
Are Einstein-Dirac-Maxwell wormholes traversable?

Ben Kain
Department of Physics, College of the Holy Cross, Worcester, Massachusetts 01610, USA

(Received 25 May 2023; accepted 19 July 2023; published 8 August 2023)

Einstein-Dirac-Maxwell wormholes are asymptotically flat static wormhole solutions in general
relativity that do not make use of exotic matter. The asymmetric static solutions are smooth, are regular
everywhere, and violate the null energy condition, which suggests that they are traversable. To determine
if, in fact, they are traversable, we numerically evolve the static solutions forward in time. In all cases
considered, our simulations indicate that black holes form that are connected by the wormhole. Although
there exist null geodesics that travel through the wormhole, we find that they are trapped inside a black
hole and are unable to travel arbitrarily far away. We conclude that Einstein-Dirac-Maxwell wormholes
are not traversable.
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I. INTRODUCTION

Traversable wormholes are hypothetical gravitational
systems that offer the possibility of quickly traveling
between separated points in spacetime or even between
different universes [1,2]. Asymptotically flat wormhole
solutions have typically required exotic matter or mod-
ifications to general relativity. For example, wormholes in
asymptotically flat general relativity have been found with
ghost matter, which has negative kinetic energy [3–5].
Modifications to general relativity that have led to worm-
holes or wormholes in anti–de Sitter space include
Refs. [6–12].
Recently, Blázquez-Salcedo et al. discovered asymp-

totically flat static wormhole solutions in general relativity
without making use of exotic matter [13,14]. They studied
the Einstein-Dirac-Maxwell (EDM) system [15–18], in
which the charged Dirac equation is minimally coupled
to general relativity, and found wormhole solutions that
are symmetric across the wormhole throat. The EDM
system describes fermions with first quantized wave
functions and treats gravity and the electromagnetic field
classically. Symmetric EDM wormholes, however, have
concerning properties [19], which are absent in the
asymmetric solutions found by Konoplya and Zhidenko
[20]. In this work, we focus exclusively on asymmetric
EDM wormholes. For additional work on EDM worm-
holes, see [21–24].
The authors of [13,20] assumed that EDMwormholes are

traversable. They presumably did so because their static
solutions violate the null-energy condition [25] and are
regular everywhere. To determine if, in fact, EDM worm-
holes are traversable, we construct a time dependent EDM
model. We then use the asymmetric solutions as initial data
and numerically evolve them forward in time.

Our simulations indicate that black holes form that are
connected by the wormhole. We find that null geodesics that
can travel across the wormhole get trapped inside a black
hole. We see this behavior in all simulations we have
performed. For a wormhole to be traversable, one must
be able to travel arbitrarily far on the opposite side. While we
cannot rule out that there may exist an asymmetric EDM
wormhole that exhibits different behavior, our simulations
lead us to conclude that EDMwormholes are not traversable.
In the next section, we present the Lagrangian for our

matter sector and give the time dependent equations we
solve for our simulations. In Sec. III, we explain how
fermions are described by quantum wave functions. In
Sec. IV, we review asymmetric static EDM wormhole
solutions. Our main results are presented in Sec. V, where
we use static solutions as initial data and then numerically
evolve them forward in time. We conclude in Sec. VI. We
have placed a number of details in appendixes, including
the most general set of spherically symmetric equations,
our numerical methods, and code tests. Unless otherwise
indicated, we use units such that c ¼ G ¼ ℏ ¼ 1.

II. EINSTEIN-DIRAC-MAXWELL

EDM wormholes are solutions to the Dirac equation
gauged under Uð1Þ minimally coupled to spherically
symmetric general relativity. The matter sector includes
charged spin-1=2 fermions, ψx, where x labels the fermion,
and a Uð1Þ gauge field, Aμ, and has Lagrangian

L ¼
X
x

Lx
ψ þ LA; ð1Þ

where

PHYSICAL REVIEW D 108, 044019 (2023)

2470-0010=2023=108(4)=044019(17) 044019-1 © 2023 American Physical Society

https://orcid.org/0000-0003-1952-1271
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.044019&domain=pdf&date_stamp=2023-08-08
https://doi.org/10.1103/PhysRevD.108.044019
https://doi.org/10.1103/PhysRevD.108.044019
https://doi.org/10.1103/PhysRevD.108.044019
https://doi.org/10.1103/PhysRevD.108.044019


Lx
ψ ¼ 1

2
½ψ̄xγ

μDμψx − ðDμψ̄xÞγμψx� − μψ̄xψx;

LA ¼ −
1

4
FμνFμν;

Fμν ¼ ∂μAν − ∂νAμ: ð2Þ

In Appendixes A and B, we show that spherical symmetry
requires more than one fermion. We include two fermions,
which we label as x ¼ �, both with mass μ and charge e.
Also in Appendixes A and B, we give the definition of the
covariant derivatives and the γ-matrices in Eq. (2) and
present the complete set of equations for metric fields, the
extrinsic curvature, and the equations of motion for the
general spherically symmetric metric. Different coordinate
choices have different advantages in numerical simulations.
We choose to set the shift vector equal to zero, βr ¼ 0,
which simplifies the equations. In this section, we list the
equations for this coordinate choice, and we refer the reader
to Appendixes A and B for details.
In our time dependent model, we write the spherically

symmetric metric as

ds2 ¼ −α2dt2 þ Adr2 þ Cðdθ2 þ sin2 θdϕ2Þ; ð3Þ

where αðt; rÞ, Aðt; rÞ, and Cðt; rÞ parametrize the metric.
Additionally we have Kr

rðt; rÞ and KTðt; rÞ, which para-
metrize the extrinsic curvature. In a wormhole geometry,
−∞ < r < ∞. We define

Rðt; rÞ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi
Cðt; rÞ

p
ð4Þ

as the areal radius so that the area of a two-sphere is
4πR2. The minimum of the areal radius will occur at r ¼ 0
and we define

RthðtÞ≡ Rðt; 0Þ ð5Þ

as the wormhole throat radius on a given time slice.
The Einstein field equations,Gμ

ν ¼ 8πTμ
ν, where Gμ

ν is
the Einstein tensor and Tμ

ν is the energy-momentum tensor,
lead to the evolution equations [26]

∂tA ¼ −2αAKr
r;

∂tC ¼ −αCKT;

∂tKr
r ¼ α

�ð∂rCÞ2
4AC2

−
1

C
þ ðKr

rÞ2 −
1

4
K2

T

þ 4πðSþ ρ − 2SrrÞ
�
−
∂
2
rα

A
þ ð∂rαÞð∂rAÞ

2A2
;

∂tKT ¼ α

�
1

C
−
ð∂rCÞ2
4AC2

þ 3

4
ðKTÞ2 þ 8πSrr

�
−
ð∂rαÞð∂rCÞ

AC
;

ð6Þ

and to the Hamiltonian and momentum constraint
equations,

∂
2
rC ¼ Aþ ð∂rAÞð∂rCÞ

2A
þ ð∂rCÞ2

4C

þ ACKT

�
Kr

r þ
1

4
KT

�
− 8πACρ;

∂rKT ¼ ∂rC
2C

ð2Kr
r − KTÞ − 8πSr: ð7Þ

The definition of the matter functions ρ, Srr, S, and Sr,
which are functions of the energy-momentum tensor, are
given in Eq. (A4).
We minimally couple the matter sector to gravity via

L →
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgμνÞ

p
L, where detðgμνÞ is the determinant of

the metric. In a spherically symmetric system, ψ� ¼
ψ�ðt; r; θ;ϕÞ, Aμ ¼ Aμðt; rÞ, and

Aμ ¼ ðAt;Ar; 0; 0Þ: ð8Þ

In our model, we describe fermions with the Dirac spinor
ansatz

ψ� ¼ e�iϕ=2

2
ffiffiffi
π

p
A1=4ðt; rÞC1=2ðt; rÞ

0
BBBB@

Fðt; rÞy�ðθÞ
�iFðt; rÞy∓ðθÞ
Gðt; rÞy�ðθÞ

∓ iGðt; rÞy∓ðθÞ

1
CCCCA; ð9Þ

which is parametrized in terms of the complex fields F and
G, where

y�ðθÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 ∓ cos θ

2

r
¼ sinðθ=2Þ

cosðθ=2Þ : ð10Þ

The precise assumptions included in the ansatz are detailed
in Appendix B. Writing F and G in terms of their real and
imaginary parts,

Fðt; rÞ ¼ F1ðt; rÞ þ iF2ðt; rÞ;
Gðt; rÞ ¼ G1ðt; rÞ þ iG2ðt; rÞ; ð11Þ

the equations of motion in the fermion sector are
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∂tF1 ¼ −
αG1ffiffiffiffi
C

p −
�
F2ðeAt − μαÞ þ G2

αffiffiffiffi
A

p eAr

�
−

αffiffiffiffi
A

p
�
∂rG1 þ

∂rα

2α
G1 −

∂rA
4A

G1

�
;

∂tF2 ¼ −
αG2ffiffiffiffi
C

p þ
�
F1ðeAt − μαÞ þG1

αffiffiffiffi
A

p eAr

�
−

αffiffiffiffi
A

p
�
∂rG2 þ

∂rα

2α
G2 −

∂rA
4A

G2

�
;

∂tG1 ¼ þ αF1ffiffiffiffi
C

p −
�
G2ðeAt þ μαÞ þ F2

αffiffiffiffi
A

p eAr

�
−

αffiffiffiffi
A

p
�
∂rF1 þ

∂rα

2α
F1 −

∂rA
4A

F1

�
;

∂tG2 ¼ þ αF2ffiffiffiffi
C

p þ
�
G1ðeAt þ μαÞ þ F1

αffiffiffiffi
A

p eAr

�
−

αffiffiffiffi
A

p
�
∂rF2 þ

∂rα

2α
F2 −

∂rA
4A

F2

�
: ð12Þ

In the boson sector, it is convenient to choose a particular
Uð1Þ gauge. We choose to work in the Lorenz gauge for our
numerical simulations. The equations of motion lead to

At ¼
αffiffiffiffi
A

p
C
Ω;

∂tAr ¼
α

ffiffiffiffi
A

p

C
Y þ ∂rAt;

∂tΩ ¼ ∂r

�
αCffiffiffiffi
A

p Ar

�
;

∂tY ¼ −α
ffiffiffiffi
A

p
CJr; ð13Þ

where Ωðt; rÞ and Yðt; rÞ are auxiliary fields and where Jr

is the r-component of the conserved current,

Jr ¼ −
e

πAC
ðF1G1 þ F2G2Þ: ð14Þ

Finally, the matter functions used in Eqs. (6) and (7)
contain contributions from both fermions and bosons,

ρ ¼ ρψ þ ρA;

Srr ¼ ðSψÞrr þ ðSAÞrr;
S ¼ Sψ þ SA;

Sr ¼ ðSψÞr þ ðSAÞr; ð15Þ

where the individual contributions are given in Eqs. (B20)
and (B28).

III. SEMICLASSICAL THEORY

A. Quantum wave functions

Fermions obey the Pauli exclusion principle. By imposing
the requirement that there be one fermion of each type,

N� ¼ 1; ð16Þ

we describe the Dirac fields with first quantized wave
functions [13–15,27]. Just as in [13,20], we ignore second
quantization effects and treat gravity and the electromagnetic
field classically.

To derive an equation for the number of fermions, N�,
first note that the system has a Uð1Þ gauge symmetry,
which leads to a conserved current. This conserved current
is written in its typical form in Eq. (B22) [we use the form
in Eq. (14) for numerical solutions]. Our system also has
globalUð1Þ symmetries for each fermion, corresponding to
fermion number conservation. The associated conserved
currents, written in their typical form, are

jμ� ¼ iψ̄�γμψ�; ð17Þ

which are just the individual terms in (B22) with the charge
divided out, as expected. The total number of each type of
fermion on a time slice is given by the corresponding
conserved charges, which are computed from

N� ¼
Z

drdθdϕ
ffiffiffi
γ

p
nμj

μ
�; ð18Þ

where γ ¼ AC2 sin2 θ is the determinant of the spatial
metric and nμ follows from the timelike unit vector normal
to a time slice given in (A5). Using the Dirac spinor ansatz
in (9), we find the same answer for ψþ and ψ−,

N� ¼
Z

∞

−∞
drN ; N ¼ F2

1 þ F2
2 þG2

1 þ G2
2; ð19Þ

where N is the number density. In the next subsection, we
explain how we impose N� ¼ 1 on Eq. (19).

B. Scaling

In numerical work, it is often convenient to use scaled
quantities. We choose to scale variables by

R0 ≡ Rthð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cð0; 0Þ

p
; ð20Þ

which is the initial wormhole throat radius. We define the
following scaled quantities, which are indicated with an
overbar:
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r≡ R0r̄; t≡ R0 t̄;

e≡ ð
ffiffiffiffi
G

p
=R0Þē; μ≡ μ̄=R0;

F1;2 ≡ F̄1;2=
ffiffiffiffiffiffiffiffiffiffiffiffi
G=R0

p
; G1;2 ≡ Ḡ1;2=

ffiffiffiffiffiffiffiffiffiffiffiffi
G=R0

p
;

At;r ≡ Āt;r=
ffiffiffiffi
G

p
; C≡ R2

0C̄: ð21Þ

For convenience, we have included the gravitational con-
stant G ¼ l2

P, where lP is the Planck length. Upon
rewriting all equations in terms of the scaled quantities,
R0 cancels out. R0 therefore does not have to be specified
and our code works for arbitrary values of R0.
The total number of each type of fermion is given by

Eq. (19), which scales to

N̄� ¼
Z

∞

−∞
dr̄ N̄ ; N̄ ¼ F̄2

1 þ F̄2
2 þ Ḡ2

1 þ Ḡ2
2; ð22Þ

where

N� ≡ ðR0=lPÞ2N̄�: ð23Þ

Setting N� ¼ 1 gives

R0 ¼
lPffiffiffiffiffiffiffi
N̄�

p : ð24Þ

The importance and convenience of this result is as follows.
With a quantum wave function, whereN� ¼ 1, the value of
the scaled quantity N̄�, which is computed by our code,
tells us the physical value R0. In practice, then, our code
does not explicitly normalize the wave function. Instead, it
solves the equations written in terms of scaled variables and
the value computed for N̄�, and hence for R0 through
Eq. (24), singles out the specific physical semiclassical
theory under study.

IV. STATIC WORMHOLES

In this section, we present solutions for static EDM
wormholes. By static, we mean that spacetime is time
independent. We will use these static solutions as initial
data for our simulations, but they are also interesting in
their own right. We focus exclusively on asymmetric EDM
wormholes [20].

A. Equations

Static solutions are found by dropping the time depend-
ence for the metric fields and setting Kr

r ¼ KT ¼ 0 (in the
context of the static solution being used for initial data, we
are assuming the initial data are time symmetric [28]). The
energy-momentum tensor must be time independent and
diagonal. In the fermion sector, this can be achieved by
assuming

Fðt; rÞ ¼ fðrÞe−iωt; Gðt; rÞ ¼ igðrÞe−iωt; ð25Þ

where fðrÞ and gðrÞ are real functions and ω is a real
constant. In the boson sector, we take Aμ to be time
independent. We choose to work in radial gauge, where

Ar ¼ 0; ð26Þ

which is consistent with the static limit of Lorenz gauge.
Note that ω is gauge dependent and can be shifted in
Eq. (25) with a simple gauge transformation that does not
take us out of radial gauge.
The complete set of equations under these assumptions is

given in Appendix C. The next step is to make a coordinate
choice. For example, the authors of [20] make the choice
C ¼ R2

0½1 − ðr=R0Þ2�−2, which compactifies the radial coor-
dinate to −R0 < r < R0. Avariation of this choice, which is
used in [13], is C ¼ R2

0 þ r2, which leaves the radial
direction uncompactified. We have been able to find static
solutions using both choices. However, we choose to set

AðrÞ ¼ 1; ð27Þ

which we find to be a convenient choice when using static
solutions as initial data. The static metric is then

ds2 ¼ −α2ðrÞdt2 þ dr2 þ CðrÞðdθ2 þ sin2 θdϕ2Þ: ð28Þ

We now list the equations given in Appendix C, but with
our coordinate choice in Eq. (27). The metric equations are

∂
2
rC ¼ 1þ ð∂rCÞ2

4C
− 8πCρ;

∂
2
rα ¼ −

ð∂rαÞð∂rCÞ
C

þ 4παðρþ SÞ;

0 ¼ ð∂rαÞð∂rCÞ
αC

−
1

C
þ ð∂rCÞ2

4C2
− 8πSrr; ð29Þ

the equations of motion are

∂rf ¼ −f
�
∂rα

2α
−

1ffiffiffiffi
C

p
�
− g

�
μþ u

α

�
;

∂rg ¼ −g
�
∂rα

2α
þ 1ffiffiffiffi

C
p

�
− f

�
μ −

u
α

�
;

∂
2
ru ¼ −∂ru

�
∂rC
C

−
∂rα

α

�
þ e2

α

2πC
ðf2 þ g2Þ; ð30Þ

where

uðrÞ≡ eAtðrÞ þ ω; ð31Þ

and the matter functions are
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ρ ¼ uðf2 þ g2Þ
2παC

þ ð∂ruÞ2
2e2α2

;

Srr ¼
f∂rg − g∂rf

2πC
−
ð∂ruÞ2
2e2α2

;

Sθθ ¼
fg

2πC3=2 þ
ð∂ruÞ2
2e2α2

; ð32Þ

along with S ¼ Srr þ 2Sθθ, where

f∂rg − g∂rf ¼ −
2fgffiffiffiffi
C

p − μðf2 − g2Þ þ u
α
ðf2 þ g2Þ; ð33Þ

which follows from the first two equations in (30). The
matter sector is described by the three fields fðrÞ, gðrÞ,
and uðrÞ. Although our equations look different than those
in [20], we explain how they are equivalent in Appendix D.
For static solutions, Eq. (19), which computes the total
number of each type of fermion, reduces to

N� ¼
Z

∞

−∞
drN ðrÞ; N ¼ f2 þ g2; ð34Þ

where N is the number density.
We move now to the scaled variables in Eq. (21),

along with

f≡ f̄=
ffiffiffiffiffiffiffiffiffiffiffiffi
G=R0

p
; g≡ ḡ=

ffiffiffiffiffiffiffiffiffiffiffiffi
G=R0

p
; u≡ ū=R0: ð35Þ

We solve the static equations by numerically integrating
the top two equations in (29) and the equations of motion
in (30) outward from r̄ ¼ 0. This requires conditions at
r̄ ¼ 0. We assume

C̄0ð0Þ ¼ 0; α0ð0Þ ¼ 0; ð36Þ

where a prime denotes an r̄-derivative. These same assump-
tions were made in [20] [the possibility of α0ð0Þ ≠ 0 was
considered in [24]]. We have also C̄ð0Þ ¼ 1 (since we scaled
variables by R0). Inspection of the equations shows that if
we define

ũðrÞ≡ ūðrÞ
αð0Þ ; α̃ðrÞ≡ αðrÞ

αð0Þ ð37Þ

and then write the equations in terms of ũ and α̃, αð0Þ
cancels out and we have α̃ð0Þ ¼ 1. Last, by plugging Taylor
expansions of the fields into the bottom equation in (29), we
are able to derive

ũ02ð0Þ¼ ē2

4π
½1−8f0g0þ4u0ðf20þg20Þ−4μ̄ðf20−g20Þ�; ð38Þ

where

f0 ≡ f̄ð0Þ; g0 ≡ ḡð0Þ; u0 ≡ ũð0Þ: ð39Þ

The three quantities in Eq. (39), along with μ̄ and ē, are
the quantities that must be specified to be able to integrate
the static equations outward from r̄ ¼ 0. We choose to
identify static solutions with f0 and take g0 and u0 to be
shooting parameters. That is, we specify f0, μ̄, and ē and
then tune g0 and u0 using the shooting method until the
integrated result satisfies the outer boundary conditions.
The outer boundary conditions are that spacetime is
asymptotically flat, i.e., that ρ → 0 as r → �∞, which
requires f; g; u0 → 0. Once the outer boundary conditions
are satisfied, we have found a static wormhole solution.

B. Results

The results for some typical static solutions are listed in
Table I for μ̄ ¼ 0.2 and ē=

ffiffiffiffiffiffi
4π

p ¼ 0.03 (ē=
ffiffiffiffiffiffi
4π

p
is the

convention used in [20] for charge, which is the reason why
we include the factor of

ffiffiffiffiffiffi
4π

p
). We show in Fig. 1 some of

the fields for these solutions. The top row of Fig. 1 displays
solutions with positive f0, and the bottom row displays
them for negative f0.
In Figs. 1(a) and 1(e), the black curves show f̄ðrÞ and the

green curves show ḡðrÞ. We can see that the curves satisfy
the outer boundary conditions. Figures 1(b) and 1(f) plot
the number density, N̄ ¼ f̄2 þ ḡ2. Figures 1(c) and 1(g)
plot ũ0, and we can see that the curves are asymptotically
heading to zero, consistent with the outer boundary con-
ditions. Finally, Figs. 1(d) and 1(h) plot the areal radius, R̄,
where our scaling convention fixes R̄ ¼ 1 at r̄ ¼ 0.
We mention two interesting points. First, since we can

interpret the number density as a particle distribution, the
two peaks in Fig. 1(b) suggest an interpretation of two
quasilocalized particles, with one particle on each side of
the wormhole. Second, the final column in Table I gives the
physical value for R0, as computed from Eq. (24), which is
the wormhole throat radius. We can see that, for these

TABLE I. Results for static asymmetric EDM wormhole
solutions with μ̄ ¼ 0.2 and ē=

ffiffiffiffiffi
4π

p ¼ 0.03. Various fields for
these solutions are plotted in Fig. 1.

f0 g0 u0 R0=lP

0.001 0.000702 −2.519 376.6
0.002 0.001404 −2.519 188.3
0.003 0.002105 −2.519 125.5
0.004 0.002806 −2.518 94.12
0.005 0.003507 −2.518 75.28

−0.001 0.001257 −1.519 498.4
−0.002 0.002514 −1.519 249.2
−0.003 0.003771 −1.519 166.1
−0.004 0.005028 −1.519 124.6
−0.005 0.006285 −1.519 99.66
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solutions, the radius is roughly 2 orders of magnitude larger
than the Planck length.
Morris and Thorne showed that traversable wormholes

violate the null energy condition [25]. To determine if our
static solutions violate the null energy condition, we use
radial null vectors dμ ¼ λð1;�α=

ffiffiffiffi
A

p
; 0; 0Þ, where λ is an

arbitrary constant. The null energy condition is violated if
Tμνdμdν < 0, or

Tr
r − Tt

t < 0; ð40Þ

where the energy-momentum tensor components for static
solutions are given in Eqs. (C6) and (C10). Figure 2 shows
the results for Eq. (40) for the same static solutions shown
in Fig. 1 and listed in Table I. We can see that the static
solutions violate the null energy condition.
In this section, we presented some typical static EDM

wormhole solutions. The solutions are regular everywhere
and violate the null energy condition. As a consequence, it
seems plausible that EDM wormholes are traversable, as is
assumed in Refs. [13,20]. To determine if, in fact, EDM
wormholes are traversable, in the next section we use these
static solutions as initial data and numerically evolve them
forward in time. We then compute null geodesics and study
how the geodesics travel through the wormhole.

V. WORMHOLE SIMULATIONS

In this section, we simulate EDM wormholes using the
static solutions presented in the previous section as initial
data. This requires numerically solving the equations
presented in Sec. II. Our numerical methods, including

the equations we use to compute null geodesics and
apparent horizons, are described in Appendix E. In
Appendix F, we present tests of our code and show that
our code is second order convergent.

FIG. 1. Static asymmetric EDM wormhole solutions with μ̄ ¼ 0.2 and ē=
ffiffiffiffiffi
4π

p ¼ 0.03. These same solutions are listed in Table I. The
top row displays solutions with positive f0, and the bottom row displays solutions with negative f0. As the magnitude of f0 decreases,
the magnitude of the peaks in (a),(e) and (b),(f) decrease, the peaks in (c),(g) increase, and the curves in (d),(h) widen.

FIG. 2. The diagram (a) of this plot and Figs. 1(a) and 1(b)
display the same solutions and similarly for the diagram (b) of
this plot and Figs. 1(e)–1(h). In all cases, we can see that the null
energy condition is violated, which occurs if T̄r

r − T̄t
t < 0.
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We show results for two simulations in Fig. 3. The top
row presents a single simulation using as initial data the
static solution from the previous section with f0 ¼ 0.005,
and the bottom row shows a different simulation using the
static solution with f0 ¼ −0.002. The blue curves plot the
areal radius, R̄, and the black curves plot the number
density, N̄ . As time increases, with respect to their radial
coordinates, the spikes in the number density separate and
the length of the wormhole throat increases. The wormhole
throat radius holds steady, neither expanding nor collapsing.
In general, numerical simulations cannot definitively

prove that a black hole is present, since such a proof
requires knowledge of the entire spacetime. The most
conclusive method for determining if a black hole is present
in a simulation is computing null geodesics backwards in
time [28–30]. This method is particularly conclusive in
spherically symmetric spacetimes, since null rays can only
travel in the radial direction. This is done after the
simulation is complete from the stored results. If a black
hole is present, the computed null geodesics can determine
the location of the event horizon. We show such null
geodesics in Fig. 4. Figure 4(a) is for the same simulation
shown in the top row of Fig. 3 and similarly for the bottom
rows. The null geodesics clearly indicate the presence of
event horizons on both sides of the wormhole. The worm-
hole therefore connects two black holes. Although this is the
most conclusive method, we present other indicators for the
presence of a black hole in what follows.
In Fig. 5, we show another way to view the simulations

shown in Fig. 3. The dashed purple lines in Figs. 5(a) and
5(b) track the peaks of the spikes of the number density in
the top row of Fig. 3. The dashed purple lines can therefore

be thought of as plotting the position of the two particles.
The bottom row plots the same thing as the top row, except
for the simulation shown in the bottom row of Fig. 3. In
Fig. 5(d), we only begin plotting the dashed purple lines

FIG. 3. Diagrams (a–e) in the top row display a numerical evolution of an EDM wormhole using the static solution from Sec. IV B
with f0 ¼ 0.005. Diagrams (f–j) in the bottom row display a different evolution using the static solution with f0 ¼ −0.002. The blue
curves plot the areal radius, R̄, and the black curves plot the fermion number density, N̄ .

FIG. 4. (a) Null geodesics are shown for the same simulation
shown in the top row of Fig. 3. The geodesics map out event
horizons and indicate the presence of black holes. (b) The same as
(a) except for the simulation shown in the bottom row of Fig. 3.
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after a clear separation and the formation of two peaks in the
number density.
The thick blue lines in Fig. 5(a), which start at around

t̄ ¼ 225, plot apparent horizons. Standard theorems in
general relativity concerning apparent horizons do not
necessarily apply to systems that violate the null energy
condition (see the discussion in [31]). Nonetheless,
numerical evidence suggests that the apparent horizon
may still be a good indicator for the presence of a black
hole [26,31].
We have computed various left-moving null geodesics

and plotted them as the gray lines in Fig. 5(a). Figure 5(b)
zooms into the early t̄ region of Fig. 5(a), where we can see
that two geodesics originate on the positive side of the
wormhole, one originates from r̄ ¼ 0, and four originate on
the negative side. Those that originate on the positive side
can be seen to cross r̄ ¼ 0, and hence to travel through the
wormhole. However, we find that any geodesic that
originates on the positive side and some that originate
on the negative side are unable to travel arbitrarily far on the
negative side. Indeed, we find that such geodesics get
caught right up against the apparent horizon and are trapped
inside the black hole.

We show the evolution of the metric field A in Fig. 6
for the same simulations shown in Fig. 3. The horizontal
dashed lines plot A at t̄ ¼ 0. As time increases, A collapses
toward zero in the middle and forms spikes at the edges.
Since A gives a measure of the physical distance between
radial coordinates, that A is collapsing means that the radial
direction is compressing. In numerical evolutions, the
appearance of a spike in the metric field A, which is
known as grid or slice stretching [32], is a common
indicator for the formation of a black hole. Last, we show
in Fig. 7 that the lapse function, α, collapses, which is
another commonly used indicator for the formation of a
black hole [28,32].
We have found substantial evidence that black holes

form in the EDM system. Further, we have found that any
null geodesic that travels through the wormhole becomes
trapped inside a black hole and is unable to travel
arbitrarily far away on the opposite side. We have
performed many simulations using different asymmetric
static EDM solutions as initial data. For example, we have
considered values of μ̄ and ē that are smaller by up to a
couple orders of magnitude and considered larger values
of f0 than presented. We have also computed different
geodesics, including geodesics that originate on the left
and travel to the right through the wormhole. In all cases,
the results are qualitatively similar to what we have

FIG. 5. The diagram (a,b) displays the same simulation as
shown in the diagram (a–e) of Fig. 3. The purple dashed curves
mark the position of the peaks of the spikes of the number density
shown in Fig. 3. The blue curves plot apparent horizons. The gray
curves plot null geodesics. (b) Zooms into the early t̄ region of
(a). The diagram (c,d) is analogous to the top row except it
displays the same simulation shown in the diagram (f–j) of Fig. 3.

FIG. 6. (a) The metric field A for the simulation shown in the
top row of Fig. 3. The dashed line plots A at t̄ ¼ 0. As time moves
forward, A drops in the middle toward zero and forms spikes at
the edges. (b) The same as (a), except for the simulation shown in
the bottom row of Fig. 3.
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presented in this section. Of course, we cannot rule out that
there exists some static EDM solution which, when
numerically evolved, behaves differently. Nonetheless,
our results lead us to conclude that EDM wormholes
are not traversable.

VI. CONCLUSION

EDM wormholes are asymptotically flat wormhole
solutions in general relativity that do not make use of
exotic matter. They are formed from two charged spin-1=2
fermions, as described by the charged Dirac equation
minimally coupled to general relativity. The static asym-
metric solutions are regular everywhere and violate the null
energy condition, which suggests that they may be tra-
versable. To determine if, in fact, they are traversable, we
constructed a time dependent EDM model. We then used

static asymmetric wormhole solutions as initial data and
numerically evolved them forward in time.
In all simulations we performed, we found convincing

numerical evidence that black holes form in our system
which are connected by the wormhole. We computed null
geodesics in this geometry to see if a signal could travel
through the wormhole and make it arbitrarily far away on
the opposite side. In all cases considered, geodesics that
crossed the wormhole were trapped inside a black hole.
These results led us to conclude that EDM wormholes are
not traversable.
An important takeaway is that violation of the null

energy condition is an insufficient condition for determin-
ing if a static wormhole solution is traversable. Black holes
may form so quickly that any signal traveling through the
wormhole will be caught inside one. To determine if a
wormhole is traversable, it may be necessary to make a time
dependent analysis.

APPENDIX A: METRIC AND VIERBEIN

In this appendix, we present results for the general
spherically symmetric metric and the corresponding vier-
bein. We use the vierbein to couple spinors to curved space.

1. Metric and field equations

Our code for simulating wormholes is based on the
standard 3þ 1 foliation of spacetime [28,32], in which
spacetime is foliated into a continuum of time slices, where
each time slice is a spatial hypersurface. The general
spherically symmetric metric in this formalism can be
written

ds2 ¼ −ðα2 − Aβr2Þdt2 þ 2Aβrdtdrþ dl2;

dl2 ¼ Adr2 þ Cðdθ2 þ sin2 θdϕ2Þ; ðA1Þ

where αðt; rÞ, βrðt; rÞ, Aðt; rÞ, and Cðt; rÞ parametrize the
metric and dl2 is the spatial metric on a time slice. In
addition to these four metric fields, we have also the extrinsic
curvature Ki

jðt; rÞ, whose two independent and nonvanish-
ing components are Kr

r and KT ≡ 2Kθ
θ ¼ 2Kϕ

ϕ.
The Einstein field equations, Gμ

ν ¼ 8πGTμ
ν, where for

completeness we include the gravitational constant G, lead
to the evolution equations [26]

∂tA ¼ −2αAKr
r þ βr∂rAþ 2A∂rβr;

∂tC ¼ −αCKT þ βr∂rC;

∂tKr
r ¼ α

�ð∂rCÞ2
4AC2

−
1

C
þ ðKr

rÞ2 −
1

4
K2

T þ 4πGðSþ ρ − 2SrrÞ
�
−
∂
2
rα

A
þ ð∂rαÞð∂rAÞ

2A2
þ βr∂rKr

r;

∂tKT ¼ α

�
1

C
−
ð∂rCÞ2
4AC2

þ 3

4
ðKTÞ2 þ 8πGSrr

�
−
ð∂rαÞð∂rCÞ

AC
þ βr

�
∂rC
2C

ð2Kr
r − KTÞ − 8πGSr

�
; ðA2Þ

FIG. 7. (a) The metric field α for the simulation shown in the
top row of Fig. 3. The dashed line plots α at t̄ ¼ 0. As time moves
forward, α collapses in the middle. (b) The same as (a), except for
the simulation shown in the bottom row of Fig. 3.
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and to the Hamiltonian and momentum constraint equa-
tions,

∂
2
rC ¼ Aþ ð∂rAÞð∂rCÞ

2A
þ ð∂rCÞ2

4C
þ ACKT

�
Kr

r þ
1

4
KT

�

− 8πGACρ;

∂rKT ¼ ∂rC
2C

ð2Kr
r − KTÞ − 8πGSr: ðA3Þ

The matter functions in these equations are functions of
the energy-momentum tensor and are given by

ρ ¼ nμnνTμν;

Srr ¼ γrrTrr;

Sθθ ¼ γθθTθθ;

Sr ¼ −nμTμr; ðA4Þ

and S ¼ Srr þ 2Sθθ, where γij ¼ diagðA;C; C sin2 θÞ is the
spatial metric, γij is its inverse, and

nμ ¼ ð1=α;−βr=α; 0; 0Þ ðA5Þ

is the timelike unit vector normal to a time slice.

2. Vierbein and spinor connection

We use the vierbein formalism to couple spinors to
curved space [33–35]. The vierbein, eaμ, is defined by

gμν ¼ eaμeaν; ηab ¼ eaμebμ; ðA6Þ

where gμν is the curved space metric and ηab is the flat space
metric. We use Greek letters for curved space indices and
Latin letters from the beginning of the alphabet for flat
space indices. When specifying explicit components, we
use μ ¼ t; r; θ;ϕ and a ¼ 0; 1; 2; 3.
Our Lagrangian for fermions is given as the top equation

in (2):

Lx
ψ ¼ 1

2
½ψ̄xγ

μDμψx − ðDμψ̄xÞγμψx� − μψ̄xψx: ðA7Þ

The γμ are curved spaced γ-matrices, as indicated by their
Greek index. Flat space γ-matrices, γa, are related to curved
spaced ones via the vierbein,

γμ ¼ eaμγa; γa ¼ eaμγμ; ðA8Þ

where

fγμ; γνg ¼ 2gμν; fγa; γbg ¼ 2ηab: ðA9Þ

Our convention for the adjoint spinor is

ψ̄x ¼ ψ†
xð−iγ0Þ: ðA10Þ

The covariant derivatives in (A7) are defined by

Dμψ
x ¼ ∇μψ

x − ieAμψ ;

Dμψ̄
x ¼ ∇μψ̄

x þ ieAμψ̄
x; ðA11Þ

where

∇μψx ¼ ∂μψx þ
1

4
ωμ

abγabψx;

∇μψ̄x ¼ ∂μψ̄x −
1

4
ψ̄xωμ

abγab; ðA12Þ

where γab ≡ γ½aγb� ¼ ½γa; γb�=2 and ωμ
ab is the spin con-

nection,

wμab ¼
1

2
eaαð∂μebα − ∂αebμÞ þ

1

2
ebβð∂βeaμ − ∂μeaβÞ

−
1

2
ecμeaαebβð∂αecβ − ∂βecαÞ: ðA13Þ

Since we assume metric compatibility, ∇λgμν ¼ 0, we
have ωμab ¼ −ωμba.
When deriving equations, it can help to choose a specific

representation for the γ-matrices and vierbein. Following
[36,37], we use the Dirac representation for flat space
γ-matrices,

γ0 ¼ i

�
1 0

0 −1

�
; γj ¼ i

�
0 σj

−σj 0

�
; ðA14Þ

where j ¼ 1; 2; 3 and where the σj are the standard Pauli
matrices,

σ1¼
�
0 1

1 0

�
; σ2¼

�
0 −i
i 0

�
; σ3¼

�
1 0

0 −1

�
: ðA15Þ

For the vierbein, we use

γt ¼ γ0

α
; γr ¼ γ3ffiffiffiffi

A
p − βr

γ0

α
;

γθ ¼ γ2ffiffiffiffi
C

p ; γϕ ¼ γ1ffiffiffiffi
C

p
sin θ

; ðA16Þ

which also defines the curved spaced γ-matrices. This
choice for the vierbein associates the angular components,
θ and ϕ, with the off-diagonal Pauli matrices, σ1 and σ2.
This association helps with separating out the angular
dependence, which we do in Appendix B. We note that
this vierbein reduces to the one used in [36,37] for βr ¼ 0

and C ¼ r2.
We end this appendix with the components of the spinor

connection, Γμ ≡ −ωμ
abγab=4, for our choice of vierbein,
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Γt ¼ γ0γ3
1

4α
ffiffiffiffi
A

p ½2αα0 þ βrðȦ − βrA0 − 2Aβr0Þ�;

Γr ¼ γ0γ3
1

4α
ffiffiffiffi
A

p ðȦ − βrA0 − 2Aβr0Þ;

Γθ ¼ γ3γ2
C0

4
ffiffiffiffiffiffiffi
AC

p þ γ0γ2
1

4α
ffiffiffiffi
C

p ðĊ − βrC0Þ;

Γϕ ¼ γ3γ1
C0 sin θ
4

ffiffiffiffiffiffiffi
AC

p þ γ2γ1
cos θ
2

þ γ0γ1
sin θ

4α
ffiffiffiffi
C

p ðĊ − βrC0Þ; ðA17Þ

where, in the appendixes, a prime denotes an r-derivative
and a dot denotes a t-derivative.

APPENDIX B: EQUATIONS OF MOTION
AND THE ENERGY-MOMENTUM TENSOR

In this appendix, we present the equations of motion and
the energy-momentum tensor for both fermions and bosons
for our time dependent EDM model. For fermions, we give
a detailed derivation of the Dirac spinor ansatz.

1. Fermions

a. Equations of motion

The equations of motion for fermions follow from the
Lagrangian in (A7),

γμð∂μ − Γμ − ieAμÞψx − μψx ¼ 0; ðB1Þ

where Γμ is the spinor connection given in (A17). In a
spherically symmetric system, ψx ¼ ψxðt; r; θ;ϕÞ,
Aμ ¼ Aμðt; rÞ, and Aμ ¼ ðAt;Ar; 0; 0Þ. To reduce clutter,
we drop the subscripted x in the following.
The standard approach to solving the equations of

motion is to follow Unruh [38] and Chandrasekhar
[39,40] and look for separable solutions

ψ ¼

0
BBBB@

ψ1ðt; r; θ;ϕÞ
ψ2ðt; r; θ;ϕÞ
ψ3ðt; r; θ;ϕÞ
ψ4ðt; r; θ;ϕÞ

1
CCCCA ¼

0
BBBB@

R1ðt; rÞΘ1ðθ;ϕÞ
R2ðt; rÞΘ2ðθ;ϕÞ
R3ðt; rÞΘ3ðθ;ϕÞ
R4ðt; rÞΘ4ðθ;ϕÞ

1
CCCCA; ðB2Þ

where the R’s andΘ’s are in general complex. Plugging this
into (B1), using the metric in (A1), the Dirac representation
in (A14), and the vierbein in (A16), we find the four
equations

i
ffiffiffiffi
C

p

α

�
Ṙ1

R1

− βr
R0
1

R1

þW

��
þR1

R4

Θ1

Θ3

�
þ i

ffiffiffiffi
C

p
ffiffiffiffi
A

p
�
R0
3

R3

þ V

��
þR3

R4

�
− μ

ffiffiffiffi
C

p �
R1

R4

Θ1

Θ3

�

¼ −
�
∂θΘ4

Θ4

þ cot θ
2

��
þ Θ4

Θ3

�
−

i
sin θ

∂ϕΘ4

Θ4

�
þΘ4

Θ3

�
;

i
ffiffiffiffi
C

p

α

�
Ṙ2

R2

− βr
R0
2

R2

þW

��
þR2

R3

Θ2

Θ4

�
þ i

ffiffiffiffi
C

p
ffiffiffiffi
A

p
�
R0
4

R4

þ V

��
−
R4

R3

�
− μ

ffiffiffiffi
C

p �
R2

R3

Θ2

Θ4

�

¼ −
�
∂θΘ3

Θ3

þ cot θ
2

��
−
Θ3

Θ4

�
−

i
sin θ

∂ϕΘ3

Θ3

�
þΘ3

Θ4

�
;

i
ffiffiffiffi
C

p

α

�
Ṙ3

R3

− βr
R0
3

R3

þW

��
−
R3

R2

Θ3

Θ1

�
þ i

ffiffiffiffi
C

p
ffiffiffiffi
A

p
�
R0
1

R1

þ V

��
−
R1

R2

�
− μ

ffiffiffiffi
C

p �
R3

R2

Θ3

Θ1

�

¼ −
�
∂θΘ2

Θ2

þ cot θ
2

��
−
Θ2

Θ1

�
−

i
sin θ

∂ϕΘ2

Θ2

�
−
Θ2

Θ1

�
;

i
ffiffiffiffi
C

p

α

�
Ṙ4

R4

− βr
R0
4

R4

þW
��

−
R4

R1

Θ4

Θ2

�
þ i

ffiffiffiffi
C

p
ffiffiffiffi
A

p
�
R0
2

R2

þ V
��

þR2

R1

�
− μ

ffiffiffiffi
C

p �
R4

R1

Θ4

Θ2

�

¼ −
�
∂θΘ1

Θ1

þ cot θ
2

��
þΘ1

Θ2

�
−

i
sin θ

∂ϕΘ1

Θ1

�
−
Θ1

Θ2

�
; ðB3Þ

where

W ≡ −ieðAt − βrArÞ þ
Ȧ − βrA0 − 2Aβr0

4A
þ Ċ − βrC0

2C
;

V ≡ −ieAr þ
α0

2α
þ C0

2C
: ðB4Þ
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We now make some assumptions, which go beyond just
separating the variables, that reduce these four equations
down to two. We assume

R2 ¼ iR1; R4 ¼ iR3; Θ3 ¼Θ1; Θ4 ¼ −Θ2: ðB5Þ

The resulting angular equations can be written in terms
of spin-weighted spherical harmonics, sYjm, with spin
weight s,

ððsÞ� ðsYjmÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj ∓ sÞðj� sþ 1Þ

p
ðs�1YjmÞ; ðB6Þ

where

ððsÞ� ¼∓ i
sin θ

∂ϕ − ∂θ � s cot θ ðB7Þ

are the raising and lowering operators. Specifically, the
angular equations can be written as

ðð−1=2Þþ Θ2 ¼ −nΘ1; ððþ1=2Þ
− Θ1 ¼ nΘ2; ðB8Þ

where n is the separation constant. Comparing this with
(B6), we find that

Θ1 ¼ þ1=2Yjm
; Θ2 ¼ −1=2Yjm

: ðB9Þ

The energy-momentum tensor we present below indicates
that, to preserve spherical symmetry, we require two or
more fermions. We consider only two fermions. Following
[36,37], for one of them we use Θ1 ¼ 1=2Yð1=2Þð1=2Þ and

Θ2 ¼ −1=2Yð1=2Þð1=2Þ and for the other we use Θ1 ¼
1=2Yð1=2Þð−1=2Þ and Θ2 ¼ −1=2Yð1=2Þð−1=2Þ, where

�1=2Yð1=2Þð1=2Þ ¼
1

2
ffiffiffi
π

p eiϕ=2y�ðθÞ;

�1=2Yð1=2Þð−1=2Þ ¼ � 1

2
ffiffiffi
π

p e−iϕ=2y∓ðθÞ; ðB10Þ

with

y�ðθÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 ∓ cos θ

2

r
¼ sinðθ=2Þ

cosðθ=2Þ : ðB11Þ

Our choice of spin-weighted spherical harmonics fixes the
separation constant to

n ¼ −1: ðB12Þ

We turn now to the radial equations. Our assumptions in
(B5) reduced the four equations in (B3) to two equations
for R1 and R3. It is convenient to trade R1 and R3 for F and
G, defined by

R1ðt; rÞ≡ Fðt; rÞ
C1=2ðt; rÞA1=4ðt; rÞ ;

R3ðt; rÞ≡ Gðt; rÞ
C1=2ðt; rÞA1=4ðt; rÞ ; ðB13Þ

so as to remove an inconvenient time derivative. The radial
equations of motion are

∂tF¼F

�
βr
F0

F
þ ieAtþ

βr0

2
− ieβrAr

�

−
αGffiffiffiffi
C

p −
αGffiffiffiffi
A

p
�
G0

G
− ieArþ

α0

2α
−
A0

4A

�
− iμαF;

∂tG¼G

�
βr
G0

G
þ ieAtþ

βr0

2
− ieβrAr

�

þ αFffiffiffiffi
C

p −
αFffiffiffiffi
A

p
�
F0

F
− ieArþ

α0

2α
−
A0

4A

�
þ iμαG: ðB14Þ

Before separating the equations of motion into their real
and imaginary parts, we note that the final form for the Dirac
spinor is the Dirac spinor ansatz given in Eq. (9), which
captures our assumptions in (B5) and our choice of spin-
weighted spherical harmonics in (B10). The fermion sector
therefore depends on the two complex functions F and G.
Separating these into real and imaginary parts,

Fðt; rÞ ¼ F1ðt; rÞ þ iF2ðt; rÞ;
Gðt; rÞ ¼ G1ðt; rÞ þ iG2ðt; rÞ; ðB15Þ

the equations of motion are

∂tF1 ¼
�
βrF0

1 þ
βr0

2
F1

�
−
αG1ffiffiffiffi
C

p −
αffiffiffiffi
A

p
�
G0

1 þ
α0

2α
G1 −

A0

4A
G1

�
−
�
F2ðeAt − eβrAr − μαÞ þ G2

αffiffiffiffi
A

p eAr

�
;

∂tF2 ¼
�
βrF0

2 þ
βr0

2
F2

�
−
αG2ffiffiffiffi
C

p −
αffiffiffiffi
A

p
�
G0

2 þ
α0

2α
G2 −

A0

4A
G2

�
þ
�
F1ðeAt − eβrAr − μαÞ þG1

αffiffiffiffi
A

p eAr

�
;

∂tG1 ¼
�
βrG0

1 þ
βr0

2
G1

�
þ αF1ffiffiffiffi

C
p −

αffiffiffiffi
A

p
�
F0
1 þ

α0

2α
F1 −

A0

4A
F1

�
−
�
G2ðeAt − eβrAr þ μαÞ þ F2

αffiffiffiffi
A

p eAr

�
;

∂tG2 ¼
�
βrG0

2 þ
βr0

2
G2

�
þ αF2ffiffiffiffi

C
p −

αffiffiffiffi
A

p
�
F0
2 þ

α0

2α
F2 −

A0

4A
F2

�
þ
�
G1ðeAt − eβrAr þ μαÞ þ F1

αffiffiffiffi
A

p eAr

�
: ðB16Þ
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b. Energy-momentum tensor

The energy-momentum tensor in the fermion sector is
given by

ðTx
ψÞμν ¼ −

1

4
½ψ̄xγμDνψx þ ψ̄xγνDμψx

− ðDμψ̄xÞγνψx − ðDνψ̄xÞγμψx�: ðB17Þ

For a system to be spherically symmetric, only the diagonal
components and Ttr ¼ Trt can be nonvanishing. The Dirac

spinor ansatz in (9) leads to nonvanishing ðT�
ψ Þtϕ and

ðT�
ψ Þrϕ, which breaks spherical symmetry. However,

ðTψ Þμν ¼ ðTþ
ψ Þμν þ ðT−

ψÞμν ðB18Þ

is spherically symmetric, which explains why two (or more)
fermions are necessary to preserve spherical symmetry. The
nonvanishing components of the spherically symmetric
energy-momentum tensor are

ðTψÞtt ¼ −
α

2π
ffiffiffiffi
A

p
C
ImðF�Ḟ þ G�ĠÞ þ βr

2πC
ImðḞG� þ F�ĠÞ þ eAt

2π
ffiffiffiffi
A

p
C
½αðjFj2 þ jGj2Þ − 2

ffiffiffiffi
A

p
βrReðFG�Þ�;

ðTψÞrr ¼
1

2πC
ImðF0G� þ F�G0Þ − eAr

πC
ReðFG�Þ;

ðTψÞθθ ¼
1

2π
ffiffiffiffiffiffiffi
AC

p ImðF�GÞ;

ðTψ Þϕϕ ¼ ðTψÞθθsin2θ;

ðTψÞtr ¼ −
α

4π
ffiffiffiffi
A

p
C
ImðF�F0 þG�G0Þ þ βr

4πC
ImðF0G� þ F�G0Þ þ 1

4πC
ImðḞG� þ F�ĠÞ

−
e

4π
ffiffiffiffi
A

p
C
½2

ffiffiffiffi
A

p
ðAt þ βrArÞReðFG�Þ − αArðjFj2 þ jGj2Þ�: ðB19Þ

We gave the equations for the metric fields and the extrinsic curvature in (A2) and (A3). These equations depend upon
the matter functions defined in (A4), which are functions of the energy-momentum tensor. Moving to the real fields defined
in (B15), and using the energy-momentum tensor in (B19), we find

ρψ ¼ 1

2π
ffiffiffiffi
A

p
C

�
2ffiffiffiffi
C

p ðF1G2 − F2G1Þ −
2eArffiffiffiffi

A
p ðF1G1 þ F2G2Þ þ

1ffiffiffiffi
A

p ðF1G0
2 − F0

1G2 − F2G0
1 þ F0

2G1Þ

þ μðF2
1 þ F2

2 − G2
1 −G2

2Þ
�
;

ðSψ Þrr ¼
1

2πAC
½F1G0

2 − F2G0
1 þ F0

2G1 − F0
1G2 − 2eArðF1G1 þ F2G2Þ�;

ðSψ Þθθ ¼
F1G2 − F2G1

2πA1=2C3=2 ;

ðSψÞr ¼
F1F0

2 − F2F0
1 þ G1G0

2 −G2G0
1 − eArðF2

1 þ F2
2 þG2

1 þG2
2Þ

2π
ffiffiffiffi
A

p
C

; ðB20Þ

along with Sψ ¼ ðSψÞrr þ 2ðSψÞθθ, where we used the
equations of motion in (B16) to write them in this form.

2. Bosons

The equations of motion for the gauge boson are

∇μFμν ¼ Jν; ðB21Þ

where

Jν ¼ ie
X
x

ψ̄xγ
νψx ðB22Þ

is a conserved current. To facilitate solving this, we define
the auxiliary field

Yðt; rÞ≡ Cðt; rÞ
αðt; rÞ ffiffiffiffiffiffiffiffiffiffiffiffiffi

Aðt; rÞp ½Ȧrðt; rÞ −A0
tðt; rÞ�; ðB23Þ

so that the equations of motion can be written
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∂tY ¼ −α
ffiffiffiffi
A

p
CJr; ∂rY ¼ α

ffiffiffiffi
A

p
CJt: ðB24Þ

Our focus is with two fermions that follow from the Dirac
spinor ansatz in (9), for which

Jt ¼ −
e

2πα
ffiffiffiffi
A

p
C
ðF2

1 þ F2
2 þ G2

1 þ G2
2Þ;

Jr ¼ −
e

2πAC

�
2ðF1G1 þ F2G2Þ

−
βr

ffiffiffiffi
A

p

α
ðF2

1 þ F2
2 þG2

1 þG2
2Þ
�
: ðB25Þ

The energy-momentum tensor for the gauge boson is
given by

ðTAÞμν ¼ gαβFμαFνβ −
1

4
gμνFαβFαβ: ðB26Þ

The components work out to be

ðTAÞtt ¼
Y2

2C2
ðα2 − Aβr2Þ;

ðTAÞrr ¼ −
AY2

2C2
;

ðTAÞθθ ¼
Y2

2C
;

ðTAÞϕϕ ¼ ðTAÞθθsin2θ;

ðTAÞtr ¼ −βr
AY2

2C2
; ðB27Þ

and the matter functions defined in Eq. (A4) are

ρA ¼ þ Y2

2C2
;

ðSAÞrr ¼ −
Y2

2C2
;

ðSAÞθθ ¼ þ Y2

2C2
;

ðSAÞr ¼ 0; ðB28Þ

along with SA ¼ ðSAÞrr þ 2ðSAÞθθ.
It will be convenient to make a Uð1Þ gauge choice. For

our numerical simulations, we use Lorenz gauge,

∇μAμ ¼ 0: ðB29Þ

Defining

Ω≡
ffiffiffiffi
A

p
C

α
ðAt − βrArÞ; ðB30Þ

where Ωðt; rÞ is an auxiliary field, the Lorenz gauge
condition can be written

∂tΩ ¼ ∂r

�
αCffiffiffiffi
A

p Ar þ βrΩ
�
: ðB31Þ

From the definition of Ω,

At ¼
αffiffiffiffi
A

p
C
Ωþ βrAr: ðB32Þ

APPENDIX C: STATIC EQUATIONS

Static wormhole solutions will be used as initial data for
our simulations, in addition to being studied in their own
right. By static solutions, we mean that spacetime is time
independent. In this appendix, we present the equations we
solve for static EDM wormholes.
To find static solutions, we drop the time dependence for

metric fields and set βr ¼ Kr
r ¼ KT ¼ 0. Under these

assumptions, our metric equations are [26]

∂
2
rC ¼ Aþ ð∂rAÞð∂rCÞ

2A
þ ð∂rCÞ2

4C
− 8πGACρ;

0 ¼ 1

C
−
ð∂rαÞð∂rCÞ

αAC
−
ð∂rCÞ2
4AC2

þ 8πGSrr;

∂
2
rα ¼

�
∂rA
2A

−
∂rC
C

�
∂rαþ 4πGαAðρþ SÞ: ðC1Þ

The first equation is the Hamiltonian constraint equation
in (A3), the second follows from the KT evolution equation
in (A2), and the third follows from combining the Kr

r and
KT evolution equations in (A2).
The energy-momentum tensor must be time independent

and diagonal. In the fermion sector, this can be achieved by
assuming

Fðt; rÞ ¼ fðrÞe−iωt; Gðt; rÞ ¼ igðrÞe−iωt; ðC2Þ

where fðrÞ and gðrÞ are real functions and ω is a real
constant. In the boson sector, we take Aμ to be time
independent. We choose to work in radial gauge, where

Ar ¼ 0: ðC3Þ

Under these assumptions, in the fermion sector, the
equations of motion in (B16) become

f0 ¼ −f
�
α0

2α
−

A0

4A
−

ffiffiffiffi
A
C

r �
− g

ffiffiffiffi
A

p �
μþ u

α

�
;

g0 ¼ −g
�
α0

2α
−

A0

4A
þ

ffiffiffiffi
A
C

r �
− f

ffiffiffiffi
A

p �
μ −

u
α

�
; ðC4Þ
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where

uðrÞ≡ eAtðrÞ þ ω; ðC5Þ

the energy-momentum tensor components in (B19)
reduce to

ðTψÞtt ¼
αuðf2 þ g2Þ
2π

ffiffiffiffi
A

p
C

;

ðTψÞrr ¼
fg0 − f0g
2πC

;

ðTψÞθθ ¼
fg

2π
ffiffiffiffiffiffiffi
AC

p ;

ðTψÞϕϕ ¼ ðTψÞθθ sin2 θ; ðC6Þ

along with ðTψÞtr ¼ 0; and the matter functions in (B20)
become

ρψ ¼ uðf2 þ g2Þ
2πα

ffiffiffiffi
A

p
C

;

ðSψÞrr ¼
fg0 − f0g
2πAC

;

ðSψÞθθ ¼
fg

2πA1=2C3=2 ; ðC7Þ

along with ðSψ Þr ¼ 0. For convenience, we give

fg0 − f0g ¼ u
ffiffiffiffi
A

p

α
ðf2 þ g2Þ − μ

ffiffiffiffi
A

p
ðf2 − g2Þ − 2fg

ffiffiffiffi
A
C

r
;

ðC8Þ

which is used in ðSψÞrr and which follows directly
from (C4).
In the boson sector, the second equation of motion in

(B24) becomes

u00 ¼ −u0
�
C0

C
−
α0

α
−

A0

2A

�
þ e2

α
ffiffiffiffi
A

p

2πC
ðf2 þ g2Þ; ðC9Þ

the energy-momentum tensor components in (B27) become

ðTAÞtt ¼
u02

2e2A
;

ðTAÞrr ¼ −
u02

2e2α2
;

ðTAÞθθ ¼
Cu02

2e2α2A
;

ðTAÞϕϕ ¼ ðTAÞθθ sin2 θ; ðC10Þ

along with ðTAÞtr ¼ 0; and the matter functions in (B28)
become

ρA ¼ −ðSAÞrr ¼ ðSAÞθθ ¼
u02

2e2α2A
; ðC11Þ

along with ðSAÞr ¼ 0.

APPENDIX D: RELATION OF STATIC
EQUATIONS TO [20]

In Appendix C, we gave the complete set of equations we
use to solve for static EDM wormholes. Our equations do
not look the same as those used by Konoplya and Zhidenko
(KZ) in [20], but, as we explain here, they are equivalent.
KZ write in [20] that they use the Dirac spinor ansatz
given by Herdeiro, Pombo, and Radu (HPR) in [27], who
describe their static fermions with the functions fHPRðrÞ
and gHPRðrÞ. The relationships between our fields fðrÞ and
gðrÞ and HPR’s are [37]

fHPR ¼ g

4
ffiffiffi
π

p
A1=4C1=2 ; gHPR ¼ f

4
ffiffiffi
π

p
A1=4C1=2 : ðD1Þ

The relationships between our quantities and KZ’s are

x ¼ r; q ¼ e;

NðxÞ ¼ αðrÞ; ½∂xrðxÞ�2
B2ðxÞ ¼ AðrÞ;

r2ðxÞ ¼ CðrÞ; VðxÞ ¼ AtðrÞ;
FðxÞ ¼ fHPRðrÞ; GðxÞ ¼ gHPRðrÞ; ðD2Þ

where KZ’s quantities are on the left and ours are on the
right. We have the same definitions for μ and ω. Last, KZ
uses units such that G ¼ 1=4π, while we use G ¼ 1. With
these relations, our static equations are identical to theirs.

APPENDIX E: NUMERICAL METHODS

We have developed a second order accurate code for
simulating EDMwormholes. Our code is based on the code
used in [26], to which we refer the reader for additional
details.
We use static solutions as initial data for our simulations.

In the matter sector, we have

F1ð0; rÞ ¼ fðrÞ; F2ð0; rÞ ¼ 0;

G1ð0; rÞ ¼ 0; G2ð0; rÞ ¼ gðrÞ;

Atð0; rÞ ¼
uðrÞ
e

; Arð0; rÞ ¼ 0;

Yð0; rÞ ¼ −CðrÞu0ðrÞ
eαðrÞ ffiffiffiffiffiffiffiffiffi

AðrÞp ; Ωð0; rÞ ¼ CðrÞ ffiffiffiffiffiffiffiffiffi
AðrÞp

uðrÞ
eαðrÞ ;

ðE1Þ

ARE EINSTEIN-DIRAC-MAXWELL WORMHOLES TRAVERSABLE? PHYS. REV. D 108, 044019 (2023)

044019-15



where the static solutions are on the right-hand side. Note
that we are assuming a Uð1Þ gauge where uðrÞ ¼ eAtðrÞ.
For metric fields, we use the static solutions for Að0; rÞ and
Cð0; rÞ. We have also Kr

rð0; rÞ ¼ KTð0; rÞ ¼ 0.
The metric field α is a gravitational gauge field, in

that once initial data have been loaded onto the initial
time slice, α can be chosen arbitrarily [28,32]. Wet set
αð0; rÞ ¼ 1 and then evolve α using the harmonic slicing
condition [28],

∂tα ¼ −α2ðKr
r þ KTÞ: ðE2Þ

Harmonic slicing is known to have decent singularly
avoidance properties, and we have found that it works
well for the EDM system. βr is also a gravitational gauge
field. As mentioned in Sec. II, we set βr ¼ 0.
We solve evolution equations using the method of lines

and third order Runge-Kutta. We solve the momentum
constraint using second order Runge-Kutta. At the outer
boundaries, we use outgoing one-dimensional wave equa-
tions for matter fields F1, F2,G1, andG2 [37] and outgoing
spherical wave equations for all other fields whose evolu-
tion equations contain spatial derivatives.
We set the outer boundary at r̄ ¼ �100 and have

confirmed that reflections are negligible. We use time step
Δt̄ ¼ 0.5Δr̄ and we use uniform grid spacingΔr̄ ¼ 0.0025.
An apparent horizon satisfies [28,31,32]

ffiffiffiffi
A

p
CKT ∓ ∂rC ¼ 0; ðE3Þ

where we use the upper sign for r > 0 and the lower sign
for r < 0. For the general spherically symmetric metric in
(A1), null geodesics, rnullðtÞ, are computed from

drnull
dt

¼ � αffiffiffiffi
A

p − βr; ðE4Þ

where the upper sign is for a right-moving geodesic and the
lower sign is for a left-moving geodesic.

APPENDIX F: CODE TESTS

To test our code and to determine its level of conver-
gence, we make use of the convergence function [32]

CΔr1;Δr2f ≡ kfΔr1 − fΔr2k; ðF1Þ

where fΔr1 is the value of an arbitrary field obtained
numerically from an evolution equation using grid spacing
Δr1 and k indicates the L2 norm across the computational
grid. Using grid spacings Δr1, Δr2, and Δr3, where
Δr1=Δr2 ¼ Δr2=Δr3 ¼ 2, an indication of second order
convergence is that CΔr1;Δr2f =CΔr2;Δr3f ¼ 4 [32].
In Fig. 8, we show results for the metric fields using

Δr ¼ 0.01, 0.005, and 0.0025. In all plots, the lower curve
drops by a factor of 4, indicating second order convergence.
We find similar results for our other simulations. Although
we do not show it here, we have confirmed that the
Hamiltonian constraint in Eq. (7) is satisfied on each time
slice, as required.

FIG. 8. The convergence function in (F1) for Δr ¼ 0.01, 0.005, and 0.0025 is plotted for metric functions α, A, and C using the same
initial data as used for the simulation shown in the top row of Fig. 3. The bottom curve drops by a factor of 4 compared to the top curve,
indicating second order convergence.
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