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Extracting quasinormal modes from compact binary mergers to perform black hole spectroscopy is one
of the fundamental pillars in current and future strong-gravity tests. Among the most remarkable findings of
recent works is that including a large number of overtones not only reduces the mismatch of the fitted
ringdown but also allows one to extract black hole parameters from a ringdown analysis that goes well
within the nonlinear merger part. At the same time, it is well understood that several details of the ringdown
analysis have important consequences for the question of whether overtones are present or not, and
subsequently, to what extent one can claim to perform black hole spectroscopy. To clarify and tackle some
aspects of overtone fitting, we revisit the clearer problem of wave propagation in the scalar Regge-Wheeler
and Pöschl-Teller potentials. This setup, which is to some extent qualitatively very similar to the nonlinear
merger-ringdown regime, indicates that using even an approximate model for the overtones yields an
improved extraction of the black hole mass at early ringdown times. We find that the relevant parameter is
the number of included modes rather than using the correct model for the overtones themselves. These
results show that some standard tests for verifying the physical contribution of an overtone to a waveform
can be misleading, and that even in the linear case it can be difficult to distinguish the presence of an excited
mode from the fitting of non-quasinormal mode effects.
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I. INTRODUCTION

The ongoing success of the LIGO-Virgo-KAGRA
Collaboration in measuring gravitational waves from
binary black hole mergers finally allows us to probe the
strong and dynamical field of general relativity (GR) [1–4].
Among the most promising and exciting challenges ahead
lies black hole spectroscopy [5–7]. It allows for a “finger-
print analysis” of the final object by measuring its relax-
ation in terms of the emission of characteristic quasinormal
modes (QNMs) within linear perturbation theory [8–10],
after the two initial objects merged, ending a very long
inspiral phase. The spectrum of QNMs in GR is fully
characterized by the mass and spin of the final Kerr black
hole [11], if the assumptions of the no-hair theorem are
fulfilled [12,13]. Therefore, any measurement of frequen-
cies and damping times that are not in agreement with this
prediction points toward fundamental violations in our
current understanding of black holes and compact objects.

Several recent discussions in the literature motivate us
to carefully revisit some basic paradigms and concepts
about extracting QNMs from simulations and observa-
tions, as they are the pillar of performing black hole
spectroscopy successfully. The two most relevant aspects
in the context of this work are concerning the extraction of
QNMs from simulations (which can, in principle, be as
accurate as one desires) and from observations (which
strongly depend on detector noise). On the observational
side, there have been several works that report the robust
extraction of fundamental modes [14–17]. Moreover,
there is also the claim that the first overtone has been
measured [18], but the debate regarding the robustness of
this claim is ongoing [19–22]. Because the disagreement
involves, to a large extent, the correct modeling of the
noise and the detector, future observations should resolve
such problems [23–32].
On the theoretical/numerical side, a key challenge is

quantifying the time after which the nonlinear merger can
be described accurately by linear perturbation theory in
terms of a superposition of QNMs. It is clear that this also
plays a central role when analyzing data from the ringdown
alone. Early studies about the significance of QNMs in the
time domain in linear theory can be found in Refs. [33,34],
and results based on the analysis of numerical relativity
simulations can be found in Refs. [35,36]. The importance
of nonlinearity has been further challenged by recent works
demonstrating that using a large number of QNM overtones
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is enough to describe binary black hole merger events
even around the peak of the strain; see Ref. [25] and
Refs. [37,38]. These findings seem to allow QNMs to
capture earlier times of the merger-ringdown regime than is
commonly expected. While the prompt reply to such claims
might be possible overfitting, the authors have carried out
several tests, e.g., extracting the injected black hole’s mass
or modifying the QNM spectrum in the analysis, which
make their conclusions very strong. Somehow challenging
this claim are recent works that address the question of
whether nonlinear features in numerical relativity simula-
tions can be robustly constrained when analyzing the early
ringdown; see Refs. [39–41]. In fact, in these works it is
argued that such nonlinear effects could even be more
relevant than overtones, which would be a dramatic change
in the standard perception and application of black hole
perturbation theory.
While nonlinear effects or the starting time of the linear

regime are within the realm of numerical relativity, similar
problems for QNM extraction are well-known from linear
perturbation theory and deserve some review as they may
be overlooked. The first aspect is to spell out that even the
linear regime of a ringdown is in general not completely
described by a superposition of QNMs, e.g., in contrast to
linear oscillations of a string. This is due to QNMs not
forming a complete basis, such that the initial data evolved
are not completely described by them. A second aspect is
the presence of a late-time tail (Price tails [42,43]), which
eventually becomes the dominant feature. Thus, even if one
would know when the full numerical relativity waveform is
linear, one could not be sure that it is indeed well described
by a superposition of QNMs alone. Fitting those modes in
an agnostic way may thus lead to biased results.
One popular toy model in the context of black hole

QNMs is to consider the Pöschl-Teller potential [44–46] as
an approximation for the potential that appears in the
perturbation equations. It has the well-known advantage
that the spectrum of QNMs is known analytically and can
be used as an approximation of those for the Regge-
Wheeler, Zerilli, or other similar potentials. In the context
of this work, it also has the interesting feature that there are
no late-time tails when studying the time domain problem
[47], which limits extraction of the fundamental mode at
late times to just numerical errors. In the same work, it was
also shown that this allows one to represent certain types of
C∞ initial data as a series of QNMs at late enough times,
which is in contrast to the Regge-Wheeler potential.
The main ingredients of our work are as follows. First,

we produce time-domain waveforms obtained by scatter-
ing Gaussian wave packets with the Pöschl-Teller poten-
tial or the scalar Regge-Wheeler potential (hereby referred
to as the GR potential). Second, we deploy a fitting
scheme to extract QNMs using a certain model, starting
time, and length of the extracted waveform. As for
models, we use two different approaches, an agnostic

one, and a theory-specific one. In the agnostic model
each overtone is fitted with independent amplitude, phase,
frequency, and damping time. In the theory-specific
model, we consider either the Pöschl-Teller QNM spec-
trum or the scalar Regge-Wheeler QNM spectrum
(similarly, referred to as the GR QNM spectrum). As such,
all frequencies and damping times are controlled by only
one parameter, the mass, while the set of amplitudes and
phases is fitted independently.
We are able to explicitly demonstrate that including

overtones in the theory-specific models allows one to better
estimate the black hole mass at earlier starting times, even if
the wrong model is being used for the analysis. More
specifically, the relative error of the extracted mass as a
function of the starting time at early times is remarkably
similar, depending mainly on the number of overtones
included and only mildly on the model itself. This raises
several questions to be explored in future work; when using
more overtones for the fitting, is it possible that one rather
improves the correct fundamental mode fit by “fitting
away” the initial data traces, thus obtaining the mass with
more accuracy at earlier times? Why does it seem that
including overtones, which are more sensitive to changes in
the model (particularly their spectral stability), can improve
the extraction of physical parameters (in our case, the
mass), even when incorrect overtones are used?
This article is structured as follows. In Sec. II we outline

the methods being used to generate our waveforms and
statistical methods to analyze them. The application and
results are then provided in Sec. III. Finally, we summarize
in Sec. IV. Throughout this work we use units in which
G ¼ c ¼ 1.

II. METHODS

For an introduction to QNMs we refer the interested
reader to Refs. [48,49] for classic reviews and Refs. [50,51]
for comprehensive text books. Different types of field
perturbations around the Schwarzschild black hole can
be written in the form of a master equation,

d2

dt2
ψðt; xÞ − d2

dx2
ψðt; xÞ þ VðxÞψðt; xÞ ¼ 0; ð1Þ

where x is the tortoise coordinate,

x ¼ rþ 2M ln

�
r
2M

− 1

�
: ð2Þ

Here VðxÞ is an effective potential that describes a barrier
with a maximum located approximately around the light
ring 3M. In the test scalar field case (□ϕ ¼ 0) the potential
is given by

VGRðrÞ ¼
�
1 −

2M
r

��
lðlþ 1Þ

r2
þ 2M

r3

�
: ð3Þ
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Note that the gravitational case, which can be split into
axial and polar perturbations of the metric, yields qualita-
tively similar potentials known as the Regge-Wheeler and
Zerilli potentials.
The aforementioned Pöschl-Teller potential is given by

VPTðxÞ ¼
V0

cosh2ðαðx − x0ÞÞ
; ð4Þ

where V0, α, and x0 are chosen such that the maximum of
the Pöschl-Teller potential coincides with the one of the
studied potential (here the GR potential), as well as their
second derivatives in the tortoise coordinate (for explicit
calculations, see Refs. [45,46]). A Fourier decomposition
of Eq. (1) and suitable boundary conditions then lead to
the QNMs as a set of complex frequencies; but in the
following we are interested in the evolution of initial data
in the time domain in the spirit of Vishveshwara’s
pioneering analysis [52].
In this work we solve Eq. (1) numerically via a finite

difference scheme (in particular, a central in time and
central in space scheme):

ψ i
j ¼ 2ψ i−1

j − ψ i−2
j þ Δt2

Δx2
�
ψ i−1
jþ1 − 2ψ i−1

j þ ψ i−1
j−1

�

− Δt2ψ i−1
j Vj: ð5Þ

Here ψ i
j ¼ ψðti; xjÞ, Vj ¼ VðxjÞ, and Δt and Δx are the

temporal and spatial resolutions respectively. Our initial
data consist of incoming Gaussian wave packets,

ψð0; xÞ ¼ Ae−
ðx−30MÞ2

2d2 ; ψ tð0; xÞ ¼ ψxð0; xÞ; ð6Þ

with an amplitude A comparable to the maximum of the
potential and widths d comparable to the width of the
potential. Outgoing boundary conditions are imposed
(although boundaries are chosen at a distance such that
possible reflections will not contaminate the observed
waveforms). We record the waveform ψðtÞ ¼ ψðt; RÞ at
extraction radius R. We perform convergence tests for the
code, vary the extraction radius R, consider waveforms
generated from different initial data with different widths d,
and also the impact of temporal-spatial resolution and
length of different waveforms for our analysis. We found
that these parameters did not qualitatively alter the results
presented below. Figure 1 shows the waveforms generated
in this way, which we use in the following analysis.
The extraction of QNMs is handled by fitting the

numerical ψðtÞ in different ways as follows. In all models
we first choose a starting time for the fit t0, and a final
time T. In the agnostic model (AG) we then assume that the
entire signal after the starting time can be written as

ψAGðt − tpeakÞ ¼
XN−1

n¼0

AAG
n exp

�
−ωAG

i;n ðt − tpeakÞ
�

× sin
�
ωAG
r;n ðt − tpeakÞ þ ϕAG

n

�
; ð7Þ

where tpeak is defined as the maximum value of jψðtÞj.
Here each mode n is characterized by an independent
amplitude AAG

n , phase ϕAG
n , and complex mode frequency

ωAG
n ¼ ωAG

r;n þ iωAG
i;n , for a total of 4N fitted parameters.

For the theory-specific model the waveform is given by

ψTSðt − tpeakÞ ¼
XN−1

n¼0

ATS
n exp

�
−ωTS

i;nðMÞðt − tpeakÞ
�

× sin
�
ωTS
r;nðMÞðt − tpeakÞ þ ϕTS

n

�
; ð8Þ

where the theory-specific model (TS) either stands for GR
or Pöschl-Teller (PT). Here the free parameters for a given
mode n are the amplitude ATS

n and phase ϕTS
n . Furthermore,

the mass M is also a fitted parameter, which uniquely
determines the complex mode frequencies for all n; hence,
the GR/PT models have 2N þ 1 fitted parameters. For the
GR potential we use the publicly available data for the
QNM spectrum provided in Refs. [7,49], and use the fact
that Mω is constant. For the theory-specific model of the
Pöschl-Teller potential the QNM spectrum ωPT can be
obtained analytically as [44–46]

ωPT ¼
�
V0 −

α2

4

�
1=2

þ iα

�
nþ 1

2

�
: ð9Þ

The best-fit values of a given model are obtained by
using the Python package SCIPY’s optimization library. To
perform these fits one has to specify the prior ranges for the
fitted parameters. We found that for sensible choices such
that the fit does not survey too large a range, our results

FIG. 1. Waveforms generated from the same Gaussian initial
data evolved in the Pöschl-Teller potential (green) and GR
potential (orange). The shaded area indicates a typical fit interval,
starting at t0 − tpeak, and ending at T − tpeak. Note that the time
has been shifted to align both waveforms at their respective peak
time tpeak, which introduced a relative shift with respect to the
simulation time (not shown).
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were agnostic to this choice. Furthermore, our recovered
best-fit parameters never rail against the boundaries of the
priors. To compare our results with those of Ref. [25] we
define a similar mismatch function

Mðh1; h2Þ ¼ 1 −
hh1; h2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh1; h1ihh2; h2i

p ; ð10Þ

where

hh1; h2i ¼
Z

T

t0

h1ðtÞh2ðtÞdt: ð11Þ

Here t0 and T have the same meaning as introduced
earlier, and we have omitted a customary complex con-
jugation on h2, as all of our waveforms are real. To be
confident that curve fitting does not get stuck in a local
minimum, we repeated the optimization 50 times with
random initial parameters within reasonable prior ranges
and selected the parameters yielding the smallest mismatch.
This was also repeated for different numbers of repetitions,
yielding consistent results. To be close to the setup of
Ref. [25] we also set T ¼ 90M þ tpeak, although in their
work it refers to the total mass of the system and in our case
only to the remnant mass. The dependence of the overall
results on the choice of T had been explored by treating it as
a free parameter. Besides at very late times, when the tail
dominates over the QNM contributions, the precise choice
of T does not play a significant role, as long as at least a few
QNM oscillation times are captured. Finally, the relative
error of the black hole mass is defined as

δM ¼ jMrec −Minjj
Minj

; ð12Þ

where Mrec is the reconstructed mass and Minj the injected
one, i.e., the mass parameter entering the potential V in
Eqs. (3) and (4) used in our numerical solutions.

III. APPLICATION AND RESULTS

As a first application we study the QNM fitting of
Gaussian wave packets scattered at the Pöschl-Teller
potential. We fit the numerical waveform with the AG,
PT, and GR models at different order N, and compute the
mismatches between the original data and each fit. This
procedure is repeated for many different starting times t0 of
the fit interval.
Our results are summarized in Fig. 2. The top panel

shows the mismatch as a function of the beginning of the fit
interval. All threeN ¼ 1models yield similar results for the
mismatch after the peak of the signal throughout most of
the ringdown. Furthermore, it is remarkable that for small
t0 − tpeak the two theoretical models at the same N perform
similarly. Only at later times the (correct) PT model

FIG. 2. Results for a waveform generated using the Pöschl-
Teller potential. We apply the PT and GR model with N ¼ 1…3
modes, as well as the agnostic model with N ¼ 1 or N ¼ 2
modes. Top panel: mismatch M as a function of starting time of
the fit. Bottom panel: relative error δM of the recovered black
hole mass as a function of starting time of the fit.

FIG. 3. Results for a waveform generated using the GR
potential. We apply the PT and GR model with N ¼ 1, 2, 3
modes, as well as the agnostic model with N ¼ 1 or N ¼ 2
modes. Top panel: mismatch M as a function of starting time
minus peak time of the waveform. Bottom panel: relative error
δM of the black hole mass as a function of starting time minus
peak time of the waveform. After t0 − tpeak ≳ 10…20M, the fits
are limited by waveform tails.
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outperforms the GR model. Overall the GR models reach
mismatches∼10−6, while the PT models reach∼10−8. Note
that at very late times the agnostic model AG2 yields the
smallest mismatch and even outperforms the theoretical
models with multiple modes. We expect that numerical
inaccuracies on such a small level are better described by
the AG2 model due to its larger number of free parameters
and independent QNMs.
The bottom panel of Fig. 2 shows the relative error of the

mass δM, as a function of the corresponding starting times.
Since one cannot extract a mass from the agnostic models,
we only compare the theory-specific models. As was the
case for the mismatch, it is evident that the dependence at
earlier times lies mainly in the number of modes used,
and less so in the specific model being used. Somewhat

surprisingly, for the same number of modes and early
beginning of the fitting interval (0≲ t0 − tpeak ≲ 10…20M,
depending on N), the GR model recovers the mass
slightly better. Then, the number of used modes deter-
mines at what time the GR model plateaus toward a value
of around 10−2. This is expected, because the funda-
mental modes of the two models agree with each other
only to percent level.
As a second application, we repeat the previous analysis

using a waveform produced with the GR potential. Our
results are summarized in Fig. 3 revealing similarities as
well as differences to Fig. 2, as we will now discuss:
Regarding the mismatch we find a very similar behavior
until around t0 − tpeak ∼ 10…20M. For later starting times
of the fit, the mismatches of all models are comparable

FIG. 4. Analysis of a PT waveform using different fitting models. The top left panel shows the QNM frequencies recovered when
fitting only one mode (N ¼ 1). The small markers indicate the recovered QNM frequencies for fits that start at different t − tpeak, as
indicated by the shading along with the horizontal axis of the top right panel. The vertical axis of the top right panel shows the
relative difference of the recovered QNM frequency to the fundamental mode of the PT waveform. This fundamental mode is also
plotted with the large square in the top left panel. The middle panels and the bottom panels show the analogous results when fitting
N ¼ 2 and N ¼ 3 modes, respectively, with the first overtone colored red and the second overtone colored green. For reference, the
left panels also indicate the QNM frequencies of a GR waveform as large circles. Note that because the PT QNM frequencies are all
proportional to the mass (which is fitted), all the PT QNM frequencies have the same relative errors and lie on top of each other in
the right panels.
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(M ∼ 10−5) and even increase slowly. This is a clear
indication of tail contributions, which limits the validity
of the QNM expansion of the waveform.
We now turn to the recovery of the mass in the PT

and GR fits, shown in the lower panel of Fig. 3. For early
start times, PT and GR models at the same order N recover
the mass comparably well. The PT models then level off at
a relative error δM ∼ 10−2 owing to the different funda-
mental mode frequency of the PT model, compared to the
analyzed GR waveform. The GR models recover the mass
about 1 order of magnitude better. However, despite the
GR model employing the correct frequencies of the QNM
modes for the analyzed GR waveform, mass recovery
levels off at a few ×10−3, presumably due to the presence
of waveform tails.
We now turn to the question of how well our model fits

recover the expected QNM frequencies. The frequencies
from a fit are a powerful diagnostic tool: if one can recover
modes agnostically, one can check if the recovered spec-
trum matches a theory predicted one. To address this
question we show the corresponding best-fit results for

t > tpeak for the PT injection in Fig. 4, and for the GR
injection in Fig. 5. In the left panels of each figure we show
the PT, GR, or AG QNMs obtained using their respective
one mode (top), two mode (middle), or three mode
(bottom) versions, while the right panels show the con-
vergence of the individual modes in each fit. We also
show the exact QNMs for each model for M ¼ 1 for
comparison. Because the complex QNM frequencies of the
PT and GR model are completely determined by one
parameter (M, which converges at least on percent level),
we find comparable and robust convergence for the PT and
GR QNMs. However, in the AG model, where the QNMs
are varied completely independent of their real/imaginary
part and mode number, the convergence is much less stable.
The AG1 models (top panels of Figs. 4 and 5) explore a

larger part of the plane, and the AG2 models (middle panels
of Figs. 4 and 5) even more so. For the GR injection, AG2
even exhibits divergent frequencies; see the middle panels
of Fig. 5.
We remark that the n ¼ 0 mode frequency of all models

agrees very well with the QNM of the injected model.

FIG. 5. Analysis of a GR waveform using different fitting models. This figure has the same structure as Fig. 4, but for the GR
waveform injection. Note that for the N ¼ 2 agnostic fit, the first overtone could not be identified reliably, and so the fit diverges away at
late times.
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This is expected, because the fundamental QNM frequency
is the most significant feature to fit. Recovery of the correct
fundamental QNM frequency, combined with the fact that
this frequency differs by ∼1% between the PT and GR
potential, explains the bias in the underlying mass if
the wrong model is used for an injection, as displayed in
Figs. 2 and 3: The fit arrives at the incorrect mass, to
achieve the correct frequency. This bias in the mass also
manifests itself in the small shift of the n ¼ 1 and n ¼ 2
QNM frequencies when the wrong model is used to analyze
the injection. Our conclusion is that the n ¼ 0 fundamental
mode is robustly recovered across fitting models, while
their different overtone structures lead to very different
fitted overtones. Note that due to the simple mass depend-
ence of the PT and GR QNMs, their reconstruction is much
more constrained for all overtones. As a final aspect of our
analysis we now turn to the fitted amplitudes and phases.
These parameters depend on the initial conditions of our
numerical evolutions, and are therefore not as fundamental
as the QNM frequencies.
However, if a given QNM has been clearly found in the

signal during fitting, the corresponding amplitude and
phase should be constant. This should at least be expected
qualitatively toward later times, when additional overtones
not included in our fits have sufficiently decayed. In
addition, the GR waveform has the added complexity of
the presence of the Price tail. In Figs. 6 and 7 we show the
fitted amplitudes A0 and A1 for the fundamental mode
(n ¼ 0, top panels) and the n ¼ 1mode (bottom panels) for
the PT and GR waveform, respectively. For n ¼ 0 the

amplitude can be robustly constrained, within small uncer-
tainties relating to which model has been used. For n ¼ 1
and the PT injection one can also find a stable mode
(Fig. 6), at least for intermediate times, but much less so
for the GR injection (Fig. 7). Further emphasis on the
dependence of the number of overtones can be seen in the
top panels, where the n ¼ 0 amplitude value is reached at
earlier times when more modes are included.
We note that the amplitudes A2 are extremely unstable

and not informative in all cases; therefore, we have not
provided them. The results for the phases are qualitatively
very similar and shown in the Appendix. Overall, the
findings of nonconstant amplitudes and phases suggest that
only the n ¼ 0 mode, and potentially the n ¼ 1 mode for
the PT case, can be robustly inferred from the data.

IV. CONCLUSIONS

It is quite intuitive that adding overtones to a ringdown
analysis reduces the mismatch, in particular at earlier times.
It is also clear that a mere reduction in mismatch is not a
sufficient criterion to conclude the actual presence of
overtones, since introducing a model with additional
parameters will generally allow for a better fit. However,
the observation in Ref. [25] that it is possible to extract the
correct black hole mass even at very early times by using
many overtones suggests that it is significant. This was
carefully investigated in Ref. [25] by allowing some of the
overtone QNMs to deviate from their Kerr prediction,
which resulted in finding that the extracted mass was
further away from the correct one.
In our analysis, we have studied a simplified setup that

is completely within linear perturbation theory to reduce

FIG. 6. Amplitudes recovered when fitting the PT waveform.
The top panel shows the recovered amplitude of the fundamental
mode for fits starting at t0 − tpeak for all models. The bottom panel
shows the amplitude of the n ¼ 1 mode for those models that
include this mode.

FIG. 7. Amplitude recovered when fitting the GR waveform.
Data plotted as in Fig. 6.
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some of the extra complexities that arise in a full black hole
ringdown, e.g., when in the ringdown does linear pertur-
bation theory become a good approximation. Specifically,
we study wave propagation in the GR and Pöschl-Teller
potentials, for which the QNM spectrum is known to
very high accuracy and is well understood. In both cases,
the QNMs can be modeled as a function of only the black
hole mass, while the amplitude and phase of each included
mode have been treated as free parameters. Here, explicit
results for amplitudes and phases depend on the choice of
the initial data, and conclusions need thus to be understood
with some caution.
As one part of our analysis, we have recovered the known

result (e.g., Ref. [24]) that including overtones reduces the
mismatch at early times. This is not a novel finding but a
remarkable reminder that the full nonlinear analysis faces
qualitatively similar problems. In Refs. [53,54] the idea of
using additional modes to clean numerical relativity signals
in the context of a Bayesian analysis has been introduced and
successfully demonstrated.
The unexpected result of our work is that both theory-

specific models, scalar Regge-Wheeler and Pöschl-Teller,
perform extremely similarly in the way that they allow
for improved estimation of the black hole mass at earlier
times. Here most strikingly, it is only mildly dependent
on the used model to produce the ringdown signal.
Applying one model to the other signal and vice versa
yields very similar results at early and intermediate times,
and the ultimate dependence is in the number of over-
tones included.
Of course, one must be aware that the Pöschl-Teller

approximation gives accurate estimates for the fundamental
mode and the imaginary parts of the first few overtones, but
the overtones’ real parts deviate further with increasing
overtone number; see the location of the larger markers in
the bottom panels of Fig. 5. The deviations in the QNM
frequencies (especially in the fundamental n ¼ 0 mode)
manifest themselves in the fact that using the wrong model
at late times results in a plateauing percent level relative
error for the mass, while the correct model yields a further
decreasing relative error.
By investigating the robustness of the QNMs obtained by

fitting the different models, as well as the fitted amplitudes
and phases, we conclude that only the n ¼ 0 mode can be
robustly recovered. Already for n ¼ 1, it is less straightfor-
ward to assess the presence of the overtone in the waveform.
It is likely to be present in the PT waveform, but more
difficult to quantify in the GR waveform.
The takeaway message from our analysis, which calls for

future studies, should be that including even a rather crude
model for the overtones at early times is indeed useful for
an earlier extraction of the black hole mass. Its limitations
only become relevant if the signal can be studied at late
enough times, when the asymptotic value gets biased and
converges toward a wrong value. While the latter can

certainly be done within a purely numerical study, con-
temporary data analysis of real events is limited by
moderate signal-to-noise ratio, and it is thus much harder
to differentiate between different models. Because over-
tones are particularly sensitive to possible deviations of the
Schwarzschild/Kerr space-time or modified dynamics (see,
e.g., Refs. [55–57]), it is crucial to robustly infer them from
future observations.
Because the accuracy of the extracted mass clearly

improves at earlier times, even when the wrong model is
used, one may ask whether including the overtones is
effectively removing the non-QNM contributions related to
the initial data. In this case, it is questionable whether one
can assign a physical significance to higher overtones, or
rather understand them as an effective way to improve the
parameter estimation by reducing the non-QNM content of
the signal originating from the initial data in the linear case
or even nonlinear parts in the full problem. Indeed, by
verifying that the overtones’ amplitudes and phases vary as
a function of the starting time, one should be convinced that
those are not, at least not as anticipated, a real feature in the
waveform. This, however, does not mean that overtones are
not being excited. In fact, there is no universal argument
why rather generic initial data should not excite them. Our
findings are rather questioning whether standard methods
and tests are sufficient to robustly quantify to what extent
fitted overtones correspond to physically excited ones.
In the final stage of our work a very comprehensive

analysis on overtone fitting has been presented in Ref. [58].
It reports similar findings for some of our main points,
although it is not for the Pöschl-Teller potential. Among the
different types of ringdown fits that are studied is also a
hybrid model, which assumes that some modes are deter-
mined by a theory-specific prediction, while some modes
are agnostic. While our work focuses on the linear case,
Ref. [58] also applies ringdown fitting to numerical
relativity waveforms and shows that nonlinear mode effects
can become important as well.
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APPENDIX: ADDITIONAL MATERIAL
FOR THE PHASES

Here we report the results for the fitting of the phases for
the PT injection in Fig. 8 and for the GR injection in Fig. 9.
Note that during the fitting we consider the range ½0; 2π�;
however we have “unwrapped” the values here for clearer
presentation.
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[31] X. Jiménez Forteza, S. Bhagwat, P. Pani, and V. Ferrari,

Phys. Rev. D 102, 044053 (2020).

FIG. 8. Fitted phases of the different models when injecting
the PT waveform. Top: the n ¼ 0 mode amplitude ϕ0. Bottom:
The n ¼ 1 mode amplitude ϕ1.

FIG. 9. The same description as in Fig. 8 but for the GR
waveform injection.

ROLE OF BLACK HOLE QUASINORMAL MODE OVERTONES … PHYS. REV. D 108, 044032 (2023)

044032-9

https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevX.9.031040
https://doi.org/10.1103/PhysRevX.11.021053
https://arXiv.org/abs/2111.03606
https://doi.org/10.1086/158109
https://doi.org/10.1088/0264-9381/21/4/003
https://doi.org/10.1088/0264-9381/21/4/003
https://doi.org/10.1103/PhysRevD.73.064030
https://doi.org/10.1103/PhysRevD.73.064030
https://doi.org/10.1103/PhysRev.108.1063
https://doi.org/10.1103/PhysRevLett.24.737
https://doi.org/10.1086/152444
https://doi.org/10.1103/PhysRevLett.11.237
https://doi.org/10.1103/PhysRevLett.26.331
https://doi.org/10.1103/PhysRevLett.34.905
https://doi.org/10.1103/PhysRevLett.116.221101
https://doi.org/10.1103/PhysRevLett.121.129902
https://doi.org/10.1103/PhysRevLett.121.129902
https://doi.org/10.1103/PhysRevD.99.123029
https://doi.org/10.1103/PhysRevD.99.123029
https://doi.org/10.1103/PhysRevD.100.089903
https://doi.org/10.1103/PhysRevD.103.122002
https://arXiv.org/abs/2112.06861
https://doi.org/10.1103/PhysRevLett.123.111102
https://doi.org/10.1103/PhysRevLett.129.111102
https://doi.org/10.1103/PhysRevLett.129.111102
https://doi.org/10.1103/PhysRevD.106.043005
https://arXiv.org/abs/2202.02941
https://arXiv.org/abs/2209.00640
https://doi.org/10.1103/PhysRevD.76.104044
https://doi.org/10.1103/PhysRevD.76.104044
https://doi.org/10.1103/PhysRevD.97.044048
https://doi.org/10.1103/PhysRevD.97.044048
https://doi.org/10.1103/PhysRevX.9.041060
https://doi.org/10.1103/PhysRevX.9.041060
https://doi.org/10.1103/PhysRevD.101.104005
https://doi.org/10.1103/PhysRevD.101.044033
https://doi.org/10.1103/PhysRevD.101.044033
https://doi.org/10.1103/PhysRevD.102.024023
https://doi.org/10.1103/PhysRevD.102.024027
https://doi.org/10.1103/PhysRevD.103.024041
https://doi.org/10.1103/PhysRevD.103.024041
https://doi.org/10.1103/PhysRevD.102.044053


[32] L. Magaña Zertuche et al., Phys. Rev. D 105, 104015
(2022).

[33] H.-P. Nollert, Phys. Rev. D 53, 4397 (1996).
[34] H.-P. Nollert and R. H. Price, J. Math. Phys. (N.Y.) 40, 980

(1999).
[35] A. Buonanno, G. B. Cook, and F. Pretorius, Phys. Rev. D

75, 124018 (2007).
[36] L. London, D. Shoemaker, and J. Healy, Phys. Rev. D 90,

124032 (2014); 94, 069902(E) (2016).
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