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Various groups recently demonstrated that the time evolution of the simplest self-interacting
vector fields, those with self-interaction potentials, can break down after a finite duration in what is
called loss of hyperbolicity. We establish that this is not an isolated issue, and other generalizations of the
Proca theory suffer from the same problem. Specifically, we show that vector field theories with derivative
self-interactions have a similar pathology. For this, we derive the effective metric that governs the
dynamics, and show that it can change signature during time evolution. We also show that, generalized
Proca theories may suffer from tachyonic instabilities as well, which lead to another form of unphysical
behavior.
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I. INTRODUCTION

Extensions of the massive vector field theory of Proca [1]
with self-interactions find various applications in physics
[2–11]. Consequently, there have also been efforts to
systematically categorize all such theories that are free
of problematic degrees of freedom such as ghosts [12–16].
However, recently a body of results has shown that even

the simplest self-interaction terms cause vector fields to
have unphysical aspects [17–21].1 Namely, the field can
evolve for a finite amount of time after which the evolution
becomes impossible due to a phenomenon called loss of
hyperbolicity. The underlying reason is that the time
evolution of the vector field is controlled by an effective
metric, not the spacetime metric, which depends on the
field values. Even when the spacetime metric is everywhere
Lorentzian, the effective metric can change its signature at
finite values of the vector field. Thus, the field equations
become elliptic instead of hyperbolic.
So far, the existing literature has demonstrated the loss of

hyperbolicity for the specific case of a self-interaction
potential where the mass potential m2XμXμ of the original
Proca Lagrangian for a vector field Xμ is simply replaced
with a self-interaction potential VðXμXμÞ. However, gen-
eralized Proca theories can contain more complicated terms
such as derivative couplings. Even though the problems
discovered in the case of the self-interaction potential have
been predicted to be generic for any self-interaction,
there has been no concrete study so far. Here, we address
this issue, and show that vector fields with derivative

self-couplings also suffer from a breakdown in their time
evolution.
We examine the hyperbolicity of arguably the simplest

generalized Proca theory with a derivative self-coupling,
using techniques developed for the analysis of the self-
interaction potential case [17,19]. We numerically evolve
initially healthy configurations, i.e., configurations for
which the field equations are hyperbolic, and show that
the equations can become elliptic after a finite time. While
the overall problem is similar to those in the recent studies
we mentioned, the derivative interaction also brings some
novel ways the theory can break down.
We also show that beside loss of hyperbolicity, deriva-

tive self-interactions can lead to tachyonic instabilities for
certain coupling functions and constants. In this case no
loss of hyperbolicity occurs, however, the instability still
renders the specific generalized Proca theory it appears in
unphysical due to eternal exponential growth, as we will
explain. This is a surprising result since tachyons are
typically associated with interaction potentials rather than
derivative couplings.

II. GENERALIZED PROCA THEORIES

Generalized Proca theories aim to extend the Proca
theory [1] to its most general form while avoiding prob-
lematic degrees of freedom, e.g., ghosts. All the allowed
terms in 3þ 1 dimensions lead to the Lagrangian [12,13]

Lgen: Proca ¼ −
1

4
FμνFμν þ

X5
n¼2

αnLn; ð1Þ

where Fμν ¼ ∇μXν −∇νXμ, and

*kunluturk17@ku.edu.tr
†andrew.coates.grav@gmail.com
‡framazanoglu@ku.edu.tr
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L2 ¼ f2ðXμ; Fμν; F̃μνÞ ð2aÞ

L3 ¼ f3ðX2Þ∇μXμ ð2bÞ

L4 ¼ f4ðX2Þ½ð∇μXμÞ2 þ c2∇ρXσ∇ρXσ

− ð1þ c2Þ∇ρXσ∇σXρ� ð2cÞ

L5 ¼ f5ðX2Þ½ð∇μXμÞ3 − 3d2∇μXμ∇ρXσ∇ρXσ

− 3ð1 − d2Þ∇μXμ∇ρXσ∇σXρ

þ ð2 − 3d2Þ∇ρXσ∇γXρ∇σXγ

þ 3d2∇ρXσ∇γXρ∇γXσ�: ð2dÞ

f2;3;4;5 are functions, X2 ¼ XμXμ, F̃μν is the dual of Fμν,
and αn, c2 and d2 are constants. For example, the original
Proca theory of a vector field with mass m is simply
f2 ¼ −m2X2=2, with all other fi vanishing. Note that here
and for the rest of the paper, we use the “mostly plus”
metric signature ð−;þ; � � � ;þÞ and c ¼ 1.
Generalized Proca theories have found applications to

astrophysical systems [22–36] and cosmology [37–51], and
it has also been shown that they can lead to novel dynamics
regarding screening mechanisms and coupling to alterna-
tive theories of gravity [52–57].

A. Problems of the self-interaction potential

Even though the above Lagrangian is designed to avoid
ghosts, it has been recently shown that the generalized
Proca theory with the simplest self-interaction potential
beyond the mass term gives rise to ill-posed equations of
motion. Namely, even though time evolution is possible, it
cannot be continued beyond a certain point for some initial
data, which is called loss of hyperbolicity. We will first
summarize these results following the approach of Coates
and Ramazanoğlu [19], before we examine the case of
derivative couplings.
The simplest generalized Proca theory is given by

α2 ¼ −1; αi≠2 ¼ 0 and

f2 ¼
1

2
m2X2 þ λ

4
m2ðX2Þ2 ≡ VðX2Þ: ð3Þ

We shall call VðX2Þ the self-interaction potential. Here, the
constant m is the mass parameter and λ is a coupling
constant that determines the strength of the self-interaction.
The field equations corresponding to Eq. (3) are

∇μFμν ¼ 2V 0Xν ¼ m2ð1þ λX2ÞXν; ð4Þ

where V 0 ¼ dV=dðX2Þ. It is not straightforward to deduce
the well-posedness of Eq. (4). In particular, the principal
part, the term with the highest number of derivatives, of (4)
is degenerate, in the sense that the second “time” derivative
of the t component of Xμ is absent. One can, however, put

Eq. (4) into a form where answering these questions is
easier.
Note that just as in the free Proca case, we can take the

divergence of (4) to get a generalized “Lorenz condition”2

which lets us express the divergence of Xμ in a different
way, in terms of Xμ and its first derivatives:

∇νðzXνÞ ¼ 0 ⇒ ∇νXν ¼ −Xν∇ν ln z: ð5Þ

Here, z ¼ 1þ λX2, and we have used the antisymmetry of
Fμν to get ∇ν∇μFμν ¼ 0. Using (5), and the identity
∇μFμν ¼□Xν−∇ν∇μXμ−RμνXμ, where Rμν is the Ricci
tensor, one can write Eq. (4) as

□Xν þ∇νðXμ∇μ ln zÞ − RμνXμ ¼ m2zXν; ð6Þ

with □ ¼ ∇μ∇μ. We can now analyze the hyperbolicity
of (6), since the principal part reads as

□Xν þ 2λ

z
XμXα∇ν∇μXα; ð7Þ

which is nondegenerate.
The field equation (6) is nonlinear; however, one can

expand the equation around an arbitrary background
solution Xð0Þ

μ to linear order, and this linearized problem
should be well posed if the original problem is [58].
Expanding (6) gives

□Xνþ 2λ

zð0Þ
Xð0Þ
μ Xð0Þ

α ∇ν∇μXαþðlower order termsÞ¼0: ð8Þ

On small enough scales the background fields can be taken
to be roughly constant, and the corresponding “frozen-
coefficients” problem has to be well posed for the original
problem to be well posed [58]. Then, looking at the
problem in Fourier space amounts to replacing ∇ν∇μXα →
−kνkμχα where χα is the Fourier transform of Xα. We
drop the superscripts (0) for convenience and proceed with
the notation used by Kovács and Reall [59]. Now, in
Fourier space the principal part of the linearized, frozen-
coefficients problem reads as

−kμkμχν −
2λ

z
XμXαkνkμχα ≡ −PðkÞβνχβ; ð9Þ

which defines the principal symbol

2We should emphasize that the Lorenz condition is a necessary
condition that has to be satisfied by the massive vector field; it is
not a gauge choice. There is no gauge freedom in this theory,
unlike the case of Maxwell’s theory.
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PðkÞβν ¼ kμkμδ
β
ν þ 2λ

z
XμXβkνkμ: ð10Þ

The dispersion relation is determined by the condition
detPðkÞ ¼ 0, which can be written in dþ 1 dimensions as

detP ¼ ðgμνkμkνÞd
ðḡαβkαkβÞ

z
¼ 0; ð11Þ

where we have defined the effective metric

ḡαβ ¼ zgαβ þ 2λXαXβ: ð12Þ

We see therefore that there are two distinct types of modes:
the standard ones that solve gμνkμkν ¼ 0 and those that
solve ḡαβkαkβ ¼ 0.
The final piece of the analysis is that ḡ can change its

sign for finite values of Xμ. In rough terms, this means
that the frequency ω given by the dispersion relation
ḡαβkαkβ ¼ 0 becomes imaginary, so that e−iωt ∼ ejωjt.
Hence, the corresponding modes grow exponentially
instead of oscillating. As a result of this, the solution gets
contaminated by infinitely many high k modes which grow
arbitrarily large in an arbitrarily short amount of time. More
rigorously, ḡαβ changing signature means that the partial
differential equation ceases to be wavelike, and time
evolution is not well defined any more [58,60]. In short,
the modes governed by ḡαβ can lead to loss of hyperbolicity,
and the transition from a hyperbolic system to an elliptic
one is indicated by ḡαβ becoming singular.
The above analysis using the principal symbol provides a

procedure for analyzing the well-posedness of the equa-
tions of motion in any dimension. However, we also want to
remark that in (1þ 1) dimensions the analysis is especially
simple, since in this case the equation of motion has exactly
the form of a generalized wave equation where the wave
operator is controlled by the effective metric (12).
To see this, we write the principal part (7) as

1

z
ḡαβ∇α∇βXν þ 2λ

z
Θν ð13Þ

with Θν ¼ XαXβ∇αFνβ, which can be derived straightfor-
wardly using the definition of Fμν and the symmetries of
the Riemann tensor. In general, Θν contains the second
derivatives of the vector field through ∇αFνβ and thus
contributes to the principal part. However, it is not difficult
to show that in any spacetime with (1þ 1) dimensions, Θν

vanishes (see the Supplemental Material of Coates and
Ramazanoğlu [19]). Thus, in this specific case, the princi-
pal part of the partial differential equation is determined
exactly by the wave operator ð1=zÞḡαβ∇α∇β.
These results already show that there are configurations

of the vector field Xμ where time evolution simply does
not exist. Coates and Ramazanoğlu [19] further showed

that the vector field can evolve in such a way that the
effective metric is initially Lorentzian, but changes signa-
ture and becomes Euclidean. This so-called dynamical loss
of hyperbolicity occurs quite readily, e.g., it does not
require spacetime curvature or an external driving source
to grow the vector field. Moreover, such breakdown can
even be observed starting from arbitrarily small field
amplitudes [21].

III. DERIVATIVE COUPLING AND THE
EFFECTIVE METRIC

We saw that even the simplest self-interaction which
solely depends on the field values gives rise to ill-posed
equations of motion. Here we will explore how generic this
pathology is by extending the same analysis to interactions
that also depend on the derivatives of the vector field.
Arguably the simplest generalized Proca theory with

derivative coupling arises from the L3 term (2b), together
with the standard kinetic and mass terms, which has the
total Lagrangian

L ¼ −
1

4
FμνFμν −

1

2
m2X2 −

1

2
λX2∇νXν; ð14Þ

where f3 ¼ X2 and λ ¼ −2α3 is a constant determining the
strength of the self-interaction. The even simpler case of a
constant f3 does not contribute to the equation of motion
since it provides a total derivative term. This theory yields
the field equation

∇μFμν þ λðXμ∇νXμ − Xν∇μXμÞ ¼ m2Xν: ð15Þ

We can again take the divergence of (15) to obtain a
generalized Lorenz condition, which is more complicated
than the one for the free Proca theory or the self-interaction
potential. Indeed, applying∇ν to Eq. (15) and using the fact∇μ∇νFμν ¼ 0 we get, after rearranging,

Xμ□Xμ − Xμ∇μρ ¼ ρ2 þm2

λ
ρ −∇μXν∇μXν; ð16Þ

where we denote ρ ¼ ∇μXμ for brevity.

A. Derivation of the effective metric

One way to analyze the well-posedness of Eq. (15)
would be to re-express ρ ¼ ∇μXμ so that we can write the
principal part of the problem in a nondegenerate way, just
as we did in Sec. II A. However, the generalized Lorenz
condition [Eq. (16)] does not offer a way of algebraically
solving for ρ in terms of the vector field and its first
derivatives, unlike the theory in Sec. II A. We therefore
proceed in a different manner to derive a quadratic equation
for ρ as follows.
Firstly, contracting Eq. (15) with Xν and using ∇μFμν ¼

□Xν −∇νρ − RμνXμ, we get
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Xμ□Xμ − Xμ∇μρ − RμνXμXν

þ λðXμXν∇μXν − X2ρÞ ¼ m2X2: ð17Þ

We can then use Eq. (16) to eliminate the derivative of ρ,
which yields

ρ2 þ aρþ b ¼ 0: ð18Þ

Here, a¼m2=λ−λX2 and b¼ λXμXν∇μXν −∇μXν∇μXν −
RμνXμXν−m2X2. Differentiating (18) allows us to express
the derivative of ρ in a different way:

∇νρ ¼ −
ρ∇νaþ∇νb

2ρþ a
: ð19Þ

Finally, inserting this into Eq. (15), the field equations can
be written as

□Xν þ ρ∇νaþ∇νb
2ρþ a

− RμνXμ

þ λðXμ∇νXμ − Xν∇μXμÞ ¼ m2Xν; ð20Þ
whose principal part is

□Xν þ ∇νb
2ρþ a

∼□Xν þ λXαXβ − 2∇αXβ

2ρþ a
∇ν∇αXβ: ð21Þ

It can be readily seen that the principal part, Eq. (21), is
nondegenerate; it includes the second time derivative of
each component of Xμ. We can therefore proceed exactly as
in Sec. II A to analyze the well-posedness of the problem.
We also note that Eqs. (18) and (20) together are equivalent
to the original field equation (15).
In Fourier space, the linearized, frozen-coefficients

version of the principal part (21) reads as

−kαkαχν −
λXαXβ − 2∇αXβ

2ρþ a
kνkαχβ ≡ −PðkÞβνχβ; ð22Þ

from which we extract the principal symbol PðkÞ:

PðkÞβν ¼ kαkαδ
β
ν þ λXαXβ − 2∇αXβ

2ρþ a
kνkα: ð23Þ

The dispersion relation is determined through
detPðkÞ ¼ 0, which can be written in dþ 1 dimensions as

detP ¼ ðgμνkμkνÞd
ðḡαβkαkβÞ
ð2ρþ aÞ ¼ 0; ð24Þ

with the effective metric

ḡαβ ¼ ð2ρþ aÞgαβ þ λXαXβ − 2∇ðαXβÞ: ð25Þ

We therefore have the completely analogous result: aside
from the standard modes that solve gμνkμkν ¼ 0 we also

have those that solve ḡαβkαkβ ¼ 0. The modes governed by
ḡαβ can lead to a loss of hyperbolicity. For example, when
the field values Xμ or their derivatives become large enough
to dominate over the spacetime metric gμν, there can be a
change of signature in the effective metric ḡμν, which would
directly indicate ill-posedness as in the case of the self-
interaction potential in Sec. II A.
We remark that, just as in Sec. II A, in (1þ 1) dimen-

sions the field equations have exactly the form of a
generalized wave equation, where the wave operator is
controlled by the effective metric. To see this, note that
scaling the whole equation by 2ρþ a and discarding the
lower order terms, the principal part (21) can be written as

ḡαβ∇α∇βXν þ ðλXαXβ − 2∇αXβÞ∇αFνβ: ð26Þ

In general, the term with ∇αFνβ also contributes to the
principal part. However, in (1þ 1) dimensions ∇αFνβ is
actually to be discarded from the principal part even if it is
nonzero, for the following reason: In (1þ 1) dimensions,
∇αFνβ and ∇μFμν have exactly the same number of
independent degrees of freedom, and so one can be entirely
expressed in terms of the other. This means that as long as
the field equations have the form ∇μFμν ¼ yνðXα;∇αXβÞ
with some functions yν, as is the case here, ∇αFνβ can be
re-expressed in terms of lower order derivatives. Thus, it
does not contribute to the principal part, which is exactly
the wave operator ḡαβ∇α∇β.

B. Time evolution and its breakdown

Wehave alreadyestablished that thedynamics of thevector
field is not solely governed by the spacetime metric. In this
section,wewill first show that there are indeed configurations
ofXμ for which time evolution is not possible. Even after this,
one can argue that the theory of Eq. (14) can still be redeemed
if any initial data that can be time evolved stay so indefinitely.
We will also show that this is not the case, that is, hyper-
bolicity can be lost dynamically when the effective metric
starts as Lorentzian but evolves into a Euclidean one.
We can illustrate the breakdown of the theory in the

simple case of the (1þ 1)-dimensional flat space using the
Cartesian coordinates ðt; xÞ. Introducing ðXt; XxÞ ¼ ðϕ; AÞ
and E ¼ −Ȧ − ∂xϕ, where the dot denotes a derivative with
respect to t, Eqs. (15) and (16) can be written as the first
order system

Ȧ ¼ −E − ∂xϕ ð27aÞ

ḡttϕ̇ ¼ −ðϕ∂xEþm2A2 þ λAϕ∂xϕÞ þ
m2

λ
∂xA

þ Ȧ2 þ ð∂xϕÞ2 ð27bÞ

Ė ¼ m2Aþ λðϕ∂xϕþ Aϕ̇Þ; ð27cÞ
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subject to the constraint

C≡ ∂xE − λAðEþ ∂xϕÞ þ λϕ∂xAþm2ϕ ¼ 0; ð28Þ

and the tt component of the effective metric reads as

ḡtt ¼ λA2 − 2∂xA −
m2

λ
: ð29Þ

Note that in (1þ 1) dimensions the field Xμ has only one
propagating degree of freedom, which means that the initial
configuration of the two of fϕ; A; Eg can be specified
freely, while the third is to be computed from the con-
straint Eq. (28).
The determinant of the effective metric can be written as

ḡ ¼ E2 þm2ðϕ2 − A2Þ −
�
m2

λ

�
2

− 2ϕC; ð30Þ

which we will use to determine where, or if, the effective
metric becomes singular. In order to see which initial data
might evolve and later lead to loss of hyperbolicity, let us
first investigate some configurations of the vector field that
are outright problematic, i.e., have no well-posed time
evolution to begin with.
A simple problematic configuration is when Xμ ¼ 0 at a

point, for which the determinant of the effective metric
reads as ḡjϕ¼A¼0 ¼ E2 − ðm2=λÞ2. It is therefore clear that
no matter how small ϕ and A initially are, the effective
metric becomes positive definite, i.e., not Lorentzian, at
some part of the space if the magnitude of E ¼ −Ȧ − ∂xϕ is
sufficiently large there, i.e., the equations of motion are not
hyperbolic. A simple example of such a configuration is
given by

Að0; xÞ ¼ 0; Eð0; xÞ ¼ αe−x
2=2σ2 ; ð31Þ

for which the constraint equation implies ϕ ¼ −∂xE=m2

initially. Here, ϕ can be made arbitrarily small by increas-
ing σ, and the determinant at the origin reads as ḡjx¼0 ¼
α2 − ðm2=λÞ2, which can be made positive by increasing
the magnitude of α.
We thus see that, since the effective metric depends not

only on the field values, but on the derivatives of the field as
well, even those configurations with arbitrarily small Xμ

can be unhealthy to begin with if they include large enough
k modes in Fourier space.
In light of the above, to construct an initial configuration

that evolves toward loss of hyperbolicity, let us concentrate
on initial data with Að0; xÞ ¼ 0. Then, using the constraint
equation (28), the time derivative of the determinant
reads as

˙̄g¼ 2λ

m6
∂xEf2ð∂2xEÞ2þm2½ð∂xEÞ2þm2E2−E∂2xE�g: ð32Þ

Thus, as long as E∂2xE < 0, with a large enough λ∂xE > 0,
the evolution seems to bring us toward ḡ ¼ 0 even if we
start with a Lorentzian effective metric with ḡ < 0. In the
next subsection, we will explicitly confirm this expectation
using numerical computations.

C. Numerical time evolution and dynamical
loss of hyperbolicity

A definitive confirmation of the breakdown requires the
fully nonlinear evolution of the vector field, which requires
numerical methods. We closely follow the setup of Coates
and Ramazanoğlu [19] and Clough et al. [17], which we
adapt for Eq. (27). Namely, we integrate the system of
partial differential equations using the method of lines with
the 4th order Runge-Kutta method and fourth order spatial
derivatives with fixed step sizes. We observe that no
constraint damping or numerical dissipation is necessary,
i.e., turning these off did not affect our solutions within
numerical errors. All computations use a Courant-
Friedrichs-Lewy factor of Δt=Δx ¼ 2−5. We explicitly test
the convergence of our solutions as we present below.
Note that one can set jm2j ¼ 1 and jλj ¼ 1 by scaling the

coordinates and the vector field values, unless these
parameters vanish. Moreover, the field equations (15) are
invariant under the transformation

λ → −λ; Xμ → −Xμ; ð33Þ
so the solutions for positive and negative λ are in one-to-
one correspondence. In particular, under the transformation
(33), the effective metric (25) is invariant up to a sign
(which can be reabsorbed into its definition). Therefore, the
existence of configurations that break down hyperbolicity
is independent of the sign of the coupling constant λ. Our
numerical results are form2 ¼ 1, λ ¼ 1, but the conclusions
are applicable to any value of m2 > 0 and λ due to the
scaling properties we mentioned.
We consider the simplest setting of a (1þ 1)-dimensional

flat Minkowski spacetime for our numerical example. We
use the trivial foliation corresponding to the normal vector
nμ ¼ ð∂tÞμ to the spatial slices, i.e., we use the familiar
setup from Sec. III B.
A possible numerical hindrance is the evolution toward

ḡtt ¼ 0. Although this is merely a coordinate singularity
and does not imply a physical breakdown of the theory
[20], it nonetheless makes further numerical time evolution
impossible in these coordinates as is obvious in Eq. (27b).
We therefore take care to avoid it and find a configuration
that reaches ḡ ¼ 0 without encountering the coordinate
singularity ḡtt ¼ 0.
Inspired by our observations on the analytical properties

of the time evolution in Sec. III B, we numerically evolved
the following initial data:

Að0; xÞ ¼ 0; Eð0; xÞ ¼ αð1þ βxÞe−x2=2σ2 ; ð34Þ
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with ϕ ¼ −∂xE=m2 initially. This configuration guarantees
that E∂2xE < 0 near x ¼ 0, and we also include the odd term
with nonzero β to control and increase ∂xE.
In Fig. 1 we show the evolution of the ϕ and A fields, and

in Fig. 2 we plot the determinant and ḡtt for the same
evolution. We can see that the vector field for which time
evolution is initially possible evolves toward ḡ ¼ 0 and
reaches this point, as expected. Hence, this shows that
dynamical loss of hyperbolicity is not an isolated phe-
nomenon for self-interaction potentials. On the contrary,
the same time evolution problems occur quite readily in
more complicated generalized Proca theories as well.
Figure 2 also explicitly shows that the evolution avoids
encountering the coordinate singularity ḡtt ¼ 0.

It is important to recognize that time evolution is not well
defined when ḡαβ is not Lorentzian, that is, ḡ ≥ 0, even
though our numerical evolution continues in such regions
in Figs. 1 and 2. This is due to the finite resolution of our
numerics. In a truly continuous system, arbitrarily high
frequency Fourier modes grow at arbitrarily fast exponen-
tial rates once ḡ ≥ 0, and well-posed solutions cease to
exist. In a finite difference scheme, there is a high
frequency cutoff due to the nonzero spatial step size, which
means the highest mode still has some high but finite
growth rate (see, e.g., the supplemental material of Coates
and Ramazanoğlu [19]). This behavior can be used to check
loss of hyperbolicity. Whenever time evolution is healthy,
finer resolutions provide smaller truncation errors, since the
numerical solutions should converge to the exact solution
in the limit of vanishing spatial step size. This behavior is
reversed when ḡ ≥ 0, since supposedly “better” numerical
solutions with smaller step sizes can accommodate faster
growing unphysical modes. Hence, there is divergence
instead of convergence as the step size decreases, and the
exponential growth also becomes visible earlier. We see all
these characteristic features in Fig. 3.
We repeat our numerical computations with different

step sizes to further confirm that the results exhibit fourth
order convergence whenever ḡ < 0, as expected. The
convergence of the constraint as well as the truncation
error estimates for ϕ can be seen in Fig. 4.

FIG. 2. Dynamic loss of hyperbolicity during the evolution
shown in Fig. 1. An initially healthy (ḡ < 0) configuration
reaches the singularity, and the equations of motion become
elliptic (ḡ > 0). The coordinate singularity ḡtt ¼ 0 is not encoun-
tered during the evolution.

FIG. 1. Evolution of the components of Xμ starting from
the initial configuration (34). Here, α ¼ 0.25, β ¼ 3.5, and
σ ¼ m2 ¼ λ ¼ 1.

FIG. 3. Time evolution of the constraint C at a fixed point of
space, x ¼ 0.22, computed with different step sizes, where the
base spatial step size is Δx ¼ h ¼ 2−8. The loss of hyperbolicity
occurs at t ≈ 0.08 at this spatial coordinate. As long as ḡ < 0,
finer resolutions provide smaller truncation errors and smaller
constraints, i.e., the numerical solutions converge. However,
when ḡ ≥ 0 the trend is reversed, and there is divergence, since
numerical solutions with smaller step sizes can accommodate
(unphysical) higher frequency modes which grow faster.
Exponential growth becomes noticeable at increasingly earlier
times as h decreases, as expected.
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IV. DERIVATIVE COUPLING AND TACHYONS

The analysis of the time evolution of generalized Proca
theories where all terms in Eq. (1) are considered is quite
involved, which we will not attempt here. However, we
discovered another problematic behavior that arises from
derivative couplings, which likely renders the theory it
occurs in unphysical: tachyonic degrees of freedom.
Consider the Lagrangian term

L4¼ð∇μXμÞ2þc2∇ρXσ∇ρXσ−ð1þc2Þ∇ρXσ∇σXρ; ð35Þ

which corresponds to the simple choice f4ðX2Þ ¼ 1 in
Eq. (2c). We can show that this term does not give rise to
truly novel dynamics in a Ricci-flat background. That is,
consider the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

4
FμνFμν −

1

2
m2X2 þ 1

2
α4L4

�
; ð36Þ

where again X2 ¼ XμXμ, m is the mass parameter, and we
have rescaled the coupling constant α4 → α4=2. The field
equations are

∇μFμν − α4½c2□Xν þ∇ν∇μXμ − ð1þ c2Þ∇μ∇νXμ�
¼ m2Xν: ð37Þ

Using the Ricci tensor, these can be rewritten as

ð1 − α4c2Þ∇μFμν þ α4RμνXμ ¼ m2Xν: ð38Þ

On a Ricci-flat background (Rμν ¼ 0) this is exactly the
field equation of a free Proca field, albeit with a renor-
malized mass m2

r ¼ m2=ð1 − α4c2Þ. In particular, the field
equation is hyperbolic on a Ricci-flat background.
However, it is manifest that Eq. (38) may suffer from a

different problem when α4c2 > 1. Let us first assume
Rμν ¼ 0 for the sake of simplicity. Then, Eq. (38) describes
a wave equation for a vector field with a negative
mass square, which is called a tachyon. A tachyon leads
to an infrared, i.e., low frequency, instability, since
ω2 ¼ k2 þm2

r < 0 for low enough values of k. As we
have seen before, an imaginary frequency leads to the
exponential growth of the corresponding Fourier mode,
e−iωt ∼ ejωjt.
A tachyon is basically having the “wrong” sign in front

of the mass potential term, and it is not necessarily
problematic if the initial growth can be quenched by some
nonlinear terms. This is indeed the case for scalar field
theories, where interaction potentials of the form VðφÞ ¼
m2ϕ2 þ λ4ϕ4 are well behaved when m2 < 0 and λ4 > 0.
The initial exponential growth due to the tachyon is
eventually suppressed by the quartic term, which prevents
an unbounded growth of the field. Indeed, such a controlled
instability is the underlying mechanism of the Higgs
mechanism [61] and the well-known spontaneous scalari-
zation scenario in gravity [62–64].
The situation is quite different for a vector field theory

however. First, the theory of Eq. (37) does not have any
term other than the simple Proca mass; hence we have a
pure tachyon that grows forever without bound. This would
be a generic issue, and unless we consider an unnatural
superposition of only high frequency modes, any initial
data would blow up at a rate of ∼ejmr jt. The blowup likely
persists when the Ricci tensor is not vanishing but
sufficiently small. More importantly, adding a quartic
self-interaction is not a viable option in this case, since
we have already seen that this leads to loss of hyper-
bolicity.3 Hence, Eq. (37) generically seems to lead to
unphysical theories for a range of parameter values.

V. DISCUSSION

It has already been shown that in the presence of the
self-interaction potential the field equations of a vector field
can dynamically lose hyperbolicity and become elliptic.
Here we have explicitly shown that this problem is not
unique to field self-couplings considered so far, but it is
also present in the generalized Proca theories with deriva-
tive self-couplings. This confirms the expectation that loss
of hyperbolicity is not an isolated phenomenon. Our
concrete results are for simpler derivative couplings, but

FIG. 4. Fourth order convergence of the numerical solutions.
Left: snapshots of the truncation error estimates jϕ2h − ϕ4hj
(orange) and 16jϕh − ϕ2hj (green) at two different times, where
ϕh denotes the numerical value of ϕ calculated with a step size h.
Right: the snapshots of C2h (orange) and 16Ch (green). Unlike ϕ,
the constraint itself, not merely the truncation error, converges to
zero. The base step size is h ¼ 2−8.

3This is closely related to the fact that generalizations of
spontaneous scalarization to vector fields seem to be problematic,
which itself is a recent discovery [64–67].
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this further strengthens the already well-motivated expect-
ation that generalized Proca theories suffer from similar
problems in the generic case.
We examined the hyperbolicity of arguably the simplest

generalized Proca theory that features a derivative self-
coupling using the techniques developed by Coates and
Ramazanoğlu [19]. That is, we formulate the field equation
in such a way that its principal part is nondegenerate. This
allows us to derive an effective metric which determines the
character of the field equations. When the effective metric
is Lorentzian (Euclidean), the field equations are hyper-
bolic (elliptic). Hence, when there is a signature transition,
hyperbolicity is lost.
Since the effective metric depends on the vector field (and

in our case its first derivatives as well), it may change
signature as thevector field evolves, i.e., loss of hyperbolicity
can occur dynamically. We have explicitly shown this by
numerically evolving an initially healthy configuration
where the effective metric eventually becomes Euclidean.
A significant difference of derivative self-couplings from

the case of the self-interaction potential is the dependence
of the effective metric on the derivatives of the vector field
as well. As we have shown, this has the consequence that
there exist very simple initial data that have arbitrarily small
field amplitudes, for which the equations of motion are
elliptic to begin with, if the spatial derivatives are large
enough. A single Fourier mode eikx in the k → ∞ limit is a
simple example.
Our results establish the existence of configurations

which break down in finite time; however, there also exist
configurations which can evolve indefinitely without losing
hyperbolicity. Nevertheless, we do not believe the con-
figuration studied in this paper to be exceptional. For
example, Coates and Ramazanoğlu [21] showed that even
configurations with arbitrarily small initial amplitudes
can lose hyperbolicity in the case of the self-interaction
potential. Although we have not shown this for the

derivative couplings at hand, we expect similar configura-
tions (e.g., infalling spherical waves) to break down.
We have also shown that beside loss of hyperbolicity,

generalized Proca theories can suffer from tachyonic
instabilities in some part of their parameter space, which
leads to an unphysical eternal exponential growth of the
fields. Unlike some examples in scalar field theories, there
is no known mechanism to quench such a growth either.
Overall, we expect this subset of the generalized Proca
theories to be unphysical as well.
An important point to emphasize is that we have

considered the actions we investigated so far to belong
to fundamental theories; hence, the problems we discov-
ered rendered them unphysical. However, it is always
possible that such a theory constitutes an approximate
description of a yet more fundamental theory. When we
view generalized Proca theories as such effective field
theories (EFTs), these pathologies do not necessarily mean
a breakdown of physics, but rather they may point to the
breakdown of the approximation scheme we used in
reducing the more fundamental theory [68]. Even for such
a view, however, the problems we identified have to be
understood in detail if one wants to avoid computational
problems in the study of these EFTs.
Problems about well-posedness in general and loss of

hyperbolicity in particular have become an increasingly
relevant topic of study in recent times, especially in gravity
[69–71]. Analysis of these issues in the relatively simpler
setting of vector fields enables us to better understand the
underlying mechanisms. Moreover, identifying these path-
ologies can also help us in identifying alternative theories
of gravity that are more likely to represent nature.
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