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Penrose limits are considered in spacetimes admitting two Abelian, spacelike Killing vectors in general
nonvacuum as well as in particular in the presence of an electromagnetic field. This class of spacetimes
includes inhomogeneous cosmologies as well as colliding plane gravitational and the corresponding field
waves or matter. Following the work of Tod [Classical Quantum Gravity 37, 075021 (2020)] the conditions
for diagonal Penrose limits are investigated in these backgrounds. The twistor equation is considered in
these spacetimes, and solutions are given in the radial Penrose limit.
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I. INTRODUCTION

Plane wave solutions play an important role in classical
as well as quantum field theories. In string theory they are
also known to be examples of exact classical string vacua
[1,2]. Penrose [3] showed that along a segment of a null
geodesic without conjugate points any spacetime has a
plane wave limit. The Penrose limit and its generalization to
D dimensional spacetimes [4] is of particular interest in
string/M theory (cf., e.g., [5,6]).

Recently Tod [7] demonstrated the condition on the
spacetime so that all Penrose limits are diagonal. Moreover,
an elegant and computational efficient way of calculating
the Penrose limit has been presented there using two-spinor
calculus [7]. Different from the original formulation of
Penrose [3] it does not involve an explicit coordinate
transformation adapted to the null geodesic along which
the Penrose limit is taken.

Here the formulation of Tod [7] is applied to determine
the Penrose limits of inhomogeneous spacetimes admitting
two spacelike commuting Killing vectors generating an
Abelian group G,. This type of metrics allows one to des-
cribe different types of backgrounds such as cosmological
backgrounds and colliding plane wave spacetimes. More-
over, some of the spatially homogeneous backgrounds with
three spacelike Killing vectors, namely, models of Bianchi
type I-VII as well as the locally rotationally symmetric
(LRS) VII and LRS IX admit two-dimensional Abelian
subgroups (cf. [8]). Radial Penrose limits and Abelian as
well as non-Abelian T-duality transformations of low
energy string backgrounds have been considered in this
type of background in [9].
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An interesting aspect of the resulting plane wave space-
times in the Penrose limit is that these backgrounds permit
the existence of twistors [7,10,11]. Twistors were intro-
duced to provide a fundamental description of spacetime
structure and physical concepts. Penrose proposed consid-
ering the two spinors as more fundamental than spacetime
points (e.g., [10]). Therefore it is natural to expect that
twistors play an important role in the quantization of
gravity. The relation of the twistor equation to massless
fields and representation of solutions in terms of contour
integrals of holomorphic functions has led to an important
advancement in the mathematical aspects of solutions of
differential equations by Penrose transforms (e.g., [12]).
Global solutions of the twistor equation in a curved
background are severely restricted by a consistency con-
dition. This has led to additional concepts of local and
asymptotic twistors in asymptotically flat spacetimes.
However, there do exist global twistors in plane wave
backgrounds. In this sense the importance of the resulting
plane wave spacetimes in the Penrose limit is similar to the
case of exact solutions of string theory in plane wave
backgrounds which in part motivated the strong interest in
the Penrose limit over recent years.

The plan of the paper is as follows. In Sec. II the Penrose
limit procedure and all the relevant quantities in the Newman-
Penrose formalism as well as in the two-spinor formulation
are presented for G, metrics. In Sec. III the electromagnetic
field two-spinor formulation for the G, metrics is given
together with Einstein’s equations to provide a particular
example of a nonvacuum spacetime. In Sec. IV the question
of diagonalizability will be discussed. Radial Penrose limits
are considered as an example in Sec. V. The twistor equation
is discussed in Sec. VI, and explicit solutions are given in
the radial Penrose limit. Finally, in Sec. VII conclusions are
presented.

© 2023 American Physical Society


https://orcid.org/0000-0001-9429-8503
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.044027&domain=pdf&date_stamp=2023-08-15
https://doi.org/10.1088/1361-6382/ab738a
https://doi.org/10.1103/PhysRevD.108.044027
https://doi.org/10.1103/PhysRevD.108.044027
https://doi.org/10.1103/PhysRevD.108.044027
https://doi.org/10.1103/PhysRevD.108.044027

KERSTIN E. KUNZE

PHYS. REV. D 108, 044027 (2023)

II. PENROSE LIMITS OF G, SPACETIMES

In [7] the calculation of the Penrose limit has been
formulated in terms of two spinors. A normalized spin
frame o?, 4, with A = 0, 1 satisfies [13]

OAIA =1 ZAOA = —1 OAOA =0= lAlA. (21)

Following [13] a four-dimensional spacetime is considered
with metric g,,, and a null tetrad of (“world”) vectors I, n*,
m* and m* is defined by

/ _ /
m* = o m* =o',

(2.2)

Then with respect to the spacetime metric g,, these vectors
are defining an orthonormal null tetrad with two real null
vectors [# and n*, respectively, and two complex null
vectors which are complex conjugates of each other m* and
m* such that

L =1

m,mt = —1,

3 (2.3)

and all other combinations are zero. Moreover, the metric
is given by g, =l,n, +n,l, —m,m, —m,m, In the
Newman-Penrose formahsm the components of curvature
and energy momentum tensor as well as covariant deriv-
atives and Einstein’s equations can be calculated efficiently
with respect to this orthonormal null tetrad [8,13,14].

The Penrose limit yields a plane wave spacetime. This
admits five Killing vectors. The only nonvanishing Weyl
scalar is ¥, = ¥, and ®,, = ® is the only nonvanishing
scalar determining the components of the Ricci tensor
(cf., e.g., [7,8,15]). Equivalently the Weyl spinor and Ricci
spinor are given by, respectively, [7]

Wagep = Yos0p0c0p  Papap = Posopoyop. (2-4)

Following [7] the Penrose limit of a spacetime M is
obtained by choosing any null geodesic I" in M and
considering a spinor field a* parallelly propagated tangent
to I and defining an affine parameter £ (up to an additive
constant) by a*@*V,,&= 1. The plane wave in the
Penrose limit is then determined by

Y(&) = wapcpataPaa® D) = papapa’alaral .

(2.5)
Assuming the spinor field a” to be of the form

ot = A(€)o* + B(E)A (2.6)

the condition for its parallel transport along the null
geodesic T,
C(AC_CAIVAA/QB = O, (27)

yields the evolution equations for the two complex func-
tions A(¢) and B(&):

dA
- —|A|*(Ae + Ba — BY') + |B|*(Ap' + BK' — Ay)

— A’Bj + B*Ac’ (2.8)
dB 5
7 = |A|?(Ax + Be + Bp) — |B|*(=AB — Az — By)

+ A2Bo + B*Aa (2.9)

using that {o”, 14} is a normalized spinor basis.

In the following the Penrose limit construction following
[7] will be considered for metrics admitting two Abelian
spacelike Killing vectors. These are described by the line

element (e.g., [15])

2 -U
ds? =2e Mdudv — ¢ =
Z+7Z

(dx + iZdy)(dx — iZdy),
(2.10)

where M = M(u,v) and U = U(u, v) are real functions of
the null coordinates u and v. Z = Z(u,v) is a complex
function of u and ». Colliding plane wave spacetimes can
be separated in four different regions. Two of these describe
the two incoming plane waves for which all metric
functions have as argument either the null coordinate u
or the null coordinate v, respectively (e.g., [15]). The
interaction region of these plane waves constitutes the third
region in which all metric functions depend on both null
coordinates in general. The fourth region describes the
background spacetime on which the waves propagate, most
commonly taken to be flat. The Penrose limits calculated of
the interaction region might have interesting relations to the
incoming, initial plane waves.

The spin coefficients and curvature components for the
G, metric (2.10) are given in the Appendix. In particular the
spin coefficients 7, 7, a, 5, k, and «’ vanish [cf. Eq. (A4)]
simplifying Eqgs. (2.8) and (2.9).

When considering cosmological spacetimes it is useful to
introduce a timelike coordinate ¢ and a spacelike coordinate z
by defining t = u — v and z = u + v. The explicit forms of
the metric functions M, U, and Z for the case of the spatially
homogenous models of Bianchi type which have three
Killing vectors but admit two-dimensional Abelian sub-
groups G, have been found explicitly in [9].

The two Killing vectors 0, and d, admitted by the metric
(2.10) expressed in terms of the null tetrad are given by

Ogr =7 ey 7 e (2.11)
z+2} (z+2)
Ogp =i " 7w —i— "z, (2.12)
(Z2+2Z): (Z+2Z)
Therefore there are two constants of motion VE = (VK JVE

where the tangent world vector of the null geodesic is
determined by V* = o*@"’; thus
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V# = AAI* + BBn* + ABm* + ABm*.  (2.13) This allows one to obtain expressions for the product of the
modulus of A and B as well as the differences in their
This yields to phases, namely,
- u
(I)E:—L(AB—FAB) (2.14) ez L |
= - Al|B|= WE?ZZ+i(Z-Z)VEPE + (PE):
Zi7) AllBl = (VEPZZ+i(Z -2 EE + (V8
ey o (2.17)
@E=-i————(ABZ-ABZ), (2.15)
(Z+Z):
WE7 — i@\ *!
. . eT2ilep—0a) — EZ-iTE (2.18)
implying that WEZ +iDE
%
A= (-WEZ +iPE) (2.16)  with X = |X|e"”x, X =A, B. Finally, using the spin
(Z+2): coefficients as given in Eq. (A4) this leads to
|
dAP? 1 4, 1 ety 1) N2 75 > (1) (2) ) g2
=—e2(0,M)|A = =10,2U-M E)yZZ+iZ-Z)VEYE E
= 3OMAF + 55 0,00 - (VP22 + 2 - 2)VEVE + (B
2 1 - - -
+=—"=20,|5(VE(Z +7°) —iVEPDE(Z> - 7?) - (PE)X(Z + Z) (2.19)
Z+7Z "3
dBP? 1 y 4 1 ertv (1) 275 > (1) (2) ) )2
~e2(0,M)|B = =10,_U-M EyZZ+i(Zz-Z)VEYE E
=3O+ 57 [0,.0U - M(VEPZZ +i(2 - 2) BV E + (£
2 1 - - _
+="20,|=(VEX(Z* +2°) + iVEPE(Z> - 2%) - (DE(Z + 2)| |. (2.20)
Z+7Z |3
Moreover, the condition & to be an affine parameter leads to
d d
e = Bl e = Aret
dx er dy €7
— — ————(ABZ +ABY — =i _— (AB - AB 2.21
d¢ (Z+Z)7( ) dg (z+z)z( ) (2:21)

Taking into account Eq. (2.17) the last two equations can be
rewritten as

dx 2eV - i _

dx 27 (g L _ne ,

dé: Z+Z(zz E-2(Z-7) E) (2.22)
dy 2eY i - )

Thus null geodesics with x = 0, y # 0, a dot denoting the
derivative with respect to &, are possible for (VE =0,
2E #0 in spacetimes with Z real. Interchanging the
constants with the same condition on Z allows for the
case X #0, y = 0. In the case x = 0 = y both constants
have to vanish. Moreover, together with Eq. (2.16) this
implies that one of the functions A or B has to vanish,
making the affine parameter £ a function only of either one
of the null coordinates u or v of the background spacetime.

This describes radial Penrose limits in which the Penrose
limit is considered along radial geodesics (e.g., [9]). Radial
Penrose limits within the spinor formulation of Tod [7] are
considered below in Sec. V.

The only nonvanishing Ricci spinor and Weyl scalar in
the Penrose limit [cf. Eq. (2.5)] are given by

(&) = |A]*Dy + (AB)* D, + (AB) Dy

—4|AP|BP®,; + |Bl*®y, (2.24)

‘P(f) - A4‘“PO + 6A232q"2 + B4lp4, (225)
where @, and ¥; are the tetrad components of the Ricci
tensor and the Weyl scalars for the G, metric (2.10) as
given in Egs. (A8)-(A12) and (AS5)—(A7), respectively.
The wave profiles of plane wave spacetimes are obtained
from the Brinkmann form (cf., e.g., [7,8,15])
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dSz = 2drd§ + (h11X2 + 2h12XY + h22Y2)d€2

— dX? - dv?, (2.26)
where

=0 4 (¥E +¥E) (227

iy = =5 (¥() - ¥(¢)) (2.28)

=0~ (¥ +HE) (229

with the Ricci tensor component @ (&) (2.24) and the Weyl
scalar W(&) (2.25). If ¥(¢) is real then hi, =0, and the
corresponding G, metric is diagonal (cf. [15]).

III. THE ELECTROMAGNETIC FIELD IN G,
SPACETIMES AND ITS PENROSE LIMIT

In this section the Penrose limit construction [7] is
applied to a nonvacuum spacetime, namely including a
nonvanishing electromagnetic field. The behavior of the
electromagnetic spinor is determined in the Penrose limit.

The Maxwell tensor is determined by the electromag-
netic spinor @45 by [13]

Fop = Fanpp = @apéap + €apPap (3.1)
with @ap = @ap) = %F ABC«C/ with the correspondence
between spacetime and spinor components given by
®o = Poos P1 = Po1> P2 = @1 and its complex conjugate.
The free space Maxwell’s equations can be expressed in
terms of a zero rest-mass field equation [13] which in the
compacted spin-coefficient form [Geroch-Held-Penrose
(GHP) formalism] is efficiently written as

bp1 =gy =~ o + 2p) — ks (
P'o1 =3¢, = =19, + 29"y — K g (
bpy =01 =09y = 2701 + pey (

(

Doy — 3¢, = 6, — 21, + p'op.

In the following the coupled Einstein-Maxwell equations
will be considered in G, spacetimes. Therefore it is
assumed that the Maxwell field has the same symmetries
as the background spacetime. Writing Egs. (3.2)—(3.5)
explicitly for the G, metric (2.10) and its spin coefficients
(cf. Appendix) and taking into account that all metric
functions only depend on the null variables « and v the first
two equations yield to

@1 (u,v) =c, e, (3.6)
where ¢, is a constant. Equations (3.4) and (3.5) result in
e 3M+U) e 3 M+U)

[z =2l o

showing the existence of a potential function H(u, v)
(cf. [15]) such that the remaining components of the
electromagnetic spinor are determined by

@y =—eMtUN/7 4 7H (3.8)

@, = MU\ Z L ZH . (3.9)

Indices , u and , v denote the corresponding partial deriv-
atives. Moreover, using expressions (3.8) and (3.9) in
Egs. (3.4) and (3.5) yields to (cf. also [15])

Z v
H,+ H, =0,

H . — 3.10
wt 717 Z+7Z (3.10)
where X ,,,, = a?;gn with m, n denoting the null variables u
and v.

Einstein’s equations imply that the components of the
Ricci tensor in terms of the energy-momentum tensor 7',
are given by [13]

1
q)aﬂ :47[GN (Taﬂ —ZTZgaﬂ>, (311)
with Gy Newton’s constant of gravitation. Together with
the energy momentum tensor of the electromagnetic field
Top = 5= @ap@ap- Using Eqs. (A8)—(A12) together with
Eq. (3.11) yields to

z+2)22,,-2,U,-2,U,)—4Z,Z,—4GyeY(Z+ Z)*H ,H, =0 (3.12)
e(Uu,,-U,U,)+16Gy|c, [Pe™ =0 (3.13)
ZUW—Uzu+2MMUM—4L;”—8GNeU(Z+Z)HMHu:O (3.14)
’ ’ e (Z+Z)? e
2 Z,vzv U — i)
2U,,-U% +2M U, —4 - —8GyeY(Z+Z)H H, =0, (3.15)

(Z+Z)?

which forms a complete set of equations together with Eq. (3.10).
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A. The electromagnetic field in the Penrose limit

In the pp wave spacetime of the Penrose limit in the
direction of the flagpole of the spinor a” the only non-
vanishing component of the electromagnetic spinor is given
by (&) = @11 = @apa’a® and its complex conjugate. In
terms of the components of the electromagnetic spinor of
the original G, spacetime this is found to be

9(£)

= AX(E)poo + 2A(E)B(E)@or + B* &)@y (3.16)

IV. DIAGONAL PENROSE LIMITS

Tod [7] showed that the plane wave spacetime in the
Penrose limit is diagonizable if

(&) = i(P(QP(E) - P(OP(©) =0,

where a dot denotes the derivative with respect to the
affine parameter £ For the G, metric under consideration
[cf. Eq. (2.25)]

(4.1)

WE) = Y unPy, with = A%E),

N=024
py = 6A°B, Hq = 34(5)- (4.2)
This yields to
—ix(¢ Z (T2 (. i) T3 (P W)
N.M=02.4
+T, (‘PN’ lPM)T4<,“Na/4M)
+ Ty (s i) Ta (P, W)
where with Xy = |Xy|e v,
T1(Xn, Xpr) = Xyl | Xpg (€700 0x) — ell0=0x))
T3 (X Xar) = XXl (e @ox o) — fl0my=0))
+ i, | X || Xag| (70 0n)
+ ei((ﬂxN—(ﬂXM))
Ts(Xn. Xu) = [ Xy|| Xyl e~ Pxv—0n)
T4<XN7XM) - |XN||XM|€ (pXN_(pXM)
— iy, | X || X g€/ Orx—000), (4.4)

It can be seen that the diagonalizability condition (4.1) is
satisfied for ¢, = ¢, =const and @y, 6 = ¢, = const
From Eq. (2.18) it follows that in this case the imaginary

(Z-2) = g Thus the

Weyl scalars ¥,, ¥, and W, are real functions and
¢, = 0. This still leaves the possibility that the constant

part of Z is constant, namely, 5

phase ¢, # 0 and thus the Weyl scalar ¥(&) of the plane
wave spacetime in the Penrose limit is complex. Formally
this induces a nondiagonal wave amplitude £,
[cf. Eq. (2.28)]. However, the constant phase 4¢, of
W(&) can be made to vanish by a rotation of the null tetrad
or equivalently the spinor dyad. In the former case
following [14] a rotation of class III leaves the directions
of the null tetrad vectors 1 and n unchanged but rotates m
and m by an angle 6 in the (m, m) plane. Only considering
this rotation leads to a transformation of the Weyl scalars
Y, - 2009, j=0,....,4. Thus ¥(£) will be trans-
formed to e=>"¥(¢), and choosing 6 = 2¢, leads to a real
Weyl scalar. Thus A, (2.28) vanishes. The components of
the Ricci tensor transform as @ ; — ei(/‘k)ecl)kj, J.k=0,1,
2. Therefore, ®(&) stays invariant under the considered
rotation of the null tetrad. Finally, the behavior of the
spacetime components of the electromagnetic field is
determined by ¢; — gajei(l‘j)", j=0,1,2, and correspond-
ingly the spinor components [cf. Eq. (3.1)]. Thus under the
specified rotations of the null tetrad vectors m and
m (&) > e p(&).

In the Penrose limit the spin frame will be chosen to be
determined by the normalized spinor dyad {f,a} with a
given by Eq. (2.6); then f is found to be

pA = Fo* + G, (4.5)
with the normalization S, = 1 implying FB — GA = 1
and choosing F and G such that in the Penrose limit the
only nonvanishing component of the Weyl spinor is ¥(&).
Note a” determines the flagpole, as well as together with 4
the flagplane [13]. Equally, as the transformation of the null
tetrad vectors renders the only nonvanishing Weyl scalar of
the plane wave space time in the Penrose limit a real
function [14] this can also be achieved by transforming
the spinor dyad {f, a}, namely, by 4 — e+ 4 and a* —
e~iagh [13].

V. EXAMPLE: RADIAL PENROSE LIMIT

The radial Penrose limit is an important particular case
since the affine parameter ¢ of the null geodesic becomes a
function of just one of the null coordinates. In particular,
the radial Penrose limit is taken along a null geodesic with
tangent parallel to one of the real null tetrad vectors /# or n*,
respectively. Here, the latter is chosen such that the null
geodesic (2.13) reads as V* = |B|>n*. Equation (2.9) for

A =0 and B = |B|e'*» with g a real function implies
1 d|B| 1dM
[B] de 4 d&
d 1 zZ-7
s _ ! g’ (5.1)
dE T 4Z+Z  dE

044027-5
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where Eq. (2.21)(1) has been used. Thus the Weyl scalar of
the plane wave spacetime is found to be

W(&) = BHE)Wa (&) = [BI*[¥a() ]/ tom@) (5.2)
with
|B| = Cye (5.3)
. 1+ iP\2
Py, —
e’ <1—iP> (5.4)
Lop 1L QU+ M +1n(Z+2)) %
B dézln(z+z)—§d—§(2U+M)d1n(Z+Z) 8(dz)*"
(5.5)

and the affine parameter is determined by &=
Cy? [ due=™(v=%) with C, and v, constants. The plane
wave metric in the radial Penrose limit is diagonal or
diagonizable, respectively, for 45 + ¢y, equal to zero or
constant, respectively. In the latter case the complex phase
can be removed by a transformation of the spinor dyad as
discussed in the previous section. As can be seen from
the solution (5.5) a constant phase ¢ implies @y, = 0.
Moreover, it imposes Z — Z at most a constant implying the
G, metric is diagonal (or diagonizable). Thus the radial
Penrose limit is diagonal for diagonal G, spacetimes and not
diagonal for nondiagonal ones. In [9] an explicit example of
this has been presented.

|

VI. TWISTOR EQUATION AND SOLUTIONS
IN THE PENROSE LIMIT

The twistor equation is given by [10]

VAwB) = 0.

(4 6.1)

It is also interesting to note that because of its conformal
invariance solutions in Minkowski spacetime can be trans-
formed to solutions in conformally flat, curved backgrounds.
Moreover, in [11] all metrics of four-dimensional real space-
times locally admitting a solution to the twistor equation have
been found.

In general in curved spacetimes solutions are severely
restricted by the consistency condition

D(CAwB) LPCA B D (CA B)

vA CVA,a) —iep

(6.2)

permitting the presence of an electromagnetic field and a
twistor ® with charge e. Equation (6.1) yields the condition

‘PABCD(UD = —ie€0(ABCUC)- (6.3)
For uncharged twistors this implies that either the spacetime
is conformally flat (W4 zcp = 0) or the Weyl spinor is null
implying that it has a fourfold principal spinor. The latter is
the case of plane wave spacetimes. Metrics of the form (2.10)
admit conformally flat as well as plane wave solutions.
Writing the uncharged twistor @ = w0 + @'/ its equa-
tion is given by [13] in the GHP formalism

xa® :l)wl’ oo’ = 6(1)1, Sl = 6’0)1, ])/wo — K"a)l,
pa’ + pa® =0 + 7o' 3o’ + 10’ = p'o' + p'o! (6.4)
For the metric (2.10) Eq. (6.4) yields to
1 Z-7
0,0° = -7 <0uM - a“é 7 )>a)0 (6.5)
1 0,(Z-27
o0 =7 ((%M + é — )>a)1 (6.6)
H(M-U) 1 Z - 0,2
. 0:(62 Z)‘(” 1—Z<auM—20uU ”é+z)+ Ziz)wl) (6.7)
+ Z):
AM-U) z 0,(Z-2Z _ 0,7
—lav 0 = % <Z0Mw1 - Z (duM - 26uU - %) a)l - Zﬁa)l> (68)
) 7
2(M-U) 1 Z-7 0,Z
o' = (Z Z)l (av 0 ~7 (a,,M -20,U + 1;4-2 ) +4Z;Z)w0> (6.9)
+ Z):
AM=U) Z 0,(Z2-2 0,7
layaﬂ:ez —( Zo,@° == ( 0,M —20,U + 1 ) 0—7Z "2 (6.10)
(Z+Z): 4 +Z Z+Z
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In the Penrose limit (cf. Sec. II) the consistency condi-
tion for uncharged twistors @” in the G, background
[cf. Eq. (6.3) with e =0] yields ¥ pcpoPatalat =0

implying

A(&)w’ (A%(&)Y, + B2(£)Y,)

+BOw! (A, + B(OW) =0.  (6.11)
Moreover, the only nonvanishing twistor component
(&) = w'ay is given by
o(£) = B(§)a" - Ao’ (6.12)
in terms of the twistor components in the G, spacetime.
Assuming that the spacetime is not conformally flat
Eq. (6.11) and considering as examples radial Penrose
limits yields solutions @w” of the twistor equation for
(i) the Penrose limit along a null geodesic I" tangent to
the real null tetrad vector n*: A(£) =0, o' =0.
This radial Penrose limit has been considered
in Sec. V. The twistor component along I is given
by @(£) = B(é)w”. The solution for B(¢) is deter-
mined by Egs. (5.1) and (5.3). Equations (6.5)—(6.10)
yield to

(6.13)

taking into account that all metric functions become
effectively only functions of u.

Taking into account the source-free Maxwell equa-
tions the solution is of the same general form.
However, the solutions for the metric functions are
different in general because of the contribution
from the electromagnetic spinor component ¢, (1) =
MUY | with H = H(u) to Egs. (3.12)~(3.15).

(ii) the Penrose limit along a null geodesic I" tangent to
the real null tetrad vector /#: B(¢) =0, o° = 0.

The twistor component along I" is given by
o(§) = —A(é)w'. Using Eq. (2.8) it is found that
the solution for A(&) = |A|e’*+ has the same form
for the modulus |A| as |B| [cf. Eq. (5.3)] in the
anterior radial Penrose limit i.), but the complex
phase ¢, is determined by —¢p [cf. Eq. (5.1)].
Moreover, o' is given by

()= exp (g (0) ‘%/M%)
(6.14)

using that all metric functions become effectively
only functions of v.

Including a source-free electromagnetic field im-
plies that the spinor component g (v) = —exM V) H |
with H = H(v) contributes to Egs. (3.12)—(3.15).

VII. CONCLUSIONS

Penrose limits of G, spacetimes for general nonvacuum
as well as for source-free electromagnetic fields have been
considered using the formulation of Tod [7] in the spinor
formalism. Moreover, the condition for the diagonaliza-
bilty of the resulting plane wave spacetime has been
considered for G, spacetimes. In terms of the Brinkmann
form of the plane wave metric the nondiagonal wave
profile is determined by the imaginary part of the only
nonvanishing Weyl scalar. The Tod condition implies that
the complex phase can be at most constant [7]. This could
also be seen by arguing that a transformation of the null
tetrad vectors renders the Weyl scalar to be a real function
for a constant complex phase. As an example the radial
Penrose limit has been considered in detail. Finally, the
twistor equation in the Penrose limit has been considered.
Explicit solutions including a Maxwell field for uncharged
twistors have been found in the radial Penrose limit. This
points toward an additional, interesting aspect of Penrose
limits. In general the consistency condition of the twistor
equation severely restricts solutions in arbitrary, curved
spacetimes. However, it is possible to associate corre-
sponding twistor solutions in a Penrose limit of a general
curved spacetime.
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APPENDIX: QUANTITIES IN THE
NEWMAN-PENROSE FORMALISM

The relevant quantities for the metric (2.10) are given
here, some of which have been calculated using the
MATHEMATICA package xAct [16]. The null tetrad metric
is given by

O 1 0 O
ro 0 0
= pla)®) = Al
Nayw) =1 00 0 — (A1)
0 0 -1 0

Tetrad indices are latin indices running from 1 to 4,
enclosed in brackets. The null tetrad vectors for the metric
(2.10) are given by
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F=(0 e 0 0) n'=(e
U_ u

mio=(0 0 =L —ie )
(z+2)2 (Z+Z)2

Using the notation of [13] the directional derivatives are defined by

D=IV, D =nV,

0 0 0)
u U
Fah e27 v e2
" ( 00 zi2p (22 ) (A2)
5 =m"V, § =m'V,. (A3)

For the definitions of the spin-weighted directional derivatives as used in the compacted spin-coefficient (GHP) formalism,

b, P, & and &, cf. [13] and references therein.
The only nonvanishing spin coefficients are

€ = ——e%M(” v) aLM + ay(z __Z) y = _e%M(u,v) auM _ au(z __Z)
Z+7Z +Z
1, | 0,Z
p/ — 5eiM(u 17)auU o = eiM(u ) m
p:leﬁM(uv)a‘U o= eiM(IA?)a—_. (A4)
2 ' Z+Z

The components of the Weyl tensor are encoded in five
complex Weyl scalars in the Newmann-Penrose formalism.
The nonvanishing Weyl scalars for the metric G, metric
(2.10) are given by

W, = (zisz (Z+2)Z,+M,Z,-U,Z,|-2(Z,)]
(AS)
%:_ﬁ 2U,, — U, U, —4 ZuZa | _opy (A6)
47 (z+2)
eM -
Vs = g4 Dt MaZo=UaZu) =227
(A7)

with the notation X, =% and X, =2X for m, n
s m > omon
denoting the null variables # and ». Moreover, in the
expression for the Weyl scalar ¥, (A6) Il = A = 21—4R with
R the Ricci scalar, as given below.
The components of the Ricci tensor are encoded in

the four real and three complex scalars given of which

the following are nonvanishing for the G, metric under
consideration:

eM Z,Z
@y =— [2U,, - U4 +2M U, —4-—"— A8
00 4 |: LU U + oY (Z + Z)2:| ( )
1 eM - _ - zZ,Z,
q)02 = _Em |:ZZ,u11 - Z.uU,v - Z,UU,Lt - 4Z,:_ é:|
(A9)
q)ZO = &)02 (AIO)
M Z,uZ,1; +ZMZ7
oy =— U U, +2M,, -2 <Z+_)2 (A11)
oy = v, 2, 42 U, — 4Ll (A12)
22 — 4 S U Y u (Z+Z)2
oM 2704720,
A== [V =30V 2M 2=

(A13)
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