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This study explores the properties of black holes and scalarons in Einstein gravity when it is minimally
coupled to a scalar field ϕ with an asymmetric potential VðϕÞ, constructed in [A. Corichi et al., Phys. Rev.
D 73, 084002 (2006)] a few decades ago. VðϕÞ has been applied in cosmology to describe the quantum
tunneling process from the false vacuum to the true vacuum and contains a local maximum, a local
minimum (false vacuum), and a global minimum (true vacuum). We focus on the asymptotically flat
solutions, which can be constructed by appropriately fixing the local minimum of V. A branch of hairy
black hole solutions emerges from the Schwarzschild black hole, and we study the domain of existence of
such configurations. They can reach to a particlelike solution in the small horizon limit, i.e., the scalarons.
We study the stability of black holes and scalarons, showing that all are unstable under radial perturbations.
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I. INTRODUCTION

The “no hair” theorem states that the properties of black
holes are only described by the mass, angular momentum
and electrical charge after a gravitational collapse or by any
dynamical perturbations of black holes as they approach the
stationary limit. However, the no hair theorem can be
circumvented under the right conditions. For example, the
existence of particle-like solution for SU(2) Einstein-Yang-
Mills theory shown by Bartnik and Mckinnon [1] had led to
the construction of non-Abelian hairy black holes [2–6]
which do not obey the no hair theorem anymore. One of the
simplest ways to circumvent this theorem is to minimally
couple Einstein gravity with a scalar field, introducing a
scalar potential that is not strictly positive, such that the
weak energy condition is violated [7]. In [8], spherically
symmetric and asymptotically flat hairy black holes were
constructed by employing a scalar potential that has a
global minimum, local minimum, and local maximum
(asymmetric potential). They obtained the asymptotically
flat black holes by fixing the local minimum of potential to
zero, to study the empirical mass formula of such black

holes [8] and later generalize their model to a nonminimally
coupled scalar field with gravity [9]. However, the proper-
ties of black holes, such as the Hawking temperature and
mass, had not been investigated systematically in terms of
the parameters of the scalar potential. In this work, we
investigate the properties of these solutions by fixing the
global minimum of the potential and varying the local
maximum. This allows us to generate a branch of hairy
black holes that bifurcate from the Schwarzschild black
holes. See Refs. [10–18] for similar constructions of scalar
hairy black holes.
When there is a scalar field with an asymmetric potential,

quantum tunneling froma falsevacuum (a localminimum) to
a true vacuum (a global minimum) is allowed.With anOð4Þ-
symmetricmetricAnsatz, theColeman-DeLuccia instantons
explain such a tunneling process via nucleation of a bub-
ble [19]. If we extend the symmetry of the solution from
Oð4Þ-symmetry to the spherical symmetry, one can construct
such solution within the Euclidean path integral formalism
that explains the tunneling process [20,21]. For both cases,
inside is a true-vacuum region, and after the nucleation, the
bubble should expand over the spacetime; otherwise, the
scalar field combination is, in general, unstable. Such a
bubble may explain the phase transition of the early universe
cosmology [22–27]; also, some interactions between bubbles
may be a source of gravitational waves [28–30].
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However, the same solution can be interpreted as a kind of
(unstable) scalaron or stationary hairy black hole solution.
To provide a smooth field configuration at the horizon over
the Euclidean manifold, one needs to provide a condition
such that the derivative of the scalar field vanishes at the
event horizon. On the other hand, if we generalize this
boundary condition and focus only on the astrophysical
aspects, it can still provide more generic boundary con-
ditions [20,31]. This is the case that we will investigate.
This paper is organized as follows. In Sec. II, we briefly

introduce our theoretical setup comprising the Lagrangian
and the metric Ansatz. Then, we derive the set of coupled
differential equations and study the asymptotic behavior of
the functions. In Sec. III, we briefly introduce the quantities
of interest for the black holes. In Sec. IV, we study the
stability of the hairy black holes and scalarons by calculat-
ing the unstable mode of the radial perturbations of the
metric and the scalar field. In Sec. V, we present and discuss
our numerical findings. Finally, in Sec. VI, we summarize
our work and present an outlook.

II. THEORETICAL SETTING

A. Theory and Ansätze

The action for Einstein gravity minimally coupled with
an asymmetric potential VðϕÞ of a scalar field ϕ is given
by [8]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R

16πG
−
1

2
∇μϕ∇μϕ − VðϕÞ

�
; ð1Þ

where

VðϕÞ¼V0

12
ðϕ−aÞ2½3ðϕ−aÞ2−4ðϕ−aÞðϕ0þϕ1Þþ6ϕ0ϕ1�;

ð2Þ
with a, V0, ϕ0 and ϕ1 as constants. As exhibited in Fig. 1,
the appearance of the cubic term ϕ3 causes the potential to
adopt an asymmetric shape. If the cubic term in the
potential disappears, then the potential is Higgs-like, with

two degenerate minima. Here, the constant a is the local
minimum of the potential, ϕ0 is the local maximum of the
potential and ϕ1 is the global minimum of the potential.
Note that 0 < 2ϕ0 < ϕ1. In cosmology, this potential can
be used to explain the quantum tunneling process from a
false vacuum a to a true vacuum ϕ1.
The variation of the action with respect to the metric and

scalar fields yields the Einstein and Klein-Gordon (KG)
equations, respectively,

Rμν −
1

2
gμνR ¼ 8πGTμν; ∇μ∇μϕ ¼ dVðϕÞ

dϕ
; ð3Þ

where the stress-energy tensor Tμν is given by

Tμν ¼ −gμν
�
1

2
∇αϕ∇αϕþ VðϕÞ

�
þ∇μϕ∇νϕ: ð4Þ

We employ the following spherically symmetric Ansatz
to construct the particle-like and black hole solutions;

ds2¼−NðrÞe−2σðrÞdt2þ dr2

NðrÞþ r2ðdθ2þ sin2 θdφ2Þ; ð5Þ

where NðrÞ ¼ 1–2mðrÞ=r and mðrÞ is the Misner-Sharp
mass function. It is important to note that mð∞Þ ¼ M
denotes, the total mass of the configuration.

B. Justification on the existence
of the hairy black holes

In this section, we briefly justify the existence of the
hairy black holes by referring to [7]. We multiply ϕ by the
KG equation and integrate it from the black hole horizon to
infinity,

Z
∞

rH

d4x
ffiffiffiffiffiffi
−g

p �
ϕ∇μ∇μϕ − ϕ

dVðϕÞ
dϕ

�
¼ 0: ð6Þ

We integrate the first term in the above expression by
parts and obtain;

Z
∞

rH

d4x
ffiffiffiffiffiffi
−g

p �
−∇μϕ∇μϕ−ϕ

dVðϕÞ
dϕ

�
þ
Z
H
d3σnμϕ∇μϕ¼0;

ð7Þ

where nμ is the normal vector on the Killing horizon. The
second term in the above expression is the boundary term
that vanishes when we apply the boundary conditions for
the scalar field at the horizon with nμ∇μϕ ¼ 0 and demand
that the scalar field falls off at infinity. Hence, we are left
with the following:

Z
∞

rH

d4x
ffiffiffiffiffiffi
−g

p �
∇μϕ∇μϕþ ϕ

dV
dϕ

�
¼ 0: ð8Þ

V( )

= 0

0

= 1

FIG. 1. An illustration of a generic asymmetric scalar poten-
tial VðϕÞ.
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Here, ∇μϕ∇μϕ ≥ 0 because the gradient of ϕ is
perpendicular to both Killing vectors and thus has to be
spacelike or zero. Subsequently, to obtain a regular and
nontrivial hairy black hole, the term ϕ dV

dϕ ≤ 0. In our case,
we choose ϕ to always be greater than zero, while the
potential VðϕÞ is negative in some regions; the existence of
nontrivial scalar hairy black holes is therefore allowed.
Furthermore, we can multiply the KG equation by dV

dϕ and
repeat the above procedure, obtaining the following:

Z
∞

rH

d4x
ffiffiffiffiffiffi
−g

p �
d2V
dϕ2

∇μϕ∇μϕþ
�
dV
dϕ

�
2
�
¼ 0: ð9Þ

To make the terms in the square bracket vanish nontrivially,
it is clear that d

2V
dϕ2 < 0, the condition that is also satisfied in

our case. Note that in this derivation, it is not necessary to
use the Einstein equation.
However, we can also see that the weak energy condition

can be violated as V possesses a global minimum with
V < 0 in some regions of ϕ;

ρ ¼ −Tt
t ¼

N
2
ϕ02 þ V: ð10Þ

The violation of the weak energy condition leads to the
violation of the strong energy condition (the opposite is not
necessarily true). Moreover, we could also use the virial
identity to reach the same conclusion, that is, V ≤ 0 in
some regions. However, for this analysis, it is necessary to
introduce the metric Ansatz into the action.
In summary, this potential V possesses a local maximum

and a global minimum which causes V to be negative in
some regions. The local minimum at zero guarantees that
the black hole is asymptotically flat. Moreover, it is
possible to repeat the analysis to show the existence of
solitonic solutions, just by changing the lower end of
integration (no horizon with a fully regular spacetime).

C. Ordinary differential equations (ODEs)

By substituting Eq. (5) into the Einstein-matter field
equation, we obtain a set of second-order and nonlinear
ODEs for the metric functions,

m0 ¼ 2πGr2ðNϕ02 þ 2VÞ; σ0 ¼ −4πGrϕ02;

ðe−σr2Nϕ0Þ0 ¼ e−σr2
dV
dϕ

; ð11Þ

where the prime denotes the derivative of the functions with
respect to the radial coordinate r.
To construct globally regular black hole solutions, we

need to know the asymptotic behavior of the functions at
the horizon and the infinity. By making the series expan-
sion for the functions at the horizon, the leading terms in
the series expansion are given by the following:

mðrÞ ¼ rH
2
þm1ðr − rHÞ þOððr − rHÞ2Þ; ð12Þ

σðrÞ ¼ σH þ σ1ðr − rHÞ þOððr − rHÞ2Þ; ð13Þ

ϕðrÞ ¼ ϕH þ ϕH;1ðr − rHÞ þOððr − rHÞ2Þ; ð14Þ

where

m1 ¼ 4πGr2HVðϕHÞ; σ1 ¼ −4πGrHϕ2
H;1;

ϕH;1 ¼
rH

dVðϕHÞ
dϕ

1 − 8πGr2HVðϕHÞ
: ð15Þ

Here, σH and ϕH are the values of σ and ϕ at the horizon.
Similarly, the leading terms in the series expansion for
scalaron at the origin are given by the following:

mðrÞ ¼ 4πGVðϕcÞ
3

r3 þOðr5Þ; ð16Þ

σðrÞ ¼ σc −
πG
9

�
dVðϕcÞ
dϕ

�
2

r4 þOðr8Þ; ð17Þ

ϕðrÞ ¼ ϕc þ
1

6

dVðϕcÞ
dϕ

r2 þOðr4Þ; ð18Þ

where σc and ϕc are the values of σ and ϕ at the origin,
respectively.
Black holes and scalarons share the same asymptotic

expansion of the metric and scalar functions at infinity. As
we take r → ∞, if we impose asymptotic flatness and the
scalar field to vanish, then the leading terms are given by
the following expressions:

mðrÞ ¼ M þ m̃1

exp ð−2meffrÞ
r

þ � � � ; ð19Þ

σðrÞ ¼ σ̃1
exp ð−2meffrÞ

r
þ � � � ; ð20Þ

ϕðrÞ ¼ ϕ̄H;1
exp ð−meffrÞ

r
þ � � � ; ð21Þ

where m̃1, σ̃1, and ϕ̃H;1 are constants; and M is the total
mass of the configuration. It is important to note that the
effective mass of the scalar field is meff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0ϕ0ϕ1

p
.

We introduce the following dimensionless parameters;

r →
rffiffiffiffiffiffiffiffiffi
4πG

p ; m →
mffiffiffiffiffiffiffiffiffi
4πG

p ; ϕ →
ffiffiffiffiffiffiffiffiffi
4πG

p
ϕ: ð22Þ

The ODEs are solved by an ODE solver package Colsys
which employs the Newton-Raphson method to solve the
boundary value problem for a set of nonlinear ODEs
by providing the adaptive mesh refinement to generate
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the solutions to have more than 1000 points with high
accuracy and the estimation of errors of solutions [32]. We
compactify the radial coordinate r by r ¼ rH=ð1 − xÞ for
hairy black holes and r ¼ x=ð1 − xÞ for the scalaron in the
numeric. Here we have five parameters ðϕH;ϕ0;ϕ1; V0; rHÞ
to describe the hairy black holes and four parameters
ðϕc;ϕ0;ϕ1; V0Þ to describe the scalaron. To generate the
solutions, we fix the global minimum ϕ1, and the value of
ϕ0 is determined exactly when the boundary conditions are
satisfied with the suitable choices of ϕc and ϕH for the
scalaron and hairy black holes with fixed rH and V0,
respectively.
When considering a hairy black hole, our solutions

require a nonvanishing gradient of the scalar field at the
event horizon. Therefore, if we maximally extend the
causal structure over the Einstein-Rosen bridge (left of
Fig. 2), one necessarily sees a cusp of the scalar field (black
dashed curve) inside the horizon. In order to see this clearly,
one can rewrite the scalar field configuration at the horizon
[Eq. (14)] with the substitution r ¼ rH=ð1 − yÞ where
−∞ < y < ∞:

ϕðyÞ¼ϕHþ rHϕH;1

� jyj
1− jyj

�
þO

�� jyj
1− jyj

�
2
�
; ð23Þ

where y < 0 covers the left side of the Penrose diagram and
y > 0 covers the right side of the Penrose diagram. Hence,
a cusp appears at the horizon (y ¼ 0). However, it is fair to
say that our solutions satisfy the regularity condition at the
event horizon; hence, the solution is naturally extended
beyond the event horizon up to the singularity. Thus, if we
restrict the situation to determine that our solution is formed
from astrophysical processes, e.g., gravitational collapses,
we can restrict our solutions above a timelike hypersurface
(blue dashed curve) that may, for example, denote a star
surface. So, the final physically sensible causal structure
becomes right of Fig. 2.

III. PROPERTIES OF THE SCALAR HAIRY
BLACK HOLES

We are interested in the Hawking temperature TH and
area of horizon AH of these black holes,

TH ¼ 1

4π
N0ðrHÞe−σH ; AH ¼ 4πr2H; ð24Þ

where σH is the value of function σ at the horizon. For the
convenience of comparing our black hole solution with
other known solutions, we introduce the following reduced
quantities at the horizon of the black holes;

aH ¼ AH

16πM2
; tH ¼ 8πTHM: ð25Þ

The Ricci scalar R and Kretschmann scalar K for the
black hole spacetime are given by the following:

R ¼ −N00 þ 3rσ0 − 4

r
N0

þ 2ð2rNσ0 − N þ 1þ r2Nσ00 − r2Nσ02Þ
r2

; ð26Þ

K ¼ ð3σ0N0 þ 2Nσ00 − N00 − 2Nσ02Þ2 þ 2

r2
ðN0 − 2Nσ0Þ2

þ 2N02

r2
þ 4ðN − 1Þ2

r4
: ð27Þ

With the series expansion of functions at the horizon, the R
and K are finite with the leading order as follows:

R¼−
2m1ð3rHσ1−2Þ

r2H
þ3σ1þ4m2

rH
þOðr− rHÞ; ð28Þ

FIG. 2. Left: the maximally extended causal structure for hairy black holes. The yellow-colored part denotes a region for negative
vacuum energy. The black dashed curve denotes a cusp surface of the scalar field, and the blue dashed curve denotes a star surface.
Right: the physically sensible interpretation of the hairy black hole does not include any cusp region.
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K ¼ 16m2
2

r2H
−
8ð−2þ 6m1σ1rH þ 4m1 − 3σ1rHÞ

r3H

þ 12− 32m1 þ 48m2
1σ1rH þ 36m2

1σ
2
1r

2
H þ 32m2

1 þ 9σ21r
2
H þ 12σ1rH − 36σ21r

2
Hm1 − 48m1σ1rH

r4H
þOðr− rHÞ: ð29Þ

IV. THE RADIAL PERTURBATION

In the case of radial perturbation, we perturb the back-
ground metric and scalar field, respectively as [33]

ds2 ¼ −NðrÞe−2σðrÞ½1þ ϵe−iωtFtðrÞ�dt2

þ 1

NðrÞ ½1þ ϵe−iωtFrðrÞ�dr2

þ r2ðdθ2 þ sin2 θdφ2Þ; ð30Þ

Φ ¼ ϕðrÞ þ ϵΦ1ðrÞe−iωt; ð31Þ

where FtðrÞ, FrðrÞ andΦ1ðrÞ are the small perturbations to
the nonperturbed solutions.
By substituting the above Ansatz to the Einstein equation

and KG equation, we obtain a set of ODEs for the
perturbation functions:

Fr ¼ 8πGrΦ1ϕ
0; ð32Þ

F0
t ¼ −F0

r þ 16πGrΦ0
1ϕ

0; ð33Þ

Φ00
1 ¼

�
σ0 −

N0

N
−
2

r

�
Φ0

1 þ
�
1

N
d2V
dϕ2

− ω2
e2σ

N2

�
Φ1

þ Fr

N
dV
dϕ

þ F0
r − F0

t

2
ϕ0: ð34Þ

We observe that only Eq. (34) is independent because other
ODEs [Eqs. (32) and (33)] are dependent. Hence, we
transform Φ00

1 to a Schrödinger-like master equation by
defining ZðrÞ ¼ rΦ1ðrÞ:

d2Z
dr2�

þ ðω2 − VRðrÞÞZ ¼ 0; ð35Þ

with the effective potential VRðrÞ,

VRðrÞ ¼ Ne−2σ
�
N
r

�
N0

N
− σ0

�
− 8πGrNϕ02

�
N0

N
þ 1

r
− σ0

�

þ 16πGrϕ0 dV
dϕ

þ d2V
dϕ2

�
: ð36Þ

The tortoise coordinate r� is

dr�
dr

¼ eσ

N
: ð37Þ

The perturbation Z is unstable when ω2 < 0 where the
perturbation grows exponentially with time. In the com-
pactified coordinate x, the effective potential VR has
the following expansions at the origin and horizon,
respectively,

Scalaron∶ VRð0Þ ¼ Ṽ0 þ Ṽ1xþ Ṽ2x2 þOðx3Þ; ð38Þ

Black Hole∶ VRð0Þ ¼ V̂1xþ V̂2x2 þOðx3Þ; ð39Þ

where Ṽi and V̂i are constants that depend on the
parameters of the background solution.
Note that Eq. (35) is an eigenvalue problem. Hence, we

compute the radial mode numerically by using COLSYS to
solve itwithω2 as the eigenvalue. For black holes,we impose
that the first-order derivative of the perturbation function
vanishes at the boundaries, ∂rZðrHÞ ¼ ∂rZð∞Þ ¼ 0. In the
case of the scalaron,we impose that the perturbation function
vanishes at the boundaries. In the numerics, we introduce an
auxiliary equation d

drω
2 ¼ 0, that allows us to impose an

additional condition ZðrpÞ ¼ 1 at some point rp, which
typically lies in the middle of the horizon/origin and infinity.
This allows us to obtain a nontrivial and normalizable
solution for Z, because Eq. (35) is homogeneous. The
eigenvalue ω2 is found automatically when Z satisfies all
the asymptotic boundary conditions.

V. RESULTS AND DISCUSSIONS

A. General properties and domain of existence

By fixing several values of global minimum ϕ1, we
exhibit the properties of hairy black holes, which are
reduced area of horizon aH and reduced Hawking temper-
ature tH in Fig. 3. The purpose of introducing these reduced
quantities is to compare our hairy black holes with a known
solution, which is the Schwarzschild black hole in this case.
Recall that both aH and tH are unity for Schwarzschild
black hole. By increasing the value of the scalar field at
the horizon ϕH from zero, a branch of hairy black hole
solutions emerges from the Schwarzschild black hole. As
ϕH increases, aH decreases from unity, and tH increases
from unity. When ϕH → ϕ1, aH decreases to zero and tH
increases very sharply for ϕ1 ¼ 0.5, 1.0. We could not
generate configurations for ϕH ¼ ϕ1, the solutions becom-
ing singular as we reach this value of the parameter. Note
that when ϕH ¼ ϕ1, the scalar field sits exactly at the true
vacuum ϕ1 of the potential, and the tunneling effect does
not occur.
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For higher values of ϕ1 (i.e. ϕ1 ¼ 2.0, 3.0, 5.0), the
reduced area aH also decreases almost to zero but the
reduced temperature tH remains finite. Again, the solutions
should become sick in the limit ϕH ¼ ϕ1, but numerically
reaching this limit is more complicated, as the code stops
working for values of ϕH slightly below ϕ1 (for ϕ1 ¼ 2.0,
3.0) and ϕH far below ϕ1 (for ϕ1 ¼ 5.0).
In Fig. 4 we show the relation between the mass of hairy

black holes and scalarons with the value of ϕc. The scalaron

solutions (purple curve) emerge from the Minkowski
spacetime, where the mass is zero and the scalar field
vanishes. As the value of the scalar field at the origin ϕc
increases from zero, the mass of the scalaron also increases.
When ϕc → ϕ1, the mass of the scalaron increases very
sharply.
The color bars in the Fig. 4 represent the size of the black

hole horizon, which indicate that the mass of scalaron
relates to hairy black holes in the small horizon limit

(a)

 0

 5

 10

 15

 20

 25

 30

 0  0.1  0.2  0.3  0.4  0.5

�1=0.5, V0=0.5

M

�c

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50 (b)

 0

 2

 4

 6

 8

 10

 0  0.2  0.4  0.6  0.8  1

�1=1.0, V0=5.0

M

�c

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

(c)

 0

 2

 4

 6

 8

 10

 12

 0  1  2  3

�1=5.0, V0=0.5

M

�c

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

FIG. 4. The mass M as a function of the parameter ϕc for (a) V0 ¼ 0.5;ϕ1 ¼ 0.5 (b) V0 ¼ 5.0;ϕ1 ¼ 1.0 (c) V0 ¼ 0.5;ϕ1 ¼ 5.0. The
purple curve corresponds to the scalaron, and the rest of the colored lines are for sets of black holes with fixed values of ϕH (in this case
ϕc ¼ ϕH). The color gradient indicates the size of the horizon radius rH.

(a) (b)

FIG. 3. The properties of hairy black holes ðrH ¼ 1; V0 ¼ 1Þ with several global minimum ϕ1 as a function of ϕH: (a) The scaled area
of horizon aH . (b) The scaled Hawking temperature tH .
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ðrH → 0Þ. Thus, the hairy black holes possess the scalaron
as the limiting configuration in the small horizon limit.
Analogous to the hairy black holes, for ϕ1 ¼ 0.5, 1.0, the
scalarons do not exist when ϕc ¼ ϕ1 as the scalar field ϕc
sits exactly at the true vacuum ϕ1. For large ϕ1, e.g.,
ϕ1 ¼ 5.0, the scalaron solutions are more difficult to
generate numerically, and we cannot reach values of ϕc
too close to ϕ1.
We exhibit the typical profiles of solution in the

compactified coordinate x for the hairy black holes and
scalaron in Fig. 5. Both compact objects show a similar
pattern for the functions. As the value of the scalar field at
the horizon or the origin becomes closer to ϕ1, these
solutions become closer to bubbles of true vacuum sur-
rounded by the false vacuum.
We observe that the solutions have almost constant

functions in the bulk, corresponding (almost) to the global
minimum of the potential, and thus the true vacuum ϕ1.
Moving away from the horizon, the solutions develop a
sharp boundary at some intermediate region of the space-
time, where the functions rapidly change to another set of
almost constant functions. This region corresponds to the
imposed false vacuum (a ¼ 0) at infinity, where the scalar
sits in the local minimum.

Moreover, the mass function mðxÞ possesses a global
minimum and can be strictly nonpositive [see Fig. 5(b)],
which indicates the violation of the energy conditions. We
observe that the global minimum of mðxÞ decreases very
sharply as ϕH increases to the limit value. This sharp
behavior of the mðrÞ function propagates into the metric
component grr, which we display in Fig. 6. The global
minimum of mðxÞ gives rise to the global maximum of
NðxÞ, since NðxÞ ¼ 1–2mðxÞð1 − xÞ=rH. Thus, the global
maximum of NðxÞ also gives rise to the global minimum of
grr since grr ¼ 1=NðxÞ.
To further illustrate how in the limit the spacetime is

divided into two different regions dominated by the two
possible vacua, in Fig. 7 we show the profiles of the scalar
field for hairy black holes and scalarons. As ϕH and ϕc
increase to ϕ1, the scalar field profile becomes closer and
closer to a step function: the bulk region possesses the value
of the true vacuum ϕ1, whereas the exterior region
possesses the value of the false vacuum (a ¼ 0).
The Ricci scalar R and Kretschmann scalar K for a hairy

black hole with ϕ1 ¼ 1.0 are shown in Figs. 8(a) and 8(b),
respectively. The Ricci scalar at the horizon decreases
from zero to some negative values when ϕH increases.
This indicates that the bulk of the hairy black hole
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possesses negative curvature. From the horizon to a point
where the functions have a sharp boundary, the profile of
R increases from a negative value to zero and then to a
positive value, before fallings to zero again at infinity.
However, the Kretschmann scalar is positive at the
horizon, and its profile decreases monotonically to zero
at infinity.

B. Spherical stability

In Fig. 9, we show the effective potential VR in the
compactified coordinate for the scalaron and hairy black
holes. VR possesses finite value at the origin for scalaron
but VR is zero for the hairy black holes. In this figure, the
potential always possesses a negative region for both types
of objects, indicating the existence of instability.
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In fact, it is possible to obtain unstable radial modes for
all the solutions we have studied. In Fig. 10 we exhibit the
spectra of unstable radial modes for hairy black holes and
scalarons as a function of the ϕc parameter. The unstable
modes decrease from zero to a minimum value as this
parameter is increased. From the minimum, the unstable
mode increases again as ϕc approaches the value of ϕ1 (the
numerical results indicate that the mode becomes zero
exactly at this value, not before). The modes for hairy black
holes and scalarons are also smoothly connected in the
small horizon limit. Interestingly we find that the unstable
mode of the hairy black holes decreases in magnitude with
the size of the horizon. This indicates that black holes with
large horizon sizes could be effectively stable (at least in
some timescale).
Such instability is not so surprising, because our sol-

ution is a kind of spherical symmetric true vacuum
bubbles in the false vacuum background. The scalar field
configuration between the black hole and the asymptotic
infinity can be interpreted as a domain wall, while the
domain wall will expand over the false vacuum back-
ground. It is worthwhile to mention that we have shown a
nontrivial true vacuum bubble solution in the spherical
symmetric background that is rather complicated than
Oð4Þ-symmetric cases.

VI. CONCLUSION

The gravity minimally coupled to a scalar potential
allows the construction of hairy black holes by requiring
the scalar potential to be nonstrictly positive for violating
the energy conditions [7]. Reference [8] employed such
scalar potential which has a global minimum ϕ1, a local
minimum a, and a local maximum ϕ0 to construct the
spherically symmetric and asymptotically flat hairy black
holes and study their empirical mass formulas. The
asymptotic flatness condition of black holes is guaranteed
by fixing the local minimum of the potential to zero. This
potential has been widely applied to study the quantum
tunneling process from the false vacuum a to the true
vacuum ϕ1 in cosmology.
In this study, we performed a comprehensive study of the

properties of black holes by solving the Einstein-matter
field equations numerically. We fixed the global minimum
(true vacuum) and varied the value of the scalar field at the
horizon ϕH to generate the hairy black holes solutions.
Thus, a branch of hairy black holes with fixed horizon size
emerged from the Schwarzschild black holes. For small ϕ1,
when ϕH increased from zero and approached ϕ1, the
scaled area of horizon decreased from unity to zero and the
scaled Hawking temperature increased very sharply from
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unity. In the limit ϕH ¼ ϕ1, the scalar field sat exactly at the
true vacuum ϕ1 and no tunneling occurred; thus, hairy
black holes did not exist anymore in that limit. For large ϕ1,
the scaled area of horizon also decreased from unity to zero,
but the scaled Hawking temperature increased to a finite
value from unity when ϕH increased to a value that was still
less than ϕ1. In such a situation, we were unable to generate
the solutions for ϕH beyond that value because the
numerical code stops working.
Analogous to the hairy black holes, a branch of globally

regular particle-like solution that is known as scalaron
emerged from the Minkowski spacetime by varying the
scalar field at the origin ϕc. The scalaron also behaved
analogously with the hairy black holes in the limit ϕc ¼ ϕ1

where the mass increased very sharply. Similarly, we were
also unable to generate the scalaron for large ϕ1. In
addition, the hairy black holes were reduced to the scalaron
in the small horizon limit.
The profiles of both compact objects behaved similarly;

they had almost constant functions in the bulk, which
corresponded to the true vacuum ϕ1, before showing a
sharp boundary where the functions rapidly changed to
another set of constant functions which corresponded to the
false vacuum (a ¼ 0) that lies at the infinity.
We also investigated the linear stability of hairy black

holes by performing the radial perturbation on themetric and
scalar fields. Hence, we obtained a master equation which is
Schrödinger-like.Wenumerically solved themaster equation
to compute the spectra of radial modes. Generically, both
hairy black holes and scalaron are unstable against the radial
perturbation. Both spectra decrease from zero to a minimum
value and then increased to zero as thevalue of the scalar field
increased from zero and then approached ϕ1. Moreover, the

unstable modes of hairy black holes are connected with
scalaron in the small horizon limit. We also found that the
hairy black holes with larger horizon sizes are relatively
stable against the perturbation.
There are many possible directions that can be derived

from this study. One possibility is to consider theories that
allow for a nonminimally coupled scalar field with the
Ricci scalar [9]. It would be interesting to study the
properties of the hairy black holes in these models, and
in particular, analyze the influence of the nonminimal
coupling in the radial instability. This requires a more
rigorous calculation and analysis that we shall report in the
future. In addition, we can consider studying the properties
of charged hairy black holes for this model and their linear
stability. It is also interesting to generalize these static hairy
black holes to the rotating hairy black holes so that we can
study the difference between the properties of rotating hairy
black holes with Kerr black holes.
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