. The nonprojectable case
has second-class constraints, a feature that demands a
careful treatment of the quantization. A central step to
achieve this is the incorporation of the quantum measure
associated with these constraints [5,6]. In this sense, a
general formalism is the Batalin-Fradkin-Vilkovisky (BFV)
quantization [7-9]. In previous papers we have undertaken
the quantization of the general Horava theory under this
formalism [10-13]. The BFV formalism is suitable to
incorporate the second-class constraints together with the
appropriate gauge-fixing condition for renormalization.
This gauge-fixing condition is noncanonical in the sense
of the classical Hamiltonian formalism [2,11]. Therefore,
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the BFV formalism is a promissory scenario for the
consistent quantization of the (nonprojectable) Horava
theory, in which the problem of its renormalization can
be addressed.

Following these advances, an interesting question is
whether the anisotropic Weyl symmetry can be incorpo-
rated in the consistent quantization. In this paper we
develop this study, by analyzing the BFV quantization
of the conformal Horava theory in arbitrary d spatial
dimensions. Since the conformal theory belongs to the
nonprojectable version, it has second-class constraints.
Thus, the quantization program requires the handling of
the second-class constraints and a gauge fixing-condition
that takes into account the extra gauge symmetry of the
anisotropic Weyl transformations. Our approach consists of
making the required extension of the phase space for the
BFV quantization and studying the formulation of the path
integral. The presence of the extra gauge symmetry requires
a definition of the gauge-fixing condition different to the
general nonconformal case.

The anisotropic conformal Horava theory has been
studied in several ways. A related version is when the
coupling constant of the kinetic term takes its critical value
(the theory is at the critical point); hence the kinetic term is
conformal, but the potential is not conformal (the name
kinetic-conformal Horava theory has been used for this
version). Among the studies on these theories, an analysis
of the degrees of freedom was performed in Ref. [14],
taking the theory at the critical point and a combination of
conformal and nonconformal terms in the potential. Two of
us developed in Ref. [15] a comparative analysis between
the classical dynamics of the conformal theory and the
theory at the critical point. It is interesting that both theories
have many features in common. Mainly, in both cases the
extra mode typically associated with the Horava theory is
eliminated, hence both version share the same number of
degrees of freedom with general relativity. In the case of the
exact conformal theory, this is a consequence of the extra
gauge symmetry of anisotropic Weyl transformations. In
the theory at the critical point, there is no such a symmetry
in an exact way, but there arise two extra second-class
constraints, one of them being the generator of the Weyl
transformations, that eliminate the extra mode [16].
Interestingly, the critical point for the anisotropic Weyl
symmetry has been found to be an UV fixed point in the
renormalization flow of the projectable Hotava theory in
2 4+ 1 dimensions [17].

It is widely known that in relativistic theory with
conformal symmetry the Weyl anomaly plays a prominent
role. The anomaly is also present in the anisotropic case: in
Ref. [18] the Weyl anomaly was found for the case of an
anisotropic theory of a scalar field (a Lifshitz scalar), living
on a Horava-gravity background. Hence, one expects that
the anisotropic Weyl symmetry of the conformal Horava
theory is anomalous. We remark that in this paper we study

the quantization of the purely gravitational theory. Other
studies of quantization of the gravitational theory with
coupling to matter fields and the Weyl anomaly can be
developed as well. Indeed, the anisotropic conformal
Horava gravity has arisen in holography with asymptotic
Lifshitz scaling, where it seems to be a natural scenario for
the holographic duality. Holographic renormalization with
asymptotic Lifshitz scaling was studied in Ref. [19],
finding that the holographic counterterms are associated
to the Horava gravity. In particular, in [19] it was found that
the anisotropic Weyl anomaly of the conformal field theory
at the boundary is related precisely to the action of the
conformal Horava gravity. The general duality between
Horava gravity in the bulk and field theories with Lifshitz
scaling at the boundary has been proposed in [20].

This paper is organized as follows. In Sec. II we
summarize the classical formulation of the anisotropic
conformal Horava gravity, including the Hamiltonian
formulation, with a specific conformal potential. In
Sec. III we develop the BFV quantization of the same
model. In Sec. IV we study in detail the BRST symmetry
resulting from the quantization. In Sec. V we present the
quantum Lagrangian obtained by integration on the canoni-
cal momenta, with the propagators of the fields, in the case
of the 2 4+ 1 conformal theory. We finally present some
conclusions. In the appendix we develop the quantization
of model with broken conformal symmetry in 3+ 1
dimensions.

II. ANISOTROPIC WEYL SYMMETRY

The Horava theory is based on the existence of a foliation
of d-dimensional spatial slices along a definite direction of
time. The foliation has an absolute physical meaning. In the
Lagrangian formulation, the fields representing the gravi-
tational interaction are the Arnowitt-Deser-Misner varia-
bles g;;, N and N'. The basic underlying gauge symmetry
on these variables is given by the diffeomorphisms that
preserve the foliation (FDiff).

The classical action of the general theory in Lagrangian
form over a foliation of d-dimensional spatial slices is [1,4]

S = / dtd’x\/gN(K; ;K —AK*=V),  (2.1)

where K;; is the extrinsic curvature tensor of the spatial
slices,

(P
K;; (gij = ZV(iNj)).

l] p— ﬁ (2.2)

The dot denotes derivative with respect the time, as usual. 1is
the coupling constant of the kinetic term. Its value plays a
central role in the definition of the conformal theory. V
denotes the potential of the theory. For the case of the general
theory V contains all the nonequivalent terms compatible
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with the FDiff symmetry that depend on the spatial metric
gij and the FDiff-covariant vector a;=d;InN. Spatial
derivatives are included in V up to the order 2z, where z=d
as required by power-counting renormalization.

The definition of the (anisotropic) conformal theory [1]
starts with the observation that if A takes its critical value

1
A=—, 2.3
- (23)
then anisotropic Weyl scalings, defined by
gij - ®zgij7 N = @dN, N,’ = ®2Ni’ (24)

where © = O(7,X), render the kinetic term of the
Lagrangian conformally covariant,

S 1
K; ;K7 - EKz =0 (K,-J-K‘J - 21<2>. (2.5)

Since the volume element transforms as v/gN = ©%¢, /gN,
the kinetic sector of the Lagrangian is left invariant by (2.4).
The conformal transformations in (2.4) are anisotropic
in the sense that the weight assigned to the scaling of
the lapse function differs from the ones of the spatial metric
and the shift vector. Note that this transformation applies
only to the nonprojectable Horava theory, since N depends
both in time and space. Hence the nonprojectable case is
our subject of study in this paper.

To have a complete conformal theory, the potential V
must also be conformal. A well-known case in d = 3 is the
(Cotton-tensor)? potential [1]. Here we present another
conformal potential, whose form can be adapted to any
spatial dimension d. An important feature of this model is
its dependence on the lapse function N, which is quite
relevant for the consistency of the dynamics (see Ref. [15]
for the d =3 case). According to (2.4), the conformal
transformation of the FDiff-covariant vector a; is given by

Zli = a; + dal 1n(®) (26)

This has the form of a conformal gauge connection. We
propose the following tensor

Xij = Rij + qja;a; + a,V;a;), (2.7)

for any spatial dimension d. The constants a;, a, are
parameters that can be adjusted to get the conformal
invariance. This tensor transforms under anisotropic con-
formal scalings as

)?ij :)(tj + (2a1d —_ 2a2)®_1a(ivj>® + azgij(a_lakvk@
+(2-d+ad)®7'V,V,0 - g,07'V?0
+(2d -4+ ayd® — 3day)O2V,0V,0

+ (3 - d ‘I— daz)gij®_2vk®vk®. (28)

Its trace y = g'/y;; transforms as

7=072+ 2ad + ay(d — 2))®3a*V, 0
+ (2(1 = d) + a,d)®73V20
+ (a1 d* + ard(d = 3) — (d — 1)(d — 4))

x ©@~4VeV, 0. (2.9)
The first term on the right-hand side suggests that the trace
can be a conformal object of conformal weight —1,
7 = ©72y. To achieve this, the coefficients of the rest of
terms must vanish. It turns out that this is satisfied with the
setting

2—-d)(d-1 2(d -1
Once a; and a, are set to these values, we may define the
anisotropic conformal potential as
Y = oy, (2.11)
where o is an arbitrary coupling constant. This potential
transforms as ¥ = ©29). Some cases of y are

d=2: y=R+V,d, (2.12)

2 .4 )
d:3:)(:R—§a,~a’+§V,~a‘. (213)

The action of the anisotropic conformal Horava theory with
this new conformal potential is given by

S = / dt dx\/gN(GMK Ky — ox?),  (2.14)

where Gikl — % (g% g/ + glgi*) — %gijgkl'

The Hamiltonian formulation of the general nonproject-
able Horava theory without extra symmetries was presented
in Refs. [21-23], showing the consistence of the classical
dynamics. The canonical momentum conjugated to the
metric is

. oL .
' = -— = \/gGljlekl.

2.15
o (2.15)

The hypermatrix GY¥ is not invertible when 1= 1/d,
since, in general,
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Gt = (1 —dA)g" =0. (2.16)
Therefore, for the formulation of the conformal Horava
theory we must move 4 to its critical point A = 1/d; hence
we obtain the primary constraint

=0, 7= g;n. (2.17)
This is the generator of the conformal transformations on
the fields (g;;, 7'/ ); hence it is expected to have it as part of

the constraints. The momentum conjugated to the lapse
function is

Py ==
NN

0 (2.18)

which is another primary constraint. The conservation of
the Py = 0 leads to the secondary constraint

N .
0, =——=n"m;;+0\/gNy*

NG
+2e(d~ 1>x/§(V2<Nxd—‘> +$<d—2>vk<a’wﬂ-l>).
(2.19)

The last terms in Eq. (2.19) can be written in terms of a
conformal covariant derivative. The scalar factor Ny?~! is
conformal

Npd=l = @24 Ny1, (2.20)
Therefore, the expression
Dy(Ny=") = 0, (Ny™") + ——ay Ny (2.21)
transforms as
De(Ngt1) = @Dy(Ny1).  (222)
Hence the last term of Eq. (2.19) is equal to

20(d —1),/gV;D'(Ny*"). These results are useful to
check the conformal invariance of 0, (see Ref. [15] for
the d =3 case). As a consequence of the conformal
symmetry, the preservation of the constraint z does not
yield new constraints. The d + 1-dimensional conformal
nonprojectable theory has the following constraints

Hi = —2g,jvkﬂ]k = 0, (223)

7=0, (2.24)

N
0, = 7@75!%} +0VgNy! +20(d = 1)\/gV DX (Nx*™)

=0, (2.25)

0, =Py =0. (2.26)

0, and 0, are second-class constraints. The Hamiltonian
with all constraints incorporated is given by

N . 1 )
H:/ddx[ﬁﬂ’fﬂij—f-g\/ﬁN(R—l—E(Z—d)(d—1)a,»a’
2 d )
+Zl(d_1)v"ak) +N'H,<+mr+,491+892}, (2.27)

where N, u, A, and B are Lagrange multipliers. Constraint
0, contains a total spatial derivative. Once we integrate it,
this term vanishes with appropriated boundary conditions.
Therefore, we can prove that the primary Hamiltonian is
equivalent to the integral of a second-class constraint,

HO—/ddxﬁl.

The canonical formulation requires the extension of the
anisotropic conformal transformations in the way

(2.28)

iy = ©%gyj, 7l =072,
N = @4N, Py = 0799,,
Ny = @°N,. (2.29)

The invariance of the canonical action under these trans-
formations requires specific transformations of the rest of
Lagrange multipliers. Under a conformal transformation
the canonical action becomes

~ . . N ..
S= /d’ddx [P N + gy, ——2'lm;; — 0\/gNx*
N J \/g J \/_
—~ N'H,; + (d®~'&N — BO~)0,

+7(207'0 — 207N "0 — i) — A6, |. (2.30)

Therefore, we require the Lagrange multipliers to trans-
form as

ji=u+20"'0-20"'N9,0, (2.31)
B = 0B+ dNOO!, (2.32)
A=A (2.33)

The phase space of the classical theory is spanned by the
variables (g;;, #*/) and (N, Py), which contain d(d + 1) +2
degrees of freedom. There are two first-class constraints,
‘H; and 7, with two gauge symmetries associated, and two
second-class constraints, €, and 6,. Hence, 2(d+ 1)
degrees must be eliminated as unphysical from the phase
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space. The resulting canonical theory has a number of
1d(d — 1) — 1 physical modes. This number coincides with
general relativity; the so called extra mode of the Horava
theory is eliminated by the gauge symmetry of anisotropic
conformal transformations. In d = 2 the conformal theory
propagates no physical modes and in d = 3 it propagates
two physical modes.

III. BFV QUANTIZATION
We utilize the definition of Dirac brackets,
{F.R}p = {F.R} — {F.0,}Mz}{0,.R}.
Myp = {04.05}.

The constraints that satisfy an involutive algebra with
respect to the Dirac brackets are H; and z. Their brackets
are given by

(3.1)

{x(). 23)}p = 0. (32)
(w0 10 = 25 a) 39
0. 70} = 20y
- MH,.@). (3.4)
ay’

The coefficients of this involutive algebra enter in the
definition of the BRST charge.

The BFV extension of the phase space is done as follows:
the Lagrange multipliers of the involutive constraints H;
and 7 are promoted to canonical variables together with
their conjugate momenta. They define the new canonical
pairs (N, z;) and (u, Q). The BFV ghosts associated with
spatial diffeomorphisms are (C,P;) and (P',C;). The
BFV ghosts associated with the conformal symmetry are
(C,P) and (P, C). A useful collective notation for all these
ghosts is 7 = (C', P!, C,P), P, = (P;,C;, P,C). Thus,
the full phase space is given by the canonical pairs
(9. 7%). (N.Py). (N,.x). (1. Q). and (n,.P*).

The BFV path integral of the nonprojectable Hotava

theory is given by
Z= /DVeiS,

where the measure and the canonical action are, respectively,

(3.5)

DV = Dy, Dr'/ DNDPyDN*Dr, DuDQDy*DP,

x 5(6,)5(6,)V/det M, (3.6)
S = /dtddx(”ijgij + PyN + mN* + Qjt + Pi* — Hy).

(3.7)

The quantum gauge-fixed Hamiltonian is

H\y - HO + {T, Q}D’ (38)
where W is the fermionic function chosen to fix the gauge
symmetry and € is the BRST charge. In the case of the
conformal Hotava theory, © admits an expansion up to
linear order on the BFV ghosts P, (the theory is of order
one [9]). Its general definition, using symbolic notation, is

1
Q=G —=UnnP., (3.9)

2
where G, denotes the functions G, = (H;, z;, 7, Q), and
U¢, denotes the coefficients of the algebra between the
constraints H; and z, given in Egs. (3.2)—(3.4). Explicitly,
the BRST charge results in

Q= /ddx(Hka + Pk + nC + QP

— Cro,C'P; — 0, (CFP)C). (3.10)
Q must satisfy the consistency conditions required in the
BFV formalism, which are
{Q,Q}, =0, {Hoy,Q}p =0. (3.11)
The first condition can be checked by direct computations,
whereas the second one holds due to that H, taken as a
differentiable functional, it is equivalent to a second-class
constraint, hence its Dirac brackets are always zero.

To fix the gauge we use perturbative variables,
denoted by
g,]=5,]+hl], ﬂij:pij, N:1—|—n, Ni:ni. (312)
On the rest of field variables we keep the original notation,
with perturbative meaning. In the original BFV formulation
a generic form of the gauge-fixing condition (for an
arbitrary gauge symmetry) was introduced. Its functional
form was aimed to apply it to relativistic systems with
covariant (and noncanonical) gauge-fixing conditions. This
leads to a generic form of the fermionic function ¥, which
we adopt for the conformal Horava theory. Function W is

¥ =Pin' + Cip} + Pu+ Cra, (3.13)
where y} and y, are functionals of the canonical fields
to be chosen freely. It seems natural to take y} to fix the
symmetry of spatial diffeomorphisms, whereas y, does the
same for the conformal transformations (although these
symmetries are not independent). In previous analysis [11],
we have introduced a gauge-fixing condition for the
symmetry of the spatial diffeomorphisms that depends
on the momentum z;. The idea here is to follow the same
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strategy; hence we use z; in the sector of the spatial
diffeomorphisms and the momentum Q in the sector of the
conformal transformation. Thus, we set

2 =0Dr; + T, (3.14)
22 = 0,0 + T, (3.15)

where
A = 0y, D = §,;AT" + kA0, (3.16)
[ =2¢1A%10,h;; 42, A1 0;h + c3A720; by, (3.17)
Iy = c,Ah + csA 10, (3.18)

D'/ is the appropriate operator to connect with the nonlocal
quantum Lagrangian [2,11]. We have chosen I'} and I, in
the more general form allowed by the anisotropic scaling of
the fields. At this stage oy, 0,, k, and ¢, 5 are arbitrary
constants. Below we see that the setting [2,11]

¢, =0,

cy = —0q, C3:—2KO'],

Cqy = 0y, C5 = O, (319)
leads to an important simplification in the Lagrangian: odd
derivatives in time and space are eliminated. We use in
advance this fact, so the final form of the gauge-fixing

factors is

Fll = —20’1 (Ad_lajhij + KAd_zaijkhjk),

(3.20)

Fz ES GzAdh. (321)
Notice that with this setting I} gets contributions of the
longitudinal sector of h;; exclusively, which is related to
symmetry of spatial diffeomorphisms. Moreover, I'; only
involves the trace A, which is naturally associated to the
conformal symmetry, but it does not get contributions
from the vectorial longitudinal sector. The gauge-fixed
Hamiltonian take the form

qu = Ho +Hkl’lk +7_)k73k —75,~(nf0jCi + niajCj)
+ n’7_361C+,up +7573—,u(3k(Ck7_7) +01ﬂ'i®ijﬂ'j
+a,T + CAT H }CF + 0,00 + 0T

+C{T. H } CF + C{T, p} C+ C{Ta. p}C. - (3.22)

Explicitly, the brackets indicated in this Hamiltonian at
quadratic order in perturbations are

CATL, H }CF = —6,Cr (26,09 + (28 — 1)A%1oy,) C,
C{T5, H; } C* = 206,CA%9,CF,
C AT, p}C = =26,kC,A%10,C,

C{T». p}C = 6,dCAC, (3.23)

where K = 1 + k. We show the quadratic potential used in

(3.22) in d = 2 spatial dimensions, using the decomposi-
tion (5.4),

V = o(hTA’h" + nA’n — 20T A%n).  (3.24)

IV. BRST SYMMETRY

The BRST symmetry in the BFV formalism is imple-
mented by the generator Q in the form of transformations
with Dirac brackets,

¢ =9+ {9.Q}pv, (4.1)
where ¢ represents each one of the canonical fields of the
fully extended canonical phase space, and v is the fermionic
global parameter of the transformation. On the canonical
fields g;; and 7'/ the result of the BRST transformation is

the combination of a diffeomorphism along the vector Civ
and a conformal transformation with argument Cv,

0adij = akgijckl/ + 201(;9;) Chv + 9i;Cv

= 5‘3[291']' + 63 i), (4.2)

Sor'l = o Cfy — 22419, CNy + 710, C*v — 7'/ Cv

= 5‘3{27:’7 + 53"%” . (4.3)
The BRST transformation on N results
5QN = —W{gl, Hici + ﬂ'C}I/, (44)

where W = (%)'l. This is close to be again a combination
of a spatial diffeomorphism and a conformal transformation
on O, (which is conformally invariant). The missing
parts are that H;, defined in (2.23), is the generator of
the spatial diffeomorphisms only on the canonical pair
(9ij» 7'/). The complete generator that also acts on the pair
(N,Py) is

H; + 6,0;N. (4.5)
Similarly, the complete conformal generator on the pairs
(9. 7) and (N, Py) is

d
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(see Ref. [15]). Therefore, by adding and subtracting in
Eq. (4.4) the required terms to form these generators, we
may write the transformation of N as

: d
SqN = —W&il'0, + W{6,,0,0,NCiv} + 5W{el,echp}
. o d
= —W5(gf£91 =+ al’NClV + ENCIJ
—W&iG, + 55N + 53N, (4.7)

The BRST transformations of the ghosts C' and C can be
interpreted as spatial diffeomorphisms along the vector C'v:

. o
5o’ = 0,C'Cly =2 831 C", (4.8)
8oC = Clug,C = 5% C. (4.9)

This diffeomorphism of C’ along itself is not zero due the
Grassmann nature of C' and v. The transformations of their
conjugate momenta are given by

8oP; = (0;P;C/ + P;0,C7 + P;0,C))v + Hv + Po;Cv

= 531D, + Hv 4 Po,C, (4.10)
5qP = v+ (C*uoy P + 0, C*VP) = S0P+ . (4.11)

In summary, the BRST transformations of the fields in the
extended phase space are

o gi; = 5ck gl/ 5conf 9ijs 5gﬂij _ 5(éikf£ 7 4 5ccc;/nfn.ij’
SoN = _W(sdlffal + 5d1ffN + 52N, SoPy =0,
SNk = Pk Somy =0,  Sou="Pr, 600 =0,
8oC' = 2 5fg,f§Cl 8Pi = 88 P; +Hw + Po;Cv,
sqP* =0, 8aCr = mv.

5C=0681C,  6qP =nv+ 5P,

P =0, 5,C=Quv. (4.12)

V. QUANTUM LAGRANGIAN

Our aim in this section is to study the quantum
Lagrangian, which we obtain by integration on all canoni-
cal momenta. In particular we focus on the nonlocalities
and the propagators of the quantum fields. In this aspect the
dimensionality of the space is very relevant, due to the
conformal symmetry. We see below that we may obtain a
complete set of propagators for all quantum fields in d = 2,
taking the conformal potential given in Egs. (2.11) and
(2.12). For d > 3, some fields lack their contribution to the
quadratic action, due to the high order of the conformal
potential and its derivatives. Hence, we cannot define

propagators for these fields in perturbative theory.
Motivated by this, we develop the d = 2 case. The d=2
conformal theory has no local physical degrees of freedom,
as general relativity. Hence, although propagators and
vertices can be defined for all quantum fields, one expects
that there are cancellations among the interactions of all
these modes. We present the propagators of the d = 2 case
as a formal evidence of the consistency of the quantization
of the theory with conformal symmetry. In the appendix we
present a study of a d = 3 conformal model deformed by
nonconformal terms of lower order (that is, with explicit
soft breaking of the conformal symmetry). In that model, a
complete set of propagators can be obtained.

First, we can do the integration on the BFV ghost
momenta P, P;,P,P by completing the bilinear terms
where they arise in the canonical action (3.7) and (3.22).
The integration on them is Gaussian and produces terms

that are bilinear on the time derivatives C', C‘ i C, C . Next,
we integrate in z; and Q, which leads to nonlocalities on
the quantum Lagrangian,

/Dﬂkexp[i/dtdzx(—alﬂ,-i‘)’jnj+7rk(i1k—l“’1‘))]
—exp[i/dtdzx—(n - ) (! —FJ)] (5.1)

0]

/DQexp [i/dtdzJC(—GzQAzQ-FQ(/l—Fz))]

1
=exp [i/dtdzx—(ﬂ—Fz)(Az)“(ﬂ—Fz)], (5.2)
402
where
8. Kk0::
=L 5.3
gu A kA2 (5.3)

The last integration is on p;;. To do this we use the d = 2
decomposition

i
hij = < ij K]) '+ 0ihj.

0
ij
Pij = < ij —K)p7+0(,-pj).

In particular, the integration on the vector p; leads to more
nonlocalities in the quantum Lagrangian. Indeed, the
quadratic terms on p; arising in (3.7) and (3.22) can be
written as

(5.4)

1
Egoj( P+ DB (p + DyjiB) — Bgou i (5.5)

where
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post (D) om0
} L6y 10y

We consider the measure of the second-class constraints
5(61)8(0,)v/det M included in (3.6). The matrix of Poisson
brackets of the second-class constraints has a triangular
form,

0,,6 0,,0
M_<{1 i {6 2}> (5.8)
_{91 ’ 82} 0
Hence the square-root factor simplifies to
\/det{6,.6,} = det{6,.0,}. (5.9)

This factor can be incorporated to the action by means of
fermionic ghost fields #7,

det{@l,ez}—/DﬁDnexp (i/dtddxﬁ{elﬁz}n) (5.10)

The delta 6(0;) can also be incorporated by means of a
Lagrange multiplier A,

5(0,) = /D.Aexp (i/dzddxA91>, (5.11)

similarly to the classical theory in (2.27). Finally, the
quantum field P, can be eliminated by integration due
to the delta §(6,) (the result of the bracket in (5.10) is
independent of Py).

After performing the above steps, we obtain the path
integral in Lagrangian variables. To present it at quadratic
order, we use the vectorial decomposition h; = hl +
0;A~'ht and n' = n'T + 9;nt, with 9;h7 = 9;n'" =0, and
similarly for the ghost vector fields. The resulting path
integral with quadratic action is

1 1
Z= /DVexp {i/dmﬂx [—ZhT(dg — (65 — 40)A?)RT + ghiT(O%A +20,A%)AT
1

1
P2 W AR — — y(PA2 = 26,)u + pAnt

——hl(0? - (65 — 40,k)A%)RE +7 1o,

4

1 1
=1 (A + 20, M)n'T + ——n" (0] + 40,RA*)n" — onAn + 200" An
4o, 40,k

— 20AN2KT + 20 AN N + 207A% + CT(0? 4 20, A*)CHT + C(0? — 26,A2)C

— C’L(d,zA + 4011"<A3)CL —206,CA3CE — 2011‘<C‘LA2C] } (5.12)
where

DV = Dh"Dh] Dh* DnDn*" Dn* DyDCT DCTDCEDCEDCDCD ADRDy. (5.13)

From the above quantum Lagrangian we obtain the propagators of all fields. We present the propagators after performing
a Wick rotation,1

(hThT) = (hTn) = (nn) = =2(w? + (4ko| — 6,)k*)S,
(hthty = =2(w? — 6,k*)S,
(ntu) = —46,0,kk°S,
K*(CECE) = —(w? = 26,k%)S,
(CC) = —(? + 4%0 k),

(hTht) = (hf'n) = —206,k*S,
(ntnl) = 26 k(w* — 20,k*)S,
(up) = =202k* (@0* + 40, RKY)S,
(CLC) = 20,k*S,
(5.14)

and

"The propagators with indices are proportional to the propagators of the same objects with contracted indices. We show the contracted
form in (5.14) to reduce the size of these expressions.
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(AA) = (nA) = (i) = —7 (5.15)

where

-1
T, = [a)2+ (2011?—02+ \/41?20%+0%)k4} . (5.16)

-1
T, = [aﬂ n (2oll—< — 6, — \J4R26% + a%)k“} . (5.17)
T3 = (602 —|— 201](4)_1, (518)

The propagators 7 |, 7, and 7 5 can be made regular (with
positive coefficients) [24] if the coupling constants satisfy

i >0, o, >0, o, <0. (5.20)
T, T,, and 75 determine the propagators of the fields in
(5.14); hence all propagators in (5.14) are regular if this
condition is satisfied. The auxiliary fields A and 7 acquire
irregular propagators. These fields are associate to the
measure of the second-class constraints, and the irregularity
of their propagators was previously observed in the general

nonprojectable theory without the conformal symmetry.

VI. CONCLUSIONS

We have seen that the gauge symmetry of anisotropic
Weyl transformations can be incorporated to the BFV
quantization of the nonprojectable Hotava theory. This
provides a quantum theory with conformal transformations
different to the relativistic case. We have introduced a local
gauge-fixing condition for the symmetry of spatial diffeo-
morphisms and the Weyl transformations. The way we
introduce the gauge fixing is inspired by the nonlocal gauge
fixing-condition of the projectable case [2], which is known
to have a local counterpart in the BFV formalism [11]. The
gauge-fixing condition naturally splits the metric variables
between the vector longitudinal sector for the spatial
diffeomorphisms and the trace for the Weyl transforma-
tions. On top of this, we have seen that the quantization
with the two gauge symmetries is compatible with the
second-class constraints in the BFV formalism. We have
expressed the BRST transformations of the fields mainly in
terms of a spatial diffeomorphisms and an anisotropic Weyl
transformation, with the ghost fields entering in the argu-
ments of the transformations.

A feature of the quantization we have studied is the
Feynman rules. We have obtained the quantum Lagrangian
by integration on the BFV canonical path integral in the
2+ 1 case. We have found some features similar to the
case of the nonconformal theory. The quantum Lagrangian
gets nonlocalities as a consequence of the gauge-fixing

procedure. Most of the fields gets regular propagators [24],
a feature relevant for the renormalizability of the theory [2].
The only exception are the fields associated to the measure
of the second-class constraints. This behavior is qualita-
tively identical to the general nonprojectable theory without
the conformal symmetry. We have previously found that the
divergences coming from the irregular loops cancel each
other exactly in the nonprojectable theory [11]. Therefore, a
natural question for a future work is whether cancellations
of this kind can also occur in the conformal theory. In
the 3 + 1 case or higher the definition of Feynman rules
is more difficult since the conformal potentials do not
contribute to the quadratic action, hence some propagators
of fields are lacked (the propagators of the fields associated
with the measure of the second-class constraints, A and
n, 7, cannot be defined since these fields decouple from the
quadratic action due to the order of the conformal potential
in 3+ 1 and higher).
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APPENDIX: BREAKING THE
CONFORMAL SYMMETRY

The potential V = gy? in (2.11) contributes at quadratic
order in perturbations only for the spatial dimension d = 2.
A technical issue with this is that the Lagrange multiplier A
contributes to the quadratic action only for the d =2
dimensionality; hence only in this case one may define
propagators for the A field. This is a consequence of the
fact that .4 multiplies the constraint 6, which is a derivative
of the primary Hamiltonian, and hence of V. Therefore, the
conformal model we have presented in this paper, although
it is consistent in the d = 2 case as we have shown, is not
totally suitable for doing Feynman diagrams in d >3
dimensionality, whenever one wants to use the A field.
On the other hand, in d =3 the conformal potential
(Cotton-tensor)? does contribute to the quadratic action,
but this does not cure the problem of the decoupling of A at
the quadratic level. The reason in this case is that the
(Cotton-tensor)? potential does not depend on N at
quadratic level; hence #; does not get linear-order con-
tributions. Therefore, to have a well-posed perturbation
theory in d = 3, we study explicit deformations of the
conformal symmetry.

The deformation we make on the conformal theory
consists of adding nonconformal terms of order z =1,
and moving the coupling constant 4 from its critical value,
A # 1/d. At the end of the analysis we discuss on the limit
when A goes back to its critical value. The constraint 7 = 0
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does not arise in this modified theory, hence the theory does
not possess a conformal-symmetry generator.

For concreteness, we specialize to the d = 3 case and
with the conformal potential made with the Cotton tensor
[1], which is given by

. 1 . .
Cll = — MUV, R)),. (A1)
VY
It transforms under Weyl transformation as C/ = ©@>C¥.
The conformal potential

whose conformal weight is —3, can be introduced in the
primary Hamiltonian. The deformation consists of includ-
ing in the potential the known z =1 terms of the non-
projectable Horava theory. Thus, we take the primary
Hamiltonian density as

H():%ﬂuﬂij_‘_g\/glvcl]cij_\/gN(ﬂR+aaial)' (A3)

The deformed theory has the following constraints:

Hi == —2gijvkﬂjk, (A4)
N . . .
91 = —ﬂ'ljﬂ'ij + g\/gNCUCU - \/EN(,BR + aaia’)
VY
— 2a,/gAN, (AS)
92 - PN' (A6)

We perform the BFV extension of the phase space. The
additional canonical pairs are (N',r;) and n* = (C', P'),
P, = (P;,C;) The BRST charge is given by

Q= / &Bx(H Ck + m, P* — Cro,C'P)). (A7)

For the gauge-fixing fermionic function we use the form
¥ =P;n' + Ciy'. Since this is the gauge-fixing corre-
sponding to the symmetry of spatial diffeomorphisms, we
use the same factor y} given in (3.14). In this model we set
the constants ¢; = —oy, ¢, = ko, ¢c3 = —2ko; to cancel
odd derivatives in the Lagrangian. Thus, the gauge-fixed
Hamiltonian takes the form

H\y - H() + Hkl’lk + 7_)k7)k — 75i(nfajCi + nid,-Cf)

+017Ii®ijﬂ'j +7Tl'rli ‘l‘Ci{Fi,Hk}Ck. (AS)

To integrate all the canonical momenta we use the
following decomposition of tensors in d = 3,

1 0;j .

it = o.ntl = 0.

1ty (Ag)

To obtain the propagators we make the following
decomposition on vectors: h; = hT + A~'o;ht  and
n' = n'l + 9;n", with 9;h! = 9;n'" = 0. The decomposed
path integral is

Z = | DhTTDhTDhT DAt Dn DT Dnt DCTDCTDCLDCLD ADHD
; I D

ij

1 1 1
X exp {i / dtd®x [— R (=07 + pA + AR - ghT[(l —22)0? + BA + 82%ke A3]hT + gh?(a%A + 20, A"

4
(1-4) )

| .
—~—2hb[0? + 4ok(1 — 2)A3]hE + EhT[dlz + 40,k(1 — 2)A3]hE — anAn — fnAhT — o n'l (0} A2 + 26, A)n'"

4

0]

1 _ _
+——nL[0?A" + 4ko (1 — D) A2nt + CT(0? 4 20, A3)CFT — CL[2A + 4oyR(1 — 1) A%|CE

461](

+ A(BART + 2aAn) — 2aﬁAn} }

The propagators of the deformed theory, after a Wick rotation, are given by

(WITHET) = 4T,

a

(hThTy = —8(1 — 1) T>.

2
(hEhL) = 4 [(2& — De? + ﬂ(l - ﬁ) K2+ 851;&21&} T,T,.  (WTht) = =827,

4p

a

(htn) =

1

Tz, <th> = sz’

(nTnl) = —46,k*T 5, (ntnt) = —4ko | K*T 4,

(A10)
K (hih]) = —8T 5,
2(1 = 2)p?
) = -2 7,
(CTCMy = 275, K*(CLCE) = =274,  (All)
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and

1

(AA) = (nA) = () = —— 3.

(A12)

where

T, = (0? + pk* + CkO)71, (A13)

Ty = | (1 =30)w* - p(1 —,1)<1 —%)lér, (Al14)

T3 :(0)2 —261k6)_1, (AIS)

T4 =(w? — dio, (1 — 2)k8)71. (A16)
In this deformed theory, the regularity of the propagators in
(A11) is achieved with the conditions

p >0,

§>O, 01<0,

k(1-2)>0, (1—&)(1—%><O.

1-31>0,

- (A17)

We may regard as physical modes the ones corresponding
to the propagators 7 | and 7 ,, since 7 3 and 7 4 enter in the
propagators of the ghosts. 7 yields the propagators of the
two tensorial modes in /] and 7, is the so called extra
scalar mode of the Hotava theory (it arises it several
quantum fields due to the gauge we are using).

Now we can go to the critical point A = 1/3, where the
classical theory acquires Weyl symmetry on its kinetic term.
T, lacks its temporal dependence in this limit. This is a
reminiscence of the dynamics of the critical theory, which
does not necessarily have a conformal potential. Due to the
critical value of A, there arise more second-class constraints,
which is in agreement with the fact that the would be extra
scalar mode lacks its kinetic term. Therefore, a physical
mode in this limit is eliminated and there remains the modes
of 7', as physical modes. This effect recalls that we are
approaching the conformal symmetry; hence the elimination
of the extra mode. Moreover, the 7 | propagator admits the
limit f = a@ = 0, where the exact conformal symmetry is
recovered. But the vanishing of a affects the definition of the
propagators involving the A field in (A12). This is natural,
since the z = 1 terms of deformation were introduced to get
propagators for this field, as we have discussed.
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