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We investigate isotropic and homogeneous cosmological scenarios in the scalar-tensor theory of
gravity with nonminimal derivative coupling of a scalar field to the curvature given by the term
ðζ=H2

0ÞGμν∇μϕ∇νϕ in the Lagrangian. In general, a cosmological model is determined by six
dimensionless parameters: the coupling parameter ζ, and density parameters Ω0 (cosmological constant),
Ω2 (spatial curvature term), Ω3 (nonrelativistic matter), Ω4 (radiation), Ω6 (scalar field term), and the
universe evolution is described by the modified Friedmann equation. In the case ζ ¼ 0 (no nonminimal
derivative coupling) and Ω6 ¼ 0 (no scalar field) one has the standard ΛCDM model, while if Ω6 ≠ 0, one
has the ΛCDM model with an ordinary scalar field. As is well-known, this model has an initial singularity,
the same for all k (k ¼ 0;�1), while its global behavior depends on k. The universe expands eternally if
k ¼ 0 (zero spatial curvature) or k ¼ −1 (negative spatial curvature), while in the case k ¼ þ1 (positive
spatial curvature) the universe expansion is changed to contraction, which is ended by a final singularity.
The situation is crucially changed when the scalar field possesses nonminimal derivative coupling to the
curvature, i.e., when ζ ≠ 0. Now, depending on model parameters: (i) There are three qualitatively different
initial states of the universe: an eternal kinetic inflation, an initial singularity, and a bounce. The bounce is
possible for all types of spatial geometry of the homogeneous universe. (ii) For all types of spatial
geometry, the universe goes inevitably through the primary quasi–de Sitter (inflationary) epoch when
aðtÞ ∝ ehdSðH0tÞ with the de Sitter parameter h2dS ¼ 1=9ζ − 8ζΩ3

2=27Ω6. The mechanism of primary or
kinetic inflation is provided by nonminimal derivative coupling and needs no fine-tuned potential.
(iii) There are cyclic scenarios of the universe evolution with the nonsingular bounce at a minimal value of
the scale factor, and a turning point at the maximal one. (iv) There is a natural mechanism providing a
change of cosmological epochs.

DOI: 10.1103/PhysRevD.108.044028

I. INTRODUCTION

In recent decades the observational cosmology has been
going through a period of rapid growth. Precise measure-
ments of the cosmic microwave background (CMB) radi-
ation [1], systematic observations of nearby and distant
Type Ia supernovae (SNe Ia) [2], study of baryon acoustic
oscillations [3], mapping the large-scale structure of the
Universe, microlensing observations, and many other
remarkable results (see, for example, the review [4]) have
essentially expanded our knowledge about the Universe.
Amazing discoveries, such as the accelerating expansion of
the Universe and the dark matter evidence, have set new
serious challenges before theoretical cosmology faced the
necessity of radical modification of the standard model
having successfully been exploited for a long time. Now,
any viable cosmological model has to be able to describe
several qualitatively different epochs of universe evolution,

including the primary inflation, the matter-dominated stage,
and the present acceleration (or secondary inflation).
Moreover, it should also explain a mechanism providing
an epoch change. These challenges have prompted many
speculations, mostly based on phenomenological ideas that
involve new dynamical sources of gravity that act as dark
energy, and/or various modifications to general relativity.
To date, many different versions of modified or extended
theories of gravity have been proposed (see surveys [5–10]
and references therein).1 One of such models intensively
studied today is the Horndeski theory of gravity [11]
derived in the 1970s as an attempt to obtain the most
general action for a scalar-tensor theory with a single scalar
degree of freedom and second-order field equations. In
2011 Horndeski gravity was rediscovered in the context of
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1This plethora of models reflects a deep crisis of the phenom-
enological approach in the modern theoretical cosmology. To
date, there are no unique criteria to prefer one or another
phenomenological model.
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generalized Galileon theories [12], and since then the
interest in this model has only grown.2

The important subclass of Horndeski gravity is repre-
sented by models with a nonminimal derivative coupling of
a scalar field ϕ with the Einstein tensor with the action

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
1

8π
ðR − ΛÞ

− ðgμν þ ηGμνÞ∇μϕ∇νϕ

�
þ SðmÞ; ð1Þ

where R is the scalar curvature, Gμν is the Einstein tensor,
Λ is the cosmological constant, η is the coupling parameter,
and SðmÞ is the action for ordinary matter fields, which
is supposed to be minimally coupled to gravity in the
usual way.
The theory of gravity with nonminimal derivative cou-

pling involves the additional dimensional parameter η with
the dimension of ðlengthÞ2, which leads to interesting
features of astrophysical objects. In particular, black holes
[13–18], wormholes [19,20], and neutron stars [21–26]
have been widely explored within this theory. As well, the
nonminimal derivative coupling leads to very interesting
cosmological consequences, which have been intensively
studied in our recent works [27–33]. The most important
feature we have found is that the nonminimal derivative
coupling provides an essentially new inflationary mecha-
nism and naturally describes transitions between various
cosmological phases without any fine-tuned potential
[27–29]. The inflation is driven by terms in the field
equations responsible for the nonminimal derivative cou-
pling. At early times these terms are dominating, and the
cosmological evolution has the quasi–de Sitter character
aðtÞ ∼ eHηt with Hη ¼ 1=

ffiffiffiffiffi
9η

p
. Later on, in the course of

cosmological evolution the domination of η-terms is
canceled, and this leads to a change of cosmological
epochs. More generally, the above-mentioned features have
been reopened in Ref. [32] as a part of the screening
mechanism providing the screening of the Λ-term and
matter at early times of universe evolution. Surprisingly, in
Ref. [33] we find that the same mechanism provides the
screening of anisotropies at early time within the Bianchi I
homogeneous spacetime model. Therefore, contrary to
what one would normally expect, the early state of the
universe in the theory of gravity with nonminimal deriva-
tive coupling cannot be anisotropic in the absence of spatial
curvature.
It is worth noting that most of the results given in [27–33]

and mentioned above have been obtained for cosmological
models with zero spatial curvature. At the same time, it is

well-known that the nonzero spatial curvature can essentially
change a character of the universe evolution. Some prelimi-
nary results, taking into account the spatial curvature, have
been obtained in [32], where a systematic analysis of
homogeneous and isotropic cosmologies in the theory of
gravity with nonminimal derivative coupling had been
represented. In Ref. [32] we analyzed a rich spectrum of
solutions focusing mostly on their asymptotic properties,
while the global solutions describing the entire evolution of
the universe had been analyzed only briefly for the case of
zero spatial curvature.
In this work we explore in detail both asymptotic and

global homogeneous and isotropic cosmological solutions
in the theory (1) in models containing also a Λ-term and
matter.
The paper is organized as follows. Equations describing

homogeneous and isotropic cosmologies in the theory (1)
are derived in Sec. II. Solutions of these equations are
constructed and analyzed in Sec. III first in the early and
late time limits and then globally. In subsections of Sec. III
we consider several models with different sets of cosmo-
logical parameters, starting with the simplest model which
contains only an ordinary scalar field, and finishing the
most general model with the scalar field possessing the
nonminimal derivative coupling with the curvature, cos-
mological constant Λ, and matter. In the last section we
summarize the obtained results.

II. FIELD EQUATIONS

Varying the action (1) with respect to gμν and ϕ gives the
field equations, respectively,

Gμν ¼ −gμνΛþ 8π½TðmÞ
μν þ TðϕÞ

μν þ ηΘμν�; ð2aÞ

½gμν þ ηGμν�∇μ∇νϕ ¼ 0; ð2bÞ

where TðmÞ
μν is a stress-energy tensor of ordinary matter and

TðϕÞ
μν ¼ ∇μϕ∇νϕ −

1

2
gμνð∇ϕÞ2; ð3Þ

Θμν ¼−
1

2
∇μϕ∇νϕRþ 2∇αϕ∇ðμϕRα

νÞ þ∇αϕ∇βϕRμανβ

þ∇μ∇αϕ∇ν∇αϕ−∇μ∇νϕ□ϕ−
1

2
ð∇ϕÞ2Gμν

þ gμν

�
−
1

2
∇α∇βϕ∇α∇βϕþ 1

2
ð□ϕÞ2−∇αϕ∇βϕRαβ

�
:

ð4Þ

Because of Bianchi identity ∇μGμν ¼ 0 and the conserva-

tion law ∇μTðmÞ
μν ¼ 0, Eq. (2a) leads to the differential

consequence

2The literature dedicated to various aspects of Horndeski
gravity is very vast, and its survey lays out of the scope of this
work. The reader interested in this topic can find some references
in the already mentioned surveys [6,8].
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∇μ½TðϕÞ
μν þ ηΘμν� ¼ 0: ð5Þ

Substituting Eqs. (3) and (4) into (5), one can check
straightforwardly that the differential consequence (5) is
equivalent to (2b). In other words, Eq. (2b) is a differential
consequence of Eq. (2a).
Let us consider Friedmann-Robertson-Walker (FRW)

cosmological models with the metric

ds2 ¼ −dt2 þ a2ðtÞ
�

dr2

1 − kr2
þ r2ðdθ2 þ sin2θdφ2Þ

�
; ð6Þ

where k ¼ 0;�1, aðtÞ is the scale factor, and HðtÞ ¼
ȧðtÞ=aðtÞ is the Hubble parameter. Denoting the present
moment of time as t0, we have a0 ¼ aðt0Þ and H0 ¼ Hðt0Þ.
Supposing homogeneity and isotropy, we also get ϕ ¼ ϕðtÞ
and TðmÞ

μν ¼ diagðρ; p; p; pÞ, where ρ ¼ ρðtÞ is the energy
density and p ¼ pðtÞ is the pressure of matter.
The general field equations (2) written for the metric (6)

give the following two independent equations:

3

�
H2 þ k

a2

�
¼ Λþ 8πρþ 4πψ2

�
1 − 9η

�
H2 þ k

3a2

��
;

ð7aÞ

ψ

�
1 − 3η

�
H2 þ k

a2

��
¼ Q

a3
; ð7bÞ

where we denote ψ ¼ ϕ̇. Here Eq. (7a) is the modified
Friedmann equation, i.e., the tt-component of (2a), while
Eq. (7b) is the first integral of the scalar field equation (2b),
where Q is a constant of integration.
Assume that the matter filling the universe is a mixture of

radiation and a nonrelativistic component:

ρ ¼ ρm þ ρr ¼ ρm0

�
a0
a

�
3

þ ρr0

�
a0
a

�
4

: ð8Þ

Now let us introduce the dimensionless scale factor a,
Hubble parameter h, and coupling parameter ζ as follows:

a ¼ a
a0
; h ¼ H

H0

; ζ ¼ ηH2
0; ð9Þ

and the following dimensionless density parameters:

Ω0 ¼
Λ

3H2
0

; Ω2 ¼
k

a20H
2
0

; Ω3 ¼
ρm0

ρcr
;

Ω4 ¼
ρr0
ρcr

; Ω6 ¼
4πQ2

3a60H
2
0

; ð10Þ

where ρcr ¼ 3H2
0=8π is the critical density. We assume in

this work that Λ ≥ 0; hence, Ω0 is always not negative, i.e.,
Ω0 ≥ 0, and the sign ofΩ2 is the same as that of k. Here it is

also worthwhile to emphasize the physical meaning of the
dimensionless coupling parameter ζ. The parameter η has
the dimension ðlengthÞ2, and so it will be convenient to use
the notation η ¼ εl2, where ε is the sign of η, i.e., ε ¼ �1,
and l is a characteristic length that characterizes the
nonminimal derivative coupling between the scalar field
and curvature. The value H0 determines the size of the
Hubble horizon as lH ¼ 1=H0. Hence, ζ is proportional to
the square of the ratio of two characteristic scales:

ζ ¼ ε

�
l
lH

�
2

: ð11Þ

Now, substituting ψ from Eq. (7b) into (7a), we can
rewrite the modified Friedmann equation in terms of
dimensionless values:

h2 ¼Ω0 −
Ω2

a2
þΩ3

a3
þΩ4

a4
þ
Ω6

�
1− 3ζð3h2þ Ω2

a2 Þ
�

a6
�
1− 3ζðh2þΩ2

a2 Þ
�
2
: ð12Þ

Denoting y ¼ h2 and bringing all terms in (12) to the
common denominator yields

Pða; yÞ
ð1 − 3ζðyþ Ω2

a2 ÞÞ2
¼ 0; ð13Þ

where

Pða; yÞ ¼ y3 þ c2ðaÞy2 þ c1ðaÞyþ c0ðaÞ ð14Þ

is the cubic in y polynomial with the coefficients

c2 ¼ −Ω0 þ
3Ω2

a2
−
Ω3

a3
−
Ω4

a4
−

2

3ζ
;

c1 ¼ −
2Ω2

a2

�
Ω0 −

3

2

Ω2

a2
þ Ω3

a3
þ Ω4

a4

�

þ 1

3ζ

�
2Ω0 −

4Ω2

a2
þ 2Ω3

a3
þ 2Ω4

a4
þ 3Ω6

a6

�
þ 1

9ζ2
;

c0 ¼ −
Ω2

2

a4

�
Ω0 −

Ω2

a2
þΩ3

a3
þΩ4

a4

�

þ Ω2

3a2ζ

�
2Ω0 −

2Ω2

a2
þ 2Ω3

a3
þ 2Ω4

a4
þ Ω6

a6

�

−
1

9ζ2

�
Ω0 −

Ω2

a2
þ Ω3

a3
þ Ω4

a4
þ Ω6

a6

�
: ð15Þ

Equation (13) will be fulfilled if Pða; yÞ ¼ 0 and
1 − 3ζðyþ Ω2

a2 Þ ≠ 0; hence, the problem reduces to study-
ing roots of the cubic polynomial. Finding a particular root
yi, one determines the algebraic dependence of the Hubble
parameter h on the scale factor a. The relation to the
physical time is then determined by the quadrature
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Z
a

a¼1

dã
ãhðãÞ ¼ H0ðt − t0Þ: ð16Þ

Note that in the particular case Ω2 ¼ Ω4 ¼ 0 the
modified Friedmann equation (12) and the cubic polyno-
mial (13) have been explored in [29]. In the general case a
detailed and systematic analysis of Eqs. (12) and (13) has
been performed in Ref. [32], where three different branches
of ghost-free solutions were found. In [32] these solutions
have been labeled as S, A, and B ones. Among them the
most interesting and important with a physical point of
view is the S solution, which describes a universe with the
standard late time dynamic dominated by the Λ-term,
radiation, and dust. In the case Ω2 ¼ 0 (k ¼ 0) the S
solution represents screening properties at early times of
universe evolution, when the matter effects are totally
screened and the universe expands with a constant
Hubble rate determined by the coupling parameter η, so
that H ≈

ffiffiffiffiffiffiffiffiffiffi
1=9η

p
. Moreover, in Ref. [33] it has been shown

that the S solution provides the screening mechanism such
that the anisotropies within the Bianchi I homogeneous
spacetime model are screened at early time by the scalar
charge (see also [34]).

III. COSMOLOGICAL SCENARIOS

For given model parameters ζ and Ωi, Eq. (12) com-
pletely determines the scale factor aðtÞ, and hence, the
whole cosmological evolution of the Universe. It is
necessary to notice that the parameters are not independent.
Actually, at t ¼ t0 one has a0 ¼ 1 and h0 ¼ 1, and then
Eq. (12) reduces to

1 ¼ Ω0 −Ω2 þ Ω3 þ Ω4 þ
Ω6

�
1 − 3ζð3þ Ω2Þ

�
�
1 − 3ζð1þΩ2Þ

�
2
: ð17Þ

The latter represents a constraint relating values of param-
eters Ω0, Ω2, Ω3, Ω4, and Ω6 at the present time. For
practical purposes, it will be convenient to rewrite the
constraint (17) as follows:

Ω6 ¼
�
1− 3ζð1þΩ2Þ

�
2

1− 3ζð3þΩ2Þ
ð1−Ω0þΩ2 −Ω3 −Ω4Þ: ð18Þ

Thus, one has five independent parameters ζ, Ω0, Ω2, Ω3,
Ω4 with additional requirements: ζ ≥ 0, Ω0 ≥ 0, Ω3 ≥ 0,
Ω4 ≥ 0, and Ω6 ≥ 0.
Below we consider several cosmological models with

different sets of parameters.

A. The case ζ = 0 and Ω0 =Ω3 =Ω4 = 0

First of all, for the sake of completeness, let us briefly
discuss the simplest case with ζ ¼ 0, i.e., the nonminimal
coupling is absent, and Ω0 ¼ Ω3 ¼ Ω4 ¼ 0, i.e., the

cosmological constant, radiation, and nonrelativistic matter
are absent. In this case Eq. (12) reduces to the simple form

h2 ¼ −
Ω2

a2
þ Ω6

a6
; ð19Þ

with the constraint Ω6 ¼ 1þ Ω2, which describes a cos-
mological evolution of an ordinary massless scalar field in
the Friedmann universe. It is obvious that at early times,
when a → 0, one has h2 ≈Ω6=a−6 → ∞, that is, an initial
cosmological singularity. The later evolution essentially
depends on the sign of Ω2, i.e., on the spatial curvature of
the universe. As usually, in the case of zero spatial
curvature, when k ¼ 0 and Ω2 ¼ 0, one has an open model
with h2 ¼ Ω6=a2 → 0 as a → ∞. In the case of negative
spatial curvature, when k ¼ −1 and Ω2 < 0, one has an
open model with h2 ≈ jΩ2j=a2 → 0 as a → ∞. In case the
spatial curvature is positive, i.e., k ¼ þ1 and Ω2 > 0, the
scale factor a achieves its maximum value amax ¼
maxðaðtÞÞ at t ¼ tturn. The moment t ¼ tturn is a turning
point in the universe evolution, when the expansion stage is
changing to contraction one. The value of amax can be
determined from the condition h2turn ¼ − Ω2

a2max
þ Ω6

a6max
¼ 0,

so that

a2max ¼
�
Ω6

Ω2

�
1=2

¼
�
1þ 1

Ω2

�
1=2

: ð20Þ

Taking into account that Ω2 ≪ 1, we obtain the following
estimation: a2max ≈Ω−1=2

2 ≫ 1, or a2max ≈ a20Ω
−1=2
2 ≫ a20.

The graphical illustration of the properties discussed
above is given in Fig. 1.

B. The case ζ ≠ 0 and Ω0 =Ω3 =Ω4 = 0

Now, let us consider the model with nonminimal
derivative coupling ζ ≠ 0, while Ω0 ¼ Ω3 ¼ Ω4 ¼ 0;
i.e., the cosmological constant, radiation, and nonrelativ-
istic matter are still absent. Hereafter, it will be convenient
to consider separately cosmological models with different
spatial curvature, k ¼ 0;−1;þ1.

1. Zero spatial curvature: k = 0 and Ω2 = 0

In this case Eq. (12) reads

h2 ¼ Ω6ð1 − 9ζh2Þ
a6ð1 − 3ζh2Þ2 ; ð21Þ

and the constraint (18) yields

Ω6 ¼
ð1 − 3ζÞ2
1 − 9ζ

; ð22Þ

hence, one has the only free parameter ζ in this case.
Equation (21) has already been studied in great detail in the
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literature (see, for example, Refs. [27–29,32,33]). As is
well-known, the nonminimal derivative coupling essen-
tially changes the character of cosmological evolution at
early stages. Namely, in the limit a → 0, the Hubble
parameter h has the following asymptotic behavior:

h2 ¼ 1

9ζ
þOða6Þ: ð23Þ

Therefore, at early cosmological times, t → −∞, one has
an “eternal” inflation with the quasi–de Sitter behavior of
the scale factor: aðtÞ ∝ eHηt, where Hη ¼ 1=

ffiffiffiffiffi
9η

p
. It is

important to notice that the primary inflationary epoch is
only driven by nonminimal derivative or kinetic coupling
between the scalar field and curvature without introducing
any fine-tuned potential, and so one can call this epoch a
kinetic inflation. At late times, the ζ-terms in Eq. (21)
become negligibly small, and one has the asymptotic

h2 ¼ Ω6

a6
þOða−9Þ; ð24Þ

the same as that in the case ζ ¼ 0, when the universe
evolution is driven only by the scalar field with the
following behavior of the scale factor aðtÞ ∝ t1=3.
It is worth noting again that one needs no fine-tuning

potential to provide the epochs change. The epoch of
kinetic inflation is changed by the scalar field epoch
once the ζ-terms in Eq. (21) become negligibly small.
Mathematically, it means that the sign of second derivative
ä changes its sign. Therefore, one can define a moment t�
of epoch change as äðt�Þ ¼ 0. In Fig. 2 we represent graphs
of h2 versus a for different values of ζ and show the typical
dependence of scale factor aðtÞ on time t.

2. Negative spatial curvature: k = − 1 and Ω2 < 0

In this case Eq. (12) reads

h2 ¼ Ω̄2

a2
þ
Ω6

�
1 − 3ζð3h2 − Ω̄2

a2Þ
�

a6
�
1 − 3ζðh2 − Ω̄2

a2 Þ
�
2
; ð25Þ

where Ω̄2 ¼ −Ω2 > 0, and the constraint (18) yields

Ω6 ¼
�
1 − 3ζð1 − Ω̄2Þ

�
2

1 − 3ζð3 − Ω̄2Þ
ð1 − Ω̄2Þ: ð26Þ

The relation (26) means that we have two free parameters ζ
and Ω̄2.
At early times, in the limit a → 0, the asymptotic

solution of Eq. (25) is as follows:

h2 ¼ Ω̄2

3a2
þ
�
1

9ζ
þ 8ζΩ̄3

2

27Ω6

�
þ 4Ω̄2

2ð3Ω6 − 8ζ2Ω̄3
2Þ

81Ω2
6

a2

þOða3Þ: ð27Þ

One can see that distinct to the case k ¼ 0 (Ω2 ¼ 0) with
the asymptotic (23), the Hubble parameter h has a singular
behavior at a → 0, so that h2 ≈ Ω̄2=3a−2 → ∞. As a
increases, the first term in the asymptotic (27) decreases

and at a2 ≥ a2pse ¼ ð 1
3ζΩ̄2

þ 8ζΩ̄2

9Ω6
Þ−1 it becomes negligible

with respect to the second term, where apse is found from

the relation Ω̄2

3a2pse
¼ 1

9ζ þ
8ζΩ̄3

2

27Ω6
. One can call the stage

with 0 < a < apse a post-singularity era. As the scale
factor a grows further, the behavior of the Hubble param-
eter is determined by the second term in (27), so that

FIG. 1. The case ζ ¼ 0 and Ω0 ¼ Ω3 ¼ Ω4 ¼ 0. Left panel: Plots of h2 versus a. Right panel: Plots of aðtÞ. Here solid lines
correspond to k ¼ Ω2 ¼ 0; dot-dashed lines: k ¼ −1 and Ω2 ¼ −0.1; and dashed lines: k ¼ þ1 and Ω2 ¼ 0.1.
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h2 ≈ h2dS ¼ 1
9ζ þ

8ζΩ̄3
2

27Ω6
. This stage can be called a quasi–de

Sitter era or an epoch of kinetic inflation with the de Sitter
parameter hdS. As was mentioned in the previous sub-
section, the epoch of kinetic inflation is changed by the
scalar field epoch once the ζ-terms in Eq. (25) become
negligibly small. Mathematically, it means that the sign of
second derivative ä is changed. Therefore, one can define a
moment t� of epoch change as äðt�Þ ¼ 0. At the end of the
quasi–de Sitter era the universe enters the last era of the late

evolution, which does not depend on ζ and is determined
by the following late-time asymptotic at a → ∞ [32]:

h2 ¼ Ω̄2

a2
þOða−6Þ: ð28Þ

In Fig. 3, where the graphical representation for h2

versus the scale factor a is shown, one can see that plots
h2ðaÞ have a plateau at h2 ≈ h2dS. The flatter the plateau is,

FIG. 2. The case of zero spatial curvature k ¼ Ω2 ¼ 0, and also ζ ≠ 0 (nonzero derivative coupling), as well as Ω0 ¼ Ω3 ¼ Ω4 ¼ 0

(cosmological constant, radiation, and nonrelativistic matter are absent). Left panel: Plots of h2 versus a (solid curves) are given for
ζ ¼ 1=18, 1=27, 1=36 from bottom to top. The dashed line corresponds to ζ ¼ 0. Right panel: The plot of aðtÞ is given for ζ ¼ 1=18.
The vertical dot straight line separates two cosmological epochs: on the left side—the eternal kinetic inflation era, and on the right side—
the scalar field era.

FIG. 3. The case of negative spatial curvature k ¼ −1 and Ω2 < 0, also ζ ≠ 0 (nonzero derivative coupling), and Ω0 ¼ Ω3 ¼ Ω4 ¼ 0

(cosmological constant, radiation, and nonrelativistic matter are absent). Left panel: Plots of h2 versus a (solid curves) are given for
ζ ¼ 1=18 andΩ2 ¼ −0.0001, −0.001, −0.01, −0.1 from bottom to top. The dashed line corresponds to ζ ¼ 0 andΩ2 ¼ −0.0001. Right
panel: The plot of aðtÞ is given for ζ ¼ 1=18 and Ω2 ¼ −0.001. The vertical straight lines mark different epochs of the universe
evolution: the solid line marks a moment of initial singularity, the interval between two vertical lines corresponds to the kinetic inflation
era, and on the right side of the dotted line one has the era of power-law expansion.
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the lower the values of Ω̄2 are, and in the limit Ω̄2 → 0 the
plot of h2ðaÞ coincides with that given in Fig. 2 for the
case Ω2 ¼ 0.
The dependence of the scale factor a on the cosmic time t

can be found from the quadrature (16). In particular, the
corresponding behavior of aðtÞ near the singularity, where
h2 ≈ Ω̄2=3a−2, is the following:

aðtÞ ≈
ffiffiffiffiffiffi
Ω̄2

3

s
H0ðt − tsÞ; ð29Þ

where ts is a moment of singularity. The example of aðtÞ is
shown in Fig. 3 (right panel).

3. Positive spatial curvature: k = + 1 and Ω2 > 0

In this case Eq. (12) reads

h2 ¼ −
Ω2

a2
þ
Ω6

�
1 − 3ζð3h2 þ Ω2

a2 Þ
�

a6
�
1 − 3ζðh2 þ Ω2

a2 Þ
�
2
; ð30Þ

and the constraint (18) yields

Ω6 ¼
�
1 − 3ζð1þΩ2Þ

�
2

1 − 3ζð3þ Ω2Þ
ð1þ Ω2Þ: ð31Þ

At early times, in the limit a → 0, the asymptotic solution
of Eq. (30) is as follows:

h2 ¼ −
Ω2

3a2
þ
�
1

9ζ
−
8ζΩ3

2

27Ω6

�

þ 4Ω2
2ð3Ω6 þ 8ζ2Ω3

2Þ
81Ω2

6

a2 þOða3Þ: ð32Þ

One can see that the asymptotic behavior of h2 given by
(32) essentially differs from those given by (23) and (27).
Namely, since the first term in (32) is negative, at some
minimal value of a ¼ amin the value of h2 becomes zero.
Neglecting the third term in (32), one has

a2min ≈ 3ζΩ2

�
1 −

8ζ2Ω2
2

3Ω6

�−1
: ð33Þ

Supposing that the spatial curvature is small, so that
ζΩ2 ≪ 1, we can estimate amin as follows: a2min ≈
3ζΩ2 ≪ 1. It must be recalled that the moment tB when
the Hubble parameter h, or ȧ, equals zero is a turning
point in the universe evolution. Moreover, since at t ¼ tB
the scale factor a achieves its minimal value, amin ¼
minðaðtÞÞ ¼ aðtBÞ, the moment tB is a bounce, when the
stage of contraction is changing to expansion one. It is
interesting that we can estimate the minimal size of the

universe. Actually, returning the relation a2min ¼ 3ζΩ2 to
the dimensional values ζ ¼ ηH2

0 ¼ l2H2
0, Ω2 ¼ 1=ða20H2

0Þ,
and a ¼ a=a0, we obtain

amin ¼
ffiffiffi
3

p
l; ð34Þ

where l is the characteristic scale of nonminimal derivative
coupling. Thus, the minimal size of the universe is of the
order of l.
Analogous to the case of negative spatial curvature, the

first term in the asymptotic (32) decreases as a increases
and becomes negligible compared with the second term.
As long as the second term in (32) is dominating, the
Hubble parameter is approximately constant, so that

h2 ≈ h2dS ¼ 1
9ζ −

8ζΩ3
2

27Ω6
, and the Universe goes through the

quasi–de Sitter phase with the Hubble parameter hdS. In
Fig. 4 one can see that plots of h2ðaÞ have a plateau at
h2 ≈ h2dS. The flatter the plateau is, the lower the values of
Ω2 are, and in the limit Ω2 → 0 the plot of h2ðaÞ coincides
with that given in Fig. 2 for the case Ω2 ¼ 0.
At the end of the quasi–de Sitter era the universe enters

the last era of the late evolution. Characterizing this era, it is
necessary to stress that h2 turns out to be zero at some value
of amax ¼ maxðaÞ. Substituting h2 ¼ 0 into Eq. (30) yields

0 ¼ −Ω2 þ
Ω6

a4max

�
1 −

3ζΩ2

a2max

�
−1
: ð35Þ

FIG. 4. The case of positive spatial curvature k ¼ þ1 and
Ω2 > 0, also ζ ≠ 0 (nonzero derivative coupling), and Ω0 ¼
Ω3 ¼ Ω4 ¼ 0 (cosmological constant, radiation, and nonrelativ-
istic matter are absent). Plots of h2 versus a (solid curves) are
given for ζ ¼ 1=18 andΩ2 ¼ 0.0001, 0.001, 0.01, 0.1 from top to
bottom. The dashed line corresponds to ζ ¼ 0 and Ω2 ¼ 0.0001.
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Taking into account that 3ζΩ2 ≪ 0, one can obtain

a2max ≈
�
Ω6

Ω2

�
1=2

�
1þ 3ζΩ3=2

2

2Ω1=2
6

�
: ð36Þ

Comparing with the value of amax obtained for ζ ¼ 0 [see
(20)], one can conclude that the maximal value of the scale
factor amax is slightly greater in the case ζ ≠ 0.
The dependence of scale factor a on the cosmic time t is

found from the quadrature (16). In particular, taking into
account that near the bounce

h2 ≈ −
Ω2

3a2
þ 1

9ζ
; ð37Þ

where we suppose ζΩ2 ≪ 1, one obtains the explicit
behavior of aðtÞ:

a2ðtÞ ≈ 3ζΩ2 cosh2
H0ðt − tBÞffiffiffiffiffi

9ζ
p ; ð38Þ

where tB is a moment of bounce. The example of aðtÞ is
shown in Fig. 5. One can see that the scale factor aðtÞ has a
cyclic behavior. Each cycle begins at a bouncemoment when
aðtÞ achieves its minimal value amin. Then the universe
comes to a quasi–de Sitter stage with aðtÞ ∝ ehdSt. After the
end of the quasi–de Sitter era the universe enters a stage of
slowpower-lawexpansion,which stopswhen the scale factor
achieves its maximal value amax. Further, the universe begins
contracting, and its evolution goes in reverse order up to the
next bouncemoment. Therefore,we have a cyclic scenario of
cosmological evolution.

C. The case Ω0 ≠ 0 and Ω3 =Ω4 = 0

Now let us discuss the role of the cosmological constant
supposing Ω0 ≠ 0, while, as before, we will assume that

Ω3 ¼ Ω4 ¼ 0; i.e., radiation and nonrelativistic matter are
absent:

h2 ¼ Ω0 −
Ω2

a2
þ
Ω6

�
1 − 3ζð3h2 þ Ω2

a2 Þ
�

a6
�
1 − 3ζðh2 þ Ω2

a2 Þ
�
2
: ð39Þ

The constraint (18) now yields

Ω6 ¼
�
1 − 3ζð1þΩ2Þ

�
2

1 − 3ζð3þ Ω2Þ
ð1 −Ω0 þ Ω2Þ; ð40Þ

and thus one has three free parameters: ζ, Ω0, and Ω2.
At early times, in the limit a → 0, the asymptotic

solution of Eq. (39) reads

h2 ¼ −
Ω2

3a2
þ
�
1

9ζ
−
8ζΩ3

2

27Ω6

�

þ 4Ω̄2
2ð3Ω6 þ 8ζ2Ω3

2 þ 9ζΩ0Ω6Þ
81Ω2

6

a2 þOða3Þ: ð41Þ

It is important to stress here that the first two major terms
in the asymptotic (41) do not contain the cosmological
constant Ω0 and coincide with those given by asymptotics
(21), (25), and (30) (k¼ 0;−1;þ1, respectively). Following
Ref. [32], we may say that the cosmological constant is
screened at the early stage and makes no contribution to the
universe evolution which, therefore, is the same as
described in Sec. III B for the case Ω0 ¼ 0. Briefly, the
possible scenarios of the early time universe evolution are
the following:

(i) In the case Ω2 ¼ 0 (k ¼ 0) at early cosmological
times, t → −∞, one has an eternal kinetic inflation
with the quasi–de Sitter behavior of the scale factor:
aðtÞ ∝ ehdSðH0tÞ, where h2dS ¼ 1=9ζ.

(ii) In the case Ω2 < 0 (k ¼ −1) one has an initial
singularity at a → 0, so that h2 ≈ jΩ2j=3a−2 → ∞.
Then, after a short postsingularity era the universe
enters a primary quasi–de Sitter epoch with the de

Sitter parameter h2dS ¼ 1
9ζ þ 8ζjΩ2j3

27Ω6
.

(iii) In the case Ω2 > 0 (k ¼ þ1) one has a bounce at
t ¼ tB, when the Hubble parameter turns to zero at
some small minimal value of a ¼ amin, where
a2min ≈ 3ζΩ2. Shortly after the bounce the universe
enters a primary quasi–de Sitter epoch with the de

Sitter parameter h2dS ¼ 1
9ζ −

8ζΩ3
2

27Ω6
.

An illustration of these scenarios is given in Fig. 6.
An asymptotic solution of Eq. (39) at large values of a is

as follows:

h2 ¼ Ω0 −
Ω2

a2
þΩ6ð1 − 9ζΩ0Þ

ð1 − 3ζΩ0Þ2
1

a6
þOða−8Þ: ð42Þ

FIG. 5. The case of positive spatial curvature k ¼ þ1 and
Ω2 > 0, also ζ ≠ 0 (nonzero derivative coupling), and Ω0 ¼
Ω3 ¼ Ω4 ¼ 0 (cosmological constant, radiation, and nonrelativ-
istic matter are absent). The plot of aðtÞ is given for ζ ¼ 1=18 and
Ω2 ¼ 0.001. On this plot one entire cycle of cyclic cosmological
evolution is presented.
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In the caseΩ2 ≤ 0, i.e., when k ¼ 0 or k ¼ −1, it is obvious
that the value of h2 given by (42) is monotonically
decreasing to Ω0, i.e., h2 ≈Ω0 at a → ∞ (see Fig. 6). In
the case Ω2 > 0 (k ¼ þ1) a possible scenario is more
complicated. Since the second term in (42) is negativewhen
Ω2 > 0, the behavior of h2 is now not monotonic, so that h2

has a minimum

h2min ¼ Ω0 −
Ω2

a2�
þΩ6ð1 − 9ζΩ0Þ

ð1 − 3ζΩ0Þ2
1

a6�
; ð43Þ

where a� can be found from the extremum condition
dðh2Þ=da ¼ 0 as

a4� ¼
3Ω6ð1 − 9ζΩ0Þ
Ω2ð1 − 3ζΩ0Þ2

: ð44Þ

Note that, depending on a relation between parameters ζ,
Ω0, and Ω2, one has h2min > 0 or h2min ≤ 0. In the case
h2min > 0 the Hubble parameter h achieves its minimal
value hmin at a ¼ a� and then starts growing, so that h2 →
Ω0 at a → ∞. In the case h2min ≤ 0 the square of Hubble
parameter h becomes equal to zero at some value of the
scale factor a ¼ amax at t ¼ tturn. The moment tturn is a
turning point in the universe evolution, when the expansion
stage is changing to contraction one.
Summarizing, we obtain two possible scenarios of late-

time evolution of the universe:

(i) In the case Ω2 ≤ 0, at the late stage of evolution
the universe enters a secondary inflation epoch
with h2 ¼ Ω0, i.e., H ¼ HΛ ¼ ffiffiffiffiffiffiffiffiffi

Λ=3
p

. In the case
Ω2 > 0, one has the same asymptotic if the value of
h2min given by (43) is positive.

(ii) In the case Ω2 > 0 and h2min ≤ 0, there is a turning
point in the universe evolution when the expansion
stage is changing to contraction one. In this case one
has a cyclic scenario of the universe evolution.

All possible scenarios of cosmological evolution in the case
ζ ≠ 0 and Ω0 ≠ 0 are shown in Fig. 7.

D. The general case

The standard scenario of cosmological inflation suggests
that the energy density of matter filling the universe is very
slowly varying with time. The energy density of ordinary
(baryon) matter does not possess that property. Instead, one
supposes that the inflationary stage of the universe evolu-
tion is driven by a hypothetical inflaton field, while the
ordinary matter is absent on this stage and appears only at
the end of inflation due to the reheating process when the
inflaton is transforming into ordinary matter.
The kinetic inflation discussed in this paper is based on

the mechanism that differs from the slow-roll inflation.
Therefore, one has no reason to assume a priori that
ordinary matter is absent during the kinetic inflationary

FIG. 6. The case Ω0 ≠ 0 (nonzero cosmological constant),
ζ ≠ 0 (nonzero derivative coupling), and Ω3 ¼ Ω4 ¼ 0 (radiation
and nonrelativistic matter are absent). Main panel: Plots of h2

versus a are given for ζ ¼ 1=18, Ω0 ¼ 4.5 × 10−4, and Ω2 ¼ 0
(red dashed line), Ω2 ¼ −0.01 (red dot-dashed line), Ω2 ¼ 0.01
(blue solid line). Auxiliary panel: An illustration of qualitatively
different behavior of h2 depending on the value of Ω0. Blue solid
lines are plots of h2 versus a given for Ω0 ¼ 4.5; 3.26; 2 × 10−4

from top to bottom. The dotted line shows the asymptotic
h2 ≈ Ω0 ¼ 4.5 × 10−4.

FIG. 7. The case Ω0 ≠ 0 (nonzero cosmological constant),
ζ ≠ 0 (nonzero derivative coupling), and Ω3 ¼ Ω4 ¼ 0 (radiation
and nonrelativistic matter are absent). Plots of aðtÞ are given
for ζ ¼ 1=18. Main panel: The red dashed line corresponds to
Ω2 ¼ 0 (zero spatial curvature, k ¼ 0), and Ω0 ¼ 4.5 × 10−4.
The red dot-dashed line corresponds to Ω2 ¼ −0.01 (negative
spatial curvature, k ¼ −1), and Ω0 ¼ 4.5 × 10−4. Blue solid lines
correspond to Ω2 ¼ 0.01 (positive spatial curvature, k ¼ þ1),
andΩ0 ¼ 4.5; 3.5; 3.3; 3.26 × 10−4 from top to bottom. Auxiliary
panel: An illustration of qualitatively different behaviors at small
values of aðtÞ depending on the value of spatial curvature. One
has (i) an eternal kinetic inflation if k ¼ 0 (red dashed line); (ii) an
initial singularity if k ¼ −1 (red dot-dashed line); and (iii) a
bounce if k ¼ þ1 (blue solid line).
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stage. In this section we will analyze the most general
cosmological model with nonminimal derivative coupling:

h2 ¼Ω0 −
Ω2

a2
þΩ3

a3
þΩ4

a4
þ
Ω6

�
1− 3ζð3h2 þ Ω2

a2 Þ
�

a6
�
1− 3ζðh2 þ Ω2

a2 Þ
�
2
; ð45Þ

supposing that Ω3 ≠ 0 and Ω4 ≠ 0; that is, nonrelativistic
and relativistic components of matter are present at all
stages of the universe evolution.
For small values of a one can obtain the solution of

Eq. (45) as a series in powers of 1=a:

h2 ¼ μ4
a4

þ μ3
a3

þ μ2
a2

þ μ1
a
þ μ0 þ � � �

¼ Ω4

a4
þ Ω3

a3
−

1

a2

�
Ω2 þ

Ω6

ζΩ4

�
þ 1

a
Ω3Ω6

ζΩ2
4

þ
�
Ω0 þ

2Ω2Ω6

3ζΩ2
4

−
Ω2

3Ω6

ζΩ3
4

−
Ω2

6

ζ2Ω3
4

�
þOða2Þ: ð46Þ

It is seen that in the limit a → 0 one has μ4=a4 >
μ3=a3 > μ2=a2 > μ1=a > μ0, and the function h2 has a
clear singular behavior, such that h2 ≈Ω4=a4 → ∞. In
particular, taking into account that μ4=a4 > μ0 and
μ4 ¼ Ω4, μ0 ∼ 1=ζ2Ω3

4, we obtain that the singular behavior
h2 ≈Ω4=a4 is realized at a < as ≈ ζ1=2Ω4. Since values
of ζ and Ω4 could be arbitrarily small, the value as is
also arbitrarily small. On the other hand, since terms
in Eq. (46) have different signs, the behavior of h2 at
as < a ≪ 1 could be rather complicated and messy. In
particular, we can expect that h2 can change sign and
vanish, so that h2 ¼ 0. To describe a behavior of h2 at
a ≪ 1 in more detail, we use a graphical representation of
the function h2 versus a, solving straightforwardly the

master equation (45). The dependence of h2ðaÞ for small
values of a is illustrated in Fig. 8 separately for Ω2 ¼ 0
(zero spatial curvature), Ω2 < 0 (negative spatial curva-
ture), and Ω2 > 0 (positive spatial curvature). Though the
general asymptotic is h2 ≈ Ω4=a4 → ∞ at a → 0, it is seen
that in all cases there exist nonmonotonic solutions such
that h2 becomes zero, h2 ¼ 0, at some a ¼ amin. These
points are a bounce. It is worth also noting that somewhere
at the region 0 < a < amin the sign of h2 is again changed
from minus to plus and h2 grows from zero to infinity as
h2 ≈ Ω4=a4 → ∞. This part of the solution should be
discarded from consideration as nonphysical.
The main conclusion that one can extract from the

numerical analysis is the following: Analyzing the role
of radiation and nonrelativistic matter in the universe
evolution in the theory of gravity with nonminimal deriva-
tive coupling, we found that for all types of spatial
geometry of the homogeneous universe, namely, k ¼ −1,
Ω2 < 0 (negative spatial curvature), k ¼ 0, Ω2 ¼ 0 (zero
spatial curvature), and k ¼ þ1, Ω2 > 0 (positive spatial
curvature), there exists a wide domain of parameters Ω3

andΩ4 such that the squared Hubble parameter h2 becomes
zero at amin, where as < amin ≪ 1. The moment tB when
the Hubble parameter h, or ȧ, equals zero is a turning
point in the universe evolution. Moreover, since at t ¼ tB
the scale factor a achieves its minimal value, amin ¼
minðaðtÞÞ ¼ aðtBÞ, the moment tB is a bounce, when the
stage of contraction is changing to expansion one.
An asymptotic solution of Eq. (45) at large values of a

has the following form:

h2 ¼ Ω0 −
Ω2

a2
þΩ3

a3
þ Ω4

a4
þ Ω6ð1 − 9ζΩ0Þ

ð1 − 3ζΩ0Þ2
1

a6
þOða−8Þ:

ð47Þ

FIG. 8. The general case with ζ ≠ 0, Ω0 ≠ 0, Ω3 ≠ 0, Ω4 ≠ 0. Plots of h2 versus a are shown in the region of small a for fixed
values ζ ¼ 1=18 and Ω3 ¼ 10−6, while Ω2 and Ω4 are varied. Left panel: Ω2 ¼ −10−5 and Ω4 ¼ 0.0037; 0.0038; 0.00386; 0.004
from bottom to top. Middle panel: Ω2 ¼ 0 and Ω4 ¼ 0.0018; 0.0019; 0.001905 from bottom to top (red curves); Ω4 ¼
0.0024; 0.002455; 0.00249; 0.0026 from bottom to top (blue curves). Right panel: Ω2 ¼ 10−5 andΩ4 ¼ 0.003807; 0.003845; 0.003855;
0.00386; 0.00387; 0.0075 from bottom to top. Note that solid curves do not cross the zero line, and hence, do not give a bounce behavior,
while dashed curves cross zero providing the bounce condition h2 ¼ 0.
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Comparing with the asymptotic (42), we can conclude
that possible scenarios of late-time universe evolution
coincide in the general case with those described in the
previous section for the case Ω0 ≠ 0 and Ω3 ¼ Ω4 ¼ 0.
Therefore, if Ω2 ≤ 0, then the universe enters an epoch of
accelerated expansion or a secondary inflationary epoch
with H ¼ HΛ ¼ ffiffiffiffiffiffiffiffiffi

Λ=3
p

. If Ω2 > 0, then the late-time
universe evolution is determined by the value of critical
parameter h2min:

h2min ¼ Ω0 −
Ω2

a2�
þ Ω3

a3�
þ Ω4

a4�
þΩ6ð1 − 9ζΩ0Þ

ð1 − 3ζΩ0Þ2
1

a6�
; ð48Þ

where a� can be found from the extremum condition
dðh2Þ=da ¼ 0. In the case h2min > 0, at late times the
universe is expanded with an acceleration so that H ¼
HΛ ¼ ffiffiffiffiffiffiffiffiffi

Λ=3
p

, while if h2min ≤ 0, there is a turning point
in the universe evolution, when the expansion stage is
changing to contraction one.
Thus, the intermediate and late-time universe evolution

is the same as in the case when Ω3 ¼ Ω4 ¼ 0 (no radiation
and nonrelativistic matter). Therefore, the global depend-
ence of h2ðaÞ and aðtÞ can be illustrated by Figs. 6 and 7.

IV. SUMMARY AND CONCLUSIONS

In this paper we have explored in detail homogeneous
and isotropic cosmological solutions in the theory of
gravity with nonminimal derivative coupling given by
the action (1). In general, the model depends on six
dimensionless parameters: the coupling parameter ζ, and
density parameters Ω0, Ω2, Ω3, Ω4, Ω6 [see Eqs. (9) and
(10)], and a cosmological evolution is described by the
modified Friedmann equation (12). In the case ζ ¼ 0 (no
nonminimal derivative coupling) and Ω6 ¼ 0 (no scalar
field) one has the standard ΛCDM model, while if Ω6 ≠ 0,
one has the ΛCDM-model with an ordinary scalar field. As
is well-known, this model has an initial singularity, the
same for all k (k ¼ 0;�1), while its global behavior
depends on k. The universe expands eternally if k ¼ 0

(zero spatial curvature) or k ¼ −1 (negative spatial curva-
ture), while in the case k ¼ þ1 (positive spatial curvature)
the universe expansion is changed to contraction, which is
ended by a final singularity.
The situation is crucially changed when the scalar field

possesses nonminimal derivative coupling to the curvature,
i.e., when ζ ≠ 0. For the cosmological model with Ω3 ¼
Ω4 ¼ 0 (no matter), we have obtained the following results:
The possible scenarios of the early time universe evolution
are the following:

(i) In the case Ω2 ¼ 0 (k ¼ 0) at early cosmological
times, t → −∞, one has an eternal kinetic inflation
with the quasi–de Sitter behavior of the scale factor:
aðtÞ ∝ ehdSðH0tÞ, where h2dS ¼ 1=9ζ.

(ii) In the case Ω2 < 0 (k ¼ −1) one has an initial
singularity at a → 0, so that h2 ≈ jΩ2j=3a−2 → ∞.
Then, after a short postsingularity era the universe
enters a primary quasi–de Sitter epoch with the de

Sitter parameter h2dS ¼ 1
9ζ þ 8ζjΩ2j3

27Ω6
.

(iii) In the case Ω2 > 0 (k ¼ þ1) one has a bounce at
t ¼ tB, when the Hubble parameter turns to zero at
some small minimal value of a ¼ amin, where
a2min ≈ 3ζΩ2. Shortly after the bounce the universe
enters a primary quasi–de Sitter epoch with the de

Sitter parameter h2dS ¼ 1
9ζ −

8ζΩ3
2

27Ω6
.

The possible scenarios of the late-time universe evolution
in the case Ω3 ¼ Ω4 ¼ 0 are the following:

(i) In the case Ω2 ≤ 0, at the late stage of evolution
the universe enters a secondary inflation epoch
with h2 ¼ Ω0, i.e., H ¼ HΛ ¼ ffiffiffiffiffiffiffiffiffi

Λ=3
p

. In the case
Ω2 > 0 one has the same asymptotic if the value of
h2min given by (43) is positive.

(ii) In the case Ω2 > 0 and h2min ≤ 0, there is a turning
point in the universe evolution when the expansion
stage is changing to contraction one.

In the standard scenario of slow-roll inflation one usually
supposes that ordinary matter is absent at this stage and
appears only at the end of inflation due to the reheating
process when the inflaton is transforming into ordinary
matter. However, since the kinetic inflation discussed in
this paper is based on the mechanism that differs from the
slow-roll inflation, one has no reason to assume a priori
that ordinary matter is absent during the kinetic inflationary
stage. In our work we have analyzed the most general
cosmological model with nonminimal derivative coupling
containing nonrelativistic and relativistic components of
matter at all stages of the universe evolution. As a result, we
have found that there exists a wide domain of parameters
Ω3 and Ω4 such that the squared Hubble parameter h2

becomes zero at some moment tB when the scale factor a
achieves its minimal value, amin ¼ minðaðtÞÞ ¼ aðtBÞ.
This moment tB is nothing but a bounce, when the stage
of contraction is changing to an expansion one. It is
important that the bounce is possible for all types of spatial
geometry of the homogeneous universe.
Concluding this paper, it is worthwhile to enumerate

once more several basic results obtained:
(i) The cosmological constant Λ (or Ω0) turns out to be

screened at early times and makes no contribution to
the universe evolution (see also Ref. [32]).

(ii) Depending on model parameters, there are three
qualitatively different initial states of the uni-
verse: an eternal kinetic inflation, an initial singu-
larity, and a bounce. The bounce is possible for all
types of spatial geometry of the homogeneous
universe.

(iii) For all types of spatial geometry, we found that
the universe goes inevitably through the primary
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quasi–de Sitter (inflationary) epoch with the de

Sitter parameter h2dS ¼ 1
9ζ −

8ζΩ3
2

27Ω6
. For k ¼ 0 this

epoch lasts eternally to the past, when t → −∞.
When k ¼ −1 or þ1, the primary inflationary epoch
starts soon after a birth of the universe from an initial
singularity or after a bounce, respectively. Here it is
necessary to stress once more that the mechanism of
primary or kinetic inflation is provided by non-
minimal derivative coupling and needs no fine-tuned
potential.

(iv) The kinetic inflation is driving by terms in the field
equations responsible for the nonminimal derivative
coupling. At early times these terms are dominating,
and the cosmological evolution has the quasi–de
Sitter character aðtÞ ∼ eHηt with Hη ¼ 1=

ffiffiffiffiffi
9η

p
. Later

on, in the course of cosmological evolution the
domination of η-terms is canceled, and this leads to a
change of cosmological epochs.

(v) The late-time universe evolution depends on both k
and Λ. In the case k ¼ 0 (zero spatial curvature), or
k ¼ −1 (negative spatial curvature), at late times the

universe enters an epoch of accelerated expansion or
a secondary inflationary epoch with H ¼ HΛ ¼ffiffiffiffiffiffiffiffiffi
Λ=3

p
. In the case k ¼ þ1 (positive spatial curva-

ture), the late-time universe evolution is determined
by the value of critical parameter h2min [see Eqs. (43)
and (48)]. In the case h2min > 0 at late times the
universe is expanded and accelerated with H ¼
HΛ ¼ ffiffiffiffiffiffiffiffiffi

Λ=3
p

, while in the case h2min ≤ 0 there is
a turning point in the universe evolution when the
expansion stage is changing to a contraction one.

(vi) Depending on model parameters, there are cyclic
scenarios of the universe evolution with the non-
singular bounce at a minimal value of the scale
factor and a turning point at the maximal one.
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