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Penrose limits are considered in spacetimes admitting two Abelian, spacelike Killing vectors in general
nonvacuum as well as in particular in the presence of an electromagnetic field. This class of spacetimes
includes inhomogeneous cosmologies as well as colliding plane gravitational and the corresponding field
waves or matter. Following the work of Tod [Classical Quantum Gravity 37, 075021 (2020)] the conditions
for diagonal Penrose limits are investigated in these backgrounds. The twistor equation is considered in
these spacetimes, and solutions are given in the radial Penrose limit.
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I. INTRODUCTION

Plane wave solutions play an important role in classical
as well as quantum field theories. In string theory they are
also known to be examples of exact classical string vacua
[1,2]. Penrose [3] showed that along a segment of a null
geodesic without conjugate points any spacetime has a
plane wave limit. The Penrose limit and its generalization to
D dimensional spacetimes [4] is of particular interest in
string/M theory (cf., e.g., [5,6]).
Recently Tod [7] demonstrated the condition on the

spacetime so that all Penrose limits are diagonal. Moreover,
an elegant and computational efficient way of calculating
the Penrose limit has been presented there using two-spinor
calculus [7]. Different from the original formulation of
Penrose [3] it does not involve an explicit coordinate
transformation adapted to the null geodesic along which
the Penrose limit is taken.
Here the formulation of Tod [7] is applied to determine

the Penrose limits of inhomogeneous spacetimes admitting
two spacelike commuting Killing vectors generating an
Abelian group G2. This type of metrics allows one to des-
cribe different types of backgrounds such as cosmological
backgrounds and colliding plane wave spacetimes. More-
over, some of the spatially homogeneous backgrounds with
three spacelike Killing vectors, namely, models of Bianchi
type I-VII as well as the locally rotationally symmetric
(LRS) VIII and LRS IX admit two-dimensional Abelian
subgroups (cf. [8]). Radial Penrose limits and Abelian as
well as non-Abelian T-duality transformations of low
energy string backgrounds have been considered in this
type of background in [9].

An interesting aspect of the resulting plane wave space-
times in the Penrose limit is that these backgrounds permit
the existence of twistors [7,10,11]. Twistors were intro-
duced to provide a fundamental description of spacetime
structure and physical concepts. Penrose proposed consid-
ering the two spinors as more fundamental than spacetime
points (e.g., [10]). Therefore it is natural to expect that
twistors play an important role in the quantization of
gravity. The relation of the twistor equation to massless
fields and representation of solutions in terms of contour
integrals of holomorphic functions has led to an important
advancement in the mathematical aspects of solutions of
differential equations by Penrose transforms (e.g., [12]).
Global solutions of the twistor equation in a curved
background are severely restricted by a consistency con-
dition. This has led to additional concepts of local and
asymptotic twistors in asymptotically flat spacetimes.
However, there do exist global twistors in plane wave
backgrounds. In this sense the importance of the resulting
plane wave spacetimes in the Penrose limit is similar to the
case of exact solutions of string theory in plane wave
backgrounds which in part motivated the strong interest in
the Penrose limit over recent years.
The plan of the paper is as follows. In Sec. II the Penrose

limit procedure and all the relevant quantities in theNewman-
Penrose formalism as well as in the two-spinor formulation
are presented for G2 metrics. In Sec. III the electromagnetic
field two-spinor formulation for the G2 metrics is given
together with Einstein’s equations to provide a particular
example of a nonvacuum spacetime. In Sec. IV the question
of diagonalizability will be discussed. Radial Penrose limits
are considered as an example in Sec. V. The twistor equation
is discussed in Sec. VI, and explicit solutions are given in
the radial Penrose limit. Finally, in Sec. VII conclusions are
presented.*kkunze@usal.es
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II. PENROSE LIMITS OF G2 SPACETIMES

In [7] the calculation of the Penrose limit has been
formulated in terms of two spinors. A normalized spin
frame oA, ιA, with A ¼ 0, 1 satisfies [13]

oAιA ¼ 1 ιAoA ¼ −1 oAoA ¼ 0 ¼ ιAι
A: ð2:1Þ

Following [13] a four-dimensional spacetime is considered
with metric gμν, and a null tetrad of (“world”) vectors lμ, nμ,
mμ and m̄μ is defined by

lα ¼ oAoA
0

nα ¼ ιAιA
0

mα ¼ oAιA
0

m̄α ¼ ιAoA
0
: ð2:2Þ

Then with respect to the spacetime metric gμν these vectors
are defining an orthonormal null tetrad with two real null
vectors lμ and nμ, respectively, and two complex null
vectors which are complex conjugates of each othermμ and
m̄μ such that

lμnμ ¼ 1 mμm̄μ ¼ −1; ð2:3Þ
and all other combinations are zero. Moreover, the metric
is given by gμν ¼ lμnν þ nμlν −mμm̄ν − m̄μmν. In the
Newman-Penrose formalism the components of curvature
and energy momentum tensor as well as covariant deriv-
atives and Einstein’s equations can be calculated efficiently
with respect to this orthonormal null tetrad [8,13,14].
The Penrose limit yields a plane wave spacetime. This

admits five Killing vectors. The only nonvanishing Weyl
scalar is Ψ4 ¼ Ψ, and Φ22 ¼ Φ is the only nonvanishing
scalar determining the components of the Ricci tensor
(cf., e.g., [7,8,15]). Equivalently the Weyl spinor and Ricci
spinor are given by, respectively, [7]

ψABCD ¼ ΨoAoBoCoD ϕABA0B0 ¼ ΦoAoBoA0oB0 : ð2:4Þ
Following [7] the Penrose limit of a spacetime M is

obtained by choosing any null geodesic Γ in M and
considering a spinor field αA parallelly propagated tangent
to Γ and defining an affine parameter ξ (up to an additive
constant) by αAᾱA

0∇AA0ξ ¼ 1. The plane wave in the
Penrose limit is then determined by

ΨðξÞ ¼ ψABCDα
AαBαCαD ΦðξÞ ¼ ϕABA0B0αAαBᾱA

0
ᾱB

0
:

ð2:5Þ
Assuming the spinor field αA to be of the form

αA ¼ AðξÞoA þ BðξÞιA ð2:6Þ
the condition for its parallel transport along the null
geodesic Γ,

αAᾱA
0∇AA0αB ¼ 0; ð2:7Þ

yields the evolution equations for the two complex func-
tions AðξÞ and BðξÞ∶

dA
dξ

¼ −jAj2ðAϵþ Bα − Bτ0Þ þ jBj2ðAρ0 þ Bκ0 − AγÞ

− A2B̄β þ B2Āσ0 ð2:8Þ
dB
dξ

¼ jAj2ðAκ þ Bϵþ BρÞ − jBj2ð−Aβ − Aτ − BγÞ

þ A2B̄σ þ B2Āα ð2:9Þ
using that foA; ιAg is a normalized spinor basis.
In the following the Penrose limit construction following

[7] will be considered for metrics admitting two Abelian
spacelike Killing vectors. These are described by the line
element (e.g., [15])

ds2 ¼ 2e−Mdudv −
2e−U

Z þ Z̄
ðdxþ iZdyÞðdx − iZ̄dyÞ;

ð2:10Þ
where M ¼ Mðu; vÞ and U ¼ Uðu; vÞ are real functions of
the null coordinates u and v. Z ¼ Zðu; vÞ is a complex
function of u and v. Colliding plane wave spacetimes can
be separated in four different regions. Two of these describe
the two incoming plane waves for which all metric
functions have as argument either the null coordinate u
or the null coordinate v, respectively (e.g., [15]). The
interaction region of these plane waves constitutes the third
region in which all metric functions depend on both null
coordinates in general. The fourth region describes the
background spacetime on which the waves propagate, most
commonly taken to be flat. The Penrose limits calculated of
the interaction region might have interesting relations to the
incoming, initial plane waves.
The spin coefficients and curvature components for the

G2 metric (2.10) are given in the Appendix. In particular the
spin coefficients τ, τ0, α, β, κ, and κ0 vanish [cf. Eq. (A4)]
simplifying Eqs. (2.8) and (2.9).
When considering cosmological spacetimes it is useful to

introduce a timelike coordinate t and a spacelike coordinate z
by defining t ¼ u − v and z ¼ uþ v. The explicit forms of
the metric functionsM,U, and Z for the case of the spatially
homogenous models of Bianchi type which have three
Killing vectors but admit two-dimensional Abelian sub-
groups G2 have been found explicitly in [9].
The two Killing vectors ∂x and ∂y admitted by the metric

(2.10) expressed in terms of the null tetrad are given by

ð1ÞKμ ¼ e−
U
2

ðZ þ Z̄Þ12 m
μ þ e−

U
2

ðZ þ Z̄Þ12 m̄
μ ð2:11Þ

ð2ÞKμ ¼ i
e−

U
2

ðZ þ Z̄Þ12 Zm
μ − i

e−
U
2

ðZ þ Z̄Þ12 Z̄m̄
μ: ð2:12Þ

Therefore there are two constants of motion ðiÞE ¼ ðiÞKμVμ

where the tangent world vector of the null geodesic is
determined by Vμ ¼ αAᾱA

0
; thus
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Vμ ¼ AĀlμ þ BB̄nμ þ AB̄mμ þ ĀBm̄μ: ð2:13Þ

This yields to

ð1ÞE ¼ −
e−

U
2

ðZ þ Z̄Þ12 ðĀBþ AB̄Þ ð2:14Þ

ð2ÞE ¼ −i
e−

U
2

ðZ þ Z̄Þ12 ðĀBZ − AB̄ Z̄Þ; ð2:15Þ

implying that

ĀB ¼ e
U
2

ðZ þ Z̄Þ12 ð−
ð1ÞEZ̄ þ ið2ÞEÞ: ð2:16Þ

This allows one to obtain expressions for the product of the
modulus of A and B as well as the differences in their
phases, namely,

jAjjBj ¼ e
U
2

ðZþ Z̄Þ12 ½ð
ð1ÞEÞ2ZZ̄þ iðZ̄−ZÞð1ÞEð2ÞEþðð2ÞEÞ2�12

ð2:17Þ

e�2iðφB−φAÞ ¼
�ð1ÞEZ̄ − ið2ÞE

ð1ÞEZ þ ið2ÞE

��1

ð2:18Þ

with X ¼ jXjeiφX , X ¼ A, B. Finally, using the spin
coefficients as given in Eq. (A4) this leads to

djAj2
dξ

¼ 1

2
e
M
2 ð∂vMÞjAj4 þ 1

2

e
M
2
þU

Z þ Z̄

�
∂uð2U −MÞ½ðð1ÞEÞ2ZZ̄ þ iðZ̄ − ZÞð1ÞEð2ÞEþ ðð2ÞEÞ2�

þ 2

Z þ Z̄
∂u

�
1

3
ðð1ÞEÞ2ðZ3 þ Z̄3Þ − ið1ÞEð2ÞEðZ2 − Z̄2Þ − ðð2ÞEÞ2ðZ þ Z̄Þ

��
ð2:19Þ

djBj2
dξ

¼ 1

2
e
M
2 ð∂uMÞjBj4 þ 1

2

e
M
2
þU

Z þ Z̄

�
∂vð2U −MÞ½ðð1ÞEÞ2ZZ̄ þ iðZ̄ − ZÞð1ÞEð2ÞEþ ðð2ÞEÞ2�

þ 2

Z þ Z̄
∂v

�
1

3
ðð1ÞEÞ2ðZ3 þ Z̄3Þ þ ið1ÞEð2ÞEðZ2 − Z̄2Þ − ðð2ÞEÞ2ðZ þ Z̄Þ

��
: ð2:20Þ

Moreover, the condition ξ to be an affine parameter leads to

du
dξ

¼ jBj2eM
2

dv
dξ

¼ jAj2eM
2

dx
dξ

¼ e
U
2

ðZ þ Z̄Þ12 ðAB̄ Z̄þĀBZÞ dy
dξ

¼ −i
e
U
2

ðZ þ Z̄Þ12 ðAB̄ − ĀBÞ: ð2:21Þ

Taking into account Eq. (2.17) the last two equations can be
rewritten as

dx
dξ

¼ −
2eU

Z þ Z̄

�
ZZ̄ð1ÞE −

i
2
ðZ − Z̄Þð2ÞE

�
ð2:22Þ

dy
dξ

¼ −
2eU

Z þ Z̄

�
−
i
2
ðZ − Z̄Þð1ÞEþð2Þ E

�
: ð2:23Þ

Thus null geodesics with ẋ ¼ 0, ẏ ≠ 0, a dot denoting the
derivative with respect to ξ, are possible for ð1ÞE ¼ 0,
ð2ÞE ≠ 0 in spacetimes with Z real. Interchanging the
constants with the same condition on Z allows for the
case ẋ ≠ 0, ẏ ¼ 0. In the case ẋ ¼ 0 ¼ ẏ both constants
have to vanish. Moreover, together with Eq. (2.16) this
implies that one of the functions A or B has to vanish,
making the affine parameter ξ a function only of either one
of the null coordinates u or v of the background spacetime.

This describes radial Penrose limits in which the Penrose
limit is considered along radial geodesics (e.g., [9]). Radial
Penrose limits within the spinor formulation of Tod [7] are
considered below in Sec. V.
The only nonvanishing Ricci spinor and Weyl scalar in

the Penrose limit [cf. Eq. (2.5)] are given by

ΦðξÞ ¼ jAj4Φ00 þ ðAB̄Þ2Φ02 þ ðĀBÞ2Φ20

− 4jAj2jBj2Φ11 þ jBj4Φ22 ð2:24Þ

ΨðξÞ ¼ A4Ψ0 þ 6A2B2Ψ2 þ B4Ψ4; ð2:25Þ

where Φab and Ψi are the tetrad components of the Ricci
tensor and the Weyl scalars for the G2 metric (2.10) as
given in Eqs. (A8)–(A12) and (A5)–(A7), respectively.
The wave profiles of plane wave spacetimes are obtained
from the Brinkmann form (cf., e.g., [7,8,15])
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ds2 ¼ 2drdξþ ðh11X2 þ 2h12XY þ h22Y2Þdξ2
− dX2 − dY2; ð2:26Þ

where

h11 ¼ ΦðξÞ þ 1

2
ðΨðξÞ þ Ψ̄ðξÞÞ ð2:27Þ

h12 ¼ −
i
2
ðΨðξÞ − Ψ̄ðξÞÞ ð2:28Þ

h22 ¼ ΦðξÞ − 1

2
ðΨðξÞ þ Ψ̄ðξÞÞ ð2:29Þ

with the Ricci tensor component ΦðξÞ (2.24) and the Weyl
scalar ΨðξÞ (2.25). If ΨðξÞ is real then h12 ≡ 0, and the
corresponding G2 metric is diagonal (cf. [15]).

III. THE ELECTROMAGNETIC FIELD IN G2
SPACETIMES AND ITS PENROSE LIMIT

In this section the Penrose limit construction [7] is
applied to a nonvacuum spacetime, namely including a
nonvanishing electromagnetic field. The behavior of the
electromagnetic spinor is determined in the Penrose limit.
The Maxwell tensor is determined by the electromag-

netic spinor φAB by [13]

Fαβ ¼ FAA0BB0 ¼ φABϵA0B0 þ ϵABφ̄A0B0 ð3:1Þ
with φAB ¼ φðABÞ ¼ 1

2
FABC0C

0
with the correspondence

between spacetime and spinor components given by
φ0 ¼ φ00, φ1 ¼ φ01, φ2 ¼ φ11 and its complex conjugate.
The free space Maxwell’s equations can be expressed in
terms of a zero rest-mass field equation [13] which in the
compacted spin-coefficient form [Geroch-Held-Penrose
(GHP) formalism] is efficiently written as

þφ1 − ð0φ0 ¼ −τ0φ0 þ 2ρφ1 − κφ2 ð3:2Þ
þ0φ1 − ðφ2 ¼ −τφ2 þ 2ρ0φ1 − κ0φ0 ð3:3Þ
þφ2 − ð0φ1 ¼ σ0φ0 − 2τ0φ1 þ ρφ2 ð3:4Þ
þ0φ0 − ðφ1 ¼ σφ2 − 2τφ1 þ ρ0φ0: ð3:5Þ

In the following the coupled Einstein-Maxwell equations
will be considered in G2 spacetimes. Therefore it is
assumed that the Maxwell field has the same symmetries
as the background spacetime. Writing Eqs. (3.2)–(3.5)
explicitly for the G2 metric (2.10) and its spin coefficients
(cf. Appendix) and taking into account that all metric
functions only depend on the null variables u and v the first
two equations yield to

φ1ðu; vÞ ¼ cφ1
eU; ð3:6Þ

where cφ1
is a constant. Equations (3.4) and (3.5) result in

∂u

�
e−

1
2
ðMþUÞffiffiffiffiffiffiffiffiffiffiffiffi
Z þ Z̄

p φ0

�
¼ −∂v

�
e−

1
2
ðMþUÞffiffiffiffiffiffiffiffiffiffiffiffi
Z þ Z̄

p φ2

�
ð3:7Þ

showing the existence of a potential function Hðu; vÞ
(cf. [15]) such that the remaining components of the
electromagnetic spinor are determined by

φ0 ¼ −e1
2
ðMþUÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
Z þ Z̄

p
H;v ð3:8Þ

φ2 ¼ e
1
2
ðMþUÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
Z þ Z̄

p
H;u: ð3:9Þ

Indices ; u and ; v denote the corresponding partial deriv-
atives. Moreover, using expressions (3.8) and (3.9) in
Eqs. (3.4) and (3.5) yields to (cf. also [15])

H;uv þ
Z;u

Z þ Z̄
H;v þ

Z̄;v

Z þ Z̄
H;u ¼ 0; ð3:10Þ

where X;mn ≡ ∂
2X

∂m∂n with m, n denoting the null variables u
and v.
Einstein’s equations imply that the components of the

Ricci tensor in terms of the energy-momentum tensor Tab
are given by [13]

Φαβ ¼ 4πGN

�
Tαβ −

1

4
Tμ
μgαβ

�
; ð3:11Þ

with GN Newton’s constant of gravitation. Together with
the energy momentum tensor of the electromagnetic field
Tαβ ¼ 1

2π φABφ̄A0B0 . Using Eqs. (A8)–(A12) together with
Eq. (3.11) yields to

ðZ þ Z̄Þð2Z;uv − Z;uU;v − Z;vU;uÞ − 4Z;uZ;v − 4GNeUðZ þ Z̄Þ3H;uH̄;v ¼ 0 ð3:12Þ

e−2UðU;uv −U;uU;vÞ þ 16GN jcφ1
j2e−M ¼ 0 ð3:13Þ

2U;uu −U2
;u þ 2M;uU;u − 4

Z;uZ̄;u

ðZ þ Z̄Þ2 − 8GNeUðZ þ Z̄ÞH;uH̄;u ¼ 0 ð3:14Þ

2U;vv −U2
;v þ 2M;vU;v − 4

Z;vZ̄;v

ðZ þ Z̄Þ2 − 8GNeUðZ þ Z̄ÞH;vH̄;v ¼ 0; ð3:15Þ

which forms a complete set of equations together with Eq. (3.10).
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A. The electromagnetic field in the Penrose limit

In the pp wave spacetime of the Penrose limit in the
direction of the flagpole of the spinor αA the only non-
vanishing component of the electromagnetic spinor is given
by φ2ðξÞ ¼ φ11 ¼ φABα

AαB and its complex conjugate. In
terms of the components of the electromagnetic spinor of
the original G2 spacetime this is found to be

φðξÞ ¼ A2ðξÞφ00 þ 2AðξÞBðξÞφ01 þ B2ðξÞφ11: ð3:16Þ

IV. DIAGONAL PENROSE LIMITS

Tod [7] showed that the plane wave spacetime in the
Penrose limit is diagonizable if

ΣðξÞ≡ iðΨ̄ðξÞΨ̇ðξÞ − ΨðξÞ ˙̄ΨðξÞÞ ¼ 0; ð4:1Þ

where a dot denotes the derivative with respect to the
affine parameter ξ. For the G2 metric under consideration
[cf. Eq. (2.25)]

ΨðξÞ ¼
X

N¼0;2;4

μNΨN; with μ0 ¼ A4ðξÞ;

μ2 ¼ 6A2B2; μ4 ¼ B4ðξÞ: ð4:2Þ

This yields to

−iΣðξÞ ¼
X

N;M¼0;2;4

½T2ðμN; μMÞT3ðΨN;ΨMÞ

þ T1ðΨN;ΨMÞT4ðμN; μMÞ
þ T1ðμN; μMÞT4ðΨ̄N; Ψ̄MÞ
þ T2ðΨ̄N; Ψ̄MÞT3ðμN; μMÞ�; ð4:3Þ

where with XN ¼ jXN jeiφXN ,

T1ðXN; XMÞ ¼ jXN jjXMjðe−iðφXN
−φXM

Þ − eiðφXN
−φXM

ÞÞ
T2ðXN; XMÞ ¼ jXN j ˙jXMjðe−iðφXN

−φXM
Þ − eiðφXN

−φXM
ÞÞ

þ iφ̇XM
jXN jjXMjðe−iðφXN

−φXM
Þ

þ eiðφXN
−φXM

ÞÞ
T3ðXN; XMÞ ¼ jXN jjXMje−iðφXN

−φXM
Þ

T4ðXN; XMÞ ¼ jXN j ˙jXMjeiðφXN
−φXM

Þ

− iφ̇XM
jXN jjXMjeiðφXN

−φXM
Þ: ð4:4Þ

It can be seen that the diagonalizability condition (4.1) is
satisfied for φμN ¼ φμ ¼ const and φΨN

¼ φψ ¼ const
From Eq. (2.18) it follows that in this case the imaginary

part of Z is constant, namely, i
2
ðZ − Z̄Þ ¼ ð2ÞE

ð1ÞE. Thus the

Weyl scalars Ψ0, Ψ2 and Ψ4 are real functions and
φψ ≡ 0. This still leaves the possibility that the constant

phase φμ ≠ 0 and thus the Weyl scalar ΨðξÞ of the plane
wave spacetime in the Penrose limit is complex. Formally
this induces a nondiagonal wave amplitude h12
[cf. Eq. (2.28)]. However, the constant phase 4φμ of
ΨðξÞ can be made to vanish by a rotation of the null tetrad
or equivalently the spinor dyad. In the former case
following [14] a rotation of class III leaves the directions
of the null tetrad vectors l and n unchanged but rotates m
and m̄ by an angle θ in the ðm; m̄Þ plane. Only considering
this rotation leads to a transformation of the Weyl scalars
Ψj → eið2−jÞθΨj, j ¼ 0;…; 4. Thus ΨðξÞ will be trans-
formed to e−2iθΨðξÞ, and choosing θ ¼ 2φA leads to a real
Weyl scalar. Thus h12 (2.28) vanishes. The components of
the Ricci tensor transform asΦkj → eiðj−kÞθΦkj, j, k ¼ 0, 1,
2. Therefore, ΦðξÞ stays invariant under the considered
rotation of the null tetrad. Finally, the behavior of the
spacetime components of the electromagnetic field is
determined by φj → φjeið1−jÞθ, j ¼ 0, 1, 2, and correspond-
ingly the spinor components [cf. Eq. (3.1)]. Thus under the
specified rotations of the null tetrad vectors m and
m̄ φðξÞ → e−iθφðξÞ.
In the Penrose limit the spin frame will be chosen to be

determined by the normalized spinor dyad fβ; αg with α
given by Eq. (2.6); then β is found to be

βA ¼ FoA þGιA; ð4:5Þ

with the normalization βAα
A ¼ 1 implying FB −GA ¼ 1

and choosing F and G such that in the Penrose limit the
only nonvanishing component of the Weyl spinor is ΨðξÞ.
Note αA determines the flagpole, as well as together with βA

the flagplane [13]. Equally, as the transformation of the null
tetrad vectors renders the only nonvanishing Weyl scalar of
the plane wave space time in the Penrose limit a real
function [14] this can also be achieved by transforming
the spinor dyad fβ; αg, namely, by βA → eiφAβA and αA →
e−iφAαA [13].

V. EXAMPLE: RADIAL PENROSE LIMIT

The radial Penrose limit is an important particular case
since the affine parameter ξ of the null geodesic becomes a
function of just one of the null coordinates. In particular,
the radial Penrose limit is taken along a null geodesic with
tangent parallel to one of the real null tetrad vectors lμ or nμ,
respectively. Here, the latter is chosen such that the null
geodesic (2.13) reads as Vμ ¼ jBj2nμ. Equation (2.9) for
A≡ 0 and B ¼ jBjeiφB with φB a real function implies

1

jBj
djBj
dξ

¼ 1

4

dM
dξ

dφB

dξ
¼ i

4

1

Z þ Z̄
dðZ − Z̄Þ

dξ
; ð5:1Þ
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where Eq. (2.21)(1) has been used. Thus the Weyl scalar of
the plane wave spacetime is found to be

ΨðξÞ ¼ B4ðξÞΨ4ðξÞ ¼ jBj4jΨ4ðξÞjeið4φBðξÞþφΨ4 ðξÞÞ ð5:2Þ

with

jBj ¼ C0e
M
4 ð5:3Þ

eiφΨ4 ¼
�
1þ iP
1 − iP

�1
2 ð5:4Þ

P ¼−
d2φB
dξ2 − 1

2
d
dξ ð2UþMþ lnðZþ Z̄ÞÞ dφB

dξ

d2

dξ2 lnðZþ Z̄Þ− 1
2
d
dξ ð2UþMÞ d

dξ lnðZþ Z̄Þ− 8ðdφB
dξ Þ2

;

ð5:5Þ

and the affine parameter is determined by ξ ¼
C−2
0

R
due−Mðu;v¼v0Þ with C0 and v0 constants. The plane

wave metric in the radial Penrose limit is diagonal or
diagonizable, respectively, for 4φB þ φΨ4

equal to zero or
constant, respectively. In the latter case the complex phase
can be removed by a transformation of the spinor dyad as
discussed in the previous section. As can be seen from
the solution (5.5) a constant phase φB implies φΨ4

¼ 0.
Moreover, it imposes Z − Z̄ at most a constant implying the
G2 metric is diagonal (or diagonizable). Thus the radial
Penrose limit is diagonal for diagonalG2 spacetimes and not
diagonal for nondiagonal ones. In [9] an explicit example of
this has been presented.

VI. TWISTOR EQUATION AND SOLUTIONS
IN THE PENROSE LIMIT

The twistor equation is given by [10]

∇ðA
A0ωBÞ ¼ 0: ð6:1Þ

It is also interesting to note that because of its conformal
invariance solutions in Minkowski spacetime can be trans-
formed to solutions in conformally flat, curved backgrounds.
Moreover, in [11] all metrics of four-dimensional real space-
times locally admitting a solution to the twistor equation have
been found.
In general in curved spacetimes solutions are severely

restricted by the consistency condition

∇A0ðC∇A
A0ωBÞ ¼ −□ðCAωBÞ ¼ −ΨCA

D
BωD − ieφðCAωBÞ;

ð6:2Þ
permitting the presence of an electromagnetic field and a
twistorωB with charge e. Equation (6.1) yields the condition

ΨABCDω
D ¼ −ieφðABωCÞ: ð6:3Þ

For uncharged twistors this implies that either the spacetime
is conformally flat (ΨABCD ¼ 0) or the Weyl spinor is null
implying that it has a fourfold principal spinor. The latter is
the case of planewave spacetimes.Metrics of the form (2.10)
admit conformally flat as well as plane wave solutions.
Writing the uncharged twistor ωA ¼ ω0oA þ ω1ιA its equa-
tion is given by [13] in the GHP formalism

κω0 ¼ þω1; σω0 ¼ ðω1; ð0ω0 ¼ σ0ω1; þ0ω0 ¼ κ0ω1;

þω0 þ ρω0 ¼ ð0ω1 þ τ0ω1; ðω0 þ τω0 ¼ þ0ω1 þ ρ0ω1: ð6:4Þ
For the metric (2.10) Eq. (6.4) yields to

∂uω
0 ¼ −

1

4

�
∂uM −

∂uðZ − Z̄Þ
Z þ Z̄

�
ω0 ð6:5Þ

∂vω
1 ¼ −

1

4

�
∂vM þ ∂vðZ − Z̄Þ

Z þ Z̄

�
ω1 ð6:6Þ

∂xω
0 ¼ e

1
2
ðM−UÞ

ðZ þ Z̄Þ12
�
∂uω

1 −
1

4

�
∂uM − 2∂uU −

∂uðZ − Z̄Þ
Z þ Z̄

þ 4
∂uZ
Z þ Z̄

�
ω1

�
ð6:7Þ

−i∂yω0 ¼ e
1
2
ðM−UÞ

ðZ þ Z̄Þ12
�
Z∂uω1 −

Z
4

�
∂uM − 2∂uU −

∂uðZ − Z̄Þ
Z þ Z̄

�
ω1 − Z̄

∂uZ
Z þ Z̄

ω1

�
ð6:8Þ

∂xω
1 ¼ e

1
2
ðM−UÞ

ðZ þ Z̄Þ12
�
∂vω

0 −
1

4

�
∂vM − 2∂vU þ ∂vðZ − Z̄Þ

Z þ Z̄
þ 4

∂vZ̄
Z þ Z̄

�
ω0

�
ð6:9Þ

i∂yω1 ¼ e
1
2
ðM−UÞ

ðZ þ Z̄Þ12
�
Z̄∂vω0 −

Z̄
4

�
∂vM − 2∂vU þ ∂vðZ − Z̄Þ

Z þ Z̄

�
ω0 − Z

∂vZ̄
Z þ Z̄

ω0

�
: ð6:10Þ
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In the Penrose limit (cf. Sec. II) the consistency condi-
tion for uncharged twistors ωA in the G2 background
[cf. Eq. (6.3) with e≡ 0] yields ΨABCDω

DαAαBαC ¼ 0
implying

AðξÞω0ðA2ðξÞΨ0 þ B2ðξÞΨ2Þ
þ BðξÞω1ðA2ðξÞΨ2 þ B2ðξÞΨ4Þ ¼ 0: ð6:11Þ

Moreover, the only nonvanishing twistor component
ωðξÞ ¼ ωAαA is given by

ωðξÞ ¼ BðξÞω0 − AðξÞω1 ð6:12Þ

in terms of the twistor components in the G2 spacetime.
Assuming that the spacetime is not conformally flat

Eq. (6.11) and considering as examples radial Penrose
limits yields solutions ωA of the twistor equation for

(i) the Penrose limit along a null geodesic Γ tangent to
the real null tetrad vector nμ: AðξÞ≡ 0, ω1 ≡ 0.
This radial Penrose limit has been considered

in Sec. V. The twistor component along Γ is given
by ωðξÞ ¼ BðξÞω0. The solution for BðξÞ is deter-
mined by Eqs. (5.1) and (5.3). Equations (6.5)–(6.10)
yield to

ω0ðuÞ ¼ exp

�
−
1

4
MðuÞ þ 1

4

Z
u
dũ

∂ũðZ − Z̄Þ
Z þ Z̄

�
;

ð6:13Þ

taking into account that all metric functions become
effectively only functions of u.
Taking into account the source-freeMaxwell equa-

tions the solution is of the same general form.
However, the solutions for the metric functions are
different in general because of the contribution
from the electromagnetic spinor component φ2ðuÞ ¼
e
1
2
ðMþUÞH;u with H ¼ HðuÞ to Eqs. (3.12)–(3.15).

(ii) the Penrose limit along a null geodesic Γ tangent to
the real null tetrad vector lμ: BðξÞ≡ 0, ω0 ≡ 0.
The twistor component along Γ is given by

ωðξÞ ¼ −AðξÞω1. Using Eq. (2.8) it is found that
the solution for AðξÞ ¼ jAjeiφA has the same form
for the modulus jAj as jBj [cf. Eq. (5.3)] in the
anterior radial Penrose limit i.), but the complex
phase φA is determined by −φB [cf. Eq. (5.1)].
Moreover, ω1 is given by

ω1ðvÞ ¼ exp

�
−
1

4
MðvÞ − 1

4

Z
v
dṽ

∂ṽðZ − Z̄Þ
Z þ Z̄

�

ð6:14Þ
using that all metric functions become effectively
only functions of v.

Including a source-free electromagnetic field im-
plies that the spinor componentφ0ðvÞ ¼ −e1

2
ðMþUÞH;v

with H ¼ HðvÞ contributes to Eqs. (3.12)–(3.15).

VII. CONCLUSIONS

Penrose limits of G2 spacetimes for general nonvacuum
as well as for source-free electromagnetic fields have been
considered using the formulation of Tod [7] in the spinor
formalism. Moreover, the condition for the diagonaliza-
bilty of the resulting plane wave spacetime has been
considered for G2 spacetimes. In terms of the Brinkmann
form of the plane wave metric the nondiagonal wave
profile is determined by the imaginary part of the only
nonvanishing Weyl scalar. The Tod condition implies that
the complex phase can be at most constant [7]. This could
also be seen by arguing that a transformation of the null
tetrad vectors renders the Weyl scalar to be a real function
for a constant complex phase. As an example the radial
Penrose limit has been considered in detail. Finally, the
twistor equation in the Penrose limit has been considered.
Explicit solutions including a Maxwell field for uncharged
twistors have been found in the radial Penrose limit. This
points toward an additional, interesting aspect of Penrose
limits. In general the consistency condition of the twistor
equation severely restricts solutions in arbitrary, curved
spacetimes. However, it is possible to associate corre-
sponding twistor solutions in a Penrose limit of a general
curved spacetime.
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APPENDIX: QUANTITIES IN THE
NEWMAN-PENROSE FORMALISM

The relevant quantities for the metric (2.10) are given
here, some of which have been calculated using the
MATHEMATICA package xAct [16]. The null tetrad metric
is given by

ηðaÞðbÞ ¼ ηðaÞðbÞ ¼

0
BBB@

0 1 0 0

1 0 0 0

0 0 0 −1
0 0 −1 0

1
CCCA: ðA1Þ

Tetrad indices are latin indices running from 1 to 4,
enclosed in brackets. The null tetrad vectors for the metric
(2.10) are given by
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lμ ¼ ð 0 e
M
2 0 0 Þ nμ ¼ ð eM

2 0 0 0 Þ
mμ ¼

�
0 0 e

U
2 Z̄

ðZþZ̄Þ12
−i e

U
2

ðZþZ̄Þ12

�
m̄μ ¼

�
0 0 e

U
2Z

ðZþZ̄Þ12
i e

U
2

ðZþZ̄Þ12

�
: ðA2Þ

Using the notation of [13] the directional derivatives are defined by

D ¼ lν∇ν D0 ¼ nν∇ν δ ¼ mν∇ν δ0 ¼ m̄ν∇ν: ðA3Þ

For the definitions of the spin-weighted directional derivatives as used in the compacted spin-coefficient (GHP) formalism,
þ, þ0, ð and ð0, cf. [13] and references therein.
The only nonvanishing spin coefficients are

ϵ ¼ −
1

4
e
1
2
Mðu;vÞ

�
∂vM þ ∂vðZ − Z̄Þ

Z þ Z̄

�
γ ¼ 1

4
e
1
2
Mðu;vÞ

�
∂uM −

∂uðZ − Z̄Þ
Z þ Z̄

�

ρ0 ¼ 1

2
e
1
2
Mðu;vÞ

∂uU σ0 ¼ e
1
2
Mðu;vÞ ∂uZ

Z þ Z̄

ρ ¼ 1

2
e
1
2
Mðu;vÞ

∂vU σ ¼ e
1
2
Mðu;vÞ ∂vZ̄

Z þ Z̄
: ðA4Þ

The components of the Weyl tensor are encoded in five
complex Weyl scalars in the Newmann-Penrose formalism.
The nonvanishing Weyl scalars for the metric G2 metric
(2.10) are given by

Ψ0 ¼
eM

ðZþ Z̄Þ2 ½ðZþ Z̄Þ½Z̄;vvþM;vZ̄;v−U;vZ̄;v�− 2ðZ̄;vÞ2�

ðA5Þ

Ψ2 ¼ −
eM

4

�
2U;uv −U;uU;v − 4

Z;uZ̄;v

ðZ þ Z̄Þ2
�
− 2Π ðA6Þ

Ψ4 ¼
eM

ðZþ Z̄Þ2 ½ðZþ Z̄Þ½Z;uuþM;uZ;u−U;uZ;u�− 2ðZ;uÞ2�;

ðA7Þ

with the notation X;m ≡ ∂X
∂m and X;mn ≡ ∂

2X
∂m∂n for m, n

denoting the null variables u and v. Moreover, in the
expression for the Weyl scalar Ψ2 (A6) Π ¼ Λ ¼ 1

24
R with

R the Ricci scalar, as given below.
The components of the Ricci tensor are encoded in

the four real and three complex scalars given of which

the following are nonvanishing for the G2 metric under
consideration:

Φ00 ¼
eM

4

�
2U;vv −U2

;v þ 2M;vU;v − 4
Z;vZ̄;v

ðZ þ Z̄Þ2
�

ðA8Þ

Φ02 ¼ −
1

2

eM

Z þ Z̄

�
2Z̄;uv − Z̄;uU;v − Z̄;vU;u − 4

Z̄;uZ̄;v

Z þ Z̄

�

ðA9Þ

Φ20 ¼ Φ̄02 ðA10Þ

Φ11 ¼
eM

8

�
U;uU;v þ 2M;uv − 2

Z;uZ̄;v þ Z̄;uZ;v

ðZ þ Z̄Þ2
�

ðA11Þ

Φ22 ¼
eM

4

�
2U;uu − U2

;u þ 2M;uU;u − 4
Z;uZ̄;u

ðZ þ Z̄Þ2
�

ðA12Þ

Λ¼−
eM

24

�
4U;uv− 3U;uU;vþ 2M;uv− 2

Z;uZ̄;vþ Z̄;uZ;v

ðZþ Z̄Þ2
�
:

ðA13Þ
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