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We present and discuss new families of primary hair charged black hole solutions in asymptotically anti–
de Sitter space in three dimensions. The coupled Einstein-Maxwell-scalar gravity system, that carries the
coupling fðϕÞ between the scalar and Maxwell fields is solved, and exact hairy black hole solutions are
obtained analytically. The hairy solutions are obtained for three different profiles of the coupling function:
(i) fðϕÞ ¼ 1, corresponding to no direct coupling between the scalar and Maxwell fields; (ii) fðϕÞ ¼ e−ϕ;

and (iii) fðϕÞ ¼ e−ϕ
2=2, corresponding to nonminimal coupling between them. For all these couplings the

scalar field and curvature scalars are regular everywhere outside the horizon. We analyze the
thermodynamics of the hairy black hole and find drastic changes in its thermodynamic structure due
to the scalar field. For fðϕÞ ¼ 1, there exists a critical value of the hairy parameter above which the charged
hairy black hole exhibits the Hawking/Page phase transition, whereas no such phase transition occurs

below this critical value. Similarly, for fðϕÞ ¼ e−ϕ and fðϕÞ ¼ e−ϕ
2=2, the hairy solution exhibits a small/

large black hole phase transition for above critical values of the hairy parameter. Interestingly, for these
couplings, the thermodynamic phase diagram of three-dimensional hairy charged black holes resembles
that of a higher-dimensional Reissner-Nordström anti–de Sitter black hole, albeit with two second-order
critical points.
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I. INTRODUCTION

Black holes are the remarkable predictions of general
relativity (GR) that play a fundamental role in our under-
standing of the Universe at large scales. These are the
simplest and yet the most mysterious outcomes of
Einstein’s gravitational field equations that have been an
engaging area of research for many decades and still are far
from being completely understood. They provide a unique
platform where strong gravity, quantum phenomenon, and
thermodynamics are believed to coexist. Although a
complete understanding of the quantum mechanical nature
of the black hole is still in fancy; however, great progress
has been made in understanding its geometric and thermo-
dynamic structures using the semiclassical approach. For
instance, it is by now well-known that black holes not only
behave like a thermal object, carrying temperature and
entropy, but also can undergo phase transitions like
ordinary thermodynamical systems [1–3]. In particular,
black holes in anti–de Sitter (AdS) spaces are not only
thermodynamically stable, as opposed to the Schwarzschild
black holes in asymptotically flat space, but also
exhibit rich thermodynamic phase structure and undergo

Hawking/Page (black hole to thermal-AdS) or liquid/gas
(small to large black holes) like phase transitions [4–11].
The black holes in general have been believed

to follow the famous no-hair theorem. It simply states
that black holes in the asymptotically flat space are
uniquely described by their mass, charge, and angular
momentum [12]. Said otherwise, black holes do not support
scalar field hair outside their horizon in asymptotically flat
space. The prime argument supporting the no-hair theorem
is based on the strong absorbing nature of the horizon. A
straightforward proof and critical remarks in favor of the
no-scalar hair theorem for asymptotic flat spacetime were
discussed in [13]; see also [13–15]. For a review on the
issue of scalar hair in asymptotic flat spaces, see [16].
Although the initial black hole no-hair theorem has been
backed by several other works, see, for instance, [17–24], it
is not a theorem in the strict mathematical sense. There are
by now considerable counterexamples, such as Einstein-
Yang-Mills theory [25–27], dilatonic black holes [28],
black hole with Skyrme hairs [29,30], black hole hair with
tensor vacuum [31,32] etc., that defy the no-hair theorem.
There are essentially two main requirements for a

physically acceptable scalar hairy solution: (i) the scalar
field should be regular and well-behaved everywhere
outside the horizon and should fall off sufficiently fast at
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the asymptotic boundary; and (ii) the hairy geometry
should be smooth, i.e., it should not contain any additional
singularity. Additionally, the dynamical stability of hairy
black hole solution under perturbations is desirable as
well. There have been many attempts to endow black holes
with the scalar hair. The first attempts were carried out
in [33–36] for asymptotic flat spaces. The resulting
geometry resembles the extremal Reissner-Nordström
(RN) one but the scalar field diverges at the horizon.
This solution was further shown to be unstable against
scalar perturbations [36]. It was soon envisaged that the
addition of a new gravitational scale, such as the cosmo-
logical constant, can provide an effective potential outside
the black hole that may stabilize the scalar field, and
therefore may give a mechanism to make the scalar field
regular near the horizon. This leads to studying hairy
solutions in asymptotically AdS or dS spaces. A hairy
solution for the minimally coupled scalar-gravity system in
the asymptotic dS space was obtained in [37]; however, it
turned out to be unstable [38]. In the case of asymptotically
AdS space, stable hairy black hole solutions were found
and discussed in [38–46]. In recent years, many works
addressing various physical properties of the hairy black
holes in different asymptotic spaces have appeared; for a
necessarily biased selection, see [47–66].
The study of the no-scalar hair theorem and fusion of

scalar-gravity systems are not just of theoretical interest.
The progress in gravitational wave detection [67] and
black hole shadow [68] in recent years has provided us
with an opportunity to test the no-hair theorem and
constraint alternative scalar-gravity theories. In particular,
these experimental observations are sensitive to the space-
time region around the horizon and might provide impor-
tant information on additional matter fields around it.
See [69–74] for a discussion along this line, and [75]
for a review of experimental tests of the no-hair theorem. In
addition, scalar fields also play a fundamental role in early
Universe cosmology and particle physics [76,77], and
are often invoked to describe the dark matter and
energy [78,79]. They also appear naturally in fundamental
theories, such as string theory or high-energy unification
theories [80]. Similarly, scalar fields in AdS spaces play an
important role in probing strongly coupled field theory
using the gauge/gravity duality. Prominent examples
include QCD, quantum liquids, nonconformal plasmas,
superfluidity and superconductivity etc., see [81,82] for
review and references therein.
Lower-dimensional models of gravity are of consider-

able interest due to their simplicity over four and higher-
dimensional models of gravity. They continue to be a
source of great discussion for theorists, mainly because of
the possible insight into quantum gravity that it offers. In
the last few decades, three-dimensional BTZ (Banados-
Teitelboim-Zanelli) black holes have drawn a lot of
attention as simplified models for investigating conceptual

issues relating to the black hole [83,84]. In particular, GR
becomes a topological field theory in three dimensions,
whose dynamics can be described holographically by
a two-dimensional conformal field theory living at the
boundary of spacetime [85]. The BTZ black holes therefore
provide a natural arena to test the deep and far-reaching
ideas of AdS=CFT duality [86]. For instance, the
symmetric algebra and conserved charges associated with
the boundary can be used to derive the BTZ black hole
entropy [87]. In addition, since three-dimensional gravity
models can be formulated as a Chern-Simon (CS) theory,
they have become quintessential for investigating general
properties of gravity, and in particular its relationship with
gauge field theories, in any spacetime dimensions [88,89].
Indeed, in spite of various fundamental differences with its
higher-dimensional counterparts—such as being devoid of
any curvature singularity and being locally equivalent to
pure AdS3—the BTZ black hole does exhibit many of
their characteristic features, such as the presence of event
and Cauchy horizons, or their holographic and thermo-
dynamic interpretations [90]. For these reasons, the three-
dimensional black holes continue to play a prominent role
in aiming to enhance our understanding of gravity and of
general features of gravitational interaction.
After the seminal discovery of the BTZ solution,

the catalog of three-dimensional black hole solutions has
expanded in different directions. This includes three-
dimensional gravity with matter sources, such as the usual
Maxwell source [91], higher curvature terms [92], higher-
rank tensor fields [93], and gravitational Chern-Simons
terms [94]. Unlike its higher-dimensional counterparts, a
finite number of higher-rank tensor fields can be included
in three dimensions [93]. Similarly, after the realization that
the BTZ black hole can be dressed with the regular scalar
field [95,96], several hairy black holes with minimally or
nonminimally coupled self-interacting real scalar field in
three spacetime dimensions are presented [97–120].
These hairy solutions include conformally coupled scalar
fields, along with (or lack of) different types of coupling
between the scalar and gauge fields. In many cases, these
three-dimensional gravity models are also analytically
tractable and have attracted considerable attention, espe-
cially for their application in holography and to probe the
physics of condensed matter systems. Unfortunately, not
all of these hairy solutions are physically desirable as some
of them have a logarithmic radial dependent profile
for the scalar field [97,112]. The above mentioned works
express only a small part of the substantial attention
that the three-dimensional scalar hairy black holes have
gathered in recent years (see for instance [112] and
references therein).
From the thermodynamic point of view, BTZ black hole

behaves very differently from its higher-dimensional
counterpart. In particular, the black hole entropy has
multiple branches as a function of temperature in four
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and higher dimensions and hence can undergo phase
transitions as the temperature is varied. The Hawking/
Page phase transition between AdS black hole and thermal-
AdS in the grand canonical ensemble and the liquid/gas
type phase transition between the small and large black
holes in the fixed charge ensemble are prime examples
[4,5]. The latter phase transition also exhibits a second-
order critical point, with critical exponents identified with
the mean-field type. However, for the BTZ black hole, for
both charged and uncharged cases, the entropy vs temper-
ature profile has only one branch and therefore does not
exhibit such phase transitions. The situation also does not
change much by adding scalar fields and interactions in
BTZ backgrounds. See for instance [112], where no such
phase transitions in a variety of static Einstein-Maxwell-
scalar (EMS) three-dimensional gravity models were
found. Although certain three-dimensional EMS theories
do exhibit Hawking/Page phase transition [109], however,
the corresponding solution not only contains a logarithmic
divergent profile for the scalar field but also the geometry
does not asymptote to AdS at the boundary.
Since the coupling of the scalar field to the three-

dimensional Einstein-Maxwell gravity generally leads to
new and interesting properties for the black hole solutions,
it is instructive to find new exact solutions of EMS gravity
system for arbitrary coupling constants and analyze how
the thermodynamical structure of black holes is modified in
the presence of a scalar field. In particular, it is interesting
and desirable to have three-dimensional hairy black hole
solutions, with not just a regular profile of the scalar field
but also whose thermodynamic structure is analogous to
higher dimensional AdS black holes, as they can have
many applications in applied holography. In this work, we
find a family of such solutions.
In this work, we present novel analytic stable hairy

charged BTZ-like solutions in the EMS theory in three
dimensions, whose thermodynamic structure resembles to
charged AdS black holes in higher dimensions. In particu-
lar, we consider EMS theory, with coupling function
fðϕÞ between the scalar and Maxwell fields, and solve
the coupled Einstein-Maxwell-scalar field equations simul-
taneously in terms of functions AðzÞ and coupling fðϕÞ
(see the next section for details) using the potential
reconstruction method [65,66,121–132]. In this method,
the self-interacting scalar potential form is not fixed from
the beginning but is determined by the consistency of the
field equations. This method is pursued because the choice
of different reasonable potentials led to a system of
equations which are difficult to solve. Accordingly, as is
usually done in the literature, we considered a bottom-up
approach and found the gravity theory in which the field
equations can be solved analytically determining also the
scalar potential.
The different forms of AðzÞ and fðϕÞ then allow us to

construct a different family of hairy black hole solutions. To

make the analysis and results more comprehensive, we
choose two particular forms of AðzÞ¼−logð1þa2z2Þ
and AðzÞ ¼ −a2z2, that allow us to introduce a para-
meter a, which controls the strength of the scalar field
or hair. Similarly, we consider three different forms of
coupling functions: (i) fðϕÞ ¼ 1; (ii) fðϕÞ ¼ e−ϕ; and
(iii) fðϕÞ ¼ e−ϕ

2=2. The first coupling function corresponds
to no direct coupling between the scalar and gauge fields,
whereas the second and third coupling functions corre-
spond to nonminimal coupling between them. The prime
motivation for considering such coupling functions is that
they have been thoroughly investigated in various hairy
black hole contexts in higher dimensions in recent
years, from scalarization to holographic model building,
and have constantly contributed to our ever improving
understanding of the hairy aspects of black holes [48]. It is,
therefore, interesting to investigate how these coupling
functions leave their imprints on the geometric and
thermodynamic properties of the three-dimensional black
holes as well.
We find that for these forms of AðzÞ and fðϕÞ, the

obtained hairy gravity solution displays many desirable
properties such as (i) the scalar field is regular and
finite everywhere outside the horizon and falls off at the
asymptotic boundary; (ii) the Kretschmann and Ricci
scalars are finite everywhere outside the horizon, sug-
gesting no additional singularity in the solution; (iii) these
solutions can be analytically continued to standard BTZ
solution in the limit a → 0; and (iv) the scalar potential is
bounded from above from its UV boundary value, thereby
satisfying the Gubser criterion to have a well-defined
boundary theory [133], and reduces to the negative cos-
mological constant at the asymptotic boundary.
We then investigate the thermodynamics of the con-

structed hairy black hole solution and find that the
thermodynamic behavior of the black hole becomes com-
pletely different when the hairy parameter a is switched on.
In particular, for fðϕÞ ¼ 1 and a fixed charge qe, there
exists a critical value of the hairy parameter a ¼ ac above
which the charged hairy black hole exhibits the Hawking/
Page phase transition, whereas below ac no such phase
transition occurs. The corresponding transition temperature
is found to be increasing (decreasing) monotonically with
a (qe). The critical value ac also turns out to be a qe
dependent quantity, i.e., its magnitude increases as qe
increases. The thermodynamic structure of the hairy black
hole is therefore akin to the BTZ black hole for a < ac
whereas it resembles RN-AdS black hole in the grand
canonical ensemble for a > ac. The thermodynamic struc-
ture of the hairy black hole becomes even more interesting
for fðϕÞ ¼ e−ϕ and fðϕÞ ¼ e−ϕ

2=2 couplings. For a fixed
qe, now small/large black hole phase transition appears for
higher values of a whereas it ceases to exist at smaller
values of a. Interestingly, there are now two second-order
critical points fqce; acg at which the first-order small/large
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black hole phase-transition line stops. The small/large
phase-transition temperature is also found to be decreasing
with qe. This behavior is completely analogous to the
thermodynamic behavior of the charged RN-AdS black
holes in the canonical ensemble in four and higher
dimensions. We moreover analyze the thermodynamic
structure by varying the parameter a and, interestingly,
find it to be different from the varying charge scenario. In
particular, now not only did the smaller values of a lead to
the dissolution of the small/large black hole phase tran-
sition but also the transition temperature increases with a.
To the best of our knowledge, this is the first time a small/
large black hole phase transition is observed in three
dimensions.
At this point, we would like to emphasize that the

constructed hairy solutions here correspond to the primary
hair. In particular, one should distinguish primary hair
from secondary hair [134]. The secondary hair refers to
black hole structures which exist solely as the result of
(well-known) primary hair such as gauge charges and
hence are not really new characteristics, i.e., a primary
hair endows a black hole with a new independent
parameter (or the quantum number) whereas the secon-
dary hair does not [27]. The charged dilaton black hole
solutions [135,136] are examples of secondary hair, where
nontrivial scalar field configuration is sourced by the
electric charge (primary hair). The existence of secondary
hair, therefore, does not really violate the no-hair theorem.
In our work, the scalar hair is not sourced by the
gauge field and can be continuously tuned to get the
BTZ or charged BTZ solution in the limit a → 0.
Most works in the hairy black hole context are concerned
with secondary hair and solutions with primary hair
are rare. See [51,134,137,138], for a few other cases
where black hole solutions with primary hair were
discussed.
The paper is organized as follows. We introduce the

Einstein-Maxwell-scalar gravity model in three dimensions
and present its analytic solution in terms of two functions
fðϕÞ and AðzÞ in Sec. II. In Sec. III, using a particular form
of AðzÞ, we study the geometrical and thermodynamical
properties of hairy black hole solution for the coupling
fðϕÞ ¼ 1. We repeat the calculations of Sec. III with
different coupling functions fðϕÞ¼e−ϕ and fðϕÞ¼e−ϕ

2=2

in Secs. IV and V, respectively. In Sec. VI, we compute the
conserved mass of the black hole and establish the primary
nature of the scalar hair. Finally, some concluding remarks
are given in Sec. VII.

II. EINSTEIN-MAXWELL-SCALAR GRAVITY
SYSTEM

To describe three-dimensional hairy charged black holes,
we start with the following most general Einstein-Maxwell-
scalar gravity action

SEMS ¼ −
1

2κ2

Z
d3x

ffiffiffiffiffiffi
−g

p �
R −

fðϕÞ
4

FMNFMN

−
1

2
∂Mϕ∂

Mϕ − VðϕÞ
�
; ð2:1Þ

where R is the Ricci scalar of the three-dimensional
manifold M, FMN is the electromagnetic field strength
tensor of the Uð1Þ gauge field BM, ϕ is the scalar field, and
VðϕÞ is the potential of the scalar field ϕ. The function
fðϕÞ represents the coupling between scalar and Uð1Þ
gauge fields. To make our analysis more complete we will
mainly concentrate on three different coupling functions in
this work: (i) fðϕÞ ¼ 1, corresponding to no direct cou-
pling between the scalar and gauge fields; (ii) fðϕÞ ¼ e−ϕ;
and (iii) fðϕÞ ¼ e−ϕ

2=2; corresponding to nonminimal
coupling between them. The constant κ is related to the
three-dimensional Newton constant κ2 ¼ 8πG3.
The variation of the above action gives the following

Einstein, Maxwell, and scalar equations,

RMN −
1

2
gMNRþ fðϕÞ

4

�
gMN

2
F2 − 2FMPFP

N

�

þ 1

2

�
gMN

2
∂Pϕ∂

Pϕ− ∂Mϕ∂Nϕþ gMNVðϕÞ
�
¼ 0; ð2:2Þ

∇M½fðϕÞFMN � ¼ 0; ð2:3Þ

1ffiffiffiffiffiffi−gp ∂M½
ffiffiffiffiffiffi
−g

p
∂
Mϕ� − F2

4

∂fðϕÞ
∂ϕ

−
∂VðϕÞ
∂ϕ

¼ 0: ð2:4Þ

Since we want to construct static hairy black hole solutions
in three dimensions, we consider the following ansatz for
the metric gMN , gauge field BM, and scalar field ϕ,

ds2 ¼ L2

z2

�
−gðzÞdt2 þ e2AðzÞdz2

gðzÞ þ dφ2

�
;

ϕ ¼ ϕðzÞ; BM ¼ BtðzÞδtM; ð2:5Þ

where AðzÞ is the form factor, whose form will play an
important role in the thermodynamics of the hairy black
hole. gðzÞ is the blackening function, and L is the AdS
length scale, which will be set to one for simplicity. The
radial coordinate z runs from z ¼ 0 (asymptotic boundary)
to z ¼ zh (horizon radius), or to z ¼ ∞ for thermal-AdS
(without horizon).
Plugging the above ansatz into Eqs. (2.2), we get the

following three Einstein equations of motion,

tt∶
A0ðzÞ
2z

þ L2e2AðzÞVðϕÞ
4z2gðzÞ þ z2B0

tðzÞ2fðϕÞ
8L2gðzÞ

−
g0ðzÞ
4zgðzÞ þ

1

2z2
þ 1

8
ϕ0ðzÞ2 ¼ 0; ð2:6Þ
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zz∶
L2e2AðzÞVðϕÞ

2z2
þ z2B0

tðzÞ2fðϕÞ
4L2

−
g0ðzÞ
2z

þ gðzÞ
�
1

z2
−
1

4
ϕ0ðzÞ2

�
¼ 0; ð2:7Þ

φφ∶g00ðzÞ þ g0ðzÞ
�
−A0ðzÞ − 2

z

�

þ gðzÞ
�
2A0ðzÞ

z
þ 2

z2
þ 1

2
ϕ0ðzÞ2

�

þ L2e2AðzÞVðϕÞ
z2

−
z2B0

tðzÞ2fðϕÞ
2L2

¼ 0; ð2:8Þ

where the prime denotes the derivative with respect to z.
These complicated-looking Einstein equations can be
further rearranged in the following simpler forms, which
are then much easier to analyze,

A0ðzÞ
2z

þ 1

4
ϕ0ðzÞ2 ¼ 0; ð2:9Þ

g00ðzÞ þ g0ðzÞ
�
−A0ðzÞ − 1

z

�
−
z2fðϕÞB0

tðzÞ2
L2

¼ 0; ð2:10Þ

A0ðzÞ
�
1

2z
−

g0ðzÞ
4gðzÞ

�
þ L2e2AðzÞVðϕÞ

2z2gðzÞ þ g00ðzÞ
4gðzÞ

−
3g0ðzÞ
4zgðzÞ þ

1

z2
¼ 0: ð2:11Þ

Similarly, we get the following equation of motion for the
gauge field

�
e−AðzÞfðϕÞz

L
B0
tðzÞ

�0
¼ 0; ð2:12Þ

and the equation of motion for the scalar field,

ϕ00ðzÞ þ ϕ0ðzÞ
�
−A0ðzÞ þ g0ðzÞ

gðzÞ −
1

z

�

−
L2e2AðzÞ

z2gðzÞ
∂VðϕÞ
∂ϕ

þ z2B0
tðzÞ2

2L2gðzÞ
∂fðϕÞ
∂ϕ

¼ 0; ð2:13Þ

Therefore, we have in total five equations of motion.
However, it can be explicitly checked that only four of
them are independent. The last Eq. (2.13) follows from the
Bianchi identity and is therefore redundant. Below we will
choose Eq. (2.13) as a constrained equation and consider
the rest of the equations as independent. To solve these
equations, we further impose the following boundary
conditions:

gð0Þ ¼ 1 and gðzhÞ ¼ 0;

Að0Þ ¼ 0: ð2:14Þ

The boundary conditions at z ¼ 0 are chosen to ensure that
the spacetime asymptotes to AdS at the boundary z → 0.
Similarly, we demand that the blackening function gðzÞ go
to zero at the black hole horizon zh. Apart from these
boundary conditions, we further impose the requirement
that the scalar field ϕ goes to zero at the boundary ϕð0Þ ¼ 0
and it remains real everywhere in the bulk.
Interestingly, we can find analytic solutions of the

equations (2.9)–(2.12) in complete closed form in terms
of two functions AðzÞ and fðϕÞ by the following approach1:

(i) Solve Eq. (2.12) and find BtðzÞ in terms of AðzÞ
and fðϕÞ.

(ii) From the obtained BtðzÞ solution, solve Eq. (2.10)
and find gðzÞ in terms of AðzÞ and fðϕÞ.

(iii) Solve Eq. (2.9) and find ϕ0ðzÞ in terms of AðzÞ.
(iv) Lastly, solve Eq. (2.11) and find V in terms of AðzÞ

and gðzÞ.
Using this approach, we get the solution for BtðzÞ from
Eq. (2.12) as

B0
tðzÞ ¼ −

qeLeAðzÞ

zfðzÞ ;

BtðzÞ ¼ −qeL
Z

dz
eAðzÞ

zfðzÞ ; ð2:15Þ

where the integration constant qe is related to the total
charge of the black hole (see below). Now, substituting
Eq. (2.15) into Eq. (2.10), we get the following solution
for gðzÞ,

gðzÞ ¼ C1 þ
Z

z

0

dξeAðξÞξ½C2 þKðξÞ�; ð2:16Þ

with,

KðξÞ ¼
Z

dξ

�
B02
t e−AðξÞξfðξÞ

L2

�
; ð2:17Þ

where the integration constants C1 and C2 [obtained from
Eq. (2.14)] are given as

1There are actually three ways to proceed and solve the
coupled Eqs. (2.9)–(2.12) simultaneously. The first and obvious
one is to know the potential V, and then compute other variables
like g, ϕ, etc., by solving the differential equations. The second
one is to postulate the scalar field ϕ and get the other variables in
terms of it. The third approach is to postulate the form factor A,
generally motivated by phenomenological consideration, and get
the other variables in terms in terms of A. This third approach, in
particular, is quite straightforward to implement and is also
generally adopted in AdS/QCD model building [121,125].
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C1 ¼ 1; C2 ¼ −
1þ R zh

0 dξeAðξÞξKðξÞR zh
0 dξeAðξÞξ

: ð2:18Þ

Similarly, the scalar field can be solved in terms of AðzÞ
from Eq. (2.9)

ϕðzÞ ¼
Z

dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
2A0ðzÞ

z

r
þ C3; ð2:19Þ

where the constant C3 can be fixed by demanding ϕ to
vanishes near the asymptotic boundary, i.e., ϕjz¼0 → 0.
Lastly, the potential V can be found from Eq. (2.11),

VðzÞ ¼ −
e−2AðzÞ

4L2
ð−2zðzA0ðzÞ þ 3Þg0ðzÞ

þ 4gðzÞðzA0ðzÞ þ 2Þ þ 2z2g00ðzÞÞ: ð2:20Þ

It is thus clear that one can systematically obtain a closed-
form analytic solution of the Einstein-Maxwell-scalar
gravity system in (2þ 1)-dimensions in terms of two
functions, i.e., AðzÞ and fðϕÞ, and construct hairy charged
BTZ black hole solutions. Once the coupling function fðϕÞ
is given, the constructed hairy solution will depend only on
AðzÞ. The different forms of AðzÞ and fðϕÞ will, however,
correspond to different VðzÞ, i.e., different AðzÞ and fðϕÞ
will attribute to different (2þ 1)-dimensional hairy black
hole solutions. Therefore, one can systematically construct
a large family of physically allowed hairy charged BTZ
black hole solutions for the Einstein-Maxwell-scalar grav-
ity system in (2þ 1)-dimensions by choosing different
forms of AðzÞ and fðϕÞ.
Nevertheless, in the context of applied gauge/gravity

duality, the forms of AðzÞ and fðϕÞ are usually fixed by
taking guidance from the dual boundary field theory. In
particular, depending upon what type of boundary field
theory one is interested in one generally considers different
forms of AðzÞ and fðϕÞ. For instance, in the area of AdS/
QCD model building, the forms of these functions are
generally fixed by demanding the dual boundary field
theory to display real QCD properties such as confinement/
deconfinement phase transition, confinement in the quark
sector, linear Regge trajectory for the excited meson mass
spectrum, etc., [121,125].
We can also take a more pragmatic and liberal route and

examine various physically motivated forms of AðzÞ and
fðϕÞ to comprehensively discuss the effects of scalar hair
and make a qualitative statement on the stability and
thermodynamics of the hairy charged black holes in three
dimensions, without concerning too much about the dual
boundary field theory. Here, we take such a route.
Particularly, we consider three different forms of the
coupling function fðϕÞ: (i) fðϕÞ ¼ 1; (ii) fðϕÞ ¼ e−ϕ;
and (iii) fðϕÞ ¼ e−ϕ

2=2. As mentioned in the introduction,
these three types of couplings have been greatly considered

in various hairy black hole contexts in recent years, for
instance see [48], and hence it is interesting to analyze how
these different coupling functions modify the hairy struc-
ture in three dimensions as well. Similarly, we can take
different forms of AðzÞ. Following [65], we consider a
particularly simple form AðzÞ ¼ − log ð1þ a2z2Þ. This
form of AðzÞ is taken not just for its simplicity but also
to have better control over the integrals that appear in
Eqs. (2.15)–(2.20), again without concerning greatly about
the dual field theory. In principle, we can choose other
simple forms, such as AðzÞ ¼ −a2zn with n ≥ 1, as well.
This form of AðzÞ has also been extensively used in the
literature, see for example [66,121]. However, we will not
dwell much into this form here and relegate most of our
calculations to the Appendix for completeness. With the
considered form of AðzÞ ¼ − logð1þ a2z2Þ, the strength of
the scalar field is characterized by the parameter a.
Therefore, when the parameter a goes to zero so does
the backreaction of the scalar field. Hence, as desired, in the
limit a → 0, we get back to the charged BTZ black hole
solution.
There are also other important reasons for taking the

above mentioned forms of fðϕÞ and AðzÞ. In particular,
these forms ensure that the constructed hairy geometry
asymptotes to AdS at the boundary z → 0, i.e., at the
boundary, we have

VðzÞjz→0 ¼ −
2

L2
þm2ϕ2

2
þ…;

VðzÞjz→0 ¼ 2Λþm2ϕ2

2
þ…; ð2:21Þ

where Λ ¼ − 1
L2 is as usual the negative cosmological

constant in three dimensions. Similarly, the Ricci scalar
R approaches −6=L2 asymptotically. This, together with
the fact that gðzÞjz→0 ¼ 1, certainly establishes that the
constructed spacetime asymptotes to AdS at the boundary.
Moreover, m2 ¼ −1 is the mass of the scalar field,
satisfying the Breitenlohner-Freedman bound for stability
in AdS space, i.e., m2 ≥ −1 [139]. Furthermore, as we will
show later on, these geometries also satisfy the Gubser
criterion to have a well-defined dual boundary theory [133].
Let us also check the validity of the null energy condition

(NEC) to further establish the consistency of the con-
structed hairy solutions. The NEC can be expressed as

TMNNMN N ≥ 0; ð2:22Þ

where TMN is the energy-momentum tensor of the matter
fields. The null vector NM satisfies the condition
gMNNMN N ¼ 0, and can be chosen as

NM ¼ 1ffiffiffiffiffiffiffiffiffi
gðzÞp N t þ cos α

ffiffiffiffiffiffiffiffiffi
gðzÞp

eAðzÞ
N z þ sin αN φ; ð2:23Þ
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for arbitrary parameter α. The NEC then becomes

TMNNMN N ¼ e−2AðzÞ

2L2
ðz2fðϕÞ sin2 αB0

tðzÞ
þ L2 cos2 αgðzÞϕ0ðzÞ2Þ ≥ 0; ð2:24Þ

which is always satisfied everywhere outside the horizon
for the chosen forms of AðzÞ and fðϕÞ.
We also like to mention that although the form of

function AðzÞ seems to be slightly arbitrary in our formal-
ism, however, we are required to be careful while choosing
its form. In particular, we need to ensure that all the fields
remain real throughout the spacetime. This puts a lot of
restrictions on the forms of AðzÞ we can consider. For
instance, the scalar field ϕ would be complex if AðzÞ ¼ az,
with a being positive, is considered. Similarly, we can not
consider forms such as AðzÞ ¼ a=zn, with n being positive,
as this will make the asymptotic boundary different
from AdS.
Let us now write down the expressions of various

thermodynamic observables of the constructed hairy black
holes. This will be useful in the discussion of black hole
thermodynamics later on. The temperature (T) and entropy
of the black hole (SBH) are given by

T ¼ −
e−AðzÞg0ðzhÞ

4π
¼ −

zhðC2þ KðzhÞÞ
4π

;

SBH ¼ A
4G3

¼ 2πL
4G3zh

; ð2:25Þ

where A is the area of the event horizon. Similarly, the
electric charge Qe of the black hole can be found by
measuring the flux of the electric field at the boundary,

Qe ¼
1

16πG3

Z
fðϕÞFαβuαnβdφ ð2:26Þ

where uα and nβ are the unit spacelike and timelike
normals, respectively, to the constant radial surface

uα ¼ 1ffiffiffiffiffiffiffiffi−gtt
p δαt ¼

z

L
ffiffiffiffiffiffiffiffiffi
gðzÞp δαt ;

nβ ¼ 1ffiffiffiffiffiffi
gzz

p δβz ¼ z
ffiffiffiffiffiffiffiffiffi
gðzÞp

LeAðzÞ
δβz ; ð2:27Þ

and dφ represents the integration over the spatial one-
dimensional boundary space. Using Eq. (2.15) and sim-
plifying, we get the following expression of charge:

Qe ¼
qe

8πG3

: ð2:28Þ

We can further find an explicit relation between Qe and the
corresponding conjugate electric potential μe. The black

hole’s electric potential on the horizon, measured by an
observer at the reference point, can be obtained in terms of
the null generator of the horizon. This is given by

μe ¼ Bαχ
αjreference − Bαχ

αjz→zh ¼ −BtðzhÞ ð2:29Þ

where in the reference, electric potential should vanish.
Apart from the above-mentioned hairy black hole

solution, there exists another allowed solution to the
Einstein-Maxwell-scalar equations of motion. This solu-
tion, called thermal-AdS here, does not contain a horizon.2

The thermal-AdS solution corresponds to gðzÞ ¼ 1, and can
be obtained from the black hole solution by taking the limit
zh → ∞. The thermal-AdS again asymptotes to AdS at the
boundary, however importantly, depending on the nature of
AðzÞ, it can have a nontrivial structure in the bulk. In
particular, it does not have, unlike the usual AdS space in
three dimensions, a constant curvature. Interestingly, as we
will see later on, depending on the magnitude a and qe,
there can also be a Hawking/Page type thermal-AdS/black
hole phase transition between these two solutions.

III. HAIRY BLACK HOLES WITH f ðϕÞ= 1
COUPLING

In this section, we first examine the geometry and thermo-
dynamic properties of the charged hairy black hole solution
for fðϕÞ ¼ 1. For fðϕÞ ¼ 1 and AðzÞ ¼ − log ð1þ a2z2Þ,
the solution for scalar and gauge fields reduces to

ϕðzÞ ¼ 2 sinh−1ðazÞ;

BtðzÞ ¼
qe
2
log

1þ a2z2

z2
: ð3:1Þ

Notice that in the limit a → 0, the scalar field vanishes and
the gauge field reduces to the standard charged BTZ
expression. Similarly, we have the following solution
for gðzÞ,

gðzÞ¼ 1−
logð1þa2z2Þ
logð1þa2z2hÞ

þ
q2e logð1þa2z2Þ log

�ð1þa2z2hÞz4
ð1þa2z2Þz4h

�
8a2

þq2e

�
Li2ð−a2z2Þ

4a2
−
logð1þa2z2ÞLi2ð−a2z2hÞ

4a2 logð1þa2z2hÞ
�
;

ð3:2Þ

where Li2 is the polylogarithm function. We can check that
this expression again reduces to the standard charged BTZ
expression in the limit a → 0. We can similarly write down
the analytic expression of VðzÞ. Unfortunately, it is too

2For convenience, we are calling this solution as thermal-AdS
here even though it does not have a constant curvature.

ANALYTIC THREE-DIMENSIONAL PRIMARY HAIR CHARGED … PHYS. REV. D 108, 044017 (2023)

044017-7



lengthy, and at the same time not very illuminating; there-
fore, we omit to write down it here for brevity.
In Fig. 1, the radial profile of various fields for different

values of scalar hair parameter a is shown. The results here
are shown for a particular value of zh ¼ 3 and qe ¼ 0.2;
however, analogous results occur for their other values as
well. Notice that the blackening function gðzÞ undergoes a
sign change at zh, indicating the presence of a horizon. This
is true for all values of a. Similarly, the Kretschmann scalar
RMNPQRMNPQ is finite everywhere outside the horizon. The
same is true for the Ricci scalar. This indicates the non-
singular nature of the hairy spacetime. The curvature
singularity appears only at z ¼ 1=r ¼ ∞. Therefore, there
is no additional singularity in the hairy black hole case than
those already present at BTZ black hole. However, the
strength of the singularity increases with the scalar hair. In
particular, RMNPQRMNPQ ∝ z2 for the BTZ case, whereas
RMNPQRMNPQ ∝ z6 log z for the hairy case (the singularity
in the BTZ case comes from the Uð1Þ gauge field. If
qe ¼ 0, the BTZ spacetime is completely regular every-
where). Accordingly, the hairy spacetime is more curved
compared to its nonhairy counterpart.
Similarly, the scalar field is regular and finite everywhere

outside the horizon. The scalar field is real and goes to zero

only at the asymptotic boundary, suggesting the existence
of a well-behaved hairy black hole solution in three
dimensions. The thermodynamic local stability of these
charged hairy black hole solutions will be analyzed shortly
when we will discuss their free energy and specific heat.
Similarly, the potential is also finite and regular in the
outside horizon region. Additionally, as desired, it asymp-
totes to Vðz ¼ 0Þ ¼ −2 at the boundary. This is again true
for all a. Moreover, provided that qe is not too large, VðzÞ is
also bounded from above by its UV boundary value, i.e.,
Vð0Þ ≥ VðzÞ, thereby fulfilling the Gubser criterion to have
a well-defined boundary theory [133]. However, for larger
values of charge qe ≳ 2, the criterion can be violated.
We moreover examine the behavior of VðzÞ with respect

to ϕðzÞ. We find that the ϕ vs V profiles nearly coincide
with each other for different values of a and zh, confirming
the almost independence of V on these parameters. With
the exception of large values of qe, the ϕ vs VðzÞ profiles
for different values of qe also coincide. This is invariably a
byproduct of the above discussed violation of the Gubser
criterion. Essentially, the large qe values for which the
Gubser criterion is not respected also lead to unphysical ϕ
vs V behavior. In the rest of the paper, we will focus on only
those parameter values for which the Gubser criterion is
respected.

(a) (b)

(c) (d)

FIG. 1. The behavior of gðzÞ, RMNPQRMNPQ, ϕðzÞ, and VðzÞ for different values of hair parameter a. Here zh ¼ 3 and qe ¼ 0.2 are
used. Red, green, blue, brown, orange, and cyan curves correspond to a ¼ 0, 0.1, 0.2, 0.3, 0.4, and 0.5, respectively.
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We now move on to discuss the thermodynamics of the
hairy black hole. For this purpose, let us first explicitly
write down the expression of the black hole temperature.
For fðϕÞ ¼ 1, this is given by

T ¼ a2zh
2π log ð1þ a2z2hÞ

þ q2ezh
8π

�
log ð1þ a2z2hÞ

2
þ Li2ð−a2z2hÞ
log ð1þ a2z2hÞ

�
: ð3:3Þ

Note that in the limit a → 0, the above expression smoothly
reduces to the standard charged BTZ expression T ¼
ð4 − q2ez2hÞ=ð8πzhÞ. In Fig. 2, the variation of temperature
with respect to (inverse) horizon radius zh for different values
ofa is shown.Herewe have keptqe ¼ 0 fixed, corresponding
to the uncharged hairy black hole. Notice that for a ¼ 0 (red
line) there is only one black hole branch. The temperature of
this black hole branch decreases with zh and has a positive
specific heat. Accordingly, this black hole branch is thermo-
dynamically stable. The local thermodynamic stability of
these blackholeswill be discussed shortly. This is an expected
result since fora ¼ 0 andqe ¼ 0 ourhairy solution reduces to
the stable uncharged BTZ black hole.
However, the thermodynamic behavior of the three-dimen-

sional black hole becomes completely different when the
hairy parameter a is switched on. In particular, there are now
two black hole branches; one stable and one unstable. For the
stable black hole branch, the temperature decreases with zh
whereas for the unstable black hole branch, the temperature
increases with zh (blue line). The emergence of the second
unstable black hole branch can also be analytically observed
from Eq. (3.3). Notice that for qe ¼ 0, only the first term
contributes to the temperature and this term increases with zh
for large zh. These stable/unstable branches are indicated by①
and ②, respectively, in Fig. 2. Interestingly, unlike the BTZ
black hole, the hairy black hole branches exist only above a

certain temperature. In particular, there exists a minimum
temperature Tmin below which the hairy black hole ceases to
exist and the thermal-AdS phase remains the only possible
solution.This is true for all finitevalues ofa. Importantly, as is
usually the case, the appearance of multivaluedness of the
temperature also suggests a possible phase transition in the
hairy black holes.
This expectation indeed turns out to be true. In Fig. 3, the

free energy of the hairy black holes, normalised with
respect to thermal-AdS, is plotted. The color scheme used
here is similar to Fig. 2. We notice that, upon varying
temperature, the free energy changes its sign at some
critical temperature THP, indicating the well-known
Hawking/Page type phase transition between uncharged
hairy black hole (first branch) and thermal-AdS at THP. In
particular, above THP hairy black hole is thermodynami-
cally favored whereas below this temperature thermal-AdS
is thermodynamically favored. Also, the free energy of the
second black hole branch is always higher than the first
black hole branch, indicating that the former is always
thermodynamically disfavored with respect to the latter.
We have further analyzed the dependence of THP on a.

The complete dependence is shown in Fig. 4. It shows that
THP increases monotonically with a, a result that can also
be readily inferred from Fig. 3 for the chargeless case.
The thermodynamic structure of the hairy black hole

becomes even more interesting for finite charges. In
particular, depending upon the relative magnitude of qe
and a, not only the black hole can become extremal but also
there can exist one or two black hole branches. This is
shown in Fig. 5. The results here are shown for a particular
value of qe ¼ 0.05; however, similar results occur for its
other values as well. For qe ≠ 0 and small a, there exists
only one stable black hole branch which becomes extremal
at some horizon radius zexth (green line). This result is
completely analogous to the charged BTZ black hole. For
the charged BTZ black hole case, the extremal horizon
radius occurs at zexth ¼ 2=qe, whereas for the hairy black

20 40 60 80
zh

0.05

0.10

0.15

0.20

0.25

T

1 2

FIG. 2. Hawking temperature T as a function of horizon radius
zh for various values of a. Here qe ¼ 0 is used. Red, green, blue,
brown, orange, and cyan curves correspond to a ¼ 0, 0.1, 0.2,
0.3, 0.4, and 0.5, respectively.

FIG. 3. Free energy F as a function of Hawking temperature T
for various values of a. Here qe ¼ 0 is used. Red, green, blue,
brown, orange, and cyan curves correspond to a ¼ 0, 0.1, 0.2,
0.3, 0.4, and 0.5, respectively.
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hole case, the magnitude of this zexth increases with a. These
results further imply that, irrespective of the temperature, at
least one black hole branch always exists and remains
stable for the charged case when a is relatively small. We
can also mathematically recognize the reason for the
occurrence of the extremal black hole. Notice that only
the third term in Eq. (3.3) gives a negative contribution to
the temperature. If this negative contribution is strong
enough then it can make the black hole extremal. This is
exactly what happens when a is small.
However, for large a values, keeping qe fixed, the

temperature starts increasing with zh and the black hole
never become extremal (brown line), i.e., the negative third
term in Eq. (3.3) is now always less than the sum of other
two positive terms for relatively large values of a. Hence,
just like in the case of fqe ¼ 0; a > 0g, we again have two
black hole branches. These black hole branches similarly
exist only above Tmin. Accordingly, there appears a black
hole/thermal-AdS Hawking/Page phase transition at some

transition temperature THP. The free-energy behavior of the
charged case is shown in Fig. 6. Here again, the free energy
changes sign at THP, thereby clearly showing the thermal-
AdS/black hole phase transition at this temperature. This
interesting result should be contrasted with the charged
BTZ case, where no such phase transition appears.
Moreover, this transition temperature is now a qe and a
dependent quantity. In particular, the transition temperature
increases with a whereas it decreases with qe. The overall
dependence of THP on these parameters is shown in Fig. 4.
Note that although THP increases with a for all qe,
however, unlike the qe ¼ 0 case, the slope of a vs THP
line is not constant for qe ≠ 0.
Our whole analysis above suggests that, for a fixed

charge qe, there exists a critical value for the hairy
parameter a ¼ ac above which the charged hairy black
hole exhibits the Hawking/Page phase transition whereas
below ac no such phase transition occurs. We further
investigate how this ac varies with qe. The result is
presented in Fig. 7. We find that the critical magnitude
of the hairy parameter increases linearly with qe, sug-
gesting more and more backreaction of the scalar hair is
required for the larger charge black hole to undergo a phase
transition. In fact, we can also obtain a relation between ac
and qe by fitting the data of Fig. 7. Doing this, we
get ac ¼ 0.6413qe.
We again like to emphasize that the presence of

Hawking/Page phase transition in the hairy case should
be contrasted from the nonhairy charged BTZ case whereas
no such phase transition occurs.3

It is also important to discuss the local stability of these
hairy black holes. The local stability is determined by the
response of the equilibrium system under a small

0.2 0.4 0.6 0.8 1.0
a

0.1

0.2

0.3

0.4

THP

FIG. 4. Hawking/Page phase-transition temperature THP as a
function of a for various values of qe. Red, green, blue, brown,
orange, and cyan curves correspond to qe ¼ 0, 0.2, 0.4, 0.6, 0.8,
and 1.0, respectively.

20 40 60 80 100 120
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0.03
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FIG. 5. Hawking temperature T as a function of horizon radius
zh for various values of a. Here qe ¼ 0.05 is used. Red, green,
blue, brown, orange, and cyan curves correspond to a ¼ 0, 0.02,
0.04, 0.06, 0.08, and 1.0, respectively.

FIG. 6. Free energy F as a function of Hawking temperature T
for various values of a. Here qe ¼ 0.05 is used. Red, green, blue,
brown, orange, and cyan curves correspond to a ¼ 0, 0.02, 0.04,
0.06, 0.08, and 0.10, respectively.

3The Hawking/Page phase transition has also been found in a
particular three-dimensional hairy gravity model in [114]. How-
ever, this phase transition appears only in the presence of angular
momentum and for the nonrotating hairy case, like the one
considered here, no such phase transition was observed.
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fluctuation in thermodynamical variables. In the canonical
ensemble, it is quantified by the positivity of the specific
heat at constant charge Cqe ¼ Tð∂SBH=∂TÞ. From the zh
dependence of temperature in Figs. 2 and 5 and from the
fact that SBH ∝ z−1h , it is straightforward to observe that the
slope of the SBH-T plane in the thermodynamically favored

hairy black hole branch ① is always positive. This in turn
implies that Cqe > 0 in this branch, indicating the local
stability of hairy black holes. Similarly, Cqe < 0 in the
thermodynamically disfavored hairy black hole branch ②.

IV. HAIRY BLACK HOLES WITH
f ðϕÞ= e−ϕ COUPLING

In this section, we move on to examine the geometrical
and thermodynamical properties of the charged hairy black
hole solution for the exponential coupling fðϕÞ ¼ e−ϕ. For
fðϕÞ ¼ e−ϕ and AðzÞ ¼ − log ð1þ a2z2Þ, the solution for
the scalar field will remain the same as in Eq. (3.1). This
implies that the scalar field continues to be regular, finite,
and well-behaved everywhere in the exterior horizon region
for this exponential coupling function as well. The solution
of the gauge field now reduces to

BtðzÞ ¼
qe
2
ðlog ða2z4 þ z2Þ þ 4 sinh−1ðazÞÞ: ð4:1Þ

Similarly, we get the following solution for gðzÞ

gðzÞ¼1þπ2q2e
12a2

þq2e logð1þa2z2Þlogða2z6þz4Þ
8a2

−
ð12a2þπ2q2eÞlogð1þa2z2Þ

12a2 logð1þa2z2hÞ

þq2e logð1þa2z2Þsinh−1 ðazhÞðsinh−1 ðazhÞ−2 logðe2sinh−1 ðazhÞ þ1ÞÞ
a2 logð1þa2z2hÞ

−
q2e logð1þa2z2Þlogða2z6hþz4hÞ

8a2
−
q2e sinh−1ðazÞðsinh−1ðazÞ−2logðe2sinh−1ðazÞ þ1ÞÞ

a2

−
q2e logð1þa2z2ÞLi2ð−a2z2hÞ

4a2 logð1þa2z2hÞ
−
q2e logð1þa2z2ÞLi2ð−e2sinh−1 ðazhÞÞ

a2 logð1þa2z2hÞ
þq2eLi2ð−a2z2Þ

4a2
þq2eLi2ð−e2sinh−1ðazÞÞ

a2
: ð4:2Þ

These complicated-looking expressions of BtðzÞ and gðzÞ
again reduce to the standard charged BTZ black hole
expressions in the limit a → 0, hence once again high-
lighting the consistency of the obtained solution. In Fig. 8,
the behavior of gðzÞ and the Kretschmann scalar is shown.
We see that spacetime exhibits a horizon at zh and is devoid
of any additional singularity, thereby illustrating the
smooth and well-behaved nature of the constructed hairy
solution. The Kretschmann scalar again increases with a,

showing that the spacetime becomes more curved as the
backreaction of the hair increases. The same is true for the
Ricci scalar. Similarly, the potential asymptotes to a
constant value VðzÞjz→0 ¼ 2Λ at the AdS boundary and
is bounded from above.
Let us now discuss the thermodynamics of the hairy

black hole. For fðϕÞ ¼ e−ϕ, the temperature of the black
hole is given by

T ¼ a2zh
2π log ð1þ a2z2hÞ

−
q2e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2z2h

p
ðe2 sinh−1 ðazhÞ − 1Þ sinh−1 ðazhÞ

2πaðe2 sinh−1 ðazhÞ þ 1Þ

þ q2ezh
8π

�
Li2ð−a2z2hÞ þ 4Li2ð−e2 sinh−1 ðazhÞÞ

log ða2z2h þ 1Þ þ π2

3 log ða2z2h þ 1Þ −
log ða2z2h þ 1Þ

2

�

−
q2ezh
2π

�
sinh−1ðazhÞ2
log ða2z2h þ 1Þ −

2 sinh−1 ðazhÞ log ðe2 sinh−1 ðazhÞ þ 1Þ
log ða2z2h þ 1Þ

�
; ð4:3Þ

FIG. 7. The variation of ac as a function of qe.
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The above expression again reduces to the standard
charged BTZ expression in the limit a → 0. Notice that
for qe ¼ 0, the Einstein-Maxwell-scalar gravity action
becomes identical for both fðϕÞ ¼ 1 and fðϕÞ ¼ e−ϕ

couplings. This in turn implies that their thermodynamic
structure also become identical. Accordingly, for the
exponential coupling fðϕÞ ¼ e−ϕ as well, there would
again be a thermodynamically stable hairy black hole
phase, with the possibility of phase transition to thermal-
AdS as the temperature is lowered. In particular, the
Hawking/page phase transition continues to exist, with a
large stable hairy black hole phase dominating the phase
structure at higher temperatures, whereas the thermal-AdS
phase dominates the structure at lower temperatures. For
qe ¼ 0, the phase diagram is essentially exactly similar to
Fig. 4 (red line).
The thermodynamic structure of the hairy black hole

with fðϕÞ ¼ e−ϕ coupling deviates from fðϕÞ ¼ 1 cou-
pling and becomes more interesting for finite charges. The

results are shown in Figs. 9 and 10. For a small but finite
charge 0 < qe < qce, on top of a large stable black hole
phase (marked by ①) and an unstable black hole phase
(marked by ②), a new stable small black hole phase
(marked by ③) now emerges with scalar hair at low
temperatures. The temperature now has local minima
and maxima and goes to zero at a finite radius zexth .
The small and large hairy black hole phases, for which the
slope in the ðzh-TÞ plane is negative, have positive specific
heat Cq and therefore are stable, whereas the intermediate
phase, for which the slope is positive, has negative
specific heat and hence is unstable. Therefore, at least
one stable black hole branch always exists at all temper-
atures. These results should be contrasted from the
fðϕÞ ¼ 1 case, where there were no such maxima in
temperature and the stable small hairy black hole phase
did not exist. Moreover, the magnitude of this zexth also
depends nontrivially on a.
The multivaluedness of zh − T profile further suggests

the possibility of phase transition between different black

(a) (b)

FIG. 8. The behavior of gðzÞ and RMNPQRMNPQ for different values of hair parameter a. Here zh ¼ 3 and qe ¼ 0.2 are used. Red,
green, blue, brown, orange, and cyan curves correspond to a ¼ 0, 0.1, 0.2, 0.3, 0.4, and 0.5, respectively.

FIG. 9. Hawking temperature T as a function of horizon radius
zh for various values of qe. Here a ¼ 0.3 is used. Red, green,
blue, brown, orange, and cyan curves correspond to qe ¼ 0.058,
0.06, 0.062, 0.064, 0.066, and 0.68, respectively.

FIG. 10. Free energy F as a function of Hawking temperature T
for various values of qe. Here a ¼ 0.3 is used. Red, green, blue,
brown, orange, and cyan curves correspond to qe ¼ 0.058, 0.06,
0.062, 0.064, 0.066, and 0.068, respectively.
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hole phases as the temperature is varied. The free energy
behavior, shown in Fig. 10, confirms this expectation.4 In
particular, there appears a phase transition between the
large black hole phase ① and the small black hole phase ③
as the temperature is varied. The free energy exhibits the
standard swallowtail-like structure—a characteristic fea-
ture of the first-order phase transition—which exchanges
dominance as the temperature is varied. In particular, the
large black hole has a lower free energy at higher
temperatures whereas the small black hole has lower free
energy at lower temperatures. This indicates a phase
transition from large to small hairy black holes (and vice
versa) as the temperature is varied. Notice that the free
energy of the unstable second phase ② is always higher
than the stable first and third phases. Accordingly, it is
always thermodynamically disfavored. The kink, where
the free energy of large and small black holes becomes
equal, defines a transition temperature TS=L. We have
further analyzed how this transition temperature depends
on various black hole parameters. Our results are pre-
sented in Figs. 11 and 12, showing a nontrivial depend-
ence of TS=L on qe and a.
As the charge qe increases, the base of the swallowtail in

free-energy behavior starts decreasing and vanishes com-
pletely at a certain critical value of charge qce. At qce, the
phase transition between large and small hairy black hole
phases ceases to exist, and these two black hole phases
combine together to form a single hairy black hole phase
which remains stable at all temperatures. The critical charge
qce, therefore, describes a second-order critical point on
which the first-order small/large black hole phase-transition
line terminates. The complete dependence of TS=L on qe
and a is shown in Figs. 11 and 12. Overall, the above
thermodynamic behavior in the fixed charge ensemble

resembles the famous van der Waals type phase transition,
however now, in hairy black holes.
Similarly, the hairy black hole phase structure changes

considerably by varying a in the case of exponential
coupling. For lower values of a, there is only one black
hole phase. This is completely analogous to the charged
BTZ case, albeit with a different extremal radius. However,
for higher values of a, keeping qe fixed, now three black
hole phases appear. This is shown in Figs. 13 and 14. The
stable first and third phases are always thermodynamically
favored over the unstable second phase, and there is
again a phase transition between the first and third phases
at TS=L. Therefore, the small/large black hole phase
transition appears for higher values of a whereas it ceases
to exist at smaller values of a. This behavior is different
from the varying charge scenario discussed above, where
higher values of charge instead lead to the dissolution of
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FIG. 11. The transition temperature TS=L as a function of qe for
different values of a. Red, green, blue, brown, and orange curves
correspond to a ¼ 0.1, 0.2, 0.3, 0.4, and 0.5, respectively. Black
dots indicate the second-order critical points qce.
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FIG. 12. The transition temperature TS=L as a function of a for
different values of qe. Red, green, blue, brown, and orange curves
correspond to qe ¼ 0.05, 0.10, 0.15, 0.20, and 0.25, respectively.
Black dots indicate the second-order critical points ac.

FIG. 13. Hawking temperature T as a function of horizon radius
zh for various values of a. Here qe ¼ 0.05 is used. Red, green,
blue, brown, orange, and cyan curves correspond to a ¼ 0.18,
0.20, 0.22, 0.24, 0.26, and 0.28, respectively.

4Here the free energy is normalized with respect to the
extremal case.

ANALYTIC THREE-DIMENSIONAL PRIMARY HAIR CHARGED … PHYS. REV. D 108, 044017 (2023)

044017-13



small/large phase transition. These results further suggest
that, like qce, there also exists a critical value of the hair
parameter (ac) at which the first-order small/large black
hole phase-transition line stops. As usual, the magnitude of
qce and ac can be obtained by analyzing the inflection point
of temperature, i.e.,

∂T
∂zh

¼ 0 ¼ ∂T2

∂z2h
; ð4:4Þ

with zh ¼ zch and qe ¼ qce or a ¼ ac. The complete phase
diagram showing the dependence of Tc

S=L (the hawking
temperature at the second-order critical point) on qe and a,
as well as the critical points qce and ac are shown in Figs. 15
and 16.

At this point, it is important to emphasize that the usual
charged BTZ black hole does not exhibit the small/large
black hole phase transition. Here we find that, depending
upon the relative magnitude of charge and hair parameter,
the small/large black hole phase transition can take place in
the canonical ensemble in the presence of scalar hair. To the
best of our knowledge, such van der Waals type phase
transition has not been observed in three dimensions in the
literature before. As we show in the next section such small/
large black hole phase transition persists for other expo-
nential couplings as well, making such transitions a robust
phenomenon in our gravity model.

V. HAIRY BLACK HOLES WITH
f ðϕÞ= e−ϕ2=2 COUPLING

Next, we examine the charged hairy black hole proper-
ties for another exponential coupling fðϕÞ ¼ e−ϕ

2=2. Such a
coupling has been used to construct interesting scalarized
black holes in four dimensions [48], and therefore, it is also
instructive to investigate this coupling in three dimensions.
With fðϕÞ ¼ e−ϕ

2=2, most of our results for the hairy
solution remain the same as in the previous case of
fðϕÞ ¼ e−ϕ. We will, therefore, be brief here. The solution
of the gauge field reduces to

BtðzÞ ¼ q

�
4azð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2z2

p
þ azÞ − 1

2
log

�
1þ a2z2

z2

��
:

ð5:1Þ

Similarly, the solution for gðzÞ is

FIG. 14. Free energy F as a function of Hawking temperature T
for various values of a. Here qe ¼ 0.05 is used. Red, green, blue,
brown, orange, and cyan curves correspond to a ¼ 0.18, 0.20,
0.22, 0.24, 0.26, and 0.28, respectively.

FIG. 15. The Hawking temperature Tc
S=L and charge qce at the

second-order critical point as a function of a.

FIG. 16. The Hawking temperature Tc
S=L and hair parameter ac

at the second-order critical point as a function of qe.
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gðzÞ ¼ 1 −
log ð1þ a2z2Þ
log ð1þ a2z2hÞ

þ q2e

�
2z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2z2

p

a
−
2 sinh−1ðazÞ

a2
þ 2z2

�

þ q2e log ð1þ a2z2Þ
8a2

�
log

�
z4

ð1þ a2z2Þz4h

�
−

16a2z2h
log ð1þ a2z2hÞ

�

−
q2e log ð1þ a2z2Þð16azh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2z2h

p
− log2 ð1þ a2z2hÞ − 16 sinh−1 ðazhÞÞ

8a2 log ð1þ a2z2hÞ

þ q2eLi2ð−a2z2Þ
4a2

−
q2e log ð1þ a2z2ÞLi2ð−a2z2hÞ

4a2 log ð1þ a2z2hÞ
: ð5:2Þ

The profile of gðzÞ and Kretschmann scalar is shown in Fig. 17. The spacetime is again regular and well-behaved
everywhere outside the horizon, with curvature singularity appearing only inside the horizon. The potential asymptotes to a
constant value VðzÞjz→0 ¼ 2Λ at the AdS boundary and is bounded from above. The scalar field is similarly finite and
regular, establishing the well-behaved geometric nature of the hairy black hole.
Now, the temperature of the black hole is

T ¼ q2ezh
8π

�ðlog ða2z2h þ 1Þ − 16ðazhð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2z2h þ 1

p þ azhÞ þ 1ÞÞ
2

þ Li2ð−a2z2hÞ
log ða2z2h þ 1Þ

�

þ 8azhð2q2zh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2z2h þ 1

p
þ 2aq2ez2h þ aÞ − 16q2zh sinh−1 ðazhÞ

16π log ða2z2h þ 1Þ : ð5:3Þ

The thermodynamic structure of the hairy black hole is
shown in Figs. 18 and 19. The thermodynamic phase diagram
for fðϕÞ ¼ e−ϕ

2=2 coupling is quite identical to the case of
fðϕÞ ¼ e−ϕ coupling. For finite qe and a, there are again
thermodynamically stable hairy black hole phases. Here as
well, the hairy charged black hole undergoes a small/large
black hole phase transition and there occurs a critical charge
qce at which the small/large hairy black hole phase-transition
line terminates and the nucleation of two stable hairy branches
takes place. Similarly, there exists a critical hair strength
ac below which the small/large hairy black hole phase
transition stops. Therefore, there are again two second-order
critical points fqce; acg. The dependence of small/large

phase-transition temperature on qe and a is shown in
Figs. 20 and 21. These figures also show how the critical
points fqce; acg vary as a function of qe and a. These results
are again quite similar to the case of fðϕÞ ¼ e−ϕ (see Figs. 11
and 12). However, there are a few differences as well. In
particular, compared to fðϕÞ ¼ e−ϕ coupling, for a fixed
value of a, the magnitude of critical point qce is lower whereas
the critical temperatureTc

S=L is slightly higher. Similarly, for a
fixed qe, the magnitude of critical point ac as well the critical
temperature are higher for fðϕÞ ¼ e−ϕ

2=2 coupling.
Moreover, the magnitude of the extremal horizon radius also
decreases substantially forfðϕÞ ¼ e−ϕ

2=2 couplingcompared
to fðϕÞ ¼ e−ϕ coupling.

(a) (b)

FIG. 17. The behavior of gðzÞ and RMNPQRMNPQ for different values of hair parameter a. Here zh ¼ 3 and qe ¼ 0.2 are used. Red,
green, blue, brown, orange, and cyan curves correspond to a ¼ 0, 0.1, 0.2, 0.3, 0.4, and 0.5, respectively.
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VI. CONSERVED MASS AND PRIMARY HAIR

In order to show that the constructed hairy black holes
are of primary nature, we need to compute the conserved
charges and show that they depend only on the respective
independent integration constants. We have already estab-
lished in Eq. (2.28) that the black hole electric charge Qe
depends only on the integration constants qe. To show that
the conserved mass of the hairy black hole also depends on
the integration constant, we need to explicitly compute the
black hole mass. To illustrate this, we focus on qe ¼ 0 case
and rely on the holographic renormalization procedure to
compute the conserved mass [140]. In this procedure, the
conserved thermodynamic quantities are calculated from
the regularized action using boundary counterterms. For
our Einstein-scalar system in Eq. (2.1), the same can be
computed by subtracting the boundary terms from the bulk
on shell action

Sren ¼ Son−shellES þ 1

8πG3

Z
∂M

d2x
ffiffiffiffiffiffi
−γ

p
Θ

−
1

16πG3

Z
∂M

d2x2
ffiffiffiffiffiffi
−γ

p þ SbðϕÞ; ð6:1Þ

where the first term is the on shell action, the second term is
the usual Gibbons-Hawking surface term, the third term is
the Balasubramanian-Kraus counterterms, and the fourth
term is the scalar counterterm. The scalar counterterm is
added to make sure that the scalar field has a well-defined
equation of motion. In particular, the variation of the scalar
kinetic term contains the boundary term

δϕSES ¼ −
1

16πG3

Z
∂M

d2x
ffiffiffiffiffiffi
−γ

p
nr∂rϕδϕ; ð6:2Þ

and to satisfy the scalar equation of motion, we add a
boundary term

FIG. 18. Hawking temperature T as a function of horizon radius
zh for various values of a. Here qe ¼ 0.01 is used. Red, green,
blue, brown, orange, and cyan curves correspond to a ¼ 0.3, 0.4,
0.5, 0.6, 0.7, and 0.8, respectively.

FIG. 19. Free energy F as a function of Hawking temperature T
for various values of a. Here qe ¼ 0.01 is used. Red, green, blue,
brown, orange, and cyan curves correspond to a ¼ 0.3, 0.4, 0.5,
0.6, 0.7, and 0.8, respectively.

FIG. 20. The transition temperature TS=L as a function of qe for
different values of a. Red, green, blue, and brown curves
correspond to a ¼ 0.1, 0.2, 0.3, and 0.4, respectively. Black
dots indicate the second-order critical points qce.

FIG. 21. The transition temperature TS=L as a function of a for
different values of qe. Red, green, blue, brown, and orange curves
correspond to qe ¼ 0.005, 0.01, 0.015, and 0.02, respectively.
Black dots indicate the second-order critical points ac.
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SbðϕÞ ¼
1

16πG3

Z
∂M

d2x
ffiffiffiffiffiffi
−γ

p �
ϕnr∂rϕþ 1

2
ϕ2

�
; ð6:3Þ

to have a well-defined variational problem. γ is the induced
metric on the boundary ∂M and Θ is the trace of the
extrinsic curvature Θμν. From Sren, and using the Arnowitt-
Deser-Misner decomposition, we can compute the corre-
sponding stress energy tensor

Tμν ¼ 1

8πG3

�
Θγμν − Θμν þ 2ffiffiffiffiffiffi−γp δLct

δγμν

�
; ð6:4Þ

where Lct is the Lagrangian of the counterterms only.
Explicitly, in our case, we have

Tμν ¼
1

8πG3

�
Θγμν − Θμν − γμν þ γμν

�
ϕ

2
nr∂rϕþ 1

4
ϕ2

��
:

ð6:5Þ

The mass of the hairy black hole is then related to the tt
component of Tμν. In particular, if Kμ is a Killing vector
generating an isometry of the boundary space, then the
associated conserved charge is

M ¼
Z
Σ
dx

ffiffiffi
σ

p
uμTμνKν; ð6:6Þ

where Σ is a spacelike surface in ∂M, with induced
metric σ, and uμ ¼ −

ffiffiffiffiffiffiffiffiffi
gðzÞp

δtμ is the timelike unit normal
to Σ.
To explicitly evaluate the mass and show that it is

proportional to the integration constant, let us first write
down the metric coefficient gðzÞ in the following form

gðzÞ ¼ 1þ C
log ð1þ a2z2Þ

2a2
; ð6:7Þ

where C is the integration constant coming from solving
Eq. (2.10). By requiring gðzhÞ ¼ 0, we have its explicit
form

C ¼ −
2a2

log ð1þ a2z2hÞ
: ð6:8Þ

Let us also note the near the boundary expansion of gðzÞ

gðzÞ ¼ 1þ Cz2

2
þOðz4Þ; ð6:9Þ

Substituting Eq. (6.7) into Eq. (6.6) and simplifying, we
have the hairy black hole mass expression

M ¼ −
CΩ1

32πG3

; ð6:10Þ

where Ω1 ¼ 2π is the unit volume of the boundary space
constant hypersurface. Notice that the mass is proportional
to the constant C, suggesting that the black hole hair is of
the primary nature. Moreover, this expression also matches
with the z2 coefficient of gðzÞ. In particular,

M ¼ −
Ω1

16πG3

× ½z2 coefficient of gðzÞ�: ð6:11Þ

Now, Substituting the expression of C into M, we have

M ¼ Ω1

16πG3

a2

log ð1þ a2z2hÞ
; ð6:12Þ

which smoothly reduces to the BTZ black hole mass
expression M ¼ Ω1=ð16πz2hÞ in the limit a → 0.
From the renormalized action, we can further calculate

the free energy F ¼ −Sren=β

F ¼ Ω1C
32πG3

¼ −
Ω1

16πG3

a2

log ð1þ a2z2hÞ
; ð6:13Þ

which also reduces to the BTZ free energy expression in the
limit a → 0. Importantly, this expression of free energy
agrees with the expected thermodynamic relation
F ¼ M − TSBH. This is a consistency check for the
thermodynamic results found here for the three-dimen-
sional hairy black holes. Moreover, we calculated the
pressure,5 and find that the hairy gravity system further
satisfies the standard relation,

F ¼ −P: ð6:14Þ

However, unfortunately, free energy does not satisfy the
differential form of the first law F ¼ −SBHdT. This
undesirable result might be correlated to the fact that with
hair this form needs to be expanded by additional terms.
Indeed, many works in recent years have suggested that the
differential form of the first law needs to be modified in the
presence of a scalar field [141,142]. It is of course great
importance to clearly establish the first law in our hairy
model; however, since our main aim in this work is on
the construction and thermodynamic stability of three-
dimensional hairy black holes (and on the corresponding
nontrivial phase transitions), we therefore postpone this
interesting problem for future work.

VII. CONCLUSIONS

In this paper, we have analytically constructed new
families of three-dimensional primary hair charged black
hole solutions in the Einstein-Maxwell-scalar gravity
theory. The obtained gravity solution is expressed in terms

5The pressure can be computed from the φφ component of Tμν.
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of two functions fðϕÞ and AðzÞ. We analyzed the
gravity solution for three prominent and interesting
forms of the coupling function fðϕÞ ¼ 1, fðϕÞ ¼ e−ϕ=2,
and fðϕÞ ¼ e−ϕ

2=2; and two different forms of AðzÞ ¼
− log ð1þ a2z2Þ and AðzÞ ¼ −a2z2. The parameter a con-
trols the strength of the primary scalar hair and in the limit
a → 0 all the hairy solution reduces to the standard non-
hairy BTZ black hole solution. In each of these solutions:
(i) the scalar field is regular everywhere outside the horizon
and goes to zero at the asymptotic boundary; (ii) the
Kretschmann and Ricci scalars are also finite everywhere
outside the horizon, indicating the smooth nature of the
constructed hairy black holes; and (ii) the scalar potential is
bounded from above from its UV boundary value and
reduces to the negative cosmological constant at the
asymptotic boundary.
We then investigated the thermodynamic properties of

the constructed hairy black hole solutions and found many
interesting results. In particular, for fðϕÞ ¼ 1, there exists a
critical value of the hairy parameter ac above which the
charged hairy black hole exhibits the Hawking/Page phase
transition whereas below ac no such phase transition
occurs. The corresponding transition temperature is also
found to be increasing (decreasing) monotonically with a
(qe). We further found that the specific heat is always
positive in the thermodynamically favored black hole
phase, thereby establishing the local stability of the hairy
black holes. The thermodynamic structure of the hairy
black hole becomes even more interesting for fðϕÞ ¼ e−ϕ

and fðϕÞ ¼ e−ϕ
2=2 couplings. For a fixed qe, now van der

Waals type small/large black hole phase transition appears
for higher values of a whereas it ceases to exist at
smaller values of a. Interestingly, there are now two
second-order critical points fqce; acg at which the first-
order small/large black hole phase-transition line stops. The
small/large phase-transition temperature is also found to be
decreasing with qe. This behavior is completely analogous
to the thermodynamic behavior of the charged RN-AdS
black holes in the canonical ensemble in four and
higher dimensions. This is interesting considering that
although BTZ black hole shares several features with
their higher-dimensional counterpart, however, their
thermodynamic structure is vastly different. Similarly, by
varying a, the thermodynamic structure becomes different
from the varying charge scenario. In particular, now not
only did the smaller values of a lead to the dissolution
of the small/large black hole phase transition but also
the small/large phase-transition temperature increases
with a.
There are many directions to extend our work. It would

be interesting to extend this work by finding its axisym-
metric counterpart. We expect that, like in the BTZ black
hole, the angular momentum might greatly modify the
thermodynamic structure of the charged hairy black hole. It
is also interesting to analyze the dynamical stability of the

charged hairy black holes against various perturbations.
Our initial investigations in this direction suggest that
these hairy black holes are also dynamically stable under
scalar field perturbations. Similarly, it would also be
interesting to extend our discussion with nonlinear electro-
dynamic terms, as they are also known to greatly modify
the thermodynamic structure, and see whether the results
obtained here are general. Work in these directions is in
progress.
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APPENDIX: BLACK HOLE THERMODYNAMICS
WITH AðzÞ= − a2z2

In order to check the robustness of the results presented
above for the hairy black holes, it is instructive as well as
desirable to investigate the hairy black hole solution and
thermodynamics for a different form of AðzÞ as well. Here,
we consider another simple form AðzÞ ¼ −a2z2. This
simple form has been used to construct hairy black holes
in higher dimensions [66], as well as used in AdS/QCD
model building in five dimensions to reproduce real
QCD-like properties from holography [121,125]. It is
therefore interesting to analyze this form of AðzÞ in three
dimensions as well. This form also makes sure that
constructed geometry asymptotes to AdS at the boundary.
For simplicity, here we mainly concentrate on qe ¼ 0 case.
Analogous results for finite qe can be straightforwardly
obtained.
With AðzÞ ¼ −a2z2, most of our results for the hairy

solution remain the same as in the previous case. We will,
therefore, be very brief here. The solution for ϕðzÞ and gðzÞ
reduce to

ϕðzÞ ¼ 2az;

gðzÞ ¼ 1 − ea
2ðz2h−z2Þ

1 − ea
2z2h

: ðA1Þ

These are again well-behaved functions. The scalar field is
finite at and outside the horizon and vanishes only
at the asymptotic boundary z → 0. Similarly, the
Kretschmann and Ricci scalars are finite everywhere out-
side the horizon. It suggests the existence of a well-behaved
hairy black hole solution in three dimensions for
AðzÞ ¼ −a2z2 as well.
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We can similarly obtain the black hole temperature. It is
now given by

T ¼ a2zhea
2z2h

2πðea2z2h − 1Þ : ðA2Þ

This again has a smooth a → 0 limit, reducing to the BTZ
black hole expression. The temperature profiles for various
values of a are shown in Fig. 22. We see that, just like for
AðzÞ ¼ − log ð1þ a2z2Þ, we again have two black hole
branches for finite a. The first branch, for which the
temperature decreases with zh has a positive specific heat,
is stable whereas the second branch, for which temperature
increases with zh has a negative specific heat, is unstable.
The existence of a second unstable branch can be
easily seen from Eq. (A2). In particular, for large zh,
T ∝ zh. It also implies that there would be a minimum
temperature below which no black hole branch will exist.
This again suggests the possibility of Hawking/Page type
phase transition between the stable black hole branch and
thermal-AdS. The free-energy behavior, shown in Fig. 23,
confirms this fact. We can similarly compute the transition
temperature. The results are shown in Fig. 24. We find that,

just like in the case of AðzÞ ¼ − log ð1þ a2z2Þ, THP
varies linearly with a. Accordingly, the possibility for
Hawking/Page phase transition again gets widened
as the hair strength increases. Our overall analysis therefore
again suggests the existence of thermodynamically
stable hairy black hole solutions, however now, with
AðzÞ ¼ −a2z2.
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