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The retarded Green function of a wave equation on a 4-dimensional curved background spacetime is a
(generalized) function of two spacetime points and diverges when these are connected by a null geodesic.
The Hadamard form makes explicit the form of this divergence but only when one of the points is in a
normal neighborhood of the other point. In this paper we derive a representation for the retarded Green
function for a scalar field in Schwarzschild spacetime which makes explicit its complete singularity
structure beyond the normal neighborhood. We interpret this representation as a sum of Hadamard forms,
the summation being taken over the number of times the null wavefront has passed through a caustic point;
the sum of Hadamard forms applies to the nonsmooth contribution to the full Green function, not only the
singular contribution. (The term nonsmooth applies modulo the causality-generating step functions that
must appear in the retarded Green function.) The singularity structure is determined using two independent
approaches, one based on a Bessel function expansion of the Green function, and another that exploits a
link between the Green functions of Schwarzschild spacetime and Plebański-Hacyan spacetime (the latter
approach also yields another representation for the full Schwarzschild Green function, not just for its
nonsmooth part). Our representation is not valid in a neighborhood of caustic points. We deal with these
points by providing a separate representation for the Green function in Schwarzschild spacetime which
makes explicit its (different) singularity structure at caustics of this spacetime.

DOI: 10.1103/PhysRevD.108.044033

I. INTRODUCTION

A fundamental object for the study of linear field
perturbations of a curved spacetime is the retarded
Green function (GF) of the wave equation satisfied by
the perturbation. Heuristically, the GF may be viewed as
the value of the field at a spacetime point resulting from the
propagation of an ‘impulsive’ source at a base point. The
global—not just local—behavior of the GF is useful, for
example, for determining the evolution of initial data via a
Kirchhoff integral [1], for determining the self-force acting
on a particle that is moving on a background spacetime via
the MiSaTaQuWa equation [2] and for determining the
probability of a quantum particle detector being excited by
a field emitted by another detector [3,4].
Based on the seminal work by Hadamard [5], an analytic

expression is known for the GF, GRðx; x0Þ, which is valid
within a normal neighborhood N ðxÞ of the base spacetime
point x [i.e., a region N ðxÞ containing x such that every

x0 ∈ N ðxÞ is connected to x by a unique geodesic which
lies in N ðxÞ]. In the case of a scalar field on a (3þ 1)-
dimensional spacetime, this Hadamard form is [6]

GRðx;x0Þ¼ ½U4dðx;x0Þδðσ4dÞþV4dðx;x0Þθð−σ4dÞ�θþðx;x0Þ;
ð1:1Þ

where δ and θ are, respectively, the Dirac-delta and
Heaviside distributions, U4d and V4d are smooth biscalars,
and θþðx; x0Þ equals 1 if x0 lies to the causal future of x and
equals 0 otherwise. Here, σ4d ¼ σ4dðx; x0Þ is Synge’s world
function, i.e., one-half of the squared distance along the
(unique) geodesic connecting x and x0. Equation (1.1)
explicitly shows that, in a (3þ 1)-dimensional spacetime,
the GF has a Dirac-delta divergence at points x0 ∈ N ðxÞ
that are connected to x via a null geodesic. The first term,
U4dδ, and the second term, V4dθ, on the right-hand side of
Eq. (1.1) are usually called the ‘direct’ and ‘tail’ parts,
respectively.
It is further known [7–9] that, outside a normal neigh-

borhood, the GF continues to diverge when the two
spacetime points are connected via a null geodesic. The
explicit form of the singularity outside a normal neighbor-
hood, however, was not known within General Relativity
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until recently. Using a variety of methods, it has been
shown [10–16] that the global form of the ‘leading’
singularity of the GF generally has the following fourfold
structure in Schwarzschild, Kerr and other background
spacetimes:

δðσ4dÞ → PVð1=σ4dÞ → −δðσ4dÞ → −PVð1=σ4dÞ
→ δðσ4dÞ → � � � ; ð1:2Þ

where the first term corresponds to the direct part in
Eq. (1.1) and PV denotes the Cauchy principal value
distribution. This change in the character of the singularity
is essentially due to the null wavefront of the field
perturbation passing through a caustic point (i.e., a space-
time point where neighboring null geodesics are focused).
This is indicated in Eq. (1.2) by the arrow ‘→’. Thus the
leading singularity in GRðx; x0Þ has the form δðσ4dðx; x0ÞÞ
[respectively, PVð1=σ4dÞ;−δðσ4dÞ;−PVð1=σ4dÞ] when
there is a null geodesic from x to x0 that has passed
through 4n (respectively, 4nþ 1; 4nþ 2; 4nþ 3) caustics,
where n is a non-negative integer. The four-fold structure of
the GF in Schwarzschild spacetime is beautifully illustrated
with numerical animations in [17] and has been used in
[11,18,19] in order to provide an insight into the origin of
the self-force and in [3] and [20] in order to account for
interesting features in respectively, the communication and
entanglement between quantum particle detectors.
The above fourfold singularity structure of the GF,

however, only represents its ‘leading’ singularity. In [14],
we proved that there is also a ‘subleading’ discontinuity in
the case of a black hole toy-model spacetime (Plebański-
Hacyan spacetime, M2 × S2, abbreviated as PH below)
which displays another fourfold structure,

θð−σ4dÞ → − ln jσ4dj → −θð−σ4dÞ → ln jσ4dj
→ θð−σ4dÞ → � � � ; ð1:3Þ

where the first term corresponds to the tail part in Eq. (1.1).
To the best of our knowledge, such ‘subleading’ fourfold
structure has not yet been shown on an actual black hole
spacetime. In this paper we derive explicit forms for both
the leading and subleading discontinuities of the GF of the
massless scalar wave equation on Schwarzschild spacetime.
Furthermore, although we have written the above global
four-fold structures in terms of a world function σ4d, this
object is only well-defined in a geodesically convex domain;
a region inwhich all pairs of points are connected by a unique
geodesic. In this paper we write the fourfold structures in
Schwarzschild spacetime in terms of a globally well-defined
generalization of the world function σ̂ of a spacetime that is
conformally related to Schwarzschild.
Our derivation is underpinned by a simple conformal

transformation of the Schwarzschild metric to a direct
product spacetime, M2 × S2, where S2 is the two-sphere

andM2 is a 2-dimensional Lorentzian spacetime (containing
the time and radial variables). In a separate paper [21] we
have shown thatM2 is a causal domain (i.e., is geodesically
convex, and obeys a certain causality condition) [6], which
implies that its corresponding world function is valid
globally. This allows us to write a global representation of
theGF in Schwarzschild spacetime. This involves a sumover
angular modes, indexed by the multipolar number l, of
globally well-defined 2-dimensional Green functions Gl in
the 2-dimensional spacetime M2 [see Eq. (2.24) below]
multiplied by Legendre polynomials. When we use a series
representation of the Riemann function Ul associated with
Gl (that is,Ul is the coefficient of theHeaviside step function
in the 2-dimensionalGreen function)weobtain a form for the
GF in Schwarzschild which makes explicit its complete
fourfold singularity structure in terms of the distributions in
Eqs. (1.2) and (1.3)) (with the argument σ4d replaced by its
globalized companion). The series representation of Ul is
obtained by applying a theorem of Zauderer [22], and yields
an expression in terms of an infinite series involving Bessel
functionswith coefficients coming from theHadamard series
(i.e., a series in powers of theworld function) of the Riemann
function of a certain ‘background’ 2-dimensional wave
equation. The Bessel series converges whenever the
Hadamard series converges. We then expand for large-l;
resummingyields an expression for theGF inSchwarzschild.
This representation for the GF in Schwarzschild is valid
whenever the Hadamard series of the 2-dimensional
Riemann function U associated with the background
2-dimensional wave equation convergence. This method is
essentially the same as the one we used in Sec. V [14]. Our
large-l expansion is also in the same spirit as [12,16],
although these works used a further separation in the time
variable (via a Fourier transform) and expansion of the GF in
terms of the so-called quasinormal modes,1 instead of the
Green function in the 2-dimensional spacetimeM2 that we
employ.
Furthermore: In any spacetime dimension, one can write

the biscalars in the Hadamard form as a Hadamard series.
The coefficients of the distributions in our representation
for the GF in Schwarzschild are given in terms of the
coefficients in the Hadamard series for the Riemann
function U in M2. Therefore, our representation of the
GF has a direct geometrical interpretation in terms of
geodesics in this 2-dimensional causal domain. Our
representation for the GF naturally takes the form of a
sum of expansions about each of the null geodesics in
Schwarzschild. In effect, we give an extension of the local
Hadamard form for the GF in Schwarzschild spacetime,
valid beyond normal neighborhoods, which may be char-
acterized as a ‘sum of Hadamard forms’.

1The contribution from the branch cut that the GF has in the
complex-frequency plane (see, e.g., [1,18,23]) was thus neglected
in [12,16].
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This representation for the GF is, however, not valid in a
neighborhood of caustic points, for which the angle sepa-
ration γ is equal to 0 or π [specifically, this global repre-
sentation is valid for γ ∈ ð0; γ0Þ, where γ0 ¼ 2ð ffiffiffi

2
p

− 1Þπ ≃
0.828π]. Indeed, it is known [14,15] that on caustic points in a
spherically symmetric spacetime the above fourfold structure
does not generally apply and is instead a twofold structure.
However, to the best of our knowledge, the analytical form of
the singularity of the GF on caustics is not known in
Schwarzschild spacetime and we derive its precise form
here. We thus provide a complete description of the singu-
larity structure of the GF.
As an illustration of the usefulness and the properties of

the mentioned Bessel function representation, we calculate
and plot (in Fig. 1) its leading order term (that is after
carrying out an l-mode decomposition but before carrying
the full expansion for large-l) and compare it with an
‘exact’ calculation of the GF obtained using an independent
method developed in [18].
As mentioned above, the singularity structure and ‘sum

of Hadamard forms’ is valid whenever the Hadamard series
of a certain wave equation on M2 converges. In this paper
we further present numerical studies which provide strong
evidence that convergence holds on large domains of M2.
It is an open question as to whether or not convergence
holds throughoutM2; convergence would imply global-in-
time validity of our results.
Specifically, we compare our analytical expressions for

the global divergences of the GF against an “exact”
semianalytical calculation of the full GF. We find remark-
able agreement for points x0 timelike-separated from x up to
distances which are quite “far” from it. This indicates that
the region where the Hadamard form converges uniformly
is either equal to the whole of M2 or, at least, that it
includes regions that correspond to extending well beyond
the normal neighborhood of a point in the 4-dimensional
Schwarzschild spacetime. Furthermore, for points x0 “near”
x, our expression in terms of geometrical quantities in M2

for the direct divergence in the Hadamard form (1.1) has
been successfully used in the works [3,24,25] to greatly
facilitate the practical calculation of the GF. Thus, these
works corroborate our useful expression for the direct
divergence.
We also provide another, separate representation for the

GF in Schwarzschild spacetime. This other representation
also starts from the Bessel series but, instead of carrying out
a large-l expansion of its summands, we essentially
express the full l-sum of the l-dependent factor in the
summands as integrals of the GF in PH spacetime. This
new representation not only is of value in itself (in that it
offers a way of calculating the GF in Schwarzschild partly
via the GF in PH, which is much easier to calculate) but
also we use it to derive the global singularity structure of
the GF in Schwarzschild in an alternative way from that
mentioned above (namely, via a large-l expansion of the

modes of the GF in Schwarzschild), thus offering a check
of our results.
For the reader who is only interested in our main results

rather than the details of the calculation, we here note our
main equations. Equation (4.84) [see also (3.19)] is our sum
of Hadamard forms for the GF in Schwarzschild spacetime,
which explicitly shows the full structure of the divergences
when the points are connected by a null geodesic. As
mentioned, this form is not valid at caustics, where γ ¼ 0 or
π. We address this in Eq. (5.28), which gives the explicit
full form of the divergences of the GF at caustics in the case
γ ¼ 0; Eq. (5.32) gives the structure in the case of antipodal
points, γ ¼ π. Finally, Eq. (3.10) is the expression for the
GF in Schwarzschild in terms of integrals of the GF in PH,
and (3.17) is a version of it after using the Hadamard form
for the GF in PH.
The rest of this paper is organized as follows. In Sec. II

we define the retarded GF in Schwarzschild spacetime and
express it in terms of GFs in the 2D conformal spacetime.
We introduce the key background 2-dimensional wave
equation, and show how all 2-dimensional GFs derive from
this seed equation. More precisely, the 2-dimensional
Riemann functions mentioned above can be written as a
series of Hadamard coefficents of this seed equation, scaled
by Bessel functions Jkððlþ 1

2
ÞσÞ; k ≥ 0 where l is the

multipole index and σ is the globally defined world
function of the 2-dimensional conformal Schwarzschild
spacetime. This follows from a theorem of Zauderer ([22];
see also Theorem 6.4.2 of [6]), and we will refer to this as
the Bessel expansion of the Riemann (or Green) function.
This global representation of the 4-dimensional GF is then
analyzed in the following sections, with the aim of
determining its global (singularity) structure in a way that
relates to the underlying causal structure of the spacetime.
In Sec. III, we show how the global-retarded GF of

Schwarzschild spacetime may be derived by a sequence of
iterated integrals of the corresponding GF of PH spacetime.
This yields our first representations of the global singularity
structure and of the ‘sum of Hadamard forms’ of the
retarded GF of Schwarzschild spacetime.
In Sec. IV we apply a large-l expansion of the Bessel

functions arising in the Bessel series obtained in Sec. II to
determine the global singularity structure of the retarded GF
GR on Schwarzschild spacetime, and to determine the ‘sum
over Hadamard forms’ expansion of the nonsmooth con-
tribution to GR. This approach provides more detail on
the distributions that contribute to this sum, relative to the
approach of the previous section. In Sec. V, we derive the
twofold singularity structure in the case of caustics in
Schwarzschild spacetime. In Sec. VI we provide numerical
evidence for our results. We conclude in Sec. VII with some
comments and suggestions for possible applications of our
results. In Appendix A, as an illustration of the multipolar
modes of the GF, we calculate these in two simple
(3þ 1)-dimensional spacetimes; flat spacetime and Nariai
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spacetime. In Appendix B we consider the zero mass
(M ¼ 0) limit of the results of this paper (taking us from
Schwarzschild spacetime to Minkowski spacetime). This
allows us to consider the question of convergence of the key
2-dimensional Hadamard series, and to draw some links
between GFs on 2-dimensional anti–de Sitter spacetime
AdS2, PH spacetime, and results relating to the representa-
tion of Legendre functions in terms of series of Bessel
functions. Finally, in Appendix C, we show how our results
for the Schwarzschild GF could be used to calculate the
regularized self-field (i.e., the regularized value of the scalar
field created by a scalar point charge evaluated on the
location of the charge itself)—see [25]. This self-field is
relevant to self-force calculations of radiation reaction.
Throughout this paper we use geometric units c ¼ G ¼ 1

and metric signature ð−þþþÞ.

II. GREEN FUNCTION ON SCHWARZSCHILD
SPACETIME

The perturbations by a masslesss scalar field Φ of a
background spacetime M satisfy a scalar (Klein-Gordon)
wave equation. The retarded Green function GRðx; x0Þ
satisfies the inhomogeneous wave equation with a Dirac-
delta distribution source, together with a boundary con-
dition ensuring that GRðx; x0Þ vanishes if x0 is not in the
causal future JþðxÞ of the point x, where x; x0 ∈ M. Thus,

□GRðx; x0Þ ¼ −4πδ4ðx; x0Þ; GR ¼ 0 if x0 ∉ JþðxÞ;
ð2:1Þ

where □ ¼ ∇α∇α is the d’Alembertian operator,

δ4ðx; x0Þ≡ δ4ðx−x0Þffiffiffiffiffiffiffiffiffi
−gðxÞ

p and g is the determinant of the metric

of the background spacetime.
In the Introduction we gave the Hadamard form for the

retarded Green function (GF) in a (3þ 1)-dimensional
spacetime, Eq. (1.1). As mentioned, the great advantage of
the Hadamard form is that it makes explicit the form of the
singularity of the GF. This follows from the fact that
Synge’s world function σ4dðx; x0Þ is positive/zero/negative
if x and x0 are, respectively, spacelike/null/timelike sepa-
rated. The main disadvantage of the Hadamard form is that
it is only valid in a normal neighborhood of x, i.e., for
x0 ∈ N ðxÞ. In many situations, however, it is very valuable
to know the GF globally. In order to obtain a global
representation for the GF in Schwarzschild spacetime
where the form of its singularities becomes explicit, we
will make use of the spherical symmetry of the spacetime.
We shall use the usual time coordinate of the

Schwarzschild exterior (generated by the timelike Killing
vector) and the tortoise radial coordinate r� ∈ ð−∞;þ∞Þ
so that the line element has the form

ds2 ¼ −fðdt2 − dr2�Þ þ r2dΩ2
2; ð2:2Þ

where f ¼ fðrÞ≡ 1–2M=r and dΩ2
2 is the standard line

element of the unit 2-sphere. The area radius r and tortoise
coordinate r� are related by

dr
dr�

¼ f: ð2:3Þ

In these coordinates, the wave equation for GR reads

− f−1
∂
2GR

∂t2
þ f−1

∂
2GR

∂r2�
þ 2

r
∂GR

∂r�
þ 1

r2
∇2GR

¼ −
4π

r2f
δ2ðxA − xA

0 ÞδS2
ðxa; xa0 Þ; ð2:4Þ

where ∇2 is the Laplacian operator on the unit 2-sphere,
xA ¼ ðt; r�Þ are coordinates on the Lorentzian 2-space (i.e.,
the 2-space that arises by factoring the 4-dimensional
spacetime by the action of the SOð3Þ that generates the
spherical symmetry) and xa ¼ ðθ;ϕÞ are coordinates on the
unit 2-sphere.
At this point, it is usual to rescale the field by a factor r;

this removes the first-order derivative from the wave
equation. There is also a geometrical interpretation of this
step. The appropriate rescaling amounts to making a
conformal transformation of the metric,

dŝ2 ≡ r−2ds2 ¼ ds22 þ dΩ2
2; ð2:5Þ

where

ds22 ≡ −
f
r2

ðdt2 − dr2�Þ: ð2:6Þ

Wewill refer to the spacetime with line element (2.5) as the
conformal Schwarzschild spacetime, which we shall denote
as M̂. In its turn, we will refer to the 2-dimensional
spacetime with line element (2.6) as the 2D conformal
space, and denote it byM2. By general properties of Green
functions in conformally related spacetimes, we can write
[6,26]

GR ¼ 1

r · r0
ĜRðx; x0Þ; ð2:7Þ

where ĜRðx; x0Þ is the retarded Green function for the
conformally invariant wave equation on M̂. The confor-
mally invariant wave equation of a general 4-dimensional
spacetime with metric tensor g is

□gΦ − ξRΦ ¼ 0; ξ ¼ 1

6
; ð2:8Þ

where R is the Ricci scalar corresponding to the metric g.
Using this rescaling, we find
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−
∂
2ĜR

∂t2
þ ∂

2ĜR

∂r�2
þ f
r2

�
∇2 −

2M
r

�
ĜR

¼ −4πδ2ðxA − xA
0 ÞδS2

ðxa; xa0 Þ; ð2:9Þ

where we have used the value R ¼ 12M=r of the Ricci
scalar of M̂.
In addition to rendering the wave equation more trac-

table, the conformal rescaling in (2.5) introduces a very
useful simplification of the world function. The direct
product structure of the metric induced by (2.5) yields

σ̂ ¼ σðxA; xA0 Þ þ 1

2
γ2: ð2:10Þ

Here, σ̂ is the world function of the conformal
Schwarzschild spacetime M̂, σðxA; xA0 Þ is the world
function of the 2-dimensional Lorentzian spacetime M2

and γ ∈ ½0; π� is the geodesic distance on the unit 2-sphere,

γðxa; xa0 Þ ¼ proper distance along the shortest path from

xa to xa
0
onS2: ð2:11Þ

In a previous paper [21], we proved that M2 is a causal
domain. This means, in particular, that each pair of points
of this 2D spacetime are joined by a unique geodesic. As a
consequence, σ is defined globally onM2, in contrast with
the usual situation in four dimensions; e.g., there is no base
point p of conformal Schwarszchild spacetime for which
the corresponding maximal normal neighborhood is the
whole spacetime, and consequently σ̂ is not defined
globally on this spacetime. This technical point underpins
the present paper, where we use a 2þ 2 approach to
determine certain global properties of the GF on
Schwarzschild spacetime.
There is an immediate payoff in terms of understanding

the global causal structure of Schwarzschild spacetime. The
world function σ of the 2-D spacetime M2 satisfies

∇Aσ∇Aσ ¼ 2σ; ð2:12Þ

with the initial conditions limx0→xσðx; x0Þ ¼ 0 and
limx0→x∇A∇Bσðx; x0Þ ¼ gABðxÞ. As noted, there is a unique
geodesic connecting any given pair of points in M2.
Furthermore, any geodesic of the 4D spacetime M̂
decomposes as a geodesic on M2 and a geodesic on S2.
That is, if I ⊆ R is an interval and

c∶I → M̂∶s ↦ xαðsÞ ¼ ðxAðsÞ; xaðsÞÞ; ð2:13Þ

is a geodesic on M̂, then

c1 ∶ I → M2∶ s ↦ xAðsÞ;
c2 ∶ I → S2∶ s ↦ xaðsÞ;

are geodesics on M2 and S2 respectively (the converse
statement also holds). We refer to c1 as the projection of the
geodesic c onto M2; there is a unique c1 for a given
geodesic c of M̂. Now consider any pair of points xα ¼
ðxA; xaÞ; xα0 ¼ ðxA0

; xa
0 Þ of M̂. As proven in [21], there is a

unique geodesic of M2 connecting xA and xA
0
. When xa

and xa
0
are neither antipodal points nor the same point (for

which we would have γ ¼ π and γ ¼ 0, respectively), there
is a countably infinite family of geodesics of S2 connecting
xa and xa

0
, corresponding to multiple circuits of the

appropriate great circle of the sphere. By lifting these
geodesics from M2 and S2, we see that any pair of points
of M̂ are connected by a countably infinite family of
geodesics. Each of these geodesics projects to the same
geodesic ofM2. This resolves the question of the existence
and multiplicity of geodesics on M̂.
Then, by conformal invariance of null geodesics, a null

geodesic connects x and x0 in Schwarzschild spacetime if
and only if a null geodesic connects the corresponding
points of the conformal Schwarzschild spacetime. This
holds if and only if σ̂k ¼ 0, for some k ∈ Z, where

σ̂k ≡ σ þ 1

2
ðγ þ 2kπÞ2: ð2:14Þ

In this formula, ðγ þ 2πkÞ2 is the square of the total
proper distance elapsed along the projection of the geodesic
onto the 2-sphere. For k ≥ 0, the geodesic crosses 2k ¼
2jkj caustics at γ ¼ 0 and γ ¼ π. For k < 0, the geodesic
has crossed 2jkj − 1 caustics. Thus, the number of caustics
crossed is given by

Ck ≡
�
2k; k ≥ 0;

2jkj − 1; k < 0:
ð2:15Þ

We note that when the separation onM2 is timelike or null,
we may write (2.14) as

σ̂k ¼ −
1

2
η2 þ 1

2
ðγ þ 2kπÞ2; k ∈ Z; ð2:16Þ

where η is the geodesic distance (along causal geodesics)
on M2 (so that σ ¼ − 1

2
η2 and, particular, it is proper time

in M2 for timelike separations and is zero for null
separations). This ‘globalizes’ the world function σ̂ on
the 4D conformal Schwarzschild spacetime; σ̂k is one-half
of the square of the geodesic distance between any two
causally-related points in conformal Schwarzschild space-
time along a timelike or null geodesic which has passed
through Ck points with γ ¼ 0 or γ ¼ π (both of which are
caustics in the case of a null geodesic).
Returning to the Green functions, we separate the angle

variables in the usual way via a multipolar decomposition
and write
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ĜRðx; x0Þ ¼
1

4π

X∞
l¼0

ð2lþ 1ÞGlðxA; xA0 ÞPlðcos γÞ: ð2:17Þ

Here, Pl are Legendre polynomials and Gl satisfy the
partial differential equation (PDE) for a Green function on
the 2D conformal space,

□2Gl − Vlðr�ÞGl ¼ −4π
r2

f
δ2ðxA − xA

0 Þ; ð2:18Þ

where □2 is the d’Alembertian operator of the 2D con-
formal space and the potential is

Vlðr�Þ≡ lðlþ 1Þ þ 2M
r

: ð2:19Þ

The boundary conditions that the Green function Gl
obey must be such that when they are introduced in
Eq. (2.17), and use is made of Eq. (2.7), the resulting
Green function GR is the retarded Green function of
Schwarzschild spacetime. In fact, GlðxA; xA0 Þ must be
equal to the retarded Green function of Eq. (2.18) since2

it satisfies the same PDE [Eq. (2.18)] and it obeys the
defining boundary conditions of a retarded Green function,
as we now show. From Eq. (2.17) and the orthogonality
properties of the Legendre polynomials it follows that

GlðxA;xA0 Þ ¼ 2π

Z þ1

−1
dðcos γÞPlðcos γÞĜRðx;x0Þ: ð2:20Þ

Now, from Eq. (2.14), σ > 0 implies σ̂k > 0, ∀ k ∈ Z.
Since the retarded Green function ĜRðx; x0Þ of conformal
Schwarzschild is zero if x0 ∉ JþðxÞ, it follows that Gl is
zero if either σ > 0 or Δt≡ t − t0 < 0, which is the
defining boundary condition of the retarded Green function
in M2. In order to illustrate the causality properties of the
Gl, in Appendix Awe calculate these modes for two simple
4D spacetimes; flat and Nariai spacetimes.
In coordinates ðt; r�Þ, Eq. (2.18) takes the familiar form

−
∂
2Gl

∂t2
þ ∂

2Gl

∂r�2
−

f
r2

VlGl ¼ −4πδ2ðxA − xA
0 Þ: ð2:21Þ

Thus, the structure of Gl, and hence ĜR and GR can be
probed using a variety of PDE techniques. In particular,
there is a large body of work that exploits the amenability
of (2.21) to a Fourier transform in the time coordinate. We
will take an alternative approach that remains in the
2-dimensional setting and that applies (in particular) a
result of Zauderer ([22]; see also Theorem 6.4.2 of [6]).
This result—which we shall give explicitly below—pro-
vides an expansion of Gl in terms of Bessel functions and

of Hadamard coefficients for a ‘background’ wave equa-
tion. The Green function G for the background equation
satisfies

PG ¼ −4π
r2

f
δ2ðxA − xA

0 Þ; ð2:22Þ

where

P≡□2 þ
1

4

�
1 −

8M
r

�
; ð2:23Þ

so that (2.18) can be written in the perturbative (but exact)
form

ðP − L2ÞGl ¼ −4π
r2

f
δ2ðxA − xA

0 Þ; ð2:24Þ

where L≡ lþ 1=2.
The Green function of the background wave equa-

tion (2.22) obeying retarded boundary conditions can be
written in the 2-dimensional Hadamard form,

GðxA; xA0 Þ ¼ 2πθðt − t0Þθð−σÞUðxA; xA0 Þ; ð2:25Þ

where the biscalar UðxA; xA0 Þ is the solution of the homo-
geneous equation PU ¼ 0 satisfying boundary conditions
derived fromEqs. (2.26) and (2.28) below (U is the so-called
Riemann function of the operator P on M2—see [7] and
Sec. 6.2 of [6]). This biscalar exists and is uniquely defined
on M2 ×M2, and for any point p ¼ xA ∈ M2, there is a
neighborhoodΩp ⊂ M2 such that ∀ xA

0 ∈ Ωpwecanwrite
(we note that we are using the conventions of [6]),

UðxA; xA0 Þ ¼
X∞
k¼0

UkðxA; xA0 Þ ð−2σÞ
k

k!
; ð2:26Þ

where the series is uniformly convergent on Ωp (see
Theorem 6.2.1 [6]); this is known as the Hadamard series.
The numerical evidence in Sec. VI provides a strong
indication that Ωp extends well beyond the region corre-
sponding to the maximal normal neighborhood of a point of
the 4-dimensional spacetime that projects top. Furthermore,
in Appendix B, we consider convergence of the series in the
limiting case of zero mass (M ¼ 0).
Using (2.25), (2.26) and (2.16), we have

GðxA;xA0 Þ ¼ 2πθðt− t0Þθð−σÞ
X∞
k¼0

UkðxA;xA0 Þη
2k

k!
: ð2:27Þ

The Hadamard coefficients Uk, k ≥ 0, in M2 satisfy the
following recurrence relations in the form of transport
equations along the unique geodesic from xA to xA

0
[6,27–

29]. In two dimensions,U0 is the square root of the so-called
van Vleck determinant Δ2d ¼ Δ2dðxA; xA0 Þ,

2We remind the reader that the properties described in the text
define the unique retarded Green function—see Corollary 6.3.1
in [6].
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U0 ¼ Δ1=2
2d ⇔ 2σA∇AU0 ¼ ð2 −□2σÞU0; lim

x0→x
U0 ¼ 1;

ð2:28Þ

and the Uk; k ≥ 1, are determined by solving the transport
equations 3

2σA∇AUk þ ð□2σ þ 2ðk − 1ÞÞUk ¼
1

2
PUk−1; k ≥ 1:

ð2:29Þ

Regularity at σ ¼ 0 fixes constants of integration, so that the
Uk are uniquely determined.Here, the operatorP denotes the
operator of Eq. (2.22) satisfied by G. We note that σ and U0

depend only on the spacetime geometry, but the coefficients
Uk; k ≥ 1 depend on the details of the wave operator P. We
also note that we have calculated σ and Δ2d inM2 numeri-
cally in [21]. The 2D Hadamard coefficients Uk play an
important part in the analysis of the GF in 4D Schwarzschild
spacetime that we shall carry out in Sec. IV.
We wish to derive a globally valid form for GR on

Schwarzschild spacetime and its full singularity structure.
As seen in Eqs. (2.7) and (2.17), this can be written as a
sum of 2-dimensional Green functions,

GRðx; x0Þ ¼
1

2πr · r0
X∞
l¼0

�
lþ 1

2

�
GlðxA; xA0 ÞPlðcos γÞ;

ð2:30Þ
where the Gl satisfy Eq. (2.24).
In Sec. IV below, we show how we can use a large-l

expansion to (i) determine the full-singularity structure of
GR and (ii) express the nonsmooth contribution to GR as a
‘sum of Hadamard forms’. The resulting expressions are
valid on regions of the form

Ω̂P ¼ fQ ∈ M2 × S2∶q ∈ Ωp and γðxa; xa0 Þ ∈ ½0; γ0Þg;
ð2:31Þ

where P ¼ ðp; xaÞ ∈ M2 × S2 and Q ¼ ðq; xa0 Þ ∈
M2 × S2. This arises through the application of a theorem
due to Zauderer [22], which is cited (with an alternative
proof) as Theorem 6.4.2 of [6]. This result gives the
following form for the retarded Green function Gl on
M2 of the operator P − L2 of (2.24):

Gl ¼ 2πθð−σÞθðΔtÞUlðxA; xA0 Þ;

UlðxA; xA0 Þ≡X∞
k¼0

Uk

�
2η

L

�
k
JkðLηÞ; ð2:32Þ

where the Jk are Bessel functions, Ul is the Riemann
function for the 2D wave equation (2.24) and the coef-
ficients Uk ¼ UkðxA; xA0 Þ are the 2D Hadamard coeffi-
cients of Eq. (2.26). These coefficients and the series
Eq. (2.32) are defined globally on M2. This result in
(2.32) is not perturbative; it holds for all L ∈ Cnf0g, and
yields (2.27) in the limit L → 0. According to Zauderer’s
theorem, the series in Eq. (2.32) converges uniformly in the
region Ωp of any p ∈ M2 on which the Hadamard series
Eq. (2.26) converges uniformly.
In the next sections we proceed to exploit, in different

ways, Eq. (2.30) with Eq. (2.32) in order to determine
properties of the GF in Schwarzschild spacetime.

III. GREEN FUNCTIONS IN SCHWARZSCHILD
AND IN PLEBAŃSKI-HACYAN

SPACETIME M2 × S2

A. General form

We note that the GF in Schwarzschild spacetime given by
(2.30) and (2.32) bears an interesting and useful relationship
to theGFGPH

R of Plebański-Hacyan (PH) spacetimeM2 × S2

(where M2 is 2-dimensional Minkowski spacetime) for a
scalar field withm2 þ 2ξ ¼ 1=4, wherem is the mass of the
field. See Eq. (134) in Ref. [14]4 for an expression for the
latter GF,

GPH
R ðηPH; γÞ ¼ θð−σM2

ÞθðΔtÞ
X∞
l¼0

�
lþ 1

2

�
× Plðcos γÞJ0ðLηPHÞ

¼ θðηPHÞ
X∞
l¼0

�
lþ 1

2

�
Plðcos γÞJ0ðLηPHÞ;

ð3:1Þ

where theworld function of theM2 factor of PH spacetime is
given by σM2

¼ −η2PH=2 and ηPH is the geodesic distance in
M2. [In the last equality in (3.1)—and throughout the paper
—we adopt the convention that proper time along future-
directed timelike geodesics and the time coordinate t are
cosynchronous].We see that this expression for theGF in PH
is obtained from (2.30) by removing the conformal factor
1=ðr · r0Þ, setting U0 ¼ 1 and Uk ¼ 0; k ≥ 1 in (2.32), and
replacing η by ηPH. We will use this fact in Sec. V to provide
some basic checks on our caustic results in Schwarzschild
spacetime.
We can in fact take the connection between the GF in

Schwarzschild spacetime and the GF in PH further and we
next write the former as a sum of η integrals of the latter. By
inserting Eq. (2.32) into Eq. (2.30) and swapping the order
of the l- and k-summations, we obtain

3We thank David Q. Aruquipa for identifying a sign error in an
earlier version of Eq. (2.29).

4We note that in the last expression in Eq. (134) in [14] there is
a missing factor θð−σM2

Þ.
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GRðx; x0Þ ¼
θðηÞ
r · r0

X∞
k¼0

ð2ηÞkUkðxA; xA0 ÞGPH
k ðη; γÞ; ð3:2Þ

where we have defined

GPH
k ðη; γÞ≡X∞

l¼0

�
lþ 1

2

�
Plðcos γÞ

JkðLηÞ
Lk ; ð3:3Þ

and the prefactor θð−σÞθðΔtÞ ¼ θðηÞ has been taken out-
side as a common factor in (3.2). We note that the GF in PH
is equal to GPH

R ðηPH; γÞ ¼ θð−σM2
ÞθðΔtÞGPH

0 ðηPH; γÞ (this
is simply the identification mentioned above between GF’s
in Schwarzschild and in PH under U0 ¼ 1 and
Uk ¼ 0; k ≥ 1). In order to relate GPH

k for all k ∈ Z≥0 to
the GF in PH, we use Eq. (10.6.6) in [30] to first obtain,

1

Lk

�
1

η

d
dη

�
k
ðηkJkðLηÞÞ ¼ J0ðLηÞ; ð3:4Þ

1

η

d
dη

ðηkJkðLηÞÞ ¼ Lηk−1Jk−1ðLηÞ: ð3:5Þ

From these, it follows that

JkðLηÞ
Lk ¼ η−k

Z
η

0

dη0 ðη0Þk Jk−1ðLη
0Þ

Lk−1

¼ η−k
�Z

dη η

�
k
J0ðLηÞ; ð3:6Þ

where we have used the shorthand notation for the iterated
integral

�Z
dη η

�
k
FðηÞ≡

Z
η

0

dη1 η1

�Z
η1

0

dη2 η2

�
� � �

�Z
ηk−1

0

dηk ηkFðηkÞ
�
� � �

��
; ð3:7Þ

for an arbitrary function FðηÞ for which the integrals exist.
Since the only η dependence of GPH

k in (3.3) is via the
JkðLηÞ, it readily follows that

GPH
k ðη; γÞ ¼ η−k

Z
dη ηk GPH

k−1ðη; γÞ

¼ η−k
�Z

dη η

�
k
GPH

0 ðη; γÞ: ð3:8Þ

We then have

GRðx; x0Þ ¼
θðηÞ
r · r0

X∞
k¼0

2k UkðxA; xA0 Þ
�Z

dη η

�
k
GPH

0 ðη; γÞ:

ð3:9Þ

Finally, we note that the GF in PH is GPH
R ðηPH; γÞ ¼

θðηPHÞGPH
0 ðηPH; γÞ. It is clear from the limits of integration

in (3.7) that η > 0 is equivalent to ηk > 0. Thus, we can
write the GF in Schwarzschild in terms of the GF in PH as

GRðx; x0Þ ¼
1

r · r0
X∞
k¼0

2k UkðxA; xA0 Þ
�Z

dη η

�
k
GPH

R ðη; γÞ:

ð3:10Þ

We have thus expressed the GF in Schwarzschild as a
suggestive sum of integrals of the GF inM2 × S2, weighted
by the 2-dimensional Hadamard biscalars Uk.
In the next two subsections, we will use two different

results for the GF in PH which we obtained in [14] in order
to make some further progress with Schwarzschild’s GR.
Specifically, we will use the Hadamard form for GPH

R in the

first subsection and the globally valid singularity structure
of GPH

R [obtained using (3.3)] in the second subsection.

B. Hadamard form

The GF in PH also admits, of course, its own Hadamard
form, valid within normal neighborhoods of points in PH,

GPH
R ðηPH; γÞ ¼ θðΔtÞðΔ1=2

PH δðσPHÞ þ VPHθð−σPHÞÞ; ð3:11Þ

where σPH ¼ ð−η2PH þ γ2Þ=2, ΔPH and VPH are, respec-
tively, the world function, the van Vleck determinant and
the Hadamard tail biscalar in PH. In [14] we managed to
calculate, in closed form, ΔPH (which is actually equal to
the van Vleck determinant in the two-sphere S2) as well as
the first two terms in the Hadamard series for VPH, while
the latter biscalar was calculated numerically in [31] for any
pair of points. Specifically, we found that

ΔPH ¼ γ

sin γ
; VPHðηPH; γÞ ¼

X∞
n¼0

νnðγÞσnPH; ð3:12Þ

with (in the case m2 þ 2ξ ¼ 1=4)

ν0ðγÞ ¼
1

8
Δ1=2

PH

�
1

γ2
−
cot γ
γ

�
ð3:13Þ

and

ν1 ¼Δ1=2
PH

2γ2−3csc2ðγÞ½6γ2þ2γ sinð2γÞþ5cosð2γÞ−5�
256γ4

:

ð3:14Þ
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The higher orders νn, n > 0, can in principle be obtained
from νn−1 via a recurrence relation. These coefficients are
closely related to the Hadamard coefficients of a certain
wave equation in 2-dimensional anti–de Sitter spacetime
AdS2 (see Appendix B), and to the coefficients that arise in
an expansion of the Legendre polynomials in terms of

Bessel functions. This expansion is due to Szego [32]; see
(4.23) below. We next introduce the Hadamard form (3.11)
and (3.12) forGPH

R in (3.10), after replacing ηPH by η, and so
σPH ¼ ð−η2PH þ γ2Þ=2 by σ̂ ¼ ð−η2 þ γ2Þ=2. Using the
integral results, valid for all k > 0,

�Z
dη η

�
k
θðΔtÞδðσ̂Þ ¼

�Z
dη η

�
k
θðηÞδðσ̂Þ ¼ ð−1Þkþ1θðη − γÞ

ðk − 1Þ! σ̂k−1; ð3:15Þ

and

�Z
dηη

�
k
θðΔtÞθð−σ̂Þσ̂n ¼

�Z
dηη

�
k
θðηÞσ̂n¼ð−1Þkθðη− γÞn!

ðkþnÞ! σ̂kþn; ð3:16Þ

it readily follows that, separating out the k ¼ 0 term,

GRðx; x0Þ ¼
1

r · r0

�
θðΔtÞU0ðxA; xA0 ÞðΔ1=2

PH δðσ̂Þ þ VPHðη; γÞθð−σ̂ÞÞ

þ θðη − γÞ
X∞
k¼1

ð−1Þk2kUkðxA; xA0 Þσ̂k−1
�
−

Δ1=2
PH

ðk − 1Þ!þ
X∞
n¼0

n!
ðkþ nÞ! νnðγÞσ̂

nþ1

��
; ð3:17Þ

where we note that θðη− γÞ¼ θð−σ̂ÞθðΔtÞ and VPHðη; γÞ ¼P∞
n¼0 νnðγÞσ̂n. The first term θðΔtÞU0Δ

1=2
PH δðσ̂Þ=ðr · r0Þ in

(3.17) is, of course, just equal [see Eqs. (8) and (17) in
[25] ] to the direct part U4dθðΔtÞδðσ4dÞ in the Hadamard
form for the GF in Schwarzschild. We have thus effectively
written a Hadamard form for Schwarzschild’sGR where the
Hadamard tail V4d is manifestly written as a series in σ̂,
with coefficients that depend on quantities defined in
2-dimensional manifolds; M2 in the case of Uk and S2

in the case of νnðγÞ. This is a manifest advantage over the
standard Hadamard series of V4d in σ4d because one can
thus apply available machinery for calculating Hadamard
coefficients in 4-dimensional Schwarzschild to these easier
2-dimensional cases. As for the calculational machinery,
Hadamard coefficients may be calculated, for example, by
solving transport equations [29]. Alternatively, one might
prefer to obtain the coefficients analytically in terms of
small coordinate-distance expansions (see Ref. [33] in

Schwarzschild and Ref. [25] for explicit expansions of
U0 and η in M2).

C. Singularity structure

Let us here look at the singularity structure that expres-
sion (3.10) for GR yields. Specifically, we shall calculate
Gdisc

R , defined as the contribution to GR for which the
coefficient of θðηÞ in (3.9) does not take the form of a
continuous function on the spacetime. We obtained the
equivalent discontinuous contribution to GPH

R ðηPH; γÞ in
Eq. (156) in Ref. [14]. By carrying out the η-integrations of
GPH

R ðη; γÞ as required in (3.10), the integrals of the terms in
Eq. (156) in Ref. [14] containing θ’s and log’s of the world
function yield continuous terms. Therefore, the only other
discontinuity in (3.10) arises from the one integral (k ¼ 1)
of the terms in Eq. (156) in Ref. [14] containing δ’s and
PV’s of the world function,

θðηÞ
Z

η

0

dη0η0 δðσ̂nðη0; γÞÞ ¼ θðη − γ − 2πnÞ; ∀ n ∈ Z≥0;

θðηÞ
Z

η

0

dη0 η0 PVðσ̂−nðη0; γÞÞ ¼ θðηÞ
�
− ln ðσ̂−nðη; γÞÞ þ ln

�ð2πn − γÞ2
2

��
; ∀ n ∈ Z≥1; ð3:18Þ
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where σ̂n ¼ σ̂nðη; γÞ is given in (2.16).5 That is, the discontinuityGdisc
R arising from (3.10) is given by its k ¼ 0 summand as

per Eq. (156) of Ref. [14] together with the discontinuous terms in (3.18) (and so not including the 2 ln ð2π − γÞ within the
k ¼ 1 summand); in the next Sec. IVA we prove that the k-sum does not bring in any new discontinuities. After some
calculations, we find

r · r0 ·Gdisc
R ¼ θðηÞ

�
U0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η sin γ

p
X∞
n¼0

ð−1Þnδðη − ðγ þ 2πnÞÞ þ U0

π
ffiffiffiffiffiffiffiffiffi
sin γ

p
X∞
n¼1

ð−1Þnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πn − γ

p PV

�
1

ηþ ðγ − 2πnÞ
�

þ 1

8π
ffiffiffiffiffiffiffiffiffiffi
sin γ

p
X∞
n¼1

ð−1Þnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πn − γ

p
�
U0

�
1

2πn − γ
þ cot γ

�
þ 16ð2πn − γÞU1

�
ln ðð2πn − γÞ − ηÞ

þ 1

8
ffiffiffiffiffiffiffiffiffi
sin γ

p
X∞
n¼0

ð−1Þnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πnþ γ

p
�
U0

�
1

2πnþ γ
− cot γ

�
þ 16ðγ þ 2πnÞU1

�
θðη − ðγ þ 2πnÞÞ

�
: ð3:19Þ

This expression for the discontinuities in GR should be
compared against the terms in (4.74) and (4.76) below. By
focusing on the behavior at the discontinuities and so
allowing the evaluation at the discontinuities themselves of
coefficients of the discontinuities (i.e., as indicated below
Eq. (154) in Ref. [14]), it can be easily checked that the
asymptotics at the discontinuities given by (3.19) agree
with those given by (4.74) and (4.76).

IV. GLOBAL ANALYSIS OF THE
SCHWARZSCHILD GREEN FUNCTION USING A

LARGE-l EXPANSION

In this section, we will use an asymptotic expansion for
Bessel functions to obtain a representation for the retarded
Green function of Schwarzschild spacetime given in (2.30).
Bessel functions enter via Zauderer’s theoremas expressed in
(2.32), and via a representation of the Legendre polynomials
as sums of Bessel functions [see Eq. (4.23) below]. We then
sum over the mode index l to identify the global singularity
structure ofGR, and to determine the nonsmooth contribution
to GR as a sum over Hadamard forms. Here, the distinction
between smooth and nonsmooth is made modulo the
presence of an overall factor of θð−σÞθðΔtÞ in GR: that is,
the distinction between smooth, nonsmooth and singular
behavior is made with respect to the coefficient of this term.
The results of this section are contingent on convergence of
the background Hadamard series (2.26), and so apply on the
region Ωp of M2 on which convergence holds.

A. The large-l expansion

The large-l expansion of Eq. (2.30) is underpinned by
the following large-argument expansion for Bessel func-
tions [Eq. (8.451) of Ref. [34] ]:

JkðzÞ ¼
ffiffiffiffiffi
2

πz

r �XN
m¼0

Em

�
z −

π

2
k −

π

4

�
ak;m
ð2zÞm þ Rk;NðzÞ

�
;

j argðzÞj < π; ð4:1Þ

where N ∈ N is odd, and

EmðxÞ≡ eimπ=2

2
ðeix þ ð−1Þme−ixÞ ¼ cos

�
xþ π

2
m

�
;

ak;m ≡ Γðkþmþ 1
2
Þ

m!Γðk −mþ 1
2
Þ ; ð4:2Þ

and the remainder term has the form

Rk;NðzÞ ¼ cos

�
z −

π

2
k −

π

4

�
R1 − sin

�
z −

π

2
k −

π

4

�
R2;

ð4:3Þ

with the bounds

jR1j <
				 Γðkþ N þ 3

2
Þ

ð2zÞNþ1ðN þ 1Þ!Γðk − N − 1
2
Þ

				; N > k −
3

2
;

ð4:4Þ

jR2j <
				 Γðkþ N þ 5

2
Þ

ð2zÞNþ2ðN þ 2Þ!Γðk − 2N − 3
2
Þ

				; N ≥ k −
5

2
:

ð4:5Þ

A key feature of the expansion (4.1) is that it does not apply
to all orders; for each positive integer choice of N in (4.1),
we must cut off the sum in (2.32) at the appropriate value of
k as determined by Eqs. (4.4) and (4.5). We note that, in
Eq. (2.32), the argument is z ¼ Lη, and so large l ¼ L − 1

2

corresponds to large z (given a fixed η > 0).
Using Eq. (4.1), we can write down a corresponding

equation for the 2D Green function, based on Eq. (2.32).
5For n ∈ Z≥0, it is σ̂n ¼ σevenn and σ̂−n ¼ σoddn , where σeven=oddn

are defined in Eqs. (157) and (158) of Ref. [14].
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This equation holds for any odd N ≥ 1, and we extract
features of the Green function by taking a limitN → ∞. We
write

UlðxA; xA0 Þ ¼ Ul
ðNÞ þ Řl;N þ Ul

ðN;∞Þ; ð4:6Þ
where

Ul
ðNÞ ≡XN

j¼0

ð2ηÞjUj

Lj

ffiffiffiffiffiffiffiffi
2

πLη

s �XN
m¼0

Em

�
Lη −

π

2
j −

π

4

�

×
aj;m

ð2LηÞm
�
; ð4:7Þ

Řl;N ≡XN
j¼0

ð2ηÞjUj

Lj

ffiffiffiffiffiffiffiffi
2

πLη

s
Rj;NðLηÞ; ð4:8Þ

Ul
ðN;∞Þ ≡ X∞

j¼Nþ1

ð2ηÞjUj

Lj JjðLηÞ: ð4:9Þ

In the discussion below, we will refer to Ul
ðNÞ as the finite

sum, to Řl;N as the remainder and to Ul
ðN;∞Þ as the

infinite tail.
Our next step is to rewrite these three terms as sums of

ascending powers of L−1, and to then sum over l to
determine the contribution of each term to Eq. (2.30). Our
key conclusion is that we can take the limitN → ∞ to obtain
the following results: in the limit, only the finite sum Ul

ðNÞ
contributes to the singular and nonsmooth parts ofGRðx; x0Þ,
the remainder term Řl;N contributes only to the smooth part
and the infinite tail Ul

ðN;∞Þ does not contribute to the GF.
First, we consider the infinite tail contribution to (2.30).

For any finite N, this term is continuous. We apply
the following large-order asymptotic relation for Bessel
functions [30]:

JkðzÞ ∼
1

k!

�
z
2

�
k
; k → ∞: ð4:10Þ

Then for large N, the infinite tail has the following asymp-
totic behavior,

UðN;∞Þ
l ≡ X∞

j¼Nþ1

ð2ηÞjUj

Lj JjðLηÞ ∼ GðN;∞Þ; N → ∞;

ð4:11Þ

where

GðN;∞Þ ≡ X∞
j¼Nþ1

Uj
η2j

j!
: ð4:12Þ

From (2.27), we recognize this as the tail of the infinite series
which generates the background Green functionG; note that

the approximation is independent of L. It follows that, in the
region where the Hadamard series Eq. (2.27) converges, the
infinite tail satisfies

UðN;∞Þ
l ðxA; xA0 Þ → 0; N → ∞; ð4:13Þ

and that for each xA, the convergence is uniform inL and xA
0
.

Summing over l yields the contribution of the infinite tail to
GR in Eq. (2.30). This corresponds to

X∞
l¼0

�
lþ 1

2

�
UðN;∞Þ
l Plðcos γÞ

∼
X∞
l¼0

�
lþ 1

2

�
GðN;∞ÞPlðcos γÞ; N → ∞; ð4:14Þ

and we have

X∞
l¼0

�
lþ1

2

�
GðN;∞ÞPlðcos γÞ

¼GðN;∞ÞX∞
l¼0

�
lþ1

2

�
Plðcos γÞ¼GðN;∞ÞX

k∈Z
δðγþ2kπÞ;

ð4:15Þ
where we have used the fact that GðN;∞Þ is independent of l.
This contribution is a large-N error termwhich, byEq. (4.13),
vanishes in the limit as N → ∞. This term does not
contribute to the physical Green function.
Next, we consider the contribution of the remainder term

(4.8) to (2.30).
The quantities Rk;N introduced in (4.3) are subject to the

bounds of Eqs. (4.4) and (4.5), and so it follows that, for a
fixed η > 0,

Řl;N ¼ Oðl−N−3=2Þ; l → ∞: ð4:16Þ
The corresponding contribution to (2.30) then satisfies				X∞
l¼0

�
lþ 1

2

�
Řl;N Plðcos γÞ

				 ≤ X∞
l¼0

Oðl−N−1
�
; ð4:17Þ

where we have used Plðcos γÞ ¼ Oðl−1=2Þ;l → þ∞; γ ∈
ð0; πÞ (recall that N ≥ 1). Since the series in (4.17)
comprises a series of continuous functions, the upper
bound stated allows us to apply the Weierstrass M-test
and deduce that this contribution must be both finite and
continuous. Furthermore, by differentiating the summands
on the left-hand side of (4.8), applying recursion formulas
for Bessel functions and Legendre polynomials along with
the relations (4.1), (4.3) and (4.8), we obtain a bound
equivalent to (4.17) for any first-order partial derivative.
(Recall that the Hadamard coefficients UkðxA; xA0 Þ are
smooth functions of their arguments.) There is a loss of
one power of l on the right-hand side, so that, in general,
l−N−1 must be replaced by l−N. This process can be
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repeated iteratively, and it shows that we can always choose
N large enough so that derivatives of the remainder terms of
arbitrarily high order converge to a continuous function.
Hence, the remainder term does not contribute to the
nonsmooth part of the retarded Green function.6

Next, we consider the contribution of the finite sum (4.7)
to the Green function (2.30). Our aim is to show that only
this term contributes nonsmooth (including singular) terms
to the Green function. To see this, it is necessary to include
again all contributions to Ul; the finite sum, the remainder,
and the infinite tail. We can do this by rewriting the
asymptotic expansion of the Bessel functions in the
following way: for any (odd) N ≥ 1, we have

JkðzÞ ¼
ffiffiffiffiffi
2

πz

r XNþ2

m¼0

Em

�
z −

π

2
k −

π

4

�
ak;m
ð2zÞm ; ð4:18Þ

where Em is defined as above, ak;m ¼ ak;m for 0 ≤ m ≤ N,
and

ak;Nþ1 ¼ bk;Nþ1ðzÞ
Γðkþ N þ 3

2
Þ

ðN þ 1Þ!Γðk − N − 1
2
Þ ; ð4:19Þ

ak;Nþ2 ¼ bk;Nþ2ðzÞ
Γðkþ N þ 5

2
Þ

ðN þ 2Þ!Γðk − N − 3
2
Þ ; ð4:20Þ

where the quantities bk;Nþ1ðzÞ and bk;Nþ2ðzÞ are for each k
and N, bounded functions of z—in fact, bounded by unity
[this is equivalent to the bounds on R1 and R2 given in (4.4)
and (4.5) above]. Then for each odd N ≥ 1, we can write

Ul ¼
ffiffiffiffiffiffiffiffi
2

πηL

s XN
k¼0

�ð2ηÞkUk

Lk

XNþ2

m¼0

Em

�
Lη −

π

2
k −

π

4

�
ak;m
ð2ηÞm L−m

�
þ UðN;∞Þ

l

¼
ffiffiffiffiffiffiffiffi
2

πηL

s �XN
k¼0

Ek

�
Lη −

π

4

�
α̂kðxA; xA0

�
L−k þ

X2Nþ2

k¼Nþ1

ᾱkðxA; xA0
;LÞL−k

�
þ UðN;∞Þ

l ; ð4:21Þ

where the coefficients α̂kðxA; xA0 Þ, k ¼ 0;…; N and
ᾱkðxA; xA0

;LÞ; k ¼ N þ 1;…; 2N þ 2 arise by formally
collecting like powers of L, treating bk;Nþ1ðLηÞ and
bk;Nþ2ðLηÞ as though they were independent of L. This
procedure is well-defined, and yields coefficients
ᾱkðxA; xA0

;LÞ that are “weakly” dependent on L; these
coefficients have the form of linear combinations of
functions of η multiplied by the zero order [i.e.,
OðL0Þ ¼ Oð1Þ] terms bk;Nþ1; bk;Nþ2. In particular, these
cannot contribute positive integer powers of L that would
“contaminate” the coefficients α̂k for k ≤ N; that is, these
coefficients are completely determined by am;k ¼ am;k,

α̂kðxA; xA0 Þ ¼
Xk
m¼0

ð−1Þmam;k−m
UmðxA; xA0 Þ
ð2ηÞk−2m : ð4:22Þ

Note that these coefficients are independent of L. Recall
that the functions Ek are trigonometric, and so areOð1Þ. As
above, the term UðN;∞Þ

l in (4.21) is the infinite-tail con-
tribution (4.9).
We can derive a corresponding expansion for the

Legendre polynomials, based on the following expansion
in terms of Bessel functions (see [32] and volume 2, page
58, Eq. (15) of Ref. [35]):

Plðcos γÞ ¼
�

γ

sin γ

�
1=2 X∞

j¼0

VjðγÞ
JjðLγÞ
Lj ; ð4:23Þ

where the coefficients VjðγÞ are elementary functions
which are regular for γ ∈ ½0; πÞ. See Appendix B for more
details. In particular,

V0ðγÞ ¼ 1; V1ðγÞ ¼
1

8

�
cot γ −

1

γ

�
: ð4:24Þ

The series (4.23) is uniformly convergent in any interval of
the form ½0; γ0 − ϵ� with ϵ > 0 and γ0 ¼ 2ð ffiffiffi

2
p

− 1Þπ ≃
0.828π [32]. Note, in particular, that the expansion is not
valid at γ ¼ π. An alternative approach to the calculation of
the coefficients Vk is given in Appendix B.
Using the representation (4.18) for JkðγÞ, we can write

Plðcos γÞ ¼
�

γ

sin γ

�
1=2

ffiffiffiffiffiffiffiffi
2

πLγ

s �XN
k¼0

Ek

�
Lγ −

π

4

�
β̂kðγÞL−k

þ
X2Nþ2

k¼Nþ1

β̄kðγ;LÞL−k
�
þPðN;∞Þ

l ; ð4:25Þ

where the β̄kðγ;LÞ are weakly dependent on L in the sense
defined above and

6This is true for a fixed η > 0, which, for causal separation,
merely excludes the coincidence limit (i.e., η; γ → 0) which is
covered by the Hadamard form Eq. (1.1).
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β̂jðγÞ ¼
Xj

m¼0

ð−1Þmam;j−m
VmðγÞ
ð2γÞj−m : ð4:26Þ

The infinite tail term PðN;∞Þ
l is defined analogously to (4.9),

PðN;∞Þ
l ≡

�
γ

sin γ

�
1=2 X∞

j¼Nþ1

VjðγÞ
JjðLγÞ
Lj : ð4:27Þ

Note that both UðN;∞Þ
l and PðN;∞Þ

l are zero in the limit as N → ∞; these terms correspond to tails of infinite series that
converge in the domain under consideration. That is,

lim
N→∞

ffiffiffiffiffiffiffiffi
2

πηL

s �XN
k¼0

Ek

�
Lη −

π

4

�
α̂kðxA; xA0 ÞL−k þ

X2Nþ2

k¼Nþ1

ᾱkðxA; xA0
;LÞL−k

�
¼ Ul; ð4:28Þ

lim
N→∞

�
γ

sin γ

�
1=2

ffiffiffiffiffiffiffiffi
2

πLγ

s �XN
k¼0

Ek

�
Lγ −

π

4

�
β̂kðγÞL−k þ

X2Nþ2

k¼Nþ1

β̄kðγ;LÞL−k
�

¼ Pl: ð4:29Þ

Multiplying and collecting inverse powers of L (again, in a well-defined manner), we can write

�
lþ 1

2

�
UlPl ¼ 1

π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
η sin γ

p
�X2N
k¼0

� Xminfk;Ng

j¼maxf0;k−Ng

�
Ek

�
Lηþ Lγ −

π

2

�
þ ð−1Þj−kEkðLη − LγÞÞα̂jβ̂k−j

�
L−k þOðL−N−1

��

¼ 1

π
ffiffiffiffiffiffiffiffiffiffiffiffi
η sin γ

p
�XN
k¼0

�Xk
j¼0

�
Ek

�
Lηþ Lγ −

π

2

�
þ ð−1Þj−kEkðLη − LγÞ

�
α̂jβ̂k−j

�
L−k þOðL−N−1Þ

�
; ð4:30Þ

where (we recall) N is an odd integer with N ≥ 1. The
functional dependence of the sinusoidal functions Ek on
terms proportional to η� γ in (4.30) is worth noting. These
combinations in the arguments of the Ek are the seeds that
will later give rise to the functional dependence of the GF
on the global world function σ̂k [see (2.16)] in the
expressions for the singularity structure and the expression
as a sum of Hadamard forms [see Eq. (4.84) below].
We cannot at this point take the limitN → ∞ and neglect

the OðL−N−1Þ term in (4.30). However, as N can be
arbitrarily large, when we sum the OðL−N−1Þ term over
l, as we will see below, we obtain a smooth (i.e., C∞)
contribution to the full Green function. The sum to N terms
in (4.30) yields the full nonsmooth contribution to the
Green function, including the singular contribution. We
proceed to calculate this nonsmooth contribution (and show
that the contribution from the remainder term in (4.30) must
be smooth [see the paragraph below following Eq. (4.42)].
As already mentioned, the function UlðxA; xA0 Þ in

Eq. (2.32) is the Riemann function for the 2D wave
equation (2.24). This is a smooth function on M2, and
so the anticipated nonsmoothness in Eq. (2.30) is due to the
infinite sum; any cutoff at a finite l ¼ lmax would yield a
smooth quantity. Thus the nonsmooth nature of GRðx; x0Þ
arises from the large-l behavior of Eq. (2.30), and so we
used a large-l expansion above to determine the non-
smooth contributions.

The large-l expansion requires that we first subtract the
l ¼ 0 contribution to GR, and so we define

Gl≥1
R ðx; x0Þ≡ 1

r · r0
X∞
l¼1

�
lþ 1

2

�
UlðxA; xA0 ÞPlðcos γÞ;

ð4:31Þ

so that

GR ¼ θð−σÞθðΔtÞ
�

U0

2r · r0
þ Gl≥1

R

�
: ð4:32Þ

From the comments above, the only discontinuity in the
first term on the right is due to the presence of the
Heaviside distributions θð−σÞ and θðΔtÞ. So our aim now
is to expand the summand in Eq. (4.31) for Gl≥1

R in inverse
powers of l and to identify the nonsmooth contributions.
We note that presence of the causal terms θð−σÞθðΔtÞ in
(4.32) implies that GR is zero for ηðxA; xA0 Þ < 0. Thus, in
the remainder of the paper we take η ≥ 0, and so we
set θð−σÞθðΔtÞ ¼ θðηÞ ¼ 1.
Next, we define the contribution toGl≥1

R ðx; x0Þ that arises
by including the finite sum to N terms in (4.30), and then
take the limit as N → ∞. This results in the following
expression (with the subscript “NS” for nonsmooth):
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Gl≥1
R;NS ¼

2

πr · r0
1ffiffiffiffiffiffiffiffiffiffiffiffi

η sin γ
p

X∞
l¼1

�X∞
k¼0

ν̂k
lk

�
; γ ∈ ð0; γ0Þ;

ð4:33Þ

where

ν̂k ≡
Xk
j¼0

ð−1Þk−j
2k−j

�
k − 1

k − j

�
νj; ð4:34Þ

νj ≡ Ej

�
γLþ ηL −

π

2

�
νðþÞ
j ðxA; xA0

; γÞ

þ EjðγL − ηLÞνð−Þj ðxA; xA0
; γÞ; ð4:35Þ

νðþÞ
j ≡ 1

2

Xj

k¼0

α̂j−kðxA; xA0 Þβ̂kðγÞ; ð4:36Þ

νð−Þj ≡ 1

2

Xj

k¼0

ð−1Þkα̂j−kðxA; xA0 Þβ̂kðγÞ; ð4:37Þ

and where α̂k and β̂k are defined in (4.22) and (4.26),
respectively. We note that in (4.34), we use the binomial
coefficients

�−1
0

�
¼

�
0

0

�
¼ 1;

�
j

k

�
¼ 0 for all k > j ≥ 0:

ð4:38Þ

In (4.33), the summation index l appears only as an
inverse power and in the phase functions Ej. This leads to
the next step, which involves collecting like phases and
then summing over l,

Gl≥1
R;NS ¼

2

πr · r0
1ffiffiffiffiffiffiffiffiffiffiffiffi

η sin γ
p

X∞
k¼0

½Akðγ þ ηÞVðþÞ
k þ Ākðγ þ ηÞV̄ðþÞ

k þAkðγ − ηÞVð−Þ
k þ Ākðγ − ηÞV̄ð−Þ

k �; ð4:39Þ

where

AkðxÞ≡
X∞
l¼1

eilx

lk ; ð4:40Þ

VðþÞ
k ≡ eiðγþηÞ=2 Xk

m¼0

eiπð2k−m−1Þ=2

2k−mþ1

�
k − 1

k −m

�
νðþÞ
m ; ð4:41Þ

Vð−Þ
k ≡ eiðγ−ηÞ=2

Xk
m¼0

eiπð2k−mÞ=2

2k−mþ1

�
k − 1

k −m

�
νð−Þm : ð4:42Þ

We note that theVð�Þ
k are smooth functions on the conformal

Schwarzschild spacetime which are independent of l.
The distributions Ak; k ≥ 0 play a key role in our

description of (4.39) as a sum of Hadamard forms. The
basis of this structure is the observation that the Ak are
periodic in their argument. From the spacetime point of
view, this periodicity is reflected in structural similarities in
the form of (4.39) that repeat periodically as null geodesics
emerging from the base point x execute multiple orbits
around the black hole. The forms of the different Ak; k ≥ 0
are also crucial in identifying the singular and nonsmooth
contribution to GR. We note that inclusion of the remainder
term from (4.30) yields terms with coefficients of the form
AN , with N arbitrarily large. The sum over l produces
smooth functions—essentially trigonometric functions
with arguments η� γ. This establishes the fact that
Gl≥1

R;NS includes all nonsmooth contributions to the retarded

Green function, and that the remainder term (4.8) ulti-
mately contributes a smooth term to GR.

B. Structure of the Ak

We write

AkðxÞ ¼ CkðxÞ þ iSkðxÞ; ð4:43Þ
where

CkðxÞ≡
X∞
l¼1

cos ðlxÞ
lk ; k ≥ 0 ð4:44Þ

and

SkðxÞ≡
X∞
l¼1

sin ðlxÞ
lk ; k ≥ 0: ð4:45Þ

We note the distributional result

A0
kðxÞ ¼ iAk−1ðxÞ; k ≥ 1; ð4:46Þ

and correspondingly

AkðxÞ ¼ ζðkÞ þ i
Z

x

0

Ak−1ðyÞdy; k ≥ 2; ð4:47Þ

where ζðkÞ ¼ Akð0Þ is the Riemann zeta function, and so
we have the regularity results
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Ak ∈ Ck−2ðRÞ; Aðk−1Þ
k ∈ L1

locðRÞ; k ≥ 2: ð4:48Þ

For k ≥ 1, we have

C2kðxÞ ¼ B̌2k

�
x
2π

�
; 0 ≤ x ≤ 2π; ð4:49Þ

and

S2kþ1ðxÞ ¼ B̂2kþ1

�
x
2π

�
; 0 ≤ x ≤ 2π; ð4:50Þ

where

B̌2kðxÞ≡ ð−1Þk−1
2

ð2πÞ2k
ð2kÞ! B2kðxÞ; x ∈ R; ð4:51Þ

B̂2kþ1ðxÞ≡ ð−1Þk−1
2

ð2πÞ2kþ1

ð2kþ 1Þ!B2kþ1ðxÞ; x ∈ R; ð4:52Þ

and where BnðxÞ; n ≥ 1 is the nth Bernoulli polynomial
[30]. It follows from Fourier theory that for k ≥ 2 even,
CkðxÞ; x ∈ R is the periodic continuation to the real line of
the corresponding Bernoulli polynomial, and likewise for
SkðxÞ; x ∈ R with k ≥ 3 odd. To see this, we consider the
following theorem (see e.g., Theorem 14.29 of [36]):
Theorem 1 If f∶R → R is periodic on R with period

2π, has bounded variation on ½0; 2π� and is continuous on
the closed interval I, then the Fourier series of f converges
uniformly to f on I.
Applying Theorem 1 then allows us to write C2k and

S2kþ1 as the periodic continuation of the polynomials
appearing in (4.51) and (4.52) respectively:

C2kðxÞ ¼
X∞
l¼1

cos ðlxÞ
l2k ¼

X
n∈Z

θðx − 2nπÞθð2ðnþ 1Þπ − xÞB̌2k

�
x − 2nπ

2π

�
; k ≥ 1; x ∈ R; ð4:53Þ

and

S2kþ1ðxÞ ¼
X∞
l¼1

sin ðlxÞ
l2kþ1

¼
X
n∈Z

θðx − 2nπÞθð2ðnþ 1Þπ − xÞB̂2kþ1

�
x − 2nπ

2π

�
; k ≥ 1; x ∈ R: ð4:54Þ

This accounts for approximately half of the terms in
(4.39). To deal with the terms C2kþ1 and S2k; k ≥ 1, we
must first recall some facts established in [14] regardingA0

and A1.
In [14], we showed that [using the notation of (4.43) and

with Z0 ¼ Znf0g]

C1ðxÞ ¼ − ln jxj −
X∞
n∈Z0

ln

				1 − x
2nπ

				; ð4:55Þ

S1ðxÞ ¼ −
x
2
þ π

X
n∈Z

�
θðx − 2nπÞ − 1

2

�
; ð4:56Þ

with the distributional derivatives

C0ðxÞ ¼ S0
1ðxÞ ¼ −

1

2
þ π

X
n∈Z

δðx − 2nπÞ ð4:57Þ

S0ðxÞ ¼ −C01ðxÞ ¼
X
n∈Z

PV

�
1

x − 2nπ

�
: ð4:58Þ

We define

ZkðxÞ≡
�
iCkðxÞ; k odd;

SkðxÞ; k even;
k ≥ 1; x ∈ R: ð4:59Þ

Then

Z0
kðxÞ ¼ −iZk−1ðxÞ; k ≥ 2; x ∈ R; ð4:60Þ

and so

ZkðxÞ ¼ Zkð0Þ − i
Z

x

0

Zk−1ðtÞdt; k ≥ 2; x ∈ R: ð4:61Þ

We note the values

Zkð0Þ ¼
�
iζðkÞ; k odd;

0; k even:
ð4:62Þ

Integrating (4.60) with k ¼ 2 using (4.55) then yields
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Z2ðxÞ ¼ xð1 − ln jxjÞ þ
X
n∈Z0

�
xþ ð2nπ − xÞ ln

				1 − x
2nπ

				
�
∈ C0ðRÞ; ð4:63Þ

where we use Z0 ¼ fn ∈ Z∶n ≠ 0g. Integrating repeatedly yields the form below for Zk; k ≥ 2. We state the
result as a proposition: this is proven by showing that the given functions satisfy the sequence of initial value problems
(IVPs)

Z0
kðxÞ ¼ −iZk−1ðxÞ; x ∈ R; Zkð0Þ ¼

�
iζðkÞ; k odd;

0; k even:
k ≥ 3: ð4:64Þ

It follows by an inductive argument that each IVP in this sequence has a unique solution (essentially by virtue of the
continuity of the sequence of right-hand sides that emerges); this solution, which takes the form stated in Proposition 1,
must be the required function Zk.
Proposition 1 Let ZkðxÞ; k ≥ 2 be as defined in (4.59). Then

ZkðxÞ ¼ 0QkðxÞ þ Akxk−1 ln jxj|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n¼0

þ
X
n∈Z0

�
nQkðxÞ þ Akðx − 2nπÞk−1 ln

				1 − x
2nπ

				
�
; ð4:65Þ

where Ak are constants and

0QkðxÞ ¼ bk;0 þ bk;1xþ � � � þ bk;k−1xk−1; ð4:66Þ

nQkðxÞ ¼ nBk;0 þ nBk;1ðx − 2nπÞ þ � � � þ nBk;k−1ðx − 2nπÞk−1; n ∈ Z0 ð4:67Þ

are polynomials of degree k − 1. The constant and the
polynomial coefficients for the n ¼ 0 contribution are
determined by the relations (valid for k ≥ 2)

Ak ¼
ð−iÞk

ðk − 1Þ! ;

bk;j ¼
ð−iÞj
j!

Zk−jð0Þ; 0 ≤ j ≤ k − 2;

bk;k−1 ¼ −
ð−iÞk

ðk − 1Þ! ðγ þ ψðkÞÞ; ð4:68Þ

where γ is the Euler-Mascheroni constant and ψðkÞ ¼
Γ0ðkÞ=ΓðkÞ is the digamma function. The polynomial
coefficients for the n ∈ Z0 contributions are determined by

nBk;k−1 ¼ −
ð−iÞk

ðk − 1Þ! ðγ þ ψðkÞÞ; k ≥ 3;

nBk;j ¼
ð−iÞj
j! nBk−j;0; 0 < j ≤ k − 2;

nBk;0 ¼ −
Xk−1
j¼1

ð−2nπÞjnBk;j; k ≥ 3; ð4:69Þ

with the initial values [read off from (4.63)]

nB2;0 ¼ 2nπ; nB2;1 ¼ 1: ð4:70Þ

Note that, as anticipated, the functions ZkðxÞ; k ≥ 2 are
smooth (i.e., infinitely differentiable) everywhere except at
points of the form x ¼ 2nπ; n ∈ Z. The term labeled
“n ¼ 0” is nonsmooth at x ¼ 0.
By way of summary, we note that the formulas (4.53)–

(4.58) and (4.65) provide, via (4.43), the complete descrip-
tion of the functions/distributions Ak that is required to
determine (a) singularity structure of the GF and (b) the
sum-of-Hadamard forms representation of GF. We turn
now to the first of these.

C. The singularity of the GF

The singular contribution to Gl≥1
R arises from the k ¼ 0

and k ¼ 1 terms of Gl≥1
R;NS in (4.39). This follows from the

regularity conditions (4.48), and from the argument in
Sec. IVA above that the remainder term (4.8) and the
infinite tail (4.9) do not contribute to the singularities ofGR.
The result in this subsection is valid everywhere that both
the Hadamard series (2.26) and Szego’s series (4.23)
converge.
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Collecting the relevant terms, we see that the ‘most’ singular contribution, the k ¼ 0 term, is

Gl≥1
R

			
k¼0

¼ 1

πr · r0
U0ðxA; xA0 Þffiffiffiffiffiffiffiffiffiffiffiffi

η sin γ
p

�
sin

�
γ þ η

2

�
C0ðγ þ ηÞ þ cos

�
γ þ η

2

�
S0ðγ þ ηÞ

þ cos

�
γ − η

2

�
C0ðγ − ηÞ þ sin

�
γ − η

2

�
S0ðγ − ηÞ

�
: ð4:71Þ

Some simplification is possible here using the distributional identity fðxÞδðx − aÞ ¼ fðaÞδðx − aÞ. This yields

sin

�
γ þ η

2

�
C0ðγ þ ηÞ ¼ sin

�
γ þ η

2

��
−
1

2
þ π

X
n∈Z

δðγ þ η − 2nπÞ
�

¼ −
1

2
sin

�
γ þ η

2

�
; ð4:72Þ

and

cos

�
γ − η

2

�
C0ðγ − ηÞ ¼ cos

�
γ − η

2

��
−
1

2
þ π

X
n∈Z

δðγ − η − 2nπÞ
�

¼ −
1

2
cos

�
γ − η

2

�
þ π

X
n∈Z

ð−1Þnδðγ − η − 2nπÞ: ð4:73Þ

Thus,

Gl≥1
R

			
k¼0

¼ 1

πr · r0
U0ðxA; xA0 Þffiffiffiffiffiffiffiffiffiffiffiffi

η sin γ
p

�
−
1

2
sin

�
γ þ η

2

�
−
1

2
cos

�
γ − η

2

�

þ
X
n∈Z

�
ð−1Þnπδðγ − η − 2nπÞ þ cos

�
γ þ η

2

�
PV

�
1

γ þ η − 2nπ

�
þ sin

�
γ − η

2

�
PV

�
1

γ − η − 2nπ

���
: ð4:74Þ

Corresponding to this equation for k ¼ 1 we have

Gl≥1
R

			
k¼1

¼ −
1

8πr · r0
1ffiffiffiffiffiffiffiffiffiffiffiffi

η sin γ
p

�
VðγÞ

�
cos

�
γ þ η

2

�
C1ðγ þ ηÞ − sin

�
γ þ η

2

�
S1ðγ þ ηÞ

�

þ Vð−γÞ
�
sin

�
γ − η

2

�
C1ðγ − ηÞ − cos

�
γ − η

2

�
S1ðγ − ηÞ

��
ð4:75Þ

¼ −
1

8πr · r0
1ffiffiffiffiffiffiffiffiffiffiffiffi

η sin γ
p

�
VðγÞ

�
− cos

�
γ þ η

2

��
log jγ þ ηj þ

X
n∈Z0

log

				1 − γ þ η

2nπ

				
�

þ sin

�
γ þ η

2

��
γ þ η

2
− π

X
n∈Z

�
θðγ þ η − 2nπÞ − 1

2

���

þ Vð−γÞ
�
− sin

�
γ − η

2

��
log jγ − ηj þ

X
n∈Z0

log

				1 − γ − η

2nπ

				
�

þ cos
�
γ − η

2

��
γ − η

2
− π

X
n∈Z

�
θðγ − η − 2nπÞ − 1

2

����
; ð4:76Þ

where

VðγÞ≡
�
1

η
þ cot γ

�
U0 þ 16ηU1: ð4:77Þ
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[For ease of notation, we omit the explicit dependence of V
on xA and xA

0
: VðγÞ ¼ VðxA; xA0

; γÞ.] Thus, all the dis-
continuities of GR arise from the terms in Gl≥1

R jk¼0, given
by (4.74), and in Gl≥1

R jk¼1, given by (4.76), which are
discontinuous at values η > 0. As mentioned in Sec. III C,
it is easy to check that the sum of these discontinuities in
GR agrees with (3.19).
We note that the n ¼ 0 contributions in (4.74) and (4.76)

correspond to the discontinuity terms of the Hadamard
form of the GF in the normal neighborhood of the base
point x—the familiar “δþ θ” terms of Eq. (1.1). For n ≥ 1,
we note the presence of the four-fold singularity structure
mentioned in the introduction [see Eqs. (1.2) and (1.3)].
Equations (4.74) and (4.76) together provide the full
singularity structure of the GF at any points in
Schwarzschild spacetime (subject to the convergence con-
dition mentioned at the beginning of this subsection). This

excludes caustic points (where γ ¼ 0; π); we obtain the
singularity structure at caustics in Sec. V.

D. The sum of Hadamard forms

To obtain the complete ‘sum of Hadamard forms’
representation of the nonsmooth contribution to the
retarded Green function, we now focus our attention on
the k ≥ 2 terms in (4.39). So we define

Gl≥1
R;NSjk≥2 ≡Gl≥1

R;NS − ðGl≥1
R jk¼0 þ Gl≥1

R

			
k¼1

Þ: ð4:78Þ

We can then immediately write down

Gl≥1
R;NSjk≥2 ¼

1

πr · r0
1ffiffiffiffiffiffiffiffiffiffiffiffi

η sin γ
p

X
n∈Z

GðnÞ
R;NSðxA; xA

0
; γÞ; ð4:79Þ

where

GðnÞ
R;NS ≡

X∞
k¼1

�
ðXðþÞ

2k B̌2kðγ þ η − 2nπÞ þ YðþÞ
2kþ1B̂2kþ1ðγ þ η − 2nπÞÞθðγ þ η − 2nπÞθð2ðnþ 1Þπ − γ − ηÞ

þ ðXð−Þ
2k B̌2kðγ − η − 2nπÞ þ Yð−Þ

2kþ1B̂2kþ1ðγ − η − 2nπÞÞθðγ − η − 2nπÞθð2ðnþ 1Þπ − γ þ ηÞ

þ YðþÞ
2k

�
nq2kðγ þ ηÞ þ a2kðγ þ η − 2nπÞ2k−1 log

				1 − γ þ η

2nπ

				
�

þ XðþÞ
2kþ1

�
nq2kþ1ðγ þ ηÞ þ a2kþ1ðγ þ η − 2nπÞ2k log

				1 − γ þ η

2nπ

				
�

þ Yð−Þ
2k

�
nq2kðγ − ηÞ þ a2kðγ − η − 2nπÞ2k−1 log

				1 − γ − η

2nπ

				
�

þXð−Þ
2kþ1

�
nq2kþ1ðγ − ηÞ þ a2kþ1ðγ − η − 2nπÞ2k log

				1 − γ − η

2nπ

				
��

; n ∈ Z0; ð4:80Þ

where

Xð�Þ
k ¼ Xð�Þ

k ðxA; xA0
; γÞ≡ Vð�Þ

k þ V̄ð�Þ
k ; Yð�Þ

k ¼ Yð�Þ
k ðxA; xA0

; γÞ≡ iðVð�Þ
k − V̄ð�Þ

k Þ; ð4:81Þ

and

nqk ≡
�−inQk; k odd;

nQk; k even;
ak ≡

�−iAk; k odd;

Ak; k even:
ð4:82Þ

(The latter definitions are required to remove the imaginary unit in the definition (4.59) of Zk.) The n ¼ 0 contribution,

Gð0Þ
R;NS, has the same form as (4.80) but with the replacements

log

				1 − γ � η

2nπ

				 → log jγ � ηj: ð4:83Þ

It is a straightforward algebraic manipulation to put together Eqs. (4.32), (4.74), (4.76), and (4.79) and regroup them in
the following form:
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GR;NS ¼
θð−σÞθðΔtÞ
πr · r0

ffiffiffiffiffiffiffiffiffiffiffiffi
η sin γ

p
�X

n∈Z

�
U0

�
πð−1Þnδðx−;nÞ þ cos

�
xþ;0

2

�
PV

�
1

xþ;n

�
þ sin

�
x−;0
2

�
PV

�
1

x−;n

��

þ Vþ;nθðxþ;nÞθð−xþ;nþ1Þ þ V−;nθðx−;nÞθð−x−;nþ1Þ þ Ṽþ;n ln jx̃þ;nj þ Ṽ−;n ln jx̃−;nj
�
þWn

�
; ð4:84Þ

where

x�;n ≡ γ � η − 2nπ ð4:85Þ

and

x̃�;n ≡
� x�;n

2nπ ; n ∈ Z0;

x�;0; n ¼ 0:
ð4:86Þ

We note that the σ̂k in Eq. (2.16), which is the ‘globalization’ of the world function σ̂ on the 4D conformal Schwarzschild
spacetime, can be expressed as

σ̂k ¼
1

2
xþ;−k · x−;−k; k ∈ Z: ð4:87Þ

This means that x�;n ¼ 0, n ∈ Z, corresponds to null geodesics in the 4D conformal Schwarzschild spacetime and,
therefore, also in Schwarzschild spacetime. The coefficients in Eq. (4.84) are obtained as follows. The coefficients of the
Heaviside distributions are

V�;n ≡
X∞
k¼1

ðXð�Þ
2k B̌2kðx�;nÞ þ Yð�Þ

2kþ1B̂2kþ1ðx�;nÞÞ: ð4:88Þ

The coefficients of the logarithms are

Ṽþ;n ≡ VðγÞ
8

cos

�
xþ;0

2

�
þ
X∞
k¼1

ðXðþÞ
2kþ1a2kþ1x2kþ;n þ YðþÞ

2k a2kx2k−1þ;n Þ;

Ṽ−;n ≡ Vð−γÞ
8

sin

�
x−;0
2

�
þ
X∞
k¼1

ðXð−Þ
2kþ1a2kþ1x2k−;n þ Yð−Þ

2k a2kx
2k−1
−;n Þ: ð4:89Þ

Finally, the coefficients in Eq. (4.84) which are not multiplying any distribution are

Wn ≡ Ŵn; ∀ n ∈ Z0;

W0 ≡ Ŵ0 þ π
ffiffiffiffiffiffiffiffiffiffiffiffi
η sin γ

p
U0 −

1

2

��
U0 þ xþ;0

VðγÞ
8

�
sin

�
xþ;0

2

�
þ
�
U0 þ x−;0

Vð−γÞ
8

�
cos

�
x−;0
2

��
; ð4:90Þ

where

Ŵn ≡
X∞
k¼1

ðYðþÞ
2k nq2kðγ þ ηÞ þ XðþÞ

2kþ1nq2kþ1ðγ þ ηÞ þ Yð−Þ
2k nq2kðγ − ηÞ þ Xð−Þ

2kþ1nq2kþ1ðγ − ηÞÞ

þ π

8
VðγÞ sin

�
xþ;0

2

��
θðxþ;nÞ −

1

2

�
þ π

8
Vð−γÞ cos

�
x−;0
2

��
θðx−;nÞ −

1

2

�
; ∀ n ∈ Z: ð4:91Þ

We remind the reader that:
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(i) B̌2kðx�;nÞ and B̂2kþ1ðx�;nÞ, as given by Eqs. (4.51)
and (4.52), are polynomials (of order 2k and 2kþ 1
respectively) in x�;n;

(ii) nqkðγ � ηÞ, given by Eqs. (4.67) and (4.82), can be
written as a polynomial (of order k − 1) in x�;n;

(iii) Yð�Þ
2k and Xð�Þ

2kþ1, given by Eqs. (4.81), (4.41), (4.42),
(4.36), and (4.37), depend on the coordinates γ, xA

and xA
0
;

(iv) the ak, given by Eqs. (4.82) and (4.68) are numbers.
It then follows that:

(i) the V�;n can be formally expressed as an expansion
in powers of x�;n;

(ii) the k-sums in Eq. (4.89) for Ṽ�;n can be formally
expressed as an expansion in powers of x�;n;

(iii) the k-sum of the terms containing Yð�Þ
2k and Xð�Þ

2kþ1 in
Eq. (4.90) for Wn can be formally expressed as an
expansion in powers of xþ;n plus another expansion
in powers of x−;n.

Here, an “expansion in powers of x�;n” means a series
expansion in non-negative integer powers of x�;n, with
coefficients that may depend on ðxA; xA0

; γÞ, but that are
independent of n. We note that the coefficients in these
expansions depend crucially on the 2D Hadamard coeffi-
cients Uk of Eq. (2.26). Because of these various properties,
together with the fact that Eq. (4.84) makes explicit the full
singularity structure of the GF globally, we refer to the
expression in Eq. (4.84) as a ‘sum of Hadamard forms’. We
note that Eqs. (4.74), (4.76) and (4.84) are not valid when
η ¼ 0, γ ¼ 0 or γ ∈ ½γ0; π� (where γ0 ¼ 2ð ffiffiffi

2
p

− 1Þπ≃
0.828π)—we deal with the points γ ¼ 0 and π in the next
section.

V. SINGULARITY AT CAUSTICS

In this section we investigate the singularity of the GF at
caustic points of Schwarzschild spacetime, which are
points where null geodesics focus. Because of this property
and the fact that the GF diverges when the two points in its
argument are connected via a null geodesic, it is not
surprising that the type of the singularity of the GF at
caustics is different from that we have derived above
[Eqs. (4.74) and (4.76)], which is valid away from γ ¼ 0
and π, i.e., the values of γ for caustics in Schwarzschild
spacetime.
Let us first deal with the caustics with γ ¼ 0. In this case,

we insert Plð1Þ ¼ 1, ∀ l, in Eq. (4.31) with (2.32). We
then just proceed as in Sec. IV and use Eq. (4.1) in order to
first gather like powers of L [where we are now of course
spared the use of Eq. (4.23)] and obtain

Gl≥1
R jγ¼0 ¼

1

rr0
ffiffiffiffiffiffiffiffi
2πη

p
X∞
m¼0

�
e−iπ=4Ṽm

X∞
l¼1

eiLη

Lm−1=2 þ c:c:

�
;

ð5:1Þ

where ‘c:c:’ denotes the complex conjugation of the term
that is preceding it and where

Ṽm ≡Xm
j¼0

eiπðjþm=2Þð2ηÞ2j−mUjaj;m−j: ð5:2Þ

We note that in this case we have half-integer powers of L,
as opposed to Sec. IV where we had integer powers. The
highest power of L here is 1=2, as opposed to 0 in Sec. IV,
anticipating a ‘stronger’ divergence of the GF at caustic
points. As we are interested here only in the divergent
terms, we introduce the notation A ≐ B to mean that A − B
is a continuous function. We then have

Gl≥1
R jγ¼0 ≐

1

rr0
ffiffiffiffiffiffiffiffi
2πη

p ½G̃0
Rjγ¼0 þ G̃1

Rjγ¼0�; ð5:3Þ

where

G̃0
Rjγ¼0 ≡ e−iπ=4eiη=2A−1=2ðηÞṼ0 þ c:c:;

G̃1
Rjγ¼0 ≡ e−iπ=4eiη=2A1=2ðηÞ

�
1

4
Ṽ0 þ Ṽ1

�
þ c:c:; ð5:4Þ

and we have

Ṽ0 ¼ U0; Ṽ1 ¼ −
i
4

ðU0 þ 16η2U1Þ
2η

≡ −
i
4
Ũ1: ð5:5Þ

We already dealt with the distributions Ak for k ∈ Z in
Sec. IV B and, in the cases A0 and A1, originally in [14].
Here we deal similarly with the distributions A�1=2. We
have [30],

A3=2ðηÞ ¼ Γ
�
−
1

2

�
ð−iηÞ1=2 þ

X∞
j¼0

ζ

�
3

2
− j

� ðiηÞj
j!

;

jηj < 2π; ð5:6Þ

where s ↦ ζðsÞ is the Riemann zeta function. It is
straightforward to show that the infinite series in (5.6) is
uniformly convergent and hence analytic for jηj < 2π. It
follows that the series and its derivatives are smooth on
jηj < 2π. Also, the first expression on the right-hand side of
Eq. (5.6) involves the principal branch of the square root.
Then we can write

A3=2ðηÞ ¼ s3=2ðηÞ þ r3=2ðηÞ; jηj < 2π; ð5:7Þ

where

s3=2ðηÞ≡−2
ffiffiffi
π

p ð−iηÞ1=2 ¼−2
ffiffiffi
π

p jηj1=2eiπð1−2θðηÞÞ=4 ð5:8Þ

is the singular (nonsmooth) part of A3=2 on jηj < 2π, and
r3=2 is the regular part. By analyticity of r3=2, it follows that

MARC CASALS and BRIEN C. NOLAN PHYS. REV. D 108, 044033 (2023)

044033-20



the singular and regular parts of A1=2 and A−1=2 are
obtained by applying Eqs. (4.46) to the singular and regular
parts of A3=2 separately. Thus, we define the singular parts
of A�1=2 (for jηj < 2π) by

s1=2 ¼ −is03=2; ð5:9Þ

s−1=2 ¼ −is01=2; ð5:10Þ

where the derivative is taken in the sense of distributions.
Calculating the first of these derivatives yields

s1=2ðηÞ ¼ δ1ðηÞ þ iδ2ðηÞ; ð5:11Þ

where

δ1ðηÞ≡
ffiffiffi
π

2

r
jηj−1=2; ð5:12Þ

δ2ðηÞ≡
ffiffiffi
π

2

r
jηj−1=2ð2θðηÞ − 1Þ: ð5:13Þ

Then

s−1=2ðηÞ ¼ δ02ðηÞ − iδ01ðηÞ: ð5:14Þ

We note that s1=2 has the form of a locally integrable
function, but the distribution s−1=2 does not. The derivatives
δ0i are calculated (and applied) by using the distributional
rule

hδ0i; ui ¼ −hδi; u0i; i ¼ 1; 2; ð5:15Þ

for all test functions u and where hf; gi ¼ R
R fgdx.

Collecting terms yields

G̃0
Rjγ¼0 ≐

ffiffiffi
π

p �
cos

η

2
ðδ02 − δ01Þ þ sin

η

2
ðδ02 þ δ01Þ

�
U0; jηj < 2π; ð5:16Þ

and

G̃1
Rjγ¼0 ≐

1

2
ffiffiffi
2

p
��

cos
η

2
þ sin

η

2

�
U0δ1 þ

�
cos

η

2
− sin

η

2

�
U0δ2

þ
�
cos

η

2
þ sin

η

2

�
Ũ1δ2 −

�
cos

η

2
− sin

η

2

�
Ũ1δ1

�
; jηj < 2π: ð5:17Þ

It is straightforward to establish that

ηpδiðηÞ ≐ 0; i ¼ 1; 2; p ≥ 1; ð5:18Þ

ηqδ0iðηÞ ≐ 0; i ¼ 1; 2; q ≥ 2: ð5:19Þ

Then in a Taylor expansion of the trigonometric coefficients in (5.16) and (5.17), only OðηpÞ; p ≤ 1 and Oð1Þ terms
contribute to the right-hand sides of (5.16) and (5.17), respectively. Thus, we can write

G̃0
Rjγ¼0 ≐

ffiffiffi
π

p �
−
�
1 −

η

2

�
U0δ

0
1ðηÞ þ

�
1þ η

2

�
U0δ

0
2ðηÞ

�
; jηj < 2π; ð5:20Þ

and

G̃1
Rjγ¼0 ≐

1

2
ffiffiffi
2

p ððU0 − Ũ1Þδ1ðηÞ þ ðU0 þ Ũ1Þδ2ðηÞÞ; jηj < 2π: ð5:21Þ

To determine the corresponding globally valid expressions, we note that the distributionsAkðηÞ are periodic with period
2π. This implies that there will also be discontinuous contributions to G̃0

Rjγ¼0 and G̃1
Rjγ¼0 when η ¼ 2nπ; n ∈ Z. These

contributions are determined by repeating the calculation above, using
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A3=2ðηÞ ¼ A3=2ðηe;nÞ ¼ Γ
�
−
1

2

�
ð−iηe;nÞ1=2 þ

X∞
j¼0

ζ

�
3

2
− j

� ðiηe;nÞj
j!

; jηe;nj < 2π; ð5:22Þ

where

ηe;n ¼ ηþ 2nπ; n ∈ Z: ð5:23Þ
Note that

eiηe;n=2 ¼ ð−1Þneiη=2: ð5:24Þ
This results in

G̃0
R

			
γ¼0

≐ ð−1Þn ffiffiffi
π

p �
−
�
1 −

ηe;n
2

�
U0δ

0
1ðηe;nÞ þ

�
1þ ηe;n

2

�
U0δ

0
2ðηe;nÞ

�
; jηe;nj < 2π; ð5:25Þ

and

G̃1
R

			
γ¼0

≐
ð−1Þn
2

ffiffiffi
2

p ððU0 − Ũ1Þδ1ðηe;nÞ þ ðU0 þ Ũ1Þδ2ðηe;nÞÞ; jηe;nj < 2π: ð5:26Þ

We then collect terms and use the distributional identities

ηδ0iðηÞ ¼ −
1

2
δiðηÞ; i ¼ 1; 2 ð5:27Þ

to obtain [reintroducing the θ’s as per (4.32)]

GR

			
γ¼0

≐ θðΔtÞθð−σÞ
ffiffiffi
2

p

rr0
ffiffiffi
η

p
X
n∈Z

ð−1Þn
�
U0 þ 16η2U1

8η
H−1

2
ð−ηe;nÞ þ U0ðηÞH0

−1
2

ð−ηe;nÞ
�
; ð5:28Þ

where

H−1
2
ðxÞ≡ jxj−1

2θðxÞ; x ∈ R: ð5:29Þ

This equation shows the singular behavior of the GF at caustics with γ ¼ 0.7

In order to deal with the caustics with γ ¼ π, we note that Plð−1Þ ¼ ð−1Þl ¼ e�iπl. In this case, Eq. (5.3) and (5.4)
become respectively

Gl≥1
R

			
γ¼π

≐
1

rr0
ffiffiffiffiffiffiffiffi
2πη

p ½G̃0
R

			
γ¼π

þ G̃1
Rjγ¼π�; ð5:30Þ

and

G̃0
R

			
γ¼π

≡ e−iπ=4eiη=2A−1=2ðηþ πÞṼ0 þ c:c:; G̃1
Rjγ¼π ≡ e−iπ=4eiη=2A1=2ðηþ πÞ

�
1

4
Ṽ0 þ Ṽ1

�
þ c:c:: ð5:31Þ

Otherwise, the calculation proceeds as above, and we find

GR

			
γ¼π

≐ θðΔtÞθð−σÞ
ffiffiffi
2

p

rr0
ffiffiffi
η

p
X
n∈Z

ð−1Þnþ1

�
U0 þ 16η2U1

8η
H−1

2
ðηo;nÞ þ U0ðηÞH0

−1
2

ðηo;nÞ
�
; ð5:32Þ

where

ηo;n ¼ ηþ ð2nþ 1Þπ; n ∈ Z: ð5:33Þ

This equation shows the singular behavior of the GF at caustics with γ ¼ π.

7As mentioned in Sec. IVA, the coincidence limit (i.e., η; γ → 0) is excluded from the region of validity of this result.
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These results show that the singularity of the GF at caustic
points is ‘stronger’ than at points which are not caustics and
that its structure is twofold instead of the observed four-fold
structure at points which are not caustics.
As stated in Sec. III A, our results in this paper for the GF

in Schwarzschild spacetime should reproduce those in
M2 × S2, times the conformal factor 1=ðrr0Þ, when setting
U0 ¼ 1 and Uk ¼ 0, ∀ k > 0. In particular that should be
true for Eq. (5.32) above when compared with Eq. (132) of
Ref. [14] and it is easy to check that is indeed the case.
Furthermore, in Schwarzschild spacetime, Fig. 13 [15]
shows a numerical approximation to the GF near a caustic
point both for the cases γ ¼ 0 and γ ¼ π. This figure seems
to suggest that if the form, at least to leading order, of the
GF about ηe ¼ 0 when γ ¼ 0 is, say, ‘FðηeÞ’, then its form
about ηo ¼ 0 when γ ¼ π is ‘−Fð−ηoÞ’. This symmetry is
manifest to leading order in Eqs. (5.28) and (5.32) for GR
(note, however, that this symmetry is not satisfied by the
terms G̃0

R and G̃1
R separately), thus serving as further

support for our results at caustic points in Schwarzschild
spacetime. In the next section, we also present numerical
evidence for our results away from caustics.

VI. NUMERICAL EVIDENCE

In this section we provide numerical evidence for the
analytical leading-order divergences that we have obtained:
(i) in the Bessel expansion Eq. (2.32); and (ii) in the sum of
Hadamard forms in Eq. (4.84). We provide the evidence for
(i) and (ii) in, respectively, the first subsection and the second
(and third) subsection(s). By “leading-order divergences”
herewemean the divergences whose coefficients involveU0

but no Uk with k > 0. We compare both of our analytical
results to a semianalytic/numerical calculation of the full GF.
In particular, we shall see that the comparison is good for
points which are quite far apart, thus indicating that the
regionΩp of convergence of the series in Eq. (2.32) is either
equal to the whole of M2 or, at least, that it covers a large
enough regionof physical interest.We further note that [3,20]
also numerically corroborated the singularity structure that
we have here obtained beyond the maximal normal neigh-
borhood, and applied it to the setting of quantum field theory.
In the third subsection, which is the last one, we do not
present a new comparison but we briefly discuss the use of
the “direct” divergence in Eq. (4.84) which has beenmade in
[3,24,25] for a practical calculation of the GF, thus corrobo-
rating the validity of this expression of ours for this direct
divergence.
The comparison inGRðx; x0Þwill be made specifically for

points x and x0 on a timelike circular geodesic at r ¼ 6M in
Schwarzschild spacetime. One can think of the field point x
as being fixed and the base point x0 varying to the past along
the timelike geodesic. Then x and all points x0 are connected
via this timelike geodesic, and some of the points x0 might
also be connected to x via a null geodesic that has orbited
around the black hole a certain number of times (a different

number for each of these such points x0). We refer to these
points x0 which are connected to x via a null geodesic (aswell
as via the timelike geodesic) as light crossings; the first light
crossing signals the end of the normal neighborhood of x. As
we know, the GF diverges at the light crossings. For an
illustration of the light crossings and the corresponding null
geodesics in the case of the timelike circular geodesic at
r ¼ 6M, see Fig. 1(a) in [18]. For this specific timelike
geodesic, it is easy to check that the light crossings occur at
the following times: Δt=M ≈ 27.62; 51.84; 58.05; 75.96;
100.09; 108.55; 124.21;….
Before we proceed to the comparison, we give a brief

description of the semianalytic/numerical solution. This
solution is also obtained by doing an l-mode decompo-
sition but, in this method, each l-mode is calculated as the
semianalytic sum of its quasinormal mode and branch cut
contributions—see [18] for details. This solution is very
accurate but it is not exact, at least for three reasons: (i) its
l-modes have been calculated up to a certain numerical
accuracy; (ii) the infinite sum has been truncated at the
large but finite value of l ¼ 100; (iii) a smoothing factor
e−l

2=ð2l2cutÞ with lcut ¼ 25 has been included in the l-sum in
order to avert spurious oscillations (see [18,37]). This
means that the fine features of the exact GF close to
the singularities, as well as its diverging behavior at the
singularities themselves, are not captured exactly by the
semianalytic/numerical solution (in particular, the singu-
larities are smeared out). Finally, we note that, in a region
“close enough” to x, the l-sum as just described does not
offer a practical way of calculating the GF. That region is
the so-called ‘quasilocal’ region, which is within a normal
neighborhood of x and so, if the points are timelike-
separated, the GF is just equal to the 4D Hadamard biscalar
Vðx; x0Þ of Eq. (1.1). Therefore, for calculating the GF very
accurately in a quasilocal region, instead of using the
mentioned l-sum, we directly calculate Vðx; x0Þ using the
techniques described in [18,33].
We next proceed to the comparison between the semi-

analytic/numerical solution and our mentioned leading-
order analytical results.

A. Leading term in the Bessel expansion

In this subsection we use the values of σ and U0 that we
numerically calculated in [21]8 in order to evaluate the
leading (k ¼ 0) term in the Bessel expansion Eq. (2.32).

8In Fig. 6(a) in [21] we said that we plotted the final values of σ
(which on the vertical axis there is labelled σ2), i.e., the values
upon return to the original radius r ¼ 6M after bouncing off at the
turning point. However, we actually plotted the values of σ only
when reaching the turning point. Equivalently, Fig. 6(a) in [21] is
really a plot of σ=4 (not of σ as wrongly indicated there) as a
function of the total coordinate time intervals Δt=M. [All the
other plots in [21] are correct as they are, including Fig. 6(b),
which is indeed a plot of the final values of Δ1=2 as a function of
Δt=M, as indicated there.]
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This leading term provides an approximation for Ul, which
we then insert into Eq. (2.30), in order to obtain an
approximation for the GF in Schwarzschild. As we dem-
onstrated in Sec. IV, the leading k ¼ 0 term is sufficient to
determine the ‘leading order’ of the singularity of the GF
along null geodesics; for the next-to-leading order singu-
larity and the regular part of the GF, other k > 0 terms
contribute as well as the k ¼ 0 term. We truncate the l-sum
in Eq. (2.30) at l ¼ 200 and, as in the semianalytic/
numerical GF, we include a smoothing factor e−l

2=ð2l2cutÞ
with lcut ¼ 25—as a consequence, the singularities are
smeared out.
We plot the mentioned leading k ¼ 0 approximation as a

function of time in Fig. 1, which is to be compared with
Figs. 1(b), 10(a), and 11(a) in [18]. In the figure, we
compare our approximation to the semianalytic/numerical
calculation of the GF mentioned above. We also compare it
to another approximation near the first light crossing as
given by Eq. (55) [12]. We note a couple of features about
the plot. Firstly, as expected, the leading k ¼ 0 approxi-
mation captures well the light-crossing times given above
as well as the behavior of the (smeared-out) GF near the
singularities; this is true up to the fourth, if not even
seventh, light crossing. Secondly, the leading k ¼ 0 term
does not approximate well the GF before very near the first

light crossing.9 This is not surprising, since the time
regimes in between singularities essentially correspond
to a backscattering (due to the gravitational potential) ‘tail’
whereas we are only including the first 2D Hadamard
coefficientU0 (the square root of the van Vleck determinant
Δ2d in the 2D spacetime M2). Considering this, the
agreement between the leading k ¼ 0 term and the semi-
analytic/numerical GF is rather remarkable in the time
regimes between the first, second, third, and fourth light
crossings.

B. Leading term in the global Hadamard form

In this subsection we provide numerical evidence for our
result in Eq. (4.84) by comparing the semianalytic/numeri-
cal calculation of the GF with the result of subtracting from
it (a smeared version of) some of the divergences in that
equation. Let us next describe exactly what we subtracted
from the semianalytic/numerical calculation. We first
define the following quantities, which contain the Dirac-
δ singularities in Eq. (4.84):

Gδ;n ≡ ð−1Þn U0

r · r0
ffiffiffiffiffiffiffiffiffiffiffiffi
η sin γ

p
				
x−;n¼0

δðx−;nÞ: ð6:1Þ

We now define part of the PVand logarithmic singularities
in Eq. (4.84) with the coefficients evaluated at the singu-
larities as

GPVL;n ≡ ð−1Þnθð−σÞθðΔtÞ
π

U0

r · r0
ffiffiffiffiffiffiffiffiffiffiffiffi
η sin γ

p
				
xþ;n¼0

×

�
PV

�
1

xþ;n

�
þ 1

8

�
1

η
þ cot γ

�
xþ;n¼0

ln jxþ;nj
�
:

ð6:2Þ

We note that, here, we have only included the U0 term
10 in

V in Eq. (4.77) and we have evaluated cosðxþ;0

2
Þ at x ¼ xþ;n,

and so we replaced it by ð−1Þn.
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FIG. 1. Log-plots of the retarded Green function and approx-
imations to it on Schwarzschild spacetime as functions of
coordinate time interval Δt for points on a timelike circular
geodesic at r ¼ 6M. The ‘exact’ GF is plotted in the solid orange
curve [up to Δt ≈ 17M, which is within a ‘quasilocal’ region,
where it is equal to Vðx; x0Þ of Eq. (1.1)] matched on to the solid
green curve (from Δt ≈ 17M, i.e., outside a ‘quasilocal’ region,
where it is calculated using a sum of quasinormal-mode and
branch-cut contributions). The dashed red curve is the Bessel
expansion Eq. (2.30) with (2.32), where we only use the leading
k ¼ 0 term and we sum up to a finite value of l ¼ 200 including a
smoothing factor e−l

2=ð2l2cutÞ with lcut ¼ 25 (see [18]). The solid
blue curve, which is concentrated around the first light crossing
only, is the large-l asymptotics of the quasinormal mode
contribution to the GF as given by Eq. (55) in Ref. [12].

9We note that the behavior of the semianalytic/numerical
calculation (solid green curve) around the first light crossing
manifests a Dawsonian shape [see Eq. (6.4)], corresponding to
the l smoothing that has been applied. Although similar
smoothing has also been applied to the calculation using the
Bessel expansion Eq. (2.30) with (2.32) (dashed red curve), it
manifests no similar Dawsonian shape around the first light
crossing (although the peak at the light crossing is manifest) just
due to the large step size in time used in the calculation (so it is
just a ‘numerical artifact’); the Dawsonian shape in this curve,
however, is indeed manifest around some later light crossings. In
its turn, the calculation using the large-l asymptotics of the
quasinormal mode contribution (solid blue curve) exhibits a peak
at the first light crossing and no Dawsonian shape because, in this
case, no l smoothing was actually applied.

10Including the U1 term would involve an extra, more difficult
numerical calculation.
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We would use the quantities Gδ;n and GPVL;n if we were
to subtract quantities from the exact GF. However, as
mentioned, our semianalytic/numerical GF includes a finite
upper limit in the l-sum and a smoothing factor e−l

2=ð2l2cutÞ,
thus smearing out the divergences. Therefore, instead of
using Gδ;n and GPVL;n, we shall use versions where their
divergences have been smeared-out in a similar manner.
Remembering that the leading-order divergences come
from A0ðx�;nÞ ¼

P∞
l¼1 e

ilx�;n [Eq. (4.40)] and taking
cognizance of Eq. (50) of [12] but also including in the
integrand the smoothing factor e−l

2=ð2l2cutÞ, the Dirac-δ
singularity is smeared out as the following Gaussian-like
distribution:

GGausðx−;nÞ≡ 1

π
Re

�Z
∞

0

dleiðlþ1=2Þx−;n−l2=ð2l2cutÞ
�

¼ lcutffiffiffiffiffiffi
2π

p e−l
2
cutx

2
−;n=2

�
−sin

�
x−;n
2

�
Erfi

�
lcutx−;nffiffiffi

2
p

�

þ cos

�
x−;n
2

��
; ð6:3Þ

where Erfi is the imaginary error function. Similarly, but
taking the imaginary part instead of the real part, the PV
singularity is smeared out as the following Dawson-like
distribution (“Dawsonian”) (see Eq. 10 [15]),

GDawsðxþ;nÞ≡ Im

�Z
∞

0

dleiðlþ1=2Þxþ;n−l2=ð2l2cutÞ
�

¼ lcut

ffiffiffi
π

2

r
e−l

2
cutx

2
þ;n=2

�
cos

�
xþ;n

2

�

× Erfi

�
lcutxþ;nffiffiffi

2
p

�
þ sin

�
xþ;n

2

��
: ð6:4Þ

We now denote by GG;n the result of replacing δðx−;nÞ by
GGausðx−;nÞ in Eq. (6.1) for Gδ;n, and we denote by GDL;n

the result of replacing PVð 1
xþ;n

Þ by GDawsðxþ;nÞ in Eq. (6.2)

for GPVL;n. The quantities that we subtracted from our
semianalytic/numerical GF were, separately in different
plots: GPVL;þ1, GPVL;þ2 and Gδ;−1, i.e., the PV- and
logarithmic-singularities both at the first light crossing
(i.e., at σ̂1 ¼ 0, η ¼ 2π − γ, xþ;þ1 ¼ γ þ η − 2π ¼ 0) and
at the third light crossing (i.e., at σ̂3 ¼ 0, η ¼ 4π − γ,
xþ;þ2 ¼ γ þ η − 4π ¼ 0), and the Dirac-δ singularity at the
second light crossing (i.e., at σ̂2 ¼ 0, η ¼ 2π þ γ, x−;−1 ¼
γ − ηþ 2π ¼ 0).
In Fig. 2 we show three plots which contain both the full

semianalytic/numerical GF (solid green curve; same curve
as in Fig. 1) as well as the result of subtracting (a) GPVL;þ1,
(b) Gδ;−1 and (c) GPVL;þ2 from it (dashed red curves). We
do it for the same setting as in Fig. 1, i.e., as a function ofΔt
for points on a timelike circular geodesic at r ¼ 6M. In
Fig. 2 we can see that the singularities in Eq. (4.84)

smeared as per GG;n andGDL;n capture well the behavior of
the semianalytic/numerical GF. This is true up to at least the
third light crossing (after that, the overall magnitude has
decreased too much to allow for such a precise check). The
removal of GPVL;n and Gδ;n, which only contain the U0-
dependent coefficients in Eq. (4.84), “flattens” out the GF
in a striking way, as can be seen in Fig. 2; these terms thus
seem to form the “backbone” of the GF. The “flattening” of
the divergences is not perfect since, after all, we are just
carrying out approximations to the GF; there is an l-mode
truncation and a smoothing-factor in the semianalytic/
numerical solution, which we somewhat mirror in
GPVL;n and Gδ;n; in Eq. (6.2) we only include the term
that contains U0 in the coefficient of the logarithmic
divergence, not the full coefficient and the semianalytic/
numerical solution has some numerical error; etc.

C. Direct term in the global Hadamard form

A separate numerical corroboration of, specifically, our
expression for the “direct” divergence, namely, the
δðx−;n¼0Þ term in Eq. (4.84), i.e., Gδ;n¼0 in Eq. (6.1), is
provided in [3,24,25]. In these works, our expression for
such a term proves to be very useful for a practical
calculation of the GF. As mentioned above, in a quasilocal
region, the semianalytic/numerical l-sum is not practical
for calculating the GF and so one typically needs to
supplement it with a calculation of Vðx; x0Þ inside the
quasilocal region. The reason is essentially due to the fact
that truncation of the l-sum and inclusion of a smoothing
factor cause the direct δðσ4dÞ singularity in Eq. (1.1) to
smear out in a way that it “contaminates” the calculation at
field points x0 near the base point x. In [25] it is shown that
by obtaining the l-modes of Gδ;n¼0 and subtracting them
from the l modes of the numerical/semianalytic l-sum, the
resulting sum converges at points x0 much closer to x than
without such subtraction. This means that a calculation of
Vðx; x0Þmight potentially not be needed or that, even if it is
needed, it will be at a smaller region (and so if it is
calculated via, e.g., an expansion near x, then many less
terms are needed in the expansion). The application of this
subtraction trick in [3], enabled a practical calculation of
the GF in a much larger region of pairs of points in
Schwarzschild spacetime, which is there applied to
obtaining the signal strength between two quantum particle
detectors in this spacetime.
We finish bynoting a connection for the leading term in the

exactBessel expansionEq. (2.32), i.e., the termconsidered in
Sec. VI A. By using Eq. (4.23), it can be seen11 that Eq. (20)
in [25] for Gd

l, which are the l modes of θðΔtÞGδ;n¼0,
reduces, for large-l, to the k ¼ 0 term inEq. (2.32). That is, it
reduces to the term θð−σÞθðΔtÞU0 · J0ððlþ 1=2ÞηÞ, except

11The statements in this sentence and the one that follows it are
true modulo a factor of 4π, since the definitions of Gl here and of
Gret

l in [25] differ by such a factor.
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for a factor θðπ − ηÞ instead of θð−σÞ, which is acceptable
since, while Gd

l in [25] is a clean-cut expression for the l
modes of the direct part, the k ¼ 0 term inEq. (2.32) does not
correspond just to the direct part.

VII. CONCLUSIONS

In this paper we have derived representations for the
retarded Green function of the wave equation for scalar
field perturbations of Schwarzschild spacetime. Our start-
ing point is the globally valid expression

GRðx:x0Þ ¼
1

r · r0
θð−σÞθðΔtÞ

×
X∞
l¼0

�
lþ 1

2

�
UlðxA; xA0 ÞPlðcos θÞ: ð7:1Þ

See (2.30) and (2.32). This expression arises naturally by
re-expressing the Schwarzschild metric as conformal to the
direct product of the two-sphere and a 2-dimensional
spacetime, M2. Global validity stems from the global
existence (and uniqueness) of the 2-dimensional Riemann
functions Ul, defined throughout M2. A necessary ingre-
dient of this statement is the fact that M2 is a causal

domain; the normal neighborhood of any event ofM2 is the
whole spacetime. This was established in [21]. We then
express Ul as a sum of Bessel functions with coefficients
given by the Hadamard coefficients of the Riemann function
U. This sum converges whenever the Hadamard series of U
converges; numerical evidence (see Sec. VI aswell as [3,20])
indicates that this holds on regions Ωp of M2 that yield
results extending well beyond the normal neighborhood of
(the 4-dimensional) Schwarzschild spacetime.
We then took two different approaches to obtain comple-

mentary details ofGR on Schwarzschild spacetime. The first
(see Sec. III) exploited a connection with the retarded Green
function ofPlebański-Hacyan spacetime,whereas the second
(see Sec. IV) employed asymptotic expansions of Bessel
functions. In each case, we obtained results describing the
singularity structure of GR on Schwarzschild and its repre-
sentation as, using the former approach, integrals of the
Plebański-HacyanGreen function and, using latter approach,
a ‘sum of Hadamard forms’. These representations
make explicit the complete singularity structure of the
Schwarzschild Green function and is given in terms of the
Hadamard coefficients of the ‘background’ (1þ 1)-wave
equation, Eq. (2.22). Thus, Eq. (4.84) is effectively an
extension of the Hadamard form for the Schwarzschild
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FIG. 2. Comparison of the semianalytic/numerical GF and its divergent behavior derived in Eq. (4.84) as a function of Δt for points on
a timelike circular geodesic at r ¼ 6M. The solid green curve is the semianalytic/numerical GF and the dashed red curve is the
semianalytic/numerical GF minus one of the following diverging terms, depending on the plot: (a) (top left) GPVL;þ1, plotted near the
first light crossing; (b) (top right)Gδ;−1, plotted near the second light crossing; (c) (bottom)GPVL;þ2, plotted near the third light crossing.
That is, the solid green curve is the GF minus a smeared version of the leading-PVand subleading-log divergences at the first and third
light crossings, and minus the leading-Dirac-δ divergence at the second light crossing; see Eqs. (6.3) and (6.4).
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Green function, which is only valid in normal neighbor-
hoods. Specifically, our representation shows that, away
fromcaustics, the singularity structure is fourfold; the ‘direct’
part changes as δðσ4dÞ, PVð1=σ4dÞ, −δðσ4dÞ, −PVð1=σ4dÞ,
δðσ4dÞ, …, whereas the ‘tail’ part changes as θð−σ4dÞ,
− ln jσ4dj, −θð−σ4dÞ, ln jσ4dj, θð−σ4dÞ,…. Here, σ4d repre-
sents a globally well-defined generalization of the world
function in Schwarzschild spacetime once a geodesic is
specified [see Eqs. (2.14) and (4.85)]. The changes in the
character of the singularity take place as the null wave front
passes through caustics of the spacetime.We have separately
analyzed the singularity of the Green function along the line
of caustics in Schwarzschild spacetime.We have shown that,
in this case, the singularity structure is instead twofold and is
‘stronger’ than away from caustics—the result is a little more
involved than in the noncaustic case and is given in
Eq. (5.28), for γ ¼ 0 and in (5.32) for γ ¼ π. The type of
singular behavior encountered here is strongly tied to the fact

that we are at a caustic where, in the present case, a
2-parameter family of null geodesics from x0 reconverges
atx. This is distinct to the situation addressed elsewhere in the
paper, where singular behavior is encountered at light
crossing, whereat a single causal geodesic from x0 intersects
the future light cone of x0. This behavior that we found at
caustics occurs in Schwarzschild spacetime and in (some)
other spherically symmetric spacetimes (such as in
Plebański-Hacyan spacetime, see [14]), but it is not clear
how general this behavior is.
In [11,14] the following heuristic explanation was put

forward for the fourfold singularity structure of the ‘direct’
part of the Green function. The retarded Green function can
be obtained from the Feynman Green function as
GRðx; x0Þ ¼ 2ReðGFðx; x0ÞÞθþðx; x0Þ [27]. The Hadamard
form for the Feynman Green function in (3þ 1)-dimen-
sions is:

GFðx; x0Þ ¼ lim
ϵ→0þ

i
2π

�
U4dðx; x0Þ
σ4d þ iϵ

− V4dðx; x0Þ ln ðσ4d þ iϵÞ þWðx; x0Þ
�
; ð7:2Þ

where Wðx; x0Þ, like U4dðx; x0Þ and V4dðx; x0Þ, is a regular
and real-valued biscalar in a normal neighborhood
of x0. Since limϵ→0þ1=ðσ4dþiϵÞ¼P:V:ð 1

σ4d
Þ−iπδðσ4dÞ and

limϵ→0þ lnðσ4dþ iϵÞ¼ ln jσ4djþ iπθð−σ4dÞ, the Hadamard
formEq. (1.1) for the retardedGreen function readily follows
from that of the Feynman Green function, Eq. (7.2).
Now, in (3þ 1)-dimensions, the biscalar U4dðx; x0Þ is

related to the van Vleck determinantΔðx; x0Þ in that (3þ 1)-
dimensional spacetime asU4dðx; x0Þ ¼ Δðx; x0Þ1=2. It can be
argued [11] that, in a spherically symmetric spacetime, the
van Vleck determinant picks up a phase of ‘−π’ as the
geodesic along which it is evaluated crosses a caustic point.
That is,Δ1=2 ¼ e−iπ=2jΔj1=2 after the geodesic has crossed a
first caustic. If one then tentatively evaluated the retarded
Green function from the form Eq. (7.2) for the Feynman
Green function after the geodesic has crossed a first caustic
point (this is, of course, not rigorously justified since the
Hadamard form is only valid within a normal neighborhood,
which cannot contain caustic points; however, [38] provides
numerical evidence that this works) the singularity
PVð1=σ4dÞ—instead of the δðσ4dÞ—would be obtained for
the ‘direct’ part. As the geodesic crosses later caustics, Δ1=2

picks up a phase ‘−π=2’ every time and the fourfold structure
(considering only the distributions, not their coefficients) for
the leading singularity of the retardedGreen function [thatwe
have derived in this paper—see Eq. (1.2)] would ensue. As
suggested in [14], if the same phase ‘−π=2’ were picked up
by the biscalar V4dðx; x0Þ at each caustic crossing (this is
known to be true—at least for ν0, the first term in the
Hadamard series forV4dðx; x0Þ, seeEq. (3.13)—in the case of
PH spacetime), then the fourfold structure for the subleading

discontinuity of the retarded Green function that we have
derived [see Eq. (1.3)] would follow similarly. The corre-
sponding leading and subleading singularity structures
for the imaginary part of the Feynman Green function
would then be, respectively, PVð1=σ4dÞ → −δðσ4dÞ →
−PVð1=σ4dÞ → δðσ4dÞ → PVð1=σ4dÞ… (corroborated nu-
merically in [20,38]) and − lnðσ4dÞ → −θð−σ4dÞ →
lnðσ4dÞ → θð−σ4dÞ → − lnðσ4dÞ.
Although we have proved these singularity structures for

the retarded Green function specifically for the case of a
scalar field, we expect that the leading singularity structures
[δðσ4dÞ → PVð1=σ4dÞ…] carry over to higher-spin field
perturbations of Schwarzschild spacetime. The reason is
that the leading singularity structure of the Green function
is dictated by the coefficients of the second derivatives in
the wave equation—which may be any of the generalized
Regge-Wheeler or Teukolsky equations. The spin does not
appear in the second-order terms of these equations.
Apart from the intrinsic theoretical interest in having a

‘global Hadamard form’ for the retarded Green function,
such an expression may have various applications. For
example, in the calculation of the self-force acting on a
particle moving in a curved background spacetime. In
[11,18,19] the self-force was calculated via a time inte-
gration of the GF along the past worldline of the particle.
These calculations illustrated how the self-force may be
seen as arising from backscattering of the field perturbation
and from trapping of null geodesics, both of which are
perfectly encapsulated within our ‘global Hadamard form’.
In its turn, in the context of quantum field theory, the
global singularity structure/Hadamard form has found
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applications within quantum communication [3] as well as
entanglement harvesting [20]. In terms of specific practical
use, it has been found in [3,24,25] that subtracting, mode-
by-mode, an l-mode decomposition of an approximation
of the direct term U4dðx; x0Þδðσ4dÞ that we have found here
[specifically, the term containing δ in Eq. (4.74) for n ¼ 0]
from a numerical calculation (such as the one carried out in
[19]) of the l-modes of the retarded Green function
significantly increases the accuracy of the resulting,
numerical retarded Green function.
One other possible application of our results to the self-

force would be to combine one of the methods used in
[18,19] (these methods are valid outside the quasilocal
region; it can either be a numerical calculation of the
retarded Green function or else a semianalytic sum of its
quasinormal-mode and branch-cut contributions) together
with our Eq. (4.84) in different time regimes. We hope to
investigate these possible applications in the future.
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APPENDIX A: EXAMPLES OF MULTIPOLAR
MODES IN OTHER SPACETIMES

For illustration purposes, in this appendix we present the
multipolar modes Gl of the retarded Green function
Eq. (2.30) in two simple 4-dimensional cases12: flat
spacetime and a static region of Nariai spacetime (in this
case we only do it for the direct part of the Hadamard form).
Note that the modes Gl of PH spacetime are readily
inferrable from Eq. (3.3).

1. Flat spacetime

Consider 4-dimensional flat spacetime. The line element
in spherical coordinates can be obtained from that in
Schwarzschild in (2.2) by setting the mass to zero (M ¼ 0),

ds2 ¼ −dt2 þ dr2 þ r2dΩ2
2 ¼ r2ðds22 þ dΩ2

2Þ; ðA1Þ

where

ds22 ¼
1

r2
ð−dt2 þ dr2Þ ðA2Þ

is the line element of the 2-D conformal space M2

corresponding to this case, whose Synge world function
we denote in the current section by σ.

The Hadamard form for the GF of the wave equation for
a massless scalar field in flat spacetime is valid everywhere
in the spacetime. In spherical coordinates it is given by

GR ¼ θðΔtÞδðσ4dÞ ¼
θðΔtÞ
r · r0

δðz − uÞ; ðA3Þ

where γ is the angular separation between the two points,

z≡ cos γ; u≡ −Δt2 þ r2 þ r02

2r · r0
; ðA4Þ

and σ4d ¼ r · r0ðu − zÞ is Synge’s world function in flat
spacetime (after a trivial use of the law of cosines). From
Eq. (2.30), and making use of the orthogonality of the
Legendre polynomials, the multipolar modes Gl can
readily be evaluated as

Gl ¼ 2πr · r0
Z þ1

−1
dzPlðzÞGR

¼ 2πθðΔtÞθð−σ4dðγ ¼ 0ÞÞθðσ4dðγ ¼ πÞÞPlðuÞ: ðA5Þ

The presence of the θ-step distributions comes from ensuring
that the argument of the second δ-distribution in Eq. (A3) is
within the limits of integration in the integral in Eq. (A5).We
note that θðΔtÞθð−σ4dðγ ¼ 0ÞÞ ¼ θðΔt − jr − r0jÞ corre-
sponds to the shortest possible spatial distance between
two points in flat spacetime given Δt positive, r and r0,
whereas θðΔtÞθðσ4dðγ ¼ πÞÞ ¼ θðΔtÞθðrþ r0 − ΔtÞ corre-
sponds to the largest possible one—see Fig. 3 for an
illustration. This combination of θ’s is, therefore, as
constraining as possible if their arguments are to be
l-independent; there are no two points in flat spacetime
withΔt < jr − r0j or with rþ r0 < Δt which may be joined
by a null geodesic (and a massless field in flat spacetime
propagates purely along null geodesics).
We also note that the Legendre function PlðuÞ in

Eq. (A5) is precisely the Riemann function Ul of the wave
equation Eq. (2.21) on the 2D conformal space withM ¼ 0
(see also Appendix B). This is because (1) it is a
homogeneous solution of this equation,

FIG. 3. Illustration of two spatial points in flat spacetime at the
shortest (a) and largest (b) possible spatial distances given fixed
radii r and r0.

12The multipolar modes of the direct part of the retarded Green
function in Schwarzschild spacetime have been obtained in [25].
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�
−∂2t þ ∂

2
r −

lðlþ 1Þ
r2

�
Pl

�
−Δt2þ r2þ r02

2r · r0

�
¼ 0; ðA6Þ

and (2) it satisfies the boundary condition: Plðu ¼ 1Þ ¼ 1,
as can be readily checked. We note that θð−σ4dðγ ¼ 0ÞÞ ¼
θð−σÞ and that, in normal neighborhoods in M2 [as
explained below Eq. (B1), M2 is not a convex domain
when M ¼ 0, so that, in this case, the maximal normal
neighborhood of a point is not the whole of M2],
θðσ4dðγ ¼ πÞÞ ¼ 1. Therefore, in normal neighborhoods
in M2, the expression (A5) for Gl reduces to the
expression (2.32) for the l-modes of the GF, as expected.
Thus, for M ¼ 0, the exact (A5) extends globally the
expression (2.32) which is only valid in normal neighbor-
hoods in M2, rendering the l-modes exactly zero beyond
these neighborhoods due to the distributional factor
θðσ4dðγ ¼ πÞÞ (such a Heaviside distribution cannot appear
in an expression for Gl in a general spherically symmetric
spacetime because, as opposed to the flat spacetime case
here, the Hadamard tail is generally nonzero).

2. Nariai spacetime

In a static region of Nariai spacetime (dS2 × S2) the line-
element can be written as [11]

ds2 ¼ −ð1 − ρ2Þdt2 þ ð1 − ρ2Þ−1dρ2 þ dΩ2
2; ðA7Þ

where ρ ∈ ð−1;þ1Þ, t ∈ ð−∞;þ∞) and we have set the
cosmological constant to be equal to unity. Synge’s world
function is given by σ4d ¼ σ2 þ γ2=2 where σ2 is the world
function in 2-dimensional de Sitter spacetime, dS2, and is
given by

cosh
ffiffiffiffiffiffiffiffiffiffiffi
−2σ2

p
¼ ρ · ρ0 þ ð1 − ρ2Þ1=2ð1 − ρ02Þ1=2 coshΔt:

ðA8Þ

In this case, we were not able to find the multipolar
decomposition Gl of the full GR. However, it is straight-
forward to find the multipolar decomposition of the direct
part of the Hadamard form for GR. This direct part is given
by Gdirðx; x0Þ≡U4dðx; x0Þδðσ4dÞθðΔtÞ where [11,14]

U4dðx; x0Þ ¼
� ffiffiffiffiffiffiffiffiffiffiffi

−2σ2
p

sinh
ffiffiffiffiffiffiffiffiffiffiffi
−2σ2

p
�

1=2
�

γ

sin γ

�
1=2

ðA9Þ

and

δðσ4dÞ ¼
δðγ þ ffiffiffiffiffiffiffiffiffiffiffi

−2σ2
p Þ þ δðγ − ffiffiffiffiffiffiffiffiffiffiffi

−2σ2
p Þ

j ffiffiffiffiffiffiffiffiffiffiffi
−2σ2

p j : ðA10Þ

We can now readily calculate the l-modes of the direct part,

Z þ1

−1
dðcos γÞPlðcos γÞGdir

¼ θðΔtÞθð−σ4dðγ ¼ 0ÞÞθðσ4dðγ ¼ πÞÞ

× Plðcos
ffiffiffiffiffiffiffiffiffiffiffi
−2σ2

p
Þ
�
sin

ffiffiffiffiffiffiffiffiffiffiffi
−2σ2

p
sinh

ffiffiffiffiffiffiffiffiffiffiffi
−2σ2

p
�

1=2

: ðA11Þ

The causality structure is equivalent to that in flat space-
time, Eq. (A5).

APPENDIX B: CASE OF MASS M = 0

In this appendix, we consider the case of vanishing mass,
M ¼ 0. This allows us to investigate the convergence of the
Hadamard series (2.26) in this limiting case, and to make
connections between Green functions on different max-
imally symmetric manifolds, and direct products of such
manifolds. As a by-product, we obtain an improved
approach to the calculation of Hadamard coefficients in
certain cases, via the result of Szego mentioned above [32].
For M ¼ 0, the line element (2.5) of conformal

Schwarzschild spacetime becomes

dŝ2 ¼ −
1

r2
ðdt2 − dr2Þ þ dΩ2

2: ðB1Þ

This can readily be recognized as the line element of
Bertotti-Robinson spacetime, AdS2 × S2 [39,40], i.e., M2

is (a patch of) 2-dimensional anti–de Sitter spacetime
AdS2. In this case we have an ‘enhanced’ symmetry
between the two factors of conformal Schwarzschild
spacetime M̂, namely between the factor M2 ¼ AdS2
and the factor S2; both are maximally symmetric manifolds
and the corresponding Riemann functions for certain
differential operators are formally the same (as functions
of their corresponding geodesic distances), as we shall next
see. Before that, though, we point out that the global
structures of AdS2 and the 2-dimensional conformal
Schwarzschild spacetime for M ≠ 0 are very different.
The former is not geodesically convex; there are events
x in the causal future of any event x0 which are not linked by
any future-directed causal geodesic from x0 to x. (We note
that the proof of the geodesic convexity of the 2-dimen-
sional conformal Schwarzschild spacetime of [21] is not
valid when M ¼ 0.) We can link this to the fact that the
‘soft’ potential barrier of M2 at r ¼ 3M (see [21]) is
replaced by a repulsive barrier at r ¼ 0 which forms part of
the boundary of the patch of AdS2 under consideration;
fr ¼ 0g is accessible only to null geodesics of infinite
affine length. However, this difference does not impact the
analysis below which applies on normal neighborhoods of
AdS2. In particular, the analysis is valid for regions of the
form fxA∶ ηðxA; xA0 Þ ∈ ½0; πÞg where ηðxA; xA0 Þ is the
geodesic distance along geodesics emanating from
xA ∈ AdS2; geodesics remain unique for (at least) this
amount of geodesic distance. So, in the particular case that
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xA and xA
0
are connected by a timelike geodesic, η is the

proper time along that geodesic.
As seen in Sec. II above, the 4-dimensional retarded

Green function GR can be constructred from a sequence of
2-dimensional retarded Green functionsGl;l ≥ 0which in
the present case we write as Gl;AdS2 . This takes the form
[see (2.32)]

Gl;AdS2 ¼ 2πUlθð−σAdS2ÞθðΔtÞ; ðB2Þ

where13 σAdS2 ¼ ϵη2=2 and ϵ ¼ −1; 0;þ1 for, respectively,
timelike, null, and spacelike geodesics. The two-point
function Ul is the Riemann function of the operator P ¼
□2 þ λ in the case λ ¼ −lðlþ 1Þ (i.e., the operator in
(2.24) with M ¼ 0). It is convenient to consider the
Riemann function U of P more generally, which satisfies

ð□2 þ λÞU ¼ 0; Ujη¼0 ¼ 1: ðB3Þ

In this maximally symmetric spacetime,U depends only on
the geodesic distance η (see e.g., [41]). So U ¼ UðηÞ, and
we can then show that

U00 þ cot ηU0 − λU ¼ 0; Uð0Þ ¼ 1; ðB4Þ

where the prime represents derivative with respect to
argument. This problem has a unique solution given
by the Legendre function U ¼ Pνðcos ηÞ with ν≡
ð−1þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4λ
p Þ=2. We note that the second linearly

independent solution of the ODE (B4) is singular at
η ¼ 0. Specializing to the case λ ¼ −lðlþ 1Þ, we see
that (as already noted in Appendix A 1)

UlðxA; xA0 Þ ¼ Plðcos ηÞ; η ∈ ½0; πÞ; l ≥ 0: ðB5Þ

This is the Riemann function of the operator □2−lðlþ
1Þ¼□2þ 1

4
−L2 where L ¼ lþ 1=2. Thus in this case, the

‘background’ wave operator is □2 þ 1
4
[consistent with

(2.23) in the case M ¼ 0], and the background Riemann
function U [cf. Eq. (2.26)] is given in this case by setting
λ ¼ 1=4, which yields ν ¼ −1=2,

UðxA; xA0 Þ ¼ P−1=2ðcos ηÞ; η ∈ ½0; πÞ: ðB6Þ

Alternatively, we can use the fact that, for M ¼ 0,
Schwarzschild spacetime is just Minkowski spacetime
and so its GF is just [see (A3)14 but also written here in
terms of van Vleck determinants as per, e.g., [25] ]

GRðx; x0Þ ¼ θðΔtÞδðσ4dÞ ¼
θðΔtÞ
r · r0

Δ1=2
2d Δ1=2

S2
δðσ̂Þ

¼ 1

r · r0
δðη − γÞ
sin η

; ðB7Þ

where

Δ2d ¼
η

sin η
; ΔS2

¼ γ

sin γ
; ðB8Þ

are the van Vleck determinants in M2 ¼ AdS2 [already
introduced in (2.28)] and in S2, respectively. Using the
standard distributional representation of the Dirac delta
function in terms of Legendre polynomials [e.g.,
Eq. (1.17.22) in Ref. [30] ],

X∞
k¼−∞

δðηþ 2π þ γÞ þ δðηþ 2π − γÞ
j sin ηj

¼ δðcos η − cos γÞ ¼
X∞
l¼0

�
lþ 1

2

�
Plðcos ηÞPlðcos γÞ:

ðB9Þ

Using this representation in (B7), yields

GRðx; x0Þ ¼
1

r · r0
X∞
l¼0

�
lþ 1

2

�
Plðcos ηÞPlðcos γÞ;

for η ∈ ð0; πÞ: ðB10Þ

Comparing this expression with Eqs. (2.30) and (2.32), we
reproduce (B5).
A third quite distinct approach is available to us. This is

to use a Hadamard series representation for the Riemann
functions U and Ul. As seen above, Zauderer’s theorem
allows us to relate the latter to the former. That is, writing
[see (2.26)]

U ¼
X∞
k¼0

Uk
η2k

k!
ðB11Þ

yields [see (2.32)]

Ul ¼
X∞
k¼0

Uk

�
2η

L

�
k
JkðLηÞ; L ≥ 0: ðB12Þ

The Hadamard coefficients Uk ¼ UkðηÞ, k ≥ 0, obey a
sequence of transport equations, and can, in theory, be
calculated recursively.
On the other hand, since Ul ¼ Plðcos ηÞ, Szego’s result

expressing Plðcos ηÞ as a series of Bessel functions
provides a very similar representation and we have

13In the generic-mass case throughout the main body of the
paper, σAdS2 is denoted by σ.

14In normal neighborhoods of M2 ¼ AdS2 and for causal
separations, u in (A3) is equal to cos η here.
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Plðcos ηÞ ¼ Δ1=2
2d

X∞
k¼0

VkðηÞ
JkðLηÞ
Lk : ðB13Þ

The coefficients Vk may be obtained in the following
manner as given in [32]:

V0ðγÞ ¼ 1;VjðγÞ ¼ ð2j− 1Þ!!γjψ jðγÞ; ∀ j > 0; ðB14Þ

where the ψk are given via�
1þ

X∞
k¼1

ðγ2 − v2Þkϕkþ1ðγÞ
�−1=2

¼
X∞
k¼0

ðγ2 − v2ÞkψkðγÞ;

ðB15Þ

with v ∈ ½0; γ� and

ϕkðγÞ≡ ð2γÞ1−k
k!

Jk−1=2ðγÞ
J1=2ðγÞ

; ðB16Þ

Crucially for the current discussion, Szego provides a
convergence result for the series (B13); this is uniformly
convergent on any interval ½0; γ0 − ϵ� with 0 < ϵ < γ0
where γ0 ¼ 2ð ffiffiffi

2
p

− 1Þπ ≃ 0.828π.
Thus we have two representations for the Riemann

function Ul in (B5) in terms of Bessel functions: compar-
ing (B5), (B12) and (B13), we see that

X∞
k¼0

ð2ηÞkUkðηÞ
JkðLηÞ
Lk

¼ Plðcos ηÞ ¼ Δ1=2
2d

X∞
k¼0

VkðηÞ
JkðLηÞ
Lk ; ðB17Þ

and so

0 ¼
X∞
k¼0

Ck
JkðLηÞ
Lk ; Ck ≡ ð2ηÞkUkðηÞ − Δ1=2

2d VkðηÞ:

ðB18Þ

Furthermore, we know from (2.28) that U0 ¼ Δ1=2
2d and

from (B14) that V0 ¼ 1, so that C0 ¼ 0. We now prove that
Ck ¼ 0 for any k > 0.
Crucial to the proof are the following “orthogonality”

properties of the Bessel functions with respect to their
argument [Eqs. (10.22.62) and (10.22.63) in Ref. [30] ],Z

∞

0

dLLm−kþ1JmðLηÞJkðLηÞ

¼
�
0; if k > m > −1 and m ≠ k and m ≠ k − 1;
1
2η ; if m ¼ k − 1:

ðB19Þ

So, multiplying (B18) by LJ0ðLηÞ, integrating over
L∶0 → ∞ [the relevant expansions above being valid for
all L ≥ 0: see Eq. (15) on page 58 of [35], volume 2 and
Theorem6.4.2 of [6] ] and using (B19) togetherwithC0 ¼ 0,
it readily follows thatC1 ¼ 0 (interchange of the integral and
the sum is permitted by uniform convergence of the series).
Next, we multiply (B18) by L2J1ðLηÞ, integrate over
L∶0 → ∞ and use (B19) together with C0 ¼ C1 ¼ 0, from
which it follows that C2 ¼ 0. Proceeding similarly for
k ¼ 3; 4;…, it follows that Ck ¼ 0, and so

Uk ¼ ð2ηÞ−kΔ1=2
2d VkðηÞ; ∀ k ≥ 0: ðB20Þ

We thus have that, in this zero-mass case, the terms in the
Bessel series (2.32) are the same as the terms in Szego’s
expansion (4.23), and therefore the former series converges
where we already know that the latter does: namely, in the
case M ¼ 0, (2.32) converges uniformly in (at least)
η ∈ ½0; γ0Þ, with γ0 ¼ 2ð ffiffiffi

2
p

− 1Þπ.
Two further observations are worth making, the first in

relation to the calculation of Szego’s coefficients Vk, or
equivalently, the Hadamard coefficients Uk. As noted, the
latter coefficients are determined by a sequence of transport
equations. These take the form

2ηU0
k þ ð2k − 1þ η cot ηÞUk

¼ −
1

2

�
U00

k−1 þ cot ηU0
k−1 −

1

4
Uk−1

�
; k ≥ 1; ðB21Þ

and where U0 ¼ ðη= sin ηÞ1=2. The (exact) integration is
nontrivial, but is amenable to calculation using a computer
algebra system. Szego’s formulas (B14)–(B16) provide a
purely algebraic approach to the calculation of the coef-
ficients Vk. However, the calculations involved are again
nontrivial—but are simplified via the following approach.
In (B15), let ρ≡ γ2 − v2 and write

P∞
k¼1 ϕkþ1ρ

k ≕ S.
Then we have

X∞
k¼0

ψkρ
k ¼ ð1þ SÞ−1=2 ¼

X∞
n¼0

�
−1
2

�
n ð2n − 1Þ!!

n!
Sn:

ðB22Þ

Let D be the differential operator d
dρ. Then

ψk ¼
1

k!
Dk

�X∞
n¼0

ψnρ
n

�				
ρ¼0

¼ 1

k!

X∞
n¼0

�
−1
2

�
n ð2n − 1Þ!!

n!
DkðSnÞjρ¼0: ðB23Þ

Applying Faà di Bruno’s theorem for higher order deriv-
atives of compositions (the generalized chain rule; see e.g.,
[42]), we have, for n ≥ 1,
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DkðSnÞjρ¼0 ¼
�
0; k < n

k!B̂k;nðϕ2;…;ϕk−nþ2Þ; k ≥ n;
ðB24Þ

where

B̂k;nðx1; x2;…; xk−nþ1Þ

¼
X n!

m1!m2! � � �mk−nþ1!
xm1

1 xm2

2 � � � xmk−nþ1

k−nþ1; ðB25Þ

with the sum taken over all finite sequences of non-negative
integers ðm1; m2;…; mk−nþ1Þ such that

m1 þm2 þ � � � þmk−nþ1 ¼ n; ðB26Þ

and

m1 þ 2m2 þ � � � þ ðk − nþ 1Þmk−nþ1 ¼ k: ðB27Þ

The functions B̂k;n are Bell polynomials, and they may be
calculated either directly using (B25), or via recursion
formulae [43]. It follows that ψ0 ¼ 1, and

ψk ¼
Xk
n¼1

�
−1
2

�
n ð2n − 1Þ!!

n!
B̂k;nðϕ2;…;ϕk−nþ2Þ; ðB28Þ

which [along with (B14)] gives an explicit formula for
Szego’s coefficients Vk, and hence for the Hadamard
coefficients Uk.
Finally, we note a connection between the Hadamard

coefficients considered here, and the Hadamard coefficients
of the 4-dimensional Plebański-Hacyan (PH) spacetime
considered in Sec. III above. In PH spacetime, the direct
product of 2-dimensional Minkowski spacetimeM2 and the
(unit) 2-sphere S2, the world function decomposes as

σPH ¼ σM2
þ σS2

: ðB29Þ

It is straightforward to show that

□PHσPH ¼ 3þ γ cos γ; ðB30Þ

where γ is geodesic distance on S2 and □PH is the
D’Alembertian in PH. Writing the tail term of the retarded
Green function of the wave operator P ¼ □PH − 1

4
in the

form of a Hadamard series [see Eq. (3.12)]

VPH ¼
X∞
n¼0

νnσ
n
PH; ðB31Þ

we can show that the Hadamard coefficients νn depend only
on γ. (We note that this operator is the one considered in

Sec. III above: P¼□PH− ðm2þ2ξÞ with m2 þ 2ξ ¼ 1=4.)
Defining V̄n by

νnðγÞ ¼
2n

n!
V̄nðγÞ; ðB32Þ

we can show that the V̄n satisfy the sequence of transport
equations

2γV̄ 0
k þ ð2kþ 1þ γ cot γÞV̄k

¼ −
1

2

�
V̄ 00
k−1 þ cot γV̄ 0

k−1 −
1

4
Vk−1

�
; k ≥ 1: ðB33Þ

These are precisely the transport equations (B21) for the
Hadamard coefficients of AdS2—but with a shift of index.
We calculate that V̄0ðγÞ ¼ U1ðγÞ (note the change of argu-
ment inU1), andwe can conclude that, in this case ofM ¼ 0,

k!
2k

νkðηÞ ¼V̄kðηÞ ¼ Ukþ1ðηÞ; k ≥ 0: ðB34Þ

Thus the Hadamard coefficients νk of 4-dimensional PH
spacetime are essentially the Hadamard coefficients Uk of
AdS2, and can thereforebe calculated usingBell polynomials
[see Eqs. (B14) and (B28)], via Szego’s theorem.

APPENDIX C: REGULARIZED SELF-FIELD

We here show how our results could be used to calculate
the regularized self-field ΦR (that is, the regularized value
of the scalar field created by a scalar-point charge,
evaluated on the worldline of the charge itself) in
Schwarzschild spacetime (see [25]). As noted earlier, the
self-field is relevant to self-force calculations of radiation
reaction; the self-force is the covariant derivative of the
regularized self-field. A practical calculation of the regu-
larized self-field can be achieved by integrating what we
refer to as the nondirect GFGndðx; x0Þ over the worldline of
the scalar charge,15

ΦRðτÞ ¼
Z

τ

−∞
dτ0GndðzðτÞ; zðτ0ÞÞ ðC1Þ

where τ is the proper time along the worldline zðτÞ of the
charge and

15Another expression for the regularized self-field [see, e.g.,
[2]) is like Eq. (C1) but with the integrand being the full GF GR
instead of its nondirect part Gnd and the upper limit of integration
being τ− instead of τ; in that case, the upper limit τ− would
effectively remove the sharp divergence of the integrand
GRðzðτÞ; zðτ0Þ� at coincidence which is alternatively removed
in (C1) by having subtracted from the GF its divergence at
coincidence [see (C2)].
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Gndðx; x0Þ≡
(
GRðx; x0Þ −Gdðx; x0Þ ¼ V4dðx; x0Þθð−σ4dÞθðΔtÞ; x0 ∈ N ðxÞ;
GRðx; x0Þ; x0 ∉ N ðxÞ: ðC2Þ

where

Gdðx; x0Þ≡U4dðx; x0Þδðσ4dÞθðΔtÞ ðC3Þ

is the direct part of the GF. For obvious reasons, the integral in (C1) is usually called the tail integral. One may calculate the
nondirect part of the GF by carrying out an l-mode decomposition as

Gndðx; x0Þ≡ 1

4πrr0
X∞
l¼0

ð2lþ 1ÞPlðcos γÞðGlðr; r0;ΔtÞ −Gd
lðr; r0;ΔtÞÞ ðC4Þ

where

Gd
lðr; r0;ΔtÞ ¼ 2πθðΔtÞθðπ − ηÞU0ðxA; xA0 ÞPlðcos ηÞ

�
sin η
η

�
1=2

ðC5Þ

are the modes of the direct part Gd as obtained in Eq. (20) [25] andU0 is the first Hadamard series coefficient in (2.26). In
Ref. [25], Gl as well as U0, η and, with them, Gd

l, were all evaluated numerically to obtain the regularized self-field ΦR.
In here, we instead use results in the main part of our paper in order to give an analytic expression for the integrand in the
regularized self-field expression (C1). Using Eq. (4.23) for Pl in the modes (C5) of the direct part and Eq. (2.32) for the
modes Gl of the full GF, we notice a remarkable similarity between the representations for the two sets of modes, which
allows us to write,

Glðr; r0;ΔtÞ − Gd
lðr; r0;ΔtÞ ¼ 2πθðΔtÞ

X∞
k¼0

ðθð−σÞUkð2ηÞk − θðπ − ηÞU0VkðηÞÞ
JkðLηÞ
Lk : ðC6Þ

We note that the expressions for GR in Sec. IV et seq. would also apply to the nondirect part Gnd of the GF merely by
applying the replacement Uk → Uk − U0VkðηÞ=ð2ηÞk in (4.22) for η < π, and with no replacement for η ≥ π. The
regularized self-field (C1) can now be written in terms of the nondirect GF as

ΦRðτÞ ¼
1

r

X∞
l¼0

�
lþ 1

2

�Z
τ−

−∞
dτ0

Plðcos γÞ
r0

X∞
k¼0

ðUkð2ηÞk − θðπ − ηÞU0VkðηÞÞ
JkðLηÞ
Lk ; ðC7Þ

where we have used the fact that θð−σÞ ¼ 1 along the worldline. This integral can be split as

ΦRðτÞ ¼
Z

τ0

−∞
dτ0GRðzðτÞ; zðτ0ÞÞ þ

1

r

X∞
l¼0

�
lþ 1

2

�Z
τ

τ0

dτ0
Plðcos γÞ

r0
X∞
k¼1

ðUkð2ηÞk −U0VkðηÞÞ
JkðLηÞ
Lk ; ðC8Þ

where τ0 < τ is the value of the proper time corresponding to η ¼ π. The nice feature here is that we have subtracted the
direct part from the GF in an exact analytical manner (note the starting value of the sum at k ¼ 1, as
there has been an exact cancellation of the k ¼ 0 term). We note that, in the massless case M ¼ 0 and using
Eq. (B20), the k-sum inside the second partial tail integral in (C8) vanishes (in agreement with the fact that the massless
scalar field in flat spacetime has no tail) term-by-term.
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[28] Y. Décanini and A. Folacci, Phys. Rev. D 78, 044025
(2008).

[29] A. C. Ottewill and B. Wardell, Phys. Rev. D 84, 104039
(2011).

[30] DLMF, NIST Digital Library of Mathematical Functions,
http://dlmf.nist.gov/, Release 1.0.5 of 2012-10-01, online
companion to [35], http://dlmf.nist.gov/.

[31] D. Q. Aruquipa and M. Casals, Phys. Rev. D 107, 084008
(2023).

[32] G. von Szegö, Proc. London Math. Soc. s2-36, 427 (1934).
[33] M. Casals, S. Dolan, A. C. Ottewill, and B. Wardell, Phys.

Rev. D 79, 124044 (2009).
[34] I. Gradshteyn and I. Ryzhik, Table of Integrals, Series, and

Products (Academic Press, New York, 2007).
[35] A. Erdelyi, W. Magnus, F. Oberhettinger, and F. Tricomi,

Higher Transcendental Functions (McGraw-Hill,
New York, 1953).

[36] W. R. Wade, An Introduction to Analysis, 4th ed. (Pearson
Prentice Hall, 2010).

[37] G. Hardy, Divergent Series (Oxford Clarendon Press,
New York, 1949), ISBN: 978-0-8218-2649-2.

[38] C. Buss and M. Casals, Phys. Lett. B 776, 168 (2018).
[39] B. Bertotti, Phys. Rev. 116, 1331 (1959).
[40] I. Robinson, Bull. Acad. Pol.. Sci., Ser. Sci., Math., Astron.

Phys. 7, 351 (1959).
[41] B. Allen and T. Jacobson, Commun. Math. Phys. 103, 669

(1986).
[42] S. G. Krantz and H. R. Parks, A Primer of Real Analytic

Functions (Springer Science and Business Media,
New York, 2002).

[43] L. Comtet, Advanced Combinatorics: The Art of Finite and
Infinite Expansions (Springer Science and Business Media,
New York, 1974).

[44] NIST Handbook of Mathematical Functions, edited by
F.W. J. Olver, D. W. Lozier, R. F. Boisvert, and C.W.
Clark (Cambridge University Press, New York, NY, 2010).

MARC CASALS and BRIEN C. NOLAN PHYS. REV. D 108, 044033 (2023)

044033-34

https://doi.org/10.1103/PhysRevD.34.384
https://doi.org/10.12942/lrr-2011-7
https://doi.org/10.12942/lrr-2011-7
https://doi.org/10.1103/PhysRevD.101.125005
https://doi.org/10.1103/PhysRevLett.114.141103
https://doi.org/10.1007/s002200050042
https://doi.org/10.1007/s002200050042
https://doi.org/10.1103/PhysRevD.79.124043
https://doi.org/10.1103/PhysRevD.79.124043
https://doi.org/10.1103/PhysRevD.84.104002
https://doi.org/10.1103/PhysRevD.84.104002
https://doi.org/10.1103/PhysRevD.85.124039
https://doi.org/10.1103/PhysRevD.85.124039
https://doi.org/10.1103/PhysRevD.86.024038
https://doi.org/10.1103/PhysRevD.86.024038
https://doi.org/10.1103/PhysRevD.86.064030
https://doi.org/10.1103/PhysRevD.86.064030
https://doi.org/10.1103/PhysRevD.89.064014
https://doi.org/10.1103/PhysRevD.89.064014
http://www.youtube.com/watch?v=Pe8sRjqtldQ
http://www.youtube.com/watch?v=Pe8sRjqtldQ
http://www.youtube.com/watch?v=Pe8sRjqtldQ
http://www.youtube.com/watch?v=Pe8sRjqtldQ
https://doi.org/10.1103/PhysRevD.88.044022
https://doi.org/10.1103/PhysRevD.88.044022
https://doi.org/10.1103/PhysRevD.89.084021
https://doi.org/10.1103/PhysRevD.89.084021
https://doi.org/10.1103/PhysRevD.108.025016
https://doi.org/10.1103/PhysRevD.92.104030
https://doi.org/10.1103/PhysRevD.92.104030
https://doi.org/10.1093/imamat/8.1.8
https://doi.org/10.1103/PhysRevLett.109.111101
https://doi.org/10.1103/PhysRevLett.109.111101
https://doi.org/10.1103/PhysRevD.103.124022
https://doi.org/10.1103/PhysRevD.103.124022
https://doi.org/10.1103/PhysRevD.100.104037
https://doi.org/10.1103/PhysRevD.100.104037
https://doi.org/10.1016/0003-4916(60)90030-0
https://doi.org/10.1016/0003-4916(60)90030-0
https://doi.org/10.1103/PhysRevD.78.044025
https://doi.org/10.1103/PhysRevD.78.044025
https://doi.org/10.1103/PhysRevD.84.104039
https://doi.org/10.1103/PhysRevD.84.104039
http://dlmf.nist.gov/
http://dlmf.nist.gov/
http://dlmf.nist.gov/
http://dlmf.nist.gov/
https://doi.org/10.1103/PhysRevD.107.084008
https://doi.org/10.1103/PhysRevD.107.084008
https://doi.org/10.1112/plms/s2-36.1.427
https://doi.org/10.1103/PhysRevD.79.124044
https://doi.org/10.1103/PhysRevD.79.124044
https://doi.org/10.1016/j.physletb.2017.11.048
https://doi.org/10.1103/PhysRev.116.1331
https://doi.org/10.1007/BF01211169
https://doi.org/10.1007/BF01211169

