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We formulate a biconnection theory of gravity whose gravitational action consists of a recently defined
mutual curvature scalar. Namely, we build a gravitational theory consisting of one metric and two affine
connections, in a metric-affine gravity setup. Consequently, coupling the two connections on an equal
footing with matter, we show that the geometry of the resulting theory is, quite intriguingly, that of
statistical manifolds. This ultimately indicates a remarkable mathematical correspondence between gravity
and information geometry.
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I. INTRODUCTION

While General Relativity (GR) has achieved remarkable
success in explaining a wide range of phenomena, it
encounters limitations when confronted with, e.g., the
accelerated expansion of the Universe [1], the existence
of dark matter and dark energy [2], or the quantum nature of
gravity. Therefore, the search for compelling alternatives
to GR, motivated by the need to address cosmological
observations and unresolved questions that challenge the
current understanding of gravity, is always a justified
course of action [3].
Among other promising alternatives are bimetric theories

of gravity,1 not strictly in the context of nonlinear massive
gravity [6–9],2 but also in the more general framework of
consistent (ghost-free) theories of interacting spin-2 fields,
where the customarily nondynamical reference metric of
massive gravity acquires its own dynamics (see [11,12] and
references therein).3 Nevertheless, all of the above theories
assume that the connection is the unique metric-compatible
and torsion-free connection induced by the metric, the
Levi-Civita connection. Consequently, the only dynamical
gravitational field variables in the problem are the two
metrics and nothing else.
However, the connection ought not be the Levi-Civita

one. Departing from the geometry underlying GR, we
encounter geometries with torsion and nonmetricity in
gravitational theories where the metric and the connec-
tion are independent field variables, and variations are

performed with respect to both of them in order to obtain
the field equations. This framework is called metric-affine
gravity (MAG) [14].4 Interestingly enough, these extended
geometries (with torsion and nonmetricity) also appear in a
different branch of mathematics that collectively goes by
the name information geometry (IG) [37].5 For instance, in
statistical models and, in particular, in the study of
statistical manifolds, one encounters a geometry that,
besides the metric, is also endowed with two affine
connections which are dual to each other (see [41] for
more information). If these two connections are also torsion
free, then there exists a totally symmetric, usually called the
cubic tensor [37], which fully describes the two connec-
tions and measures the deviation of each from the Levi-
Civita connection.
It is then interesting to examine if such a geometric arena

could manifest itself as a background solving the field
equations in some gravitational construction. If such a
mathematical correspondence exists, it could be used to
conjecture a deeper relation between these seemingly
unrelated fields of research, some sort of IG/gravity
correspondence in the, loosely speaking, fashion of
gauge/gravity duality. As we shall explicitly demonstrate,
such a correspondence does exist and therefore, it is a good
starting point to further investigate a potential interrelation
between statistical models and the microproperties of
matter as encoded in the hypermomentum tensor. As we
will show, there is a certain hypermomentum source
directly related to the so-called cubic tensor appearing in
the study of statistical manifolds.*damianos.iosifidis@ut.ee

†konstantinos.pallikaris@ut.ee
1A teleparallel bigravity analog has been recently developed

in [4] and a two-metrics, two-connections gravity in [5].
2For a comprehensive review of massive gravity, see [10].
3Historically, such a configuration was first introduced in [13]

to describe a (massive spin-2) meson-graviton interaction.

4Some recent developments in MAG include [15–36].
5The literature on the subject is vast. For some recent works

see [38,39] and references therein. Note that there are also
extensions to quantum systems, what is known as quantum
information geometry (see [40] for a recent review on this topic).
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In this regard, we shall present here what we may call a
biconnection formulation of gravity. The inclusion of two
affine connections is not as arbitrary as it may seem. For
instance, given a nonmetric connection, one can define a
second one (its dual) in such a way that inner products are
preserved even though the manifold has nonmetricity [41].
In addition, as was recently shown by one of us in [42], by
suitably defining the second connection (the so-called
torsion-dual connection) one can “preserve quadrilaterals”
even if both connections are torsionful. As we shall
explicitly show both of these geometries and also a more
general can be accommodated in the biconnection formu-
lation we develop here.
The paper is organized as follows. In Sec. II, we

communicate the basic ingredients in MAG; we introduce
notation and definitions we are going to use in the rest of
this work. We then formulate three distinct cases of
biconnection theories and show the correspondences with
the statistical structures for certain forms of hypermomen-
tum. In particular we start with the symmetric, followed by
the metric case and then we generalize the formulation for
general unconstrained connections in a general MAG-like
framework. We then wrap-up our main results and point to
future directions.

II. PRELIMINARIES

In metric-affine gravity, the connection ∇ is an inde-
pendent gravitational entity besides the metric tensor.
Associated to it is a set of coefficients, denoted by Γλ

μν,
and a covariant derivative ∇μ which acts on tensors T of
arbitrary rank ðp; qÞ in the following way:

∇μTα1…αp
β1…βq ¼ ∂μTα1…αp

β1…βq þ Γα1
νμTνα2…αp

β1…βq

þ Γα2
νμTα1ν…αp

β1…βq þ � � �
− Γν

β1μT
α1…αp

νβ2…βq

− Γν
β2μT

α1…αp
β1ν…βq − � � � : ð2:1Þ

Torsion and nonmetricity are intrinsic properties of the
connection, given by

Sμνλ ¼ Γλ½μν� and Qλμν ¼ −∇λgμν; ð2:2Þ

respectively. The torsion tensor measures the failure of the
connection to be symmetric in its lower indices, and it is
associated with the inability to “close quadrilaterals” via
parallel transport of vectors along curves in spacetime. The
nonmetricity tensor measures the failure of the metric to be
covariantly constant; the norms of vectors (or more gen-
erally their inner products) change as they are transported
along a path. By contracting torsion and nonmetricity with
the Kronecker delta and the metric, we obtain three vectors,
namely

Sμ ¼ Sμνν; Qμ ¼ Qμνλgνλ; and qμ ¼ Qνμλgλν:

ð2:3Þ

The middle vector in the above often goes by the name
“Weyl vector” in the literature.
Continuing, the curvature tensor associated with ∇ is

given by

Rλ
ρμν ¼ 2∂½μΓλjρjν� þ 2Γλ

σ½μΓσ jρjν�: ð2:4Þ

It admits three distinct single traces, the Ricci tensor
Rμν ¼ Rλ

μλν, the co-Ricci tensor Řμ
ν ¼ Rμ

λνρgλρ, and the
homothetic (curvature) tensor R̂μν ¼ Rλ

λμν ¼ ∂½μQν�. It also
has a unique double trace, R ¼ Rμνgμν ¼ Řμ

μ which is
known as the Ricci scalar. Another important quantity in
metric-affine theories is the distortion tensor

Nλ
μν ¼ Γλ

μν − Γ̃λ
μν; ð2:5Þ

which measures the difference between the full connection

and the Levi-Civita connection e∇, the latter associated with
a set of coefficients

Γ̃λ
μν ¼

1

2
gλρð∂μgρν þ ∂νgρμ − ∂ρgμνÞ: ð2:6Þ

In terms of torsion and nonmetricity, we have that

Nλ
μν ¼

1

2
gλρðQμνρ þQνρμ −QρμνÞ

þ gλρðSμνρ − Sρμν − SνμρÞ: ð2:7Þ

Rearranging Eq. (2.5), we see that we can always express
the general connection in terms of the Levi-Civita con-
nection and the distortion tensor. Making this trade results
in the decomposition of connection-dependent quantities
into Riemannian and non-Riemannian parts, what is known
as post-Riemannian expansion. For example, the post-
Riemannian expansion of the curvature tensor reads

Rλ
ρμν ¼ R̃λ

ρμν þ 2e∇½μNλjρjν� þ 2Nλ
σ½μNσ jρjν�; ð2:8Þ

where e∇μ is the covariant derivative associated with the
Levi-Civita connection, and R̃λ

ρμν is the familiar Riemann
tensor (the curvature tensor of the Levi-Civita connection).6

Now, if we equip our manifold with two connections, say
f∇ðiÞgi¼1;2, associated with two sets of coefficients
fΓλ

μν
ðiÞg, their difference is a true tensor

6In this manuscript, unless otherwise stated, quantities with a
tilde accent will always stand for objects associated with the Levi-
Civita connection.
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Kλ
μν ≔ Γλ

μν
ð1Þ − Γλ

μν
ð2Þ; ð2:9Þ

called the difference tensor. Note that the previously
mentioned distortion tensor is a particular case of the latter
tensor for Γλ

μν
ð2Þ ≡ Γ̃λ

μν. In addition, employing a post-
Riemannian expansion for both connections, the Levi-Civita
terms drop out and we have the equivalent expression

Kλ
μν ¼ Nλ

μν
ð1Þ − Nλ

μν
ð2Þ: ð2:10Þ

Interestingly, thedifference tensorKλ
μν does naturally appear

when acting with the commutator of the two covariant
derivatives upon a scalar function f,

½∇ð1Þ
μ ;∇ð2Þ

ν �f ¼ −Kλ
νμ∂λf: ð2:11Þ

Notice that the sum of two connections does not define a new
connection. However, the convex linear combination

∇ ¼ t∇ð1Þ þ ð1 − tÞ∇ð2Þ; ð2:12Þ

with t being a real parameter, does transform as a connection.
Its curvature is given by

Rλ
ρμν ¼ tRλ

ρμν
ð1Þ þ ð1 − tÞRλ

ρμν
ð2Þ − 2tð1 − tÞKλ

σ½μKσ jρjν�:

ð2:13Þ
Nevertheless, a more interesting object is the so-called
mutual curvature of the two connections for which a self-
consistent definitionwas given in [42]. In local coordinates, it
reads

Rλ
ρμν ¼

1

2
ðRλ

ρμν
ð1Þ þ Rλ

ρμν
ð2ÞÞ − Kλ

σ½μKσ jρjν�: ð2:14Þ

The geometricmeaning of themutual curvature can be found
in Appendix B. The above definition will be the basic
ingredient for our biconnection theory. Observe that Rλ

ρμν

is not a curvature tensor as per the standard definition since it
is not associatedwith a connection; there is no value of t such
that Eq. (2.13) assumes the form (2.14).
In fact, this last definition possesses a notable advantage,

in comparison to (2.13). The latter is invariant under the
simultaneous changes Γλ

μν
ð1Þ ↦ Γλ

μν
ð1Þ þ ð1 − tÞΩλ

μν and
Γλ

μν
ð2Þ ↦ Γλ

μν
ð2Þ − tΩλ

μν. This last invariance suggests
that a biconnection theory, constructed out of (2.13), would
be equivalent (up to gauge) to a theory for a single
independent connection, since one of the two distortion
tensors would be pure gauge. In other words, one of the
connections would always be the Levi-Civita connection
(in a certain gauge), meaning that the difference tensor
would just be the usual distortion tensor. Having formu-
lated the appropriate setup let us proceed with the model
building of metric-affine biconnection theories.

III. BICONNECTION THEORY

In the following we shall formulate three different
biconnection theories and also show their correspondences
(under certain conditions) with statistical and torsion-
statistical manifolds. In order to cover all possibilities
we shall first formulate a symmetric (i.e., vanishing torsion)
Theory, followed by a metric one (i.e., vanishing non-
metricity) and finally, generalizing, we shall construct a
general metric-affine biconnection theory.

A. Gravity as a statistical manifold

We consider the gravitational part of our biconnection
theory to be given by

S½g;Γð1Þ;Γð2Þ� ¼ 1

2κ

Z
dnx

ffiffiffiffiffiffi
−g

p
R; ð3:1Þ

where R ¼ Rλ
μλνgμν and κ ¼ 8πGn with Gn being the

gravitational constant in n dimensions. The two connec-
tions are assumed to be torsion free. Using relation (2.14)
and taking traces in order to form the scalar curvatures, we
may equivalently write (3.1) as

S ¼ 1

4κ

Z
dnx

ffiffiffiffiffiffi
−g

p ðRð1Þ þ Rð2Þ þ KÞ; ð3:2Þ

where fRðiÞgi¼1;2 are the scalar curvatures of the two
connections formed by the curvatures associated with
∇ð1Þ and ∇ð2Þ, respectively, and

K ≔ ðKλμνKμνλ − Kλμ
μKν

λνÞ ð3:3Þ

is what we shall call the difference scalar. Note that in our
approach we do not simply consider two affine connec-
tions, compute the associated Ricci scalars for each one,
and merely add them up. This procedure which could be
called a decoupled biconnection gravity was considered in
[43]. Here, we rather start with the mutual curvature scalar
as was defined in [42]. This leads to a quite interesting
result since, apart from the Ricci scalars of the two
connections which do not interact, we have couplings
between the two connections via the terms quadratic in
the difference tensor Kλ

μν.
7

Let us note here that one could just as well formulate the
biconnection theory as a single-connection theory with a

7The situation is analogous to the total magnetic energy
formula of two current-driven circuits in electromagnetism.
Recall there that, since the two systems interact, the energy does
not have the additive property. Besides the individual magnetic
energies, there is also a mixing term appearing which is propor-
tional to the mutual inductance multiplied by the two currents.
One could then roughly say, by crude analogy, that the mutual-
inductance term in the aforementioned configuration corresponds
to the difference scalar in our setup.
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metric and an additional rank-3 tensor field. Indeed, this is
always possible and a similar situation appears also in the
usual metric-affine formulation. There, instead of the
metric and an independent connection one can trade
variables and use the metric, the Levi-Civita connection
induced by it, and an additional rank-3 tensor field which is
the distortion tensor (see [15] for details). In addition, here
one may alternatively formulate the biconnection theory
either as a field theory for a single connection, the metric
and a rank-3 tensor field, as mentioned above, or as a field
theory for a metric and two additional rank-3 tensor fields
(the distortions of the two connections); matter will then
couple to their difference.
For the variations of the difference scalar with respect to

Γð1Þ, Γð2Þ, we readily find

δΓð1ÞK ¼ δΓλ
μν

ð1ÞΨλ
ðμνÞ; ð3:4aÞ

δΓð2ÞK ¼ −δΓλ
μν

ð2ÞΨλ
ðμνÞ; ð3:4bÞ

respectively, where

Ψλ
μν ≔ Kν

λ
μ þ Kμν

λ − Kα
λαgμν − Kμα

αδ
ν
λ: ð3:5Þ

With these we can then find the connection field equations.
Varying the action (3.1) with respect to the two affine
connections (see Appendix A for some useful formulas),
we obtain the connection field equations

Pλ
μνð1Þ þ Ψλ

ðμνÞ ¼ 0; ð3:6aÞ

Pλ
μνð2Þ −Ψλ

ðμνÞ ¼ 0; ð3:6bÞ

where

Pλ
μνðiÞ ¼ 1

2
Qλ

ðiÞgμν −Qλ
μνðiÞ þ δðνλ

�
qμÞðiÞ −

1

2
QμÞðiÞ

�
ð3:7Þ

is the torsion-free Palatini tensor associated with the ith
connection.
Adding the two, it follows that

Pλ
μνð1Þ þ Pλ

μνð2Þ ¼ 0: ð3:8Þ

After removing traces, this equation tells us that

∇αgμν ¼
1

2
ð∇α

ð1Þ þ∇α
ð2ÞÞgμν ¼ 0: ð3:9Þ

Therefore, the connection∇, that is the mean connection, is
compatible with the metric. As noted in the introduction,
using the decompositions

Γλ
μν

ðiÞ ¼ Γ̃λ
μν þ Nλ

μν
ðiÞ; ð3:10Þ

it immediately follows that the difference tensor takes the
form

Kαμν ¼ Nαμνð1Þ − Nαμνð2Þ; ð3:11Þ

which, when substituted into (3.5), results in the useful
relation

Ψλ
ðμνÞ ¼ Pλ

μνð2Þ − Pλ
μνð1Þ: ð3:12Þ

Using this, the field equations (3.6) can be written as

Pαμνð2Þ ¼ 0 and Pαμνð1Þ ¼ 0; ð3:13Þ

respectively.
It is not difficult to show that the above constraints imply

that both connections are metric-compatible and since they
are also torsion-free by assumption, these will coincide
with the Levi-Civita connection. To see this we first take the
two distinct traces8 of the above two equations which, when
combined, imply that

Qμ
ðiÞ ¼ 0 ¼ qμðiÞ: ð3:14Þ

Further substitution of these into (3.13) yields

Qαμν
ðiÞ ¼ 0; ð3:15Þ

exactly as stated above.
Consequently, the biconnection theory in vacuum is

indistinguishable from GR, for the metric field equations
take the usual form

R̃μν −
R̃
2
gμν ¼ 0; ð3:16Þ

where R̃μν and R̃ are the Riemannian (i.e. computed with
respect to the Levi-Civita connection) Ricci tensor and
scalar, respectively. Not surprisingly, in order to get
deviations from GR one would have to include connec-
tion-matter couplings which after all constitute an essential
feature of the metric-affine framework, relating micro-
scopic characteristics of matter to the generalized geometry.
This is what we consider in the following subsection.

1. Adding connection-matter couplings

Since we are considering the framework where the two
affine connections and the metric are totally independent, in
the presence of matter, it is quite essential to consider
connection-matter couplings. In the metric-affine formu-
lation such couplings are very important, bringing about the

8Note that PαμνðiÞ is symmetric in the last two indices since we
started with vanishing torsion tensors. Therefore, only two traces
of the latter are truly independent.
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so-called hypermomentum tensor [44] which describes the
microproperties of matter as noted many times by now.
Therefore, we consider matter which not only couples to

the metric, but also to the affine connection. In our
biconnection formulation it is then logical to ask which
connection couples to matter and in what way. As we have
probably made it clear already, in our formulation we
would like to treat both connections on equal footing since
we started with the mutual scalar curvature as our gravi-
tational action. Therefore, we will couple matter to both
connections. But how can we do it in such a way that we do
not discriminate between the two? The answer is hidden in
the difference tensor. Indeed, the difference tensor, as given
by Eq. (2.9), places the two connections on equal footing,
for it is symmetric under the exchange fΓð1Þ;Γð2Þg ↦
−fΓð2Þ;Γð1Þg. Consequently, it is natural to assume that
the connection-matter couplings appear only as matter
couplings to the difference tensor.
In other words, the matter sector of the biconnection

theory will read

SM½g;Γ1;Γ2;ϕ� ¼ SM½g; K;ϕ� ¼
Z

dnx
ffiffiffiffiffiffi
−g

p
LMðg; K;ϕÞ;

ð3:17Þ

where ϕ collectively denotes arbitrarily many matter
fields.9 The two hypermomenta associated with the above
action are easily computed to be

Δλ
μνð1Þ ≔ −

2ffiffiffiffiffiffi−gp δSM
δΓλ

μν
ð1Þ ¼ Ξλ

μν ð3:18Þ

and

Δλ
μνð2Þ ≔ −

2ffiffiffiffiffiffi−gp δSM
δΓλ

μν
ð2Þ ¼ −Ξλ

μν; ð3:19Þ

respectively, where we have used Eq. (2.9), and we also
invoked the chain rule. In addition, we have defined the
“principle” hypermomentum

Ξλ
μν ≔ −

2ffiffiffiffiffiffi−gp δSM
δKλ

μν
; ð3:20Þ

which is the one ultimately appearing in the connection
field equations. Bear in mind that it is symmetric in the last
two indices due to vanishing torsions. Therefore, our full
action reads

S½g;Γð1Þ;Γð2Þ;ϕ� ¼
Z

dnx
ffiffiffiffiffiffi
−g

p �
1

2κ
Rþ LMðg; K;ϕÞ

�
:

ð3:21Þ

Varying with respect to the connections, and using the
above definitions, we easily obtain the field equations

Pλ
μνð1Þ þ Ψλ

ðμνÞ ¼ 2κΞλ
μν; ð3:22aÞ

Pλ
μνð2Þ −Ψλ

ðμνÞ ¼ −2κΞλ
μν: ð3:22bÞ

Using Eq. (3.12), the above are written as

Pλ
μνð2Þ ¼ 2κΞλ

μν ð3:23Þ

and

Pλ
μνð1Þ ¼ −2κΞλ

μν: ð3:24Þ

Using the definition (3.7) of the torsion-freePλ
μνðiÞ, we may

easily find the general solutions (nonmetricities in terms of
hypermomentum) to the above, which read

Qαμν
ð2Þ ¼ −2κΞαμν þ

2κ

n − 2

�
Ξαβ

β −
2

n − 1
Ξβ

αβ

�
gμν

þ 4κ

ðn − 1ÞΞβðμβgνÞα ð3:25Þ

and

Qαμν
ð1Þ ¼ 2κΞαμν −

2κ

n − 2

�
Ξαβ

β −
2

n − 1
Ξβ

αβ

�
gμν

−
4κ

ðn − 1ÞΞβðμβgνÞα; ð3:26Þ

respectively. Note that the two nonmetricities annihilate
each other, namely

Qαμν
ð1Þ þQαμν

ð2Þ ¼ 0; ð3:27Þ

exactly like in the case of the dual connections in statistical
manifolds. The latter property also implies that the mean
connection,

∇≡ 1

2
ð∇ð1Þ þ∇ð2ÞÞ ¼ e∇; ð3:28Þ

is the Levi-Civita connection.
We will now show that for specific hypermomentum

sources, the biconnection gravity theory is in a one-to-one
correspondence with the statistical-manifold structure of
IG. To be more precise, the underlying geometry of this
spacetime with two connections can be identified with the
geometry of a (Lorentzian) statistical manifold.

9The argument K of SM refers to the difference tensor, and
should not be confused with the difference scalar appearing
above.
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2. Gravity/statistical manifold correspondence

Let us now assume that the hypermomentum tensor Ξαμν

is totally symmetric and traceless,10 that is

Ξαμν ¼ ΞðαμνÞ; Ξλμ
μ ¼ 0 ¼ Ξμλ

μ ¼ Ξμ
μλ: ð3:29Þ

Under such circumstances, the nonmetricities of ∇ð1Þ and
∇ð2Þ read

Qαμν
ð1Þ ≡QðαμνÞð1Þ ¼ 2κΞαμν ð3:30Þ

and

Qαμν
ð2Þ ≡QðαμνÞð2Þ ¼ −2κΞαμν; ð3:31Þ

respectively. These imply that the connection coefficients
of the two connections are written as

Γλ
μν

ð1Þ ¼ Γ̃λ
μν þ κΞλ

μν; ð3:32aÞ

Γλ
μν

ð2Þ ¼ Γ̃λ
μν − κΞλ

μν: ð3:32bÞ

Quite remarkably then, it follows that the totally symmetric
trace-free hypermomentum tensor Ξλμν that we have here,
corresponds exactly to the so-called cubic tensor Cλμν

appearing in statistical manifolds. Consequently, we are
led to the following statement.
Corollary 1. For a totally symmetric and trace-free

hypermomentum tensor, the biconnection gravitational
theory with action (3.21) is in a one-to-one correspondence
with a statistical-manifold structure. In particular, the
geometry of the gravitational theory is identical to that
of a statistical manifold where the role of the cubic tensor is
played by the hypermomentum.
The above exceptional correspondence implies that, in

principle, one could get information about gravitational
phenomena by studying statistical models, and vice versa.
Given the fact that the hypermomentum tensor describes
the microproperties of matter, it will then be possible to get
information about matter’s microstructure by studying the
corresponding statistical manifold.
To complete the study of the torsion-free biconnection

theory, we also vary (3.21) with respect to the metric to
obtain the metric field equations

RðμνÞ −
1

2
gμνR ¼ κTμν; ð3:33Þ

where Rμν ¼ Rλ
μλν is the Ricci tensor constructed out of

the mutual curvature (2.14), and

Tμν ¼ −
2ffiffiffiffiffiffi−gp δSM

δgμν
: ð3:34Þ

Now, invoking the definition of the mutual curvature, and
employing the post-Riemmanian expansions of the two
connections [also using expressions (3.32a) and (3.32b)],
we finally find, after some straightforward algebra,

R̃μν −
1

2
gμνR̃ ¼ κTμν − κ2

�
Ξαβ

μΞαβν −
1

2
ΞαβγΞαβγgμν

�
;

ð3:35Þ

which are Einstein’s field equations with modified sources
containing κ2 contributions from hypermomentum, namely
the microstructure of matter. The Ricci form of the above
reads

R̃μν ¼ κ

�
Tμν −

1

n − 2
gμνT

�
− κ2ΞμαβΞν

αβ: ð3:36Þ

B. Gravity with fermions as a torsional
statistical manifold

In [42] one of the authors formulated the concept of a
“torsion dual connection” and, related to this, the geometry
of a torsional statistical manifold. Given an affine con-
nection ∇ with coefficients Γλ

μν, its torsion dual ∇� is
defined as the connection which cooperates with ∇ in
keeping infinitesimal parallelograms “unbroken” even
though both connections are endowed with torsion. The
coefficients of the torsion dual connection are given by

Γλ⋆
μν ¼ Γλ

νμ: ð3:37Þ

As shown in [42], if the two connections are metric and, in
addition, their distortion tensors are antisymmetric in their
last two indices, then there exists a 3-form field Aλμν

such that

Γλμν ¼ Γ̃λμν þ Aλμν; ð3:38aÞ

Γ�
λμν ¼ Γ̃λμν − Aλμν; ð3:38bÞ

where Γ̃λμν is the Levi-Civita connection and Aλμν ¼ A½λμν�.
We shall show below how such a geometry appears
naturally when one couples fermions to our biconnection
formulation.
Again, we consider the mutual scalar curvature, formed

by contractions of the mutual curvature, as the gravitational
part of the action for the (now, metric) connections and
allow for matter-connection couplings of the form (3.17).
Then, the full action of the metric biconnection theory reads

10This assumption does have a physical motivation. It is known
for instance that a totally symmetric and traceless nonmetricity
can describe pure spin-3 particle states [45].
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S½g;Γð1Þ;Γð2Þ;ϕ� ¼
Z

dnx
ffiffiffiffiffiffi
−g

p �
1

2κ
Rþ LMðg; K;ϕÞ

�
;

ð3:39Þ
where, let us note one more time, in contrast to (3.21),
where the connections were symmetric but with nonme-
tricity, here the connections are metric but torsionful.
Varying with respect to the two connections, we obtain
the field equations

Πλ
μνð1Þ þ Ψλ

μν ¼ 2κΞλ
μν; ð3:40aÞ

Πλ
μνð2Þ −Ψλ

μν ¼ −2κΞλ
μν; ð3:40bÞ

where

ΠαμνðiÞ ¼ 4gν½μSα�ðiÞ − 2SαμνðiÞ; ΠðλμÞν ¼ 0 ¼ ΨðλμÞν;

ð3:41Þ

with Ψλ
μν defined in Eq. (3.5).

Using the identity

Ψλ
μν ¼ Πλ

μνð2Þ − Πλ
μνð1Þ ð3:42Þ

the above equations are written as

Πλ
μνð2Þ ¼ 2κΞλ

μν ð3:43Þ

and

Πλ
μνð1Þ ¼ −2κΞλ

μν; ð3:44Þ

respectively, which we may combine into the single
expression

Πλ
μνðiÞ ¼ ð−1Þi2κΞλ

μν; i ¼ 1; 2: ð3:45Þ

We now wish to focus on connection couplings with
fermions.
For fermionic matter, it is known (see for instance [46])

that the associated hypermomentum tensor is totally
antisymmetric, a 3-form field that is. In our case this
translates to

Ξαμν ¼ Ξ½αμν�: ð3:46Þ

Then, contraction of (3.45) with gμν implies that

Sλð1Þ ¼ 0 ¼ Sλð2Þ; ð3:47Þ

which when substituted back into the same equations results
in (bringing all indices up)

SαμνðiÞ ¼ ð−1Þiþ1κΞαμν: ð3:48Þ

With this, using the expression (2.7) for eachdistortion tensor
(recalling also that we have vanishing nonmetricities), we
find

NαμνðiÞ ¼ ð−1Þiþ1κΞαμν: ð3:49Þ
Finally, applying the decomposition rules (3.10), we find the
forms of the two connections,

Γαβγ
ð1Þ ¼ Γ̃αβγ þ κΞαβγ; ð3:50aÞ

Γαβγ
ð2Þ ¼ Γ̃αβγ − κΞαβγ: ð3:50bÞ

Quite intriguingly, we see then that the role of the 3-form
Aαμν is now played by the hypermomentum Ξαμν.
Subsequently, the mean connection ∇≡ 1

2
ð∇ð1Þ þ∇ð2ÞÞ

is the Levi-Civita connection e∇, and the underlying
geometry is that of a torsional statistical manifold.
Collecting everything, we arrive at
Corollary 2. For fermionic connection-matter cou-

plings, the biconnection gravitational theory with action
(3.39), is in a one-to-one correspondence with a torsional
statistical-manifold structure. In particular, the underlying
geometry of the gravitational theory is identical to that of a
torsional statistical manifold where the role of the 3-form
field Aλμν is played by the totally antisymmetric hyper-
momentum corresponding to fermions.
To conclude the discussion on the metric biconnection

theory, we also vary (3.39) with respect to the metric to
again obtain the metric field equations

RðμνÞ −
1

2
gμνR ¼ κTμν: ð3:51Þ

Working as in the previous case, after some straightforward
algebra, we find

R̃μν −
1

2
gμνR̃ ¼ κTμν − κ2

�
Ξαβ

μΞαβν −
1

2
ΞαβγΞαβγgμν

�
;

ð3:52Þ
which are Einstein’s field equations with modified sources
containing κ2 contributions from the completely antisym-
metric hypermomentum.

C. General biconnection MAG

In the previous sections, we independently considered a
symmetric (i.e., vanishing torsion) and a metric (i.e.,
vanishing nonmetricity) biconnection theory. Hence, the
connections were restricted to be torsion free in the former
case and metric compatible in the latter. For completeness,
let us now formulate a general metric-affine biconnection
theory. We shall start off with two completely general affine
connections having both torsion and nonmetricity. Out of
the many actions we may consider, we pick the following
simple one,
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S½g;Γð1Þ;Γð2Þ;ϕ� ¼
Z

dnx
ffiffiffiffiffiffi
−g

p �
1

2κ
Rþ LMðg; K;ϕÞ

�
:

ð3:53Þ

This reduces to the Einstein-Hilbert action when the
distortion degrees of freedom are switched off. The most
general connection transformations leaving the gravita-
tional part of the action (3.53) invariant, are the projective
transformations

Γλ
μν

ðiÞ ↦ Γλ
μν

ðiÞ þ δλμξν
ðiÞ; ð3:54Þ

which ultimately demand a vanishing dilation part Ξλ
λμ ¼ 0

for the hypermomentum as in the usual (i.e., single
connection) MAG formulation.
Variation of the action with respect to the connections

yields the connection field equations

Pλ
μνð1Þ þΨλ

μν ¼ 2κΞλ
μν; ð3:55Þ

Pλ
μνð2Þ −Ψλ

μν ¼ −2κΞλ
μν; ð3:56Þ

where

Pλ
μνðiÞ ¼ −

∇λ
ðiÞð ffiffiffiffiffiffi−gp

gμνÞffiffiffiffiffiffi−gp þ∇σ
ðiÞð ffiffiffiffiffiffi−gp

gμσÞδνλffiffiffiffiffiffi−gp

þ 2ðSλðiÞgμν − SμðiÞδνλ þ gμσSσλνðiÞÞ; ð3:57Þ

and again,

Ξλ
μν ≔ −

2ffiffiffiffiffiffi−gp δSM
δKλ

μν
; ð3:58Þ

but now with the connection being fully general. Using the
identity

Ψλμν ≡ Pλμν
ð2Þ − Pλμν

ð1Þ; ð3:59Þ

we can easily cast Eq. (3.56) into

Pλμν
ð2Þ ¼ 2κΞλμν; ð3:60Þ

Pλμν
ð1Þ ¼ −2κΞλμν: ð3:61Þ

The composite tensorΨλ
μν was defined in (3.5), and Ξλ

μν in
(3.20). Notice that since Pλ

λνðiÞ ¼ 0, the field equations
dictate that Ξλ

λμ ¼ 0 as already mentioned. Therefore, we
may as well start with hypermomentum tensors already
fulfilling this trace property.

The ith distortion tensor can always be written as [47]

Nλμν
ðiÞ ¼ 1

2
ðPλμν

ðiÞ − Pμνλ
ðiÞ − Pνλμ

ðiÞÞ

þ 1

2ðn − 2Þ gμνðP
α
λα

ðiÞ − Pλα
αðiÞÞ

−
1

2ðn − 2Þ gλνðP
α
μα

ðiÞ − Pμα
αðiÞÞ þ 1

2
gλμqνðiÞ:

ð3:62Þ

Therefore, the solution to the field equations for the ith
connection is

Γλ
μν

ðiÞ ¼ Γ̃λ
μν þ κð−1ÞiXλ

μν þ
1

2
δλμqνðiÞ; ð3:63Þ

where

Xλμν ≔ Ξλμν − Ξμνλ − Ξνλμ þ
1

n − 2
gμνðΞα

λα − Ξλα
αÞ

−
1

n − 2
gλνðΞα

μα − Ξμα
αÞ: ð3:64Þ

It follows that the mean connection Γλ
μν is

Γλ
μν ≡ 1

2
ðΓλ

μν
ð1Þ þ Γλ

μν
ð2ÞÞ ¼ Γ̃λ

μν þ
1

4
δλμðqνð1Þ þ qνð2ÞÞ:

ð3:65Þ

Partially consuming the gauge freedom by setting

ξμ
ð2Þ ¼ −ξμð1Þ −

1

2
ðqνð1Þ þ qνð2ÞÞ; ð3:66Þ

we conclude that the mean connection is always the Levi-
Civita connection (up to the choice of gauge). We can
further set ξμð1Þ ¼ −qνð1Þ=2, for which gauge the solution
acquires the final form

Γλ
μν

ðiÞ ¼ Γ̃λ
μν þ κð−1ÞiXλ

μν ≡ Γ̃λ
μν þ Nλ

μν
ðiÞ: ð3:67Þ

Note that the two connections annihilate each other, viz.,

Nαμν
ð1Þ þ Nαμν

ð2Þ ¼ 0; ð3:68Þ

and this constitutes a generalized geometry of which the
statistical and torsional-statistical manifolds are certain
subclasses.
Moreover, the metric field equations read

RðμνÞ −
1

2
gμνR ¼ κTμν: ð3:69Þ

Performing a post-Riemannian expansion, we get

IOSIFIDIS and PALLIKARIS PHYS. REV. D 108, 044026 (2023)

044026-8



R̃μν −
1

2
gμνR̃ ¼ κTμν þ κ2ðXαðμνÞXβ

αβ − Xβ
αðμXα

νÞβÞ

þ κ2

2
gμνðXαβγXβγα − Xα

βαXβγ
γÞ; ð3:70Þ

whose Ricci form reads

R̃μν ¼ κ

�
Tμν −

1

n − 2
gμνT

�
þ κ2ðXαðμνÞXβ

αβ − Xβ
αðμXα

νÞβÞ: ð3:71Þ

Let us now assume that

Ξλμν ¼ αCλμν þ βAλμν; ð3:72Þ

with Cλμν being a completely symmetric and trace-free
tensor, Aλμν being a 3-form field, and α, β real numbers.
When this is the case, we have that

Xλμν ¼ −αCλμν − βAλμν; ð3:73Þ

and it follows that the connection solution is

Γλ
μν

ðiÞ ¼ Γ̃λ
μν þ κð−1Þiþ1ðαCλ

μν þ βAλ
μνÞ: ð3:74Þ

The ith torsion reads

SμνλðiÞ ¼ ð−1Þiþ1κβAλμν; ð3:75Þ

whereas the ith nonmetricity is

Qλμν
ðiÞ ¼ 2ð−1Þiþ1καCλμν: ð3:76Þ

The metric field equations become

R̃μν −
1

2
gμνR̃ ¼ κTμν þ ðακÞ2

�
1

2
gμνC2 − Cμ

αβCναβ

�

þ ðβκÞ2
�
1

2
gμνA2 − Aμ

αβAναβ

�
; ð3:77Þ

with C2 ¼ CλμνCλμν and A2 ¼ AλμνAλμν. Clearly, the pre-
vious models are recovered if we set α ¼ 0, β ¼ 1 (tor-
sional statistical manifold) or α ¼ 1, β ¼ 0 (statistical
manifold). Hence, we see that the general biconnection
theory can accommodate both scenarios if we feed it with
appropriate hypermomentum sources.

IV. CONCLUSIONS

We have formulated a biconnection theory of gravity and
have shown its correspondence with the geometry of
statistical manifolds and torsional statistical manifolds,
under certain assumptions. In particular, we started with
a gravitational action given by the so-called mutual scalar

curvature, a scalar depending on the two connections,
constructed with the mutual curvature tensor recently
defined in [42]. We then showed for the symmetric (i.e.,
vanishing torsion) case that the vacuum theory is equivalent
to GR, with the two connections coinciding with the Levi-
Civita connection.
Things become more interesting when matter is added.

In order to solve the problem of which connection couples
to matter and why, and also to have both connections on an
equal footing, we consider couplings entering only through
the difference tensor [see Eq. (2.9)] of the two connections.
For such couplings and for the symmetric case, we
explicitly showed that if the primary hypermomentum
(3.58) is totally symmetric and trace free, then the under-
lying geometry of the theory is that of a statistical manifold.
Namely, there exists a totally symmetric tensor such that
the two connections have the expressions (3.32a) and
(3.32b), respectively. This totally symmetric tensor, called
the cubic tensor in information geometry, is in our case the
hypermomentum of matter. This intriguing correspondence
could have some quite interesting applications since it
would enable one to extract information about the micro-
properties of matter (hypermomentum) by studying stat-
istical models, and vice versa.11

Furthermore, switching the roles of torsion and non-
metricity we studied the metric version (i.e., vanishing non-
metricity) of the theory consisting of the mutual curvature
and the aforementioned connection couplings. In this
instance and given that the hypermomentum tensor is
totally antisymmetric (i.e., fermionic matter), we explicitly
showed that the underlying geometry is that of a torsional
statistical manifold.
Finally, we formulated the general biconnection

MAG, by allowing for two general connections that
are neither metric, nor symmetric. Again, considering a
gravitational sector consisting of the double contraction
of the mutual curvature, we solved the connection field
equations and arrived at a generalized geometry. More
precisely, in this geometry the two connections have
distortion tensors that differ by a sign and can accom-
modate both the statistical and torsional-statistical mani-
folds for certain forms of the hypermomentum. It would
be interesting to see if these geometric structures appear
also in a dynamic way by enlarging the gravitational
action (which in our case was Einstein-Hilbert-inspired)
with more invariants built out of the mutual curvature
and difference tensor.

11There is however one caveat here. The Fisher metrics derived
from probability distributions (or more generally from divergen-
cies) are positive definite in contrast to the Lorentzian metrics that
appear in gravity. One way to circumvent this problem would be
to Wick rotate one of the coordinates on the probability
distributions but then one would face the unphysical issue of
having complex-valued probabilities. This problem is certainly
quite interesting and is left for future work.
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It would be interesting to explore the possibility of the
emergence of this statistical structure from gravity in a
dynamical way, namely, to find such a correspondence in
vacuum by enlarging the gravitational sector of the bicon-
nection theory. Additional invariants could be added to the
action that are built out of the mutual curvature and the
difference tensor.12
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APPENDIX A: VARIATIONS

Let us gather here some useful variations that we used in
order to derive the field equations of the biconnection
gravity. In the following both connections are fully general.
Firstly, for the variations of the curvature tensors of the

two connections we have

Tλ
αβγδΓðiÞRλðiÞ

αβγ ¼ 2ðb∇ðiÞ
α Tλ

μ½αν� − Tλ
μαβSαβνðiÞÞðδΓλðiÞ

μνÞ;
ðA1Þ

where Tλ
αβγ is an arbitrary tensor field (or tensor density)

and b∇ðiÞ
α ¼ 2SðiÞα −∇ðiÞ

α . Of course δΓðiÞRλðjÞ
αβγ ¼ 0 for

i ≠ j. Continuing, for the term −Kα
ρ½γKρjβjδ� appearing

in the mutual curvature we find

Tα
βγδδΓðiÞ ð−Kα

ρ½γKρjβjδ�Þ
¼ ð−1Þi½Tλ

β½να�Kμ
βα þ Tα

μ½βν�Kα
λβ�ðδΓλðiÞ

μνÞ: ðA2Þ

Such that the total variation of the mutual curvature with
respect to the ith connection reads (up to total derivatives)

Tα
βγδδΓðiÞRλ

αβγ ¼ ½b∇ðiÞ
α Tλ

μ½αν� − Tλ
μαβSαβνðiÞ

þ ð−1ÞiðTλ
β½να�Kμ

βα þ Tα
μ½βν�Kα

λβÞ�
× ðδΓλðiÞ

μνÞ: ðA3Þ

For Tλ
αβγ ¼ δ½βλ g

γ�α we get

δΓðiÞR ¼ 1

2
ðPλ

μνðiÞ þ ð−1ÞiðδνλKμα
α þ Kαλ

αgμν − Kμν
λ

− Kν
λ
μÞÞδΓλðiÞ

μν ðA4Þ

which is used in deriving the connection field equations.

APPENDIX B: PARALLEL TRANSPORT
WITH TWO CONNECTIONS

First, we note that the effects of parallel-transporting
vectors (twisting angle and breaking of attempted quadri-
laterals) can be captured by using the action of commu-
tators of covariant derivatives. Let us define the operator

Pij
μν ≔ ∇ν

ðjÞ∇μ
ðiÞ; ðB1Þ

whose action on a vector field Vμ is associated with the
following parallel-transport picture:

Here, the vector is parallel transported from point A to B
using the ith connection with the resulting vector being
further parallel transported to a point C using the jth
connection.
At the same time, Pji

νμVλ is associated with the following
picture:

If both connections are flat, torsion free, and compatible
with the metric, i.e., ∇μ

ðiÞ ¼ ∂μ, then ðPji
νμ − Pij

μνÞVλ ¼ 0.
For general connections on the other hand, we have

2Pij
½νμ�V

λ ¼ Rλ
αμν

ðiÞVα þ 2SμναðjÞ∇α
ðiÞVλ

− 2ð−1ÞjKλ
α½μ∇ν�ðiÞVα; ðB2Þ

which for i ¼ j assumes the usual form

2Pii
½νμ�V

λ ¼ Rλ
αμν

ðiÞVα þ 2SμναðiÞ∇α
ðiÞVλ; ðB3Þ

due to the vanishing of the difference tensor.

12Of course one could also add invariants constructed out of
the curvature and/or torsion and nonmetricity tensors of the
individual connections, however the presence of such terms
would then spoil the symmetry of the gravitational action under
the exchange of the two connections not placing them on equal
footing anymore.
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Now, observe that

1

2

X
i;j

Pij
½νμ�V

λ ¼ Rλ
αμνVα þ ðSμναð1Þ þ Sμναð2ÞÞ∇αVλ; ðB4Þ

where ∇ and Rλ
ρμν are given by Eqs. (2.12) and (2.13),

respectively, for t ¼ 1=2, i.e., they stand for the mean
connection and its curvature. The above schematically
corresponds to summing over all possible ways to do
the path AB'C' and subtracting it from the summation over
all possible ways to do ABC; this, of course, divided by the
number of possible ways to do each path which is four in
the case of two connections. This complicated interpreta-
tion is utterly equivalent to attempting a closed loop via
∇-parallel translations. Clearly, for connections with
Sð1Þ ¼ −Sð2Þ, namely vanishing-mean torsion, quadrilater-
als are preserved although both connections have torsion. If
we further take our mean connection to be flat, then the
right-hand side of Eq. (B4) vanishes completely, a result
tantamount to parallel–transporting Vμ in flat spacetime,
although here both connections have curvature and torsion.
However, we also observe thatX

i;j

Pij
½νμ�V

λ ¼
X
i≠j

Pij
½νμ�V

λ þ
X
i

Pii
½νμ�V

λ; ðB5Þ

whereX
i≠j

Pij
½νμ�V

λ ¼ Rλ
αμνVα þ ðSμναð2Þ∇α

ð1Þ þ Sμναð1Þ∇α
ð2ÞÞVλ;

ðB6aÞ
X
i

Pii
½νμ�V

λ ¼ 1

2
ðRλ

αμν
ð1Þ þ Rλ

αμν
ð2ÞÞVα

þ ðSμναð1Þ∇α
ð1Þ þ Sμναð2Þ∇α

ð2ÞÞVλ; ðB6bÞ

with Rλ
ρμν being the mutual curvature tensor given in

(2.14). Equation (B6a) schematically amounts to summing
over all possible ways to do the path AB'C' using different
connections and subtracting it from the summation over all
possible ways to do ABC, again, using different connec-
tions; this divided by the number of possible ways to do
each path in this fashion which is of course equal to the

number of connections. Further manipulating (B6), we can
show that

X
i≠j

Pij
½νμ�V

λ ¼
�
Rλ

αμν −
1

2
Kρ½μν�Kλ

αρ

�
Vα

þ ðSμναð1Þ þ Sμναð2ÞÞ∇αVλ; ðB7aÞ

X
i

Pii
½νμ�V

λ ¼ 1

2
ðRλ

αμν
ð1Þ þ Rλ

αμν
ð2Þ þ Kρ½μν�Kλ

αρÞVα

þ ðSμναð1Þ þ Sμναð2ÞÞ∇αVλ; ðB7bÞ

where Kλ½μν� ¼ Sμναð1Þ − Sμναð2Þ, and we recall that

Rλ
ρμν ¼ Rλ

ρμν −
1

2
Kλ

σ½μKσ jρjν: ðB8Þ

Observe that when we split the overall sum into the above
distinct pieces, the otherwise consistent identifications of
curvature with the tensor contracted with V and torsion
with the tensor contracted with a covariant derivative of V
do not make sense for each piece separately.
For example, looking at expression (B7a), we can

attribute the failure to close quadrilaterals to the torsion
of the mean connection. However, the presence of a
nontrivial twisting angle cannot be ascribed to a curvature
of some connection, for the quantity contracted with V is
definitely not such a construct. Hence, in the case of
attempting to close a loop with sequential ∇ðiÞ-parallel and
∇ðjÞ-parallel translations for i ≠ j, we see that, if the two
connections are torsion free, then the tensor sourcing the
nontrivial twisting angle is Rλ

ρμν. This justifies the name
mutual “curvature.” Nevertheless, in the presence of tor-
sion, things turn out to be slightly ambiguous. To see this,
assume for example that Sð1Þ ¼ −Sð2Þ and Rλ

ρμν ¼ 0.
Using expression (B6a), it seems that the vector is not
“rotated” and that infinitesimal quadrilaterals are not
preserved. At the same time, looking at expression
(B7a), we stumble upon the opposite picture, namely that
infinitesimal quadrilaterals are preserved, but the twisting
angle is nontrivial, sourced by the nonvanishing torsion of
the connections.
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[23] Jose Beltrán Jiménez and Adria Delhom, Ghosts in metric-
affine higher order curvature gravity, Eur. Phys. J. C 79, 656
(2019).

[24] Katsuki Aoki and Keigo Shimada, Scalar-metric-affine
theories: Can we get ghost-free theories from symmetry?,
Phys. Rev. D 100, 044037 (2019).

[25] Francisco Cabral, Francisco S. N. Lobo, and Diego Rubiera-
Garcia, Fundamental symmetries and spacetime geometries
in gauge theories of gravity—prospects for unified field
theories, Universe 6, 238 (2020).

[26] Jin-Zhao Yang, Shahab Shahidi, Tiberiu Harko, and
Shi-Dong Liang, Geodesic deviation, Raychaudhuri equa-
tion, Newtonian limit, and tidal forces in Weyl-type fðQ; TÞ
gravity, Eur. Phys. J. C 81, 111 (2021).

[27] Seramika Ariwahjoedi, Agus Suroso, and Freddy P. Zen,
(3þ 1)-formulation for gravity with torsion and non-
metricity: II. The hypermomentum equation, Classical
Quantum Gravity 38, 225006 (2021).

[28] Sebastian Bahamonde and Jorge Gigante Valcarcel, New
models with independent dynamical torsion and nonme-
tricity fields, J. Cosmol. Astropart. Phys. 09 (2020) 057.

[29] Sebastian Bahamonde, Jorge Gigante Valcarcel, and Laur
Järv, Plebański-Demiański solutions with dynamical torsion
and nonmetricity fields, J. Cosmol. Astropart. Phys. 04
(2022) 011.

[30] Sebastian Bahamonde, Johann Chevrier, and Jorge Gigante
Valcarcel, New black hole solutions with a dynamical
traceless nonmetricity tensor in metric-affine gravity,
J. Cosmol. Astropart. Phys. 02 (2023) 018.

[31] Keigo Shimada, Katsuki Aoki, and Kei-ichi Maeda, Metric-
affine gravity and inflation, Phys. Rev. D 99, 104020
(2019).

[32] Mio Kubota, Kin-ya Oda, Keigo Shimada, and Masahide
Yamaguchi, Cosmological perturbations in Palatini formal-
ism, J. Cosmol. Astropart. Phys. 03 (2021) 006.

[33] Mio Kubota, Kin-Ya Oda, Keigo Shimada, and Masahide
Yamaguchi, Cosmological perturbations in Palatini formal-
ism, J. Cosmol. Astropart. Phys. 03 (2021) 006.

[34] Yusuke Mikura, Yuichiro Tada, and Shuichiro Yokoyama,
Conformal inflation in the metric-affine geometry, Euro-
phys. Lett. 132, 39001 (2020).

[35] Yusuke Mikura, Yuichiro Tada, and Shuichiro Yokoyama,
Minimal k-inflation in light of the conformal metric-affine
geometry, Phys. Rev. D 103, L101303 (2021).

[36] S. Boudet, F. Bombacigno, F. Moretti, and Gonzalo J. Olmo,
Torsional birefringence in metric-affine Chern-Simons grav-
ity: Gravitational waves in late-time cosmology, J. Cosmol.
Astropart. Phys. 01 (2023) 026.

[37] S. I. Amari, Information geometry, Contemp. Math. 203, 81
(1997).

[38] Gabriel Khan and Jun Zhang, A hall of statistical mirrors,
Asian J. Math. 26, 809 (2022).

[39] Esmaeil Peyghan, Leila Nourmohammadifar, and Siraj
Uddin, Musical isomorphisms and statistical manifolds,
Mediterr. J. Math. 19, 225 (2022).

[40] J. Lambert and E. S. Sørensen, From classical to quantum
information geometry, an introductory guide, arXiv:2302
.13515.

[41] Shun’ichi Amari, Ole E. Barndorff-Nielsen, Robert E. Kass,
Steffen L. Lauritzen, and Calyampudi Radhakrishna
Rao, Differential Geometry in Statistical Inference (IMS,
Hayward, California, 1987).

IOSIFIDIS and PALLIKARIS PHYS. REV. D 108, 044026 (2023)

044026-12

https://arXiv.org/abs/2305.03504
https://doi.org/10.1103/PhysRevD.107.104012
https://doi.org/10.1103/PhysRevD.82.044020
https://doi.org/10.1103/PhysRevD.82.044020
https://doi.org/10.1103/PhysRevLett.106.231101
https://doi.org/10.1103/PhysRevLett.106.231101
https://doi.org/10.1103/PhysRevLett.108.041101
https://doi.org/10.1103/PhysRevLett.108.041101
https://doi.org/10.1016/j.physletb.2012.03.081
https://doi.org/10.1103/RevModPhys.84.671
https://doi.org/10.1007/JHEP02(2012)126
https://doi.org/10.1007/JHEP02(2012)126
https://doi.org/10.1007/JHEP02(2012)026
https://doi.org/10.1103/PhysRevD.3.867
https://doi.org/10.1016/0370-1573(94)00111-F
https://doi.org/10.1016/0370-1573(94)00111-F
https://doi.org/10.1088/1475-7516/2023/05/037
https://doi.org/10.1088/1475-7516/2023/05/037
https://doi.org/10.1088/1361-6382/ac6058
https://doi.org/10.1088/1361-6382/ac6058
https://doi.org/10.1103/PhysRevD.105.024007
https://doi.org/10.1103/PhysRevD.105.024007
https://doi.org/10.1140/epjc/s10052-022-10499-3
https://doi.org/10.1016/j.aop.2011.02.008
https://doi.org/10.1016/j.aop.2011.02.008
https://doi.org/10.1016/j.aop.2006.06.002
https://doi.org/10.1016/j.aop.2006.06.002
https://doi.org/10.1103/PhysRevD.101.084040
https://doi.org/10.1103/PhysRevD.101.084040
https://doi.org/10.1140/epjc/s10052-020-8143-z
https://doi.org/10.1140/epjc/s10052-019-7149-x
https://doi.org/10.1140/epjc/s10052-019-7149-x
https://doi.org/10.1103/PhysRevD.100.044037
https://doi.org/10.3390/universe6120238
https://doi.org/10.1140/epjc/s10052-021-08910-6
https://doi.org/10.1088/1361-6382/ac2c1c
https://doi.org/10.1088/1361-6382/ac2c1c
https://doi.org/10.1088/1475-7516/2020/09/057
https://doi.org/10.1088/1475-7516/2022/04/011
https://doi.org/10.1088/1475-7516/2022/04/011
https://doi.org/10.1088/1475-7516/2023/02/018
https://doi.org/10.1103/PhysRevD.99.104020
https://doi.org/10.1103/PhysRevD.99.104020
https://doi.org/10.1088/1475-7516/2021/03/006
https://doi.org/10.1088/1475-7516/2021/03/006
https://doi.org/10.1209/0295-5075/132/39001
https://doi.org/10.1209/0295-5075/132/39001
https://doi.org/10.1103/PhysRevD.103.L101303
https://doi.org/10.1088/1475-7516/2023/01/026
https://doi.org/10.1088/1475-7516/2023/01/026
https://doi.org/10.1090/conm/203
https://doi.org/10.1090/conm/203
https://doi.org/10.4310/AJM.2022.v26.n6.a3
https://doi.org/10.1007/s00009-022-02141-z
https://arXiv.org/abs/2302.13515
https://arXiv.org/abs/2302.13515


[42] Damianos Iosifidis, On a torsion/curvature analogue
of dual connections and statistical manifolds, arXiv:
2303.13259.

[43] Nima Khosravi, Geometric massive gravity in multicon-
nection framework, Phys. Rev. D 89, 024004 (2014).

[44] Friedrich W. Hehl, G. David Kerlick, and Paul von der
Heyde, On hypermomentum in general relativity I. The
notion of hypermomentum, Z. Naturforsch. A 31, 111
(1976).

[45] Peter Baekler, Nicolas Boulanger, and Friedrich W. Hehl,
Linear connections with a propagating spin-3 field in
gravity, Phys. Rev. D 74, 125009 (2006).

[46] F. W. Hehl, P. Von Der Heyde, G. D. Kerlick, and J. M.
Nester, General relativity with spin and torsion: Foundations
and prospects, Rev. Mod. Phys. 48, 393 (1976).

[47] Damianos Iosifidis, Exactly solvable connections in metric-
affine gravity, Classical Quantum Gravity 36, 085001
(2019).

BICONNECTION GRAVITY AS A STATISTICAL MANIFOLD PHYS. REV. D 108, 044026 (2023)

044026-13

https://arXiv.org/abs/2303.13259
https://arXiv.org/abs/2303.13259
https://doi.org/10.1103/PhysRevD.89.024004
https://doi.org/10.1515/zna-1976-0201
https://doi.org/10.1515/zna-1976-0201
https://doi.org/10.1103/PhysRevD.74.125009
https://doi.org/10.1103/RevModPhys.48.393
https://doi.org/10.1088/1361-6382/ab0be2
https://doi.org/10.1088/1361-6382/ab0be2

