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Three theoretical criteria for gravitational theories beyond general relativity are considered: obtaining the
cosmological constant as an integration constant, deriving the energy conservation law as a consequence of
the field equations, rather than assuming it, and not necessarily considering conformally flat metrics as
vacuum solutions. Existing theories, including general relativity, do not simultaneously fulfill all three
criteria. To address this, a new gravitational field equation is proposed that satisfies these criteria. From this
equation, a spherically symmetric exact solution is derived, which is a generalization of the Schwarzschild
solution. It incorporates three terms: the Schwarzschild term, the de Sitter term, and a newly discovered
term, which is proportional to r4 in a radial coordinate, that becomes significant only at large distances. The
equation is further applied to cosmology, deriving an equation for the scale factor. It then presents a solution
that describes the transition from decelerating to accelerating expansion in a matter-dominated universe.
This is achieved without the need for negative pressure as dark energy or the positive cosmological constant.
This provides a novel explanation for the current accelerating expansion of the universe.
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I. INTRODUCTION

In certain gravitational theories beyond general relativity,
the cosmological constant Λ is derived as a constant of
integration. This feature provides a notable theoretical
advantage over the Einstein equations in general relativity.
Therefore, it is pertinent to establish the following theo-
retical criteria for gravitational theories:
(1) The cosmological constant Λ is obtained as a

constant of integration.
In the Einstein equations, the presence or absence of the
cosmological constant Λ is fixed from the beginning.
Therefore, general relativity does not meet this criterion.
However, the trace-free Einstein equations, denoted by
Rμν − Rgμν=4 ¼ 8πGðTμν − Tgμν=4Þ, which were initially
investigated by Einstein himself, do satisfy this criterion
only if the conservation law, ∇μTμ

ν ¼ 0, is assumed as an
additional assumption [1,2]. The need for this assumption is
theoretically a disadvantage. Hence, it is appropriate to
require the second theoretical criterion:
(2) The conservation law, ∇μTμ

ν ¼ 0, is derived as a
consequence of the gravitational field equations,
rather than being assumed.

General relativity fulfills the second criterion due to the
Bianchi identity but fails to satisfy the first criterion. On the
other hand, the trace-free Einstein equations fulfill the first
criterion but not the second one.

Conformal gravity [3] and Cotton gravity [4,5] satisfy
both the first and the second criteria. In these theories, the
gravitational field equation does not include the cosmo-
logical constant; it arises as a constant of integration.
Additionally, the conservation law, ∇μTμ

ν ¼ 0, is derived
from the field equations, as in general relativity, due to the
Bianchi identity. Unfortunately, in these theories, any
conformal flat metric serves as a vacuum solution. This
may be a potential disadvantage, as it allows for unphysical
solutions. For example, in cosmology, the conformally flat
Friedmann-Lemaître-Robertson-Walker metric is a vac-
uum solution even if the scale factor aðtÞ is an arbitrary
function of t, and in this case, it conflicts with observa-
tions. Therefore, it is reasonable to consider the third
theoretical criterion:
(3) A conformally flat metric is not necessarily a

solution in vacuum.
To date, no known theory simultaneously satisfies all

three criteria. It remains uncertain whether such a theory is
even possible. Hence, the following questions arise: Does a
gravitational field equation satisfying the three criteria
exist? If so, what is its form? What are the physical
implications of such an equation?
This paper provides answers to these questions. First, a

new gravitational field equation is proposed, which satisfies
all three criteria. Subsequently, from this equation, a spheri-
cally symmetric solution is derived, which is a generaliza-
tion of the Schwarzschild solution. The solution contains
three terms: the Schwarzschild term ð∝ 1=rÞ, the de Sitter*jharada@hoku-iryo-u.ac.jp
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term ð∝ r2Þ, and a newly discovered term ð∝ r4Þ that only
becomes significant at large distances, being negligible at
small distances.
The equation is further applied to cosmology. By

assuming isotropy and spatial homogeneity of the universe,
an equation of motion for the scale factor is derived. The
solution to this equation exhibits a significant property: even
in the absence of dark energy or the cosmological constant,
with only matter present, the universe undergoes a transition
from decelerating to accelerating expansion. In fact, in this
theory, the accelerating expansion naturally and inevitably
emerges as a consequence of the gravitational field equa-
tion, rather than being attributed to negative pressure. This
offers a novel explanation for the current accelerating
expansion of the universe.
This paper is organized as follows. In Sec. II, we present

the gravitational field equation that satisfies the three
criteria mentioned earlier. Section III explores a generalized
solution of the Schwarzschild solution. In Sec. IVA, we
derive the equation of motion for the scale factor, which
serves as a generalization of the Friedmann equation. In
Sec. IV B, we present a solution that describes a transition
from decelerating to accelerating expansion in a matter-
dominated universe. Finally, Sec. V provides a summary
and conclusions.
Throughout this paper, we set c ¼ 8πG ¼ 1, although

8πG is explicitly stated in some cases. The covariant
derivative uses the Levi-Civita connection, and the metric
signature is ð−;þ;þ;þÞ.

II. GRAVITATIONAL FIELD EQUATION

Two different approaches satisfying the first criterion
mentioned in the Introduction are known.
The first approach involves demanding that the gravita-

tional field equation be traceless, as originally proposed by
Einstein. However, while this approach satisfies the first
criterion, it fails to meet the second criterion, thus requiring
us to consider an alternative approach.
The second approach employs derivatives of the curva-

ture tensors instead of the curvature tensor itself. This
approach includes conformal gravity, Cotton gravity, and
Yang’s gravitational field equation [6]. In a previous study,
the author explored a scenario in which the gravitational
field equation possesses the same symmetry as ∇μRμ

νρσ .
While this approach satisfies the first and the second
criteria, it was found to fail to fulfill the third criterion.
Therefore, alternative symmetries need to be considered in
place of ∇μRμ

νρσ .
Based on these observations, we consider the following

scenario. We examine two possible totally symmetric
derivatives of the curvature:

∇ρRμν þ∇μRνρ þ∇νRρμ; ð1aÞ

ðgμν∂ρ þ gνρ∂μ þ gρμ∂νÞR: ð1bÞ

Here, ∇μ represents the covariant derivative, Rμν is the
Ricci tensor, and R is the Ricci scalar. These two terms,
Eqs. (1a) and (1b), are linearly independent, allowing for a
linear combination of (1a) and (1b) to serve as the left-hand
side of the gravitational field equation.
A similar representation can be employed for the

right-hand side of the gravitational field equation, which
comprises two potential terms:

∇ρTμν þ∇μTνρ þ∇νTρμ; ð1cÞ

ðgμν∂ρ þ gνρ∂μ þ gρμ∂νÞT: ð1dÞ

Here, Tμν is the energy-momentum tensor, and T denotes
its trace.
Hence, the gravitational field equation can be expressed

as follows:

að∇ρRμνþ∇μRνρþ∇νRρμÞþbðgμν∂ρþgνρ∂μþgρμ∂νÞR
¼cð∇ρTμνþ∇μTνρþ∇νTρμÞþdðgμν∂ρþgνρ∂μþgρμ∂νÞT;

ð2Þ

where a, b, c, and d are coefficients.
The coefficients a, b, c, and d can be determined as

follows. By multiplying Eq. (2) by gνρ, we obtain

2ðaþ 3bÞ∂μR ¼ 2c∇λTλ
μ þ ðcþ 6dÞ∂μT; ð3Þ

where we have used the identity 2∇μRμ
ν ¼ ∂νR.

To ensure that the conservation law ∇μTμ
ν ¼ 0 is

satisfied identically, we can derive the following conditions
from Eq. (3):

aþ 3b ¼ 0; ð4aÞ

cþ 6d ¼ 0: ð4bÞ

We also impose the condition that every solution of the
Einstein equations satisfies Eq. (2). By substituting Tμν ¼
Rμν − Rgμν=2 (with 8πG ¼ 1) and T ¼ −R into the right-
hand side of Eq. (2), we obtain

ða − cÞð∇ρRμν þ∇μRνρ þ∇νRρμÞ
þ
�
bþ c

2
þ d

�
ðgμν∂ρ þ gνρ∂μ þ gρμ∂νÞR ¼ 0: ð5Þ

From this equation, we can obtain the following conditions:

a − c ¼ 0; ð6aÞ

bþ c
2
þ d ¼ 0: ð6bÞ
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Using Eqs. (4a), (4b), (6a), and (6b) (three of them are
linearly independent), we can determine the coefficients a,
b, c, and d as follows:

a ¼ 1; b ¼ −
1

3
; c ¼ 1; d ¼ −

1

6
; ð7Þ

where we have set a ¼ 1 as a normalization.
Here, it is convenient to define the tensor Hμνρ as

Hμνρ ≡∇ρRμν þ∇μRνρ þ∇νRρμ

−
1

3
ðgμν∂ρ þ gνρ∂μ þ gρμ∂νÞR; ð8Þ

which is totally symmetric in μ, ν, and ρ. It satisfies

gνρHμνρ ¼ 0: ð9Þ

Another convenient definition is

Tμνρ ≡∇ρTμν þ∇μTνρ þ∇νTρμ

−
1

6
ðgμν∂ρ þ gνρ∂μ þ gρμ∂νÞT; ð10Þ

which is also totally symmetric in μ, ν, and ρ. It satisfies

gνρTμνρ ¼ 2∇νTν
μ: ð11Þ

Consequently, we obtain the gravitational field equation
expressed by third-order totally symmetric tensors,

Hμνρ ¼ 8πGTμνρ; ð12Þ

where we explicitly show 8πG ¼ 1.
Multiplying Eq. (12) by gνρ and using Eqs. (9) and (11),

we can confirm that the conservation law, ∇μTμ
ν ¼ 0, is

satisfied as

gνρHμνρ ¼ 16πG∇νTν
μ ¼ 0: ð13Þ

Here, we provide three remarks on Eq. (12). First, every
solution of the Einstein equations satisfies Eq. (12). This
means the following: by substituting 8πGTμν ¼ Gμν into
the right-hand side of Eq. (12), we can confirm that Eq. (12)
is satisfied. Furthermore, by substituting 8πGTμν ¼ Gμνþ
Λgμν, where Λ is nonvanishing, into the right-hand side of
Eq. (12), we can confirm that Eq. (12) is still satisfied. Thus,
Eq. (12) does not distinguish between 8πGTμν ¼ Gμν and
8πGTμν ¼ Gμν þ Λgμν. This implies that the cosmological
constant Λ arises as an integration constant. Second, as
shown in Eq. (13), the conservation law, ∇μTμ

ν ¼ 0,
is satisfied without being assumed. Third, it should be
noted that the vanishing of the Weyl tensor Cμνρσ does not
mean the vanishing of Hμνρ. Therefore, a conformally
flat spacetime is not necessarily a vacuum solution of

Hμνρ ¼ 0. Consequently, the gravitational field equa-
tion (12) simultaneously satisfies all three criteria stated
in the Introduction.

III. SPHERICALLY SYMMETRIC STATIC
VACUUM SOLUTION

We consider the Schwarzschild-like metric given by

ds2 ¼ −eνðrÞdt2 þ e−νðrÞdr2 þ r2dΩ2; ð14Þ

where dΩ2 ≡ dθ2 þ sin2 θdϕ2. Substituting this into
Eq. (8), we find that the component of Hμνρ is expressed
as follows:

−2H1
11 ¼ −

8

r3
þ eν

�
ν000 þ 3ν0ν00 þ ðν0Þ3 − 2ν00

r
−
2ðν0Þ2
r

−
2ν0

r2
þ 8

r3

�
; ð15Þ

where a prime denotes the derivative with respect to r. The
other components vanish except for H0

01, H2
12, and H3

13,
which are proportional to H1

11. By making the substitution

yðrÞ ¼
�
ν0 −

2

r

�
eν; ð16Þ

Equation (15) can be simplified to

−2H1
11 ¼ y00 −

6y
r2

−
8

r3
: ð17Þ

The solution to the equation H1
11 ¼ 0 is given by

yðrÞ ¼ −
2

r
þ c1

r2
þ c2r3; ð18Þ

where c1 and c2 are constants of integration. Therefore,
Eq. (16) can be rewritten as

�
ν0 −

2

r

�
eν ¼ −

2

r
þ c1

r2
þ c2r3: ð19Þ

This equation can be solved as

eν ¼ 1 −
c1
3r

þ c3r2 þ
c2
2
r4; ð20Þ

where c3 is a constant of integration.
If we rename the constants as c1 ¼ 6M, c3 ¼ −Λ=3, and

c2 ¼ −2λ=5, then the solution is given by

−g00 ¼ 1=g11 ¼ eν ¼ 1 −
2M
r

−
Λ
3
r2 −

λ

5
r4: ð21Þ
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This solution is exact. The term 2M=r represents the
Schwarzschild term. The term Λr2=3 corresponds to the
de Sitter term, indicating that the cosmological constant Λ
arises as a constant of integration, as expected. The last
term, λr4=5, is a newly discovered term that does not
emerge from the Einstein equations. When λ vanishes (or
when r is sufficiently small to ignore the term λr4=5),
Eq. (21) is the Schwarzschild–de Sitter metric, thus remain-
ing consistent with observations. The term λr4=5 only
becomes significant at large distances, such as cosmological
distances, and can be ignored at small distances.
We present the curvature invariants as follows:

RμνρσRμνρσ ¼
48M2

r6
þ 8Λ2

3
þ 48Mλ

5r
þ 8Λλr2 þ 212λ2r4

25
;

ð22aÞ

RμνRμν ¼ 4Λ2 þ 12Λλr2 þ 10λ2r4; ð22bÞ

R ¼ 4Λþ 6λr2; ð22cÞ

CμνρσCμνρσ ¼
48M2

r6
þ 48Mλ

5r
þ 12λ2r4

25
: ð22dÞ

Hence, we observe that λ contributes to both the Ricci
tensor and the Weyl tensor. On the other hand, the M only
contributes to the Weyl tensor, while the cosmological
constant Λ contributes solely to the Ricci tensor.

IV. ACCELERATING UNIVERSE

In this section, we apply our gravitational field equation
to cosmology. First, we derive the equation of motion for
the scale factor. Then, we find a solution that describes the
accelerating expansion of the universe.

A. Equation of motion for the scale factor

We assume that the universe is isotropic and spatially
homogeneous. This assumption leads us to choose a
spacetime coordinate system where the metric takes the
Friedmann-Lemaître-Robertson-Walker metric [7–12],

ds2 ¼ −dt2 þ a2ðtÞ
�

dr2

1 − kr2
þ r2dΩ2

�
: ð23Þ

Here, aðtÞ represents the scale factor, and k is a constant
that represents the curvature of three-dimensional space.
The requirements of isotropy and spatial homogeneity
dictate that the components of the energy-momentum
tensor take the form

Tμ
ν ¼ diagð−ρðtÞ; pðtÞ; pðtÞ; pðtÞÞ; ð24Þ

and its trace is

T ≡ Tμ
μ ¼ −ρðtÞ þ 3pðtÞ: ð25Þ

The energy conservation law gives

0 ¼ −∇μTμ
0 ¼ ρ̇þ 3

ȧ
a
ðρþ pÞ; ð26Þ

where ρ̇≡ dρ=dt and ȧ≡ da=dt.
We now focus on the gravitational field equation (12).

For the Friedmann-Lemaître-Robertson-Walker metric, the
components of Hμνρ, defined by Eq. (8), are given by

H1
01 ¼ H2

02 ¼ H3
03 ¼ −

1

3
H0

00

¼ −4
�
ȧ
a

�
3

−
⃛a
a
þ 5

ȧ ä
a2

− 4k
ȧ
a3

¼ d
dt

�
2

�
ȧ
a

�
2

−
ä
a
þ 2k

a2

�
; ð27Þ

where dots denote time derivatives. The remaining com-
ponents of Hμνρ vanish.
We also require the components of the tensor Tμνρ as

defined by Eq. (10). From Eqs. (23)–(25), we obtain the
following expressions:

T0
00 ¼ −

1

2
ð5ρ̇þ 3ṗÞ ð28Þ

and

T1
01 ¼ T2

02 ¼ T3
03

¼ −2
ȧ
a
ðρþ pÞ þ 1

6
ðρ̇þ 3ṗÞ: ð29Þ

Using Eq. (26), we find that

T1
01 ¼ T2

02 ¼ T3
03 ¼ −T0

00=3: ð30Þ

The remaining components of Tμνρ vanish.
The gravitational field equation (12) is therefore

d
dt

�
2

�
ȧ
a

�
2

−
ä
a
þ 2k

a2

�
¼ 8πG

d
dt

�
1

6
ð5ρþ 3pÞ

�
: ð31Þ

By integrating this equation, we obtain

2

�
ȧ
a

�
2

−
ä
a
þ 2k

a2
¼ 4πG

3
ð5ρþ 3pÞ þ const; ð32Þ

where const is a constant of integration. If we rename it as
Λ=3, then we can find that the Friedmann equations

�
ȧ
a

�
2

¼ 8πG
3

ρ −
k
a2

þ Λ
3
; ð33Þ
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ä
a
¼ −

4πG
3

ðρþ 3pÞ þ Λ
3
; ð34Þ

satisfy Eq. (32). Thus, in our gravitational theory, the
cosmological constant Λ is indeed a constant of integration,
as expected.
By substituting Λ=3 for const in Eq. (32), we obtain the

following equation for the scale factor:

2

�
ȧ
a

�
2

−
ä
a
¼ 4πG

3
ð5ρþ 3pÞ − 2k

a2
þ Λ

3
: ð35Þ

This is the equation of motion for the scale factor in our
gravity theory, which is a generalization of the Friedmann
equation in general relativity. It should be noted that the
Friedmann equations, Eqs. (33) and (34), with certain ρ and
p, satisfy Eq. (35) with the same ρ and p. However, the
inverse is not necessarily true; Eq. (35), with certain ρ and p,
does not necessarily satisfy Eqs. (33) and (34) with the same
ρ and p. Given p as a function of ρ, we can solve Eq. (26)
to find ρ as a function of a. Then, using the obtained ρ as
a function of a, we can solve Eq. (35) to determine a as a
function of t.

B. Accelerating expansion

1. Preliminary

In general relativity, Eq. (34) indicates that the accelerat-
ing expansion of the universe ðä > 0Þ requires either a
positive cosmological constant Λ or a negative ρþ 3p
(representing dark energy). Therefore, in a matter-dominated
universe (p ¼ 0) with Λ ¼ 0, Eq. (34) implies that
−ä=a ∝ ρ, indicating decelerating expansion ðä < 0Þ.
However, in our gravitational theory, the result differs

significantly from general relativity. For a matter-dominated
universe (p ¼ 0), with spatial flatness (k ¼ 0) and Λ ¼ 0,
Eq. (35) yields 2ðȧ=aÞ2 − ä=a ∝ ρ. This does not neces-
sarily imply that ä < 0, because 2ðȧ=aÞ2 is positive. In the
following, by solving the equation of motion for the scale
factor, we will demonstrate the existence of a solution that
describes the accelerating expansion in a matter-dominated
universe.

2. An accelerating solution

For simplicity, we assume that the universe is spatially
flat (k ¼ 0) and Λ ¼ 0. For a matter-dominated universe
(p ¼ 0), Eq. (26) yields

ρðtÞ ¼ ρ0

�
aðtÞ
a0

�
−3
; ð36Þ

where a0 represents the scale factor at the present time
and ρ0 is the matter density at the present time. Sub-
stituting Eq. (36), along with p ¼ k ¼ Λ ¼ 0, into
Eq. (35), we obtain

2

�
ȧ
a

�
2

−
ä
a
¼ 5

2
H2

0Ωm

�
a
a0

�
−3
; ð37Þ

where H0 is the Hubble constant. The density parameter
Ωm, defined as

Ωm ≡ ρ0
ρc

; ρc ≡ 3H2
0

8πG
; ð38Þ

represents the ratio of matter density to the critical density
ρc. It should be noted that in our gravity theory,Ωm does not
necessarily satisfy Ωm þΩothers ¼ 1, where Ωothers repre-
sents the density parameter for other components, if they
exist. Even if Ωothers ¼ 0, Ωm is not necessarily equal to 1,
because the Friedmann equations are not necessarily sat-
isfied. Therefore, we assume Ωm ≤ 1.
The solution to Eq. (37) is given by

tþ t0 ¼
2

3H0

ffiffiffiffiffiffiffi
Ωm

p
�
a
a0

�
3=2

2F1

�
3

10
;
1

2
;
13

10
;A

�
a
a0

�
5
�
;

ð39Þ

where t0 and A are two constants of integration and

2F1ða; b; c; xÞ is the hypergeometric function. The scale
factor aðtÞ reaches zero at t ¼ −t0. By substituting t ¼ 0
(representing present time) in Eq. (39), we obtain

t0 ¼
2

3H0

ffiffiffiffiffiffiffi
Ωm

p 2F1

�
3

10
;
1

2
;
13

10
;A

�
; ð40Þ

where we have used a0 ¼ aðt ¼ 0Þ.
We also need to determine the constant A. This can be

done as follows. Differentiating Eq. (39) with respect to t,
we have

1 ¼ 1

H0

ffiffiffiffiffiffiffi
Ωm

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Aða=a0Þ5

p
�
a
a0

�
1=2 ȧ

a0
: ð41Þ

Using Eqs. (39) and (41) to eliminate 1=ðH0

ffiffiffiffiffiffiffi
Ωm

p Þ, we find
that the Hubble parameter HðtÞ≡ ȧ=a is given by

HðtÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−Aða=a0Þ5

p
3ðtþ t0Þ 2F1

�
3

10
;
1

2
;
13

10
;A

�
a
a0

�
5
�
: ð42Þ

Therefore, the Hubble constant H0 ¼ Hðt ¼ 0Þ is

H0 ¼
2

ffiffiffiffiffiffiffiffiffiffiffi
1 − A

p

3t0
2F1

�
3

10
;
1

2
;
13

10
;A

�
: ð43Þ

By substituting Eq. (40) into Eq. (43), we obtain

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − AÞΩm

p
¼ 1: ð44Þ

This yields
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A ¼ 1 −
1

Ωm
¼ Ωm − 1

Ωm
: ð45Þ

Taking the ratio between Eqs. (39) and (40) and using
Eq. (45), we find that the scale factor aðtÞ satisfies

tþ t0
t0

¼ 2F1

�
3
10
; 1
2
; 13
10
; Ωm−1

Ωm

�
a
a0

�
5
�

2F1

�
3
10
; 1
2
; 13
10
; Ωm−1

Ωm

�
�
a
a0

�
3=2

: ð46Þ

Here, the age of the universe t0 is given by

t0 ¼
2

3H0

ffiffiffiffiffiffiffi
Ωm

p 2F1

�
3

10
;
1

2
;
13

10
;
Ωm − 1

Ωm

�
: ð47Þ

These equations, Eqs. (46) and (47), are fundamental
equations. Using the observed value of the Hubble
constant H0, Eq. (47) determines t0 as a function of
Ωm. Subsequently, using t0 as a function of Ωm, Eq. (46)
determines aðtÞ as a function of t and Ωm.
In the special case where Ωm ¼ 1, Eqs. (46) and (47)

simplify to

a
a0

¼
�
tþ t0
t0

�
2=3

; t0 ¼
2

3H0

: ð48Þ

These equations represent the Einstein–de Sitter universe,
and thus Eqs. (46) and (47) include the result derived from
general relativity as a special case.
In general cases where Ωm ≠ 1, Fig. 1 illustrates the

behavior of aðtÞ=a0 as a function of time. The figure
demonstrates that even in the absence of dark energy or
the cosmological constant, and with only matter present,
the universe undergoes a transition from decelerating to
accelerating expansion.
This transition, from deceleration to acceleration, occurs

at t ¼ −t⋆, which is the time when the acceleration ä
reaches zero. By performing a straightforward calculation,
we can determine the time t⋆ as follows:

t⋆ ¼ t0

2
641 −

�
Ωm

4ð1 −ΩmÞ
�

3=10 2F1

�
3
10
; 1
2
; 13
10
;− 1

4

�

2F1

�
3
10
; 1
2
; 13
10
; Ωm−1

Ωm

�
3
75; ð49Þ

where 2F1ð3=10; 1=2; 13=10;−1=4Þ ≈ 0.97383. This equa-
tion indicates that t⋆ is positive if Ωm is less than 0.8. A
positive t⋆ (or equivalently negative −t⋆) implies that the
transition from deceleration to acceleration occurred in the
past (t < 0). Therefore, we can conclude that in our
gravitational theory, even in the absence of dark energy,
the current universe is in an accelerating phase if Ωm < 0.8.

FIG. 1. The ratio of the scale factors aðtÞ=a0 is shown as a function of time t (present is t ¼ 0) in Gyr. The Hubble constant is assumed
to beH0 ¼ 68 km s−1 Mpc−1. The four dashed lines represent Eq. (46) forΩm ¼ ð0.1; 0.3; 0.5; 0.7Þ. These lines clearly demonstrate that
even in the absence of dark energy or the cosmological constant, and when only matter is present, the universe undergoes a transition
from decelerating to accelerating expansion. The time of this transition, for each case of Ωm ¼ ð0.1; 0.3; 0.5; 0.7Þ, is −11.4, −6.2, −3.7,
and −1.5 Gyr, respectively. The negative sign of the transition time indicates that the transition occurred in the past (t < 0). The age of
the universe t0, for each case of Ωm ¼ ð0.1; 0.3; 0.5; 0.7Þ, is 21.4,14.9,12.4, and 11.0 Gyr, respectively. If we impose the constraint of
t0 > 13.0 Gyr, which is motivated by observations, the range for Ωm is determined to be Ωm < 0.44. The solid blue line represents the
Einstein–de Sitter universe with Ωm ¼ 1, while the solid orange line represents the ΛCDM model following the Friedmann equation
with Ωm ¼ 0.3 and ΩΛ ¼ 0.7. The age of the universe t0 is 9.6 Gyr for the Einstein–de Sitter universe, and the age is 13.9 Gyr for the
ΛCDM with Ωm ¼ 0.3 and ΩΛ ¼ 0.7.
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The transition time (t ¼ −t⋆) for typical values of Ωm is
provided in the caption of Fig. 1.

V. SUMMARY AND CONCLUSIONS

In this study, we have set three theoretical criteria for
gravitational theories, as outlined in the Introduction:
(1) The gravitational field equations should not explic-

itly contain the cosmological constant Λ, but it can
emerge as a constant of integration.

(2) The conservation law ∇μTμ
ν ¼ 0 should be derived

as a consequence of the field equations, rather than
being introduced as an additional assumption.

(3) A conformally flat metric should not necessarily be a
vacuum solution.

These criteria impose stringent restrictions on gravitational
theories, and so far, no theory has been known to fulfill all
three criteria. In this paper, we have presented the gravi-
tational field equation, Eq. (12), which satisfies all three
criteria. Our construction provides an explicit model, and
while it is a unique model that the author could find, it may
not be the only one. These criteria and their fulfillment are
summarized in Table I.
Additionally, we have derived a spherically symmetric

solution that generalizes the Schwarzschild solution. This
solution consists of three terms: the Schwarzschild term
ð∝ 1=rÞ, the de Sitter term ð∝ r2Þ, and a newly discovered
term ð∝ r4Þ. The r4 term only becomes significant at large
distances while being negligible at short distances. This
indicates that gravity described by Eq. (12) differs from

general relativity primarily at large distances, such as
cosmological distances.
Motivated by this observation, we have applied our

gravitational equations to cosmology. Assuming the isot-
ropy and spatial homogeneity of the universe, we have
derived an equation for the scale factor, Eq. (35), which
serves as a generalization of the Friedmann equation.
Through our analysis, we have demonstrated that even
in the absence of dark energy or the cosmological constant,
the universe undergoes a transition from a decelerating
phase to an accelerating phase. Thus, in our gravitational
theory, the current accelerating expansion is a natural and
inevitable consequence in a matter-dominated universe.
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