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Generalized quasitopological gravities (GQTGs) are higher-order extensions of Einstein gravity in D
dimensions satisfying a number of interesting properties, such as possessing second-order linearized
equations of motion on top of maximally symmetric backgrounds, admitting nonhairy generalizations of
the Schwarzschild-Tangherlini black hole which are characterized by a single metric function or forming a
perturbative spanning set of the space of effective theories of gravity. In this work, we classify all
inequivalent GQTGs at all curvature orders n and spacetime dimension D > 4. This is achieved after the
explicit construction of a dictionary that allows the uplift of expressions evaluated on a single-function
static and spherically symmetric ansatz into fully covariant ones. On the one hand, applying such
prescription for D > 5, we find the explicit covariant form of the unique inequivalent quasitopological
gravity that exists at each n and, for the first time, the covariant expressions of the n — 2 inequivalent
proper GQTGs existing at every curvature order n. On the other hand, for D = 4, we are able to provide
the first rigorous proof of the fact that there is one, and only one, (proper) inequivalent GQTG at each
curvature order n, deriving along the way a simple expression for such four-dimensional representative at

every order n.
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I. INTRODUCTION

Higher-order gravities—or equivalently, higher-curvature
gravities or higher-derivative gravities—are extensions of
general relativity in which the Einstein-Hilbert action is
supplemented by terms of higher-order in the curvature of
spacetime. They are natural modifications of Einstein
gravity with which to capture and parametrize the effects
of an underlying UV-complete theory (quantum gravity). As
a matter of fact, they arise as stringy corrections in the low-
energy effective actions of the different versions of string
theory [1-6]. Also, they appear naturally from an effective
field theory (EFT) perspective, in which one considers all
possible terms which are compatible with the symmetries of
the theory [7]. When dealing with purely gravitational
actions, such an EFT approach corresponds precisely to
the introduction of higher-curvature terms, which preserve,
of course, diffeomorphism invariance.

Thus, in recent years, higher-order gravities have
acquired a genuine interest in the literature, becoming a
topic of research in their own right. The reasons for this
ever-growing attention have been manifold. Firstly, the
introduction of higher-derivative terms generically gives
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rise to renormalizable actions [8,9], so that it is interesting
to examine how higher-derivative terms correct Einstein-
gravity solutions in situations of sufficiently large curva-
ture, such as black holes or the early Universe [10-18].
Secondly, higher-order gravities have turned out to be
extremely useful in the holographic context, via the
AdS/CFT correspondence [19-21]. Apart from capturing
finite N and finite-coupling effects within the canonical
correspondence between IIB string theory and N =4
Super-Yang-Mills theory [22-24], they allow one to
explore conformal field theories (CFTs) whose correlators
adopt the most generic form permitted by conformal
symmetry [25-32] or to discover universal features of
generic CFTs [24,33-50]. Additionally, given the increas-
ing accuracy of current gravitational wave observations
from neutron star and black hole binary mergers [51-53]
and the potential measurements that could be carried out
from the imaging of black hole shadows [54,55], higher-
order gravities may be extremely helpful in the search and
study of deviations from Einstein gravity in astrophysical
observables [56-61].

Well-known examples of higher-curvature gravities that
have been exhaustively studied in the literature are
Lovelock gravities [62,63] and f(R) gravities [64-67].
On one hand, Lovelock theories correspond to the most
general diffeomorphism-invariant theories which possess
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gravitational equations of motion of second-derivative
order. Nevertheless, they reduce to Einstein gravity in four
dimensions, up to topological terms. On the other hand,
f(R) gravities are defined as those theories whose
Lagrangian is an arbitrary function of the Ricci scalar. In
this case, they turn out to be classically equivalent to Brans-
Dicke theories [68,69] and, furthermore, every asymptoti-
cally flat vacuum solution of GR is also a solution of f(R)
gravities,' so they do not actually introduce new purely
gravitational phenomena. Therefore, it is necessary to
consider more general higher-curvature theories in order
to correct purely gravitational four-dimensional GR sol-
utions. However, if one deals with a generic higher-order
gravity, the corresponding equations of motion will be of
fourth order in derivatives” and its resolution becomes an
extremely daunting (if not impossible) task.

Such discouraging landscape could be partly blurred
away if it was possible to find higher-derivative gravities
with second-order equations of motion, at least, in highly
symmetric configurations, such as static and spherically
symmetric (SSS) ones. Indeed, they correspond to realistic
situations but still possess enough symmetry so as to
simplify the subsequent computations. This eclectic pos-
ture has turned out to be extraordinarily successful. First,
the class of quasitopological gravities (QTGs) was iden-
tified [15,70]. They are characterized by admitting SSS
solutions which are fully specified by a single function—
like the Schwarzschild-Tangherlini GR solution—whose
equation of motion is algebraic. Apart from Einstein
gravity and Lovelock theories, further explicit examples
of QTGs have been constructed to cubic order in the
curvature [15,70], quartic [71], quintic [72], and to
arbitrary order [73]. However, no QTG exists in four
dimensions. This problem can be circumvented if one only
demands the existence of SSS solutions characterized by a
single function whose equation is at most of second order
in derivatives. This defines the class of generalized
quasitopological gravities (GQTGs) [18,74-76], which
encompasses all QTGs. Interestingly enough, there are
nontrivial instances of these theories in four dimensions,
such as the celebrated Einsteinian cubic gravity [74]. Also,
it has been possible to construct examples of proper
GQTGs (i.e., not belonging to the QTG class) in every
dimension D >5 and to all orders in curvature [73].
Additionally, GQTGs possess linearized equations of
motion around maximally symmetric backgrounds
[17,18,74-77], allow the exact computation of black hole
thermodynamics [15,18,70,72,75,78] and form a basis for
the whole space of higher-curvature gravities if field
redefinitions of the metric are considered [79].

'"Whenever it is assumed that f(R) admits a polynomial
expansion around R = 0 and satisfies that f(0) = 0.

’If covariant derivatives of the curvature appear, such order is
further increased.

Therefore, a complete characterization of GQTGs at all
curvature orders and for every dimension® D > 4 is clearly
of interest.* Some steps in this direction have been carried
out in the literature, such as the derivation of an explicit—
although somewhat involved—formula for a QTG at every
curvature order for D > 5 [73], the construction of a proper
GQTG—through a considerably difficult process as well—
at every order and dimension D > 4 [73], and the charac-
terization of all GQTGs when evaluated on an SSS ansatz
specified by a single function [81]. In this reference it was
explicitly proven that, up to the addition of densities that
vanish when evaluated on the single-function SSS ansatz
(trivial GQTGs), there exist n — 1 GQTGs at every curva-
ture order n in D > 5, only one of them being of the
quasitopological type. However, the finding of the covar-
iant form of all such n — 1 GQTGs (up to trivial GQTGs)
has remained elusive. Furthermore, despite the strong
evidence that there exists a unique GQTG at each curvature
order for D = 4 (again, up to trivial GQTGs), no rigorous
proof of this has been provided yet.

It is the purpose of this paper to fill the previous gaps and
conclude the classification of all GQTGs for every curvature
order n and every D > 4. Among other reasons, this is
motivated by the fact that this would allow one understand
the nature of GQTGs away from the SSS regime, for
instance considering cosmological solutions or rotating
black holes, as in [82-90]. After the development of a
dictionary that allows one to pass from expressions evalu-
ated on the single-function SSS ansatz to covariant (or off
shell) expressions made of combinations of specific curva-
ture invariants, we are able to construct (up to the addition of
trivial GQTGs) a simple expression for the explicit covariant
form of the unique QTG existing at each n and D > 5 (see
Theorem 1), derive for the first time the off shell expression
of all n —2 proper GQTGs at every n and D > 5 (see
Theorem 2), and rigorously prove that there exists a unique
(proper) GQTG in D >4 at each curvature order, also
providing its explicit covariant form (see Theorem 3).

The paper is organized as follows. In Sec. II we review
the definition of GQTGs and mention their most salient
features. Next, in Sec. III we present a procedure by which
to uplift expressions evaluated on a single-function SSS
ansatz to fully covariant combinations of curvature invar-
iants in D > 5, see Proposition 1 and the dictionary given in
Egs. (3.30)—(3.34). Afterwards, using such dictionary, in
Sec. IV all QTGs and proper GQTGs (up to trivial GQTGs)
are presented at each curvature order and D > 5, analyzing
the number of curvature invariants needed to construct
them. Then, in Sec. V we adapt the aforementioned dic-
tionary to D = 4, prove that there exists a unique GQTG at

In D =3, all GQTG theories except for Einstein gravity
vanish when evaluated on the single-function SSS ansatz [80].

“We shall assume the absence of covariant derivatives of the
curvature in the Lagrangian.
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each n in four dimensions up to the addition of trivial
GQTGs, and construct an explicit example of GQTG at each
curvature order. Finally, we provide some conclusions and
future directions, including some supplementary material in
the appendix.

A. Note on conventions

Throughout the document we will use the mostly plus
signature for the metric g,, and the conventions from
Wald’s book [91] for the curvature. In particular, the
Riemann curvature tensor R,,.¢ associated to the Levi-
Civita connection of g, is given by

Rabcd = _2a[ardb]c + 2Fec[ardb]e’ (11)
where I'“,;, stands for the Christoffel symbols and where
[ab] indicates, as usual, the antisymmetric part for a two-
tensor Ay, Ajp) = 1/2(Agp — Apg). Our definitions for the
Ricci tensor R,;, and the Ricci scalar R are

Ruh = Rachc’ R = Raa' (12)
We will also be using the Weyl tensor W,,.¢ and the

traceless Ricci tensor Z ,;,. They are defined as follows for a
D-dimensional manifold:

2
Wapea = Ravea = 75— (9aeRap = IpcRaja)

D-2
+ 2 R (1.3)
(D— 1)(D—2) ga[cgd]bv .
Zup = Ry =~ R (1.4)
ab — tab Dgab . .

II. GENERALIZED QUASITOPOLOGICAL
GRAVITIES

Let £(g®, Rp.q) be a generic diffeomorphism-invariant
theory of gravity constructed from® contractions of the
Riemann curvature tensor R ., associated to a metric g,,.
Assuming that £ admits an effective expansion in increas-
ing powers of the curvature (or equivalently, derivatives of
the metric), we may write

(& kn
L(g Rapea) = 20+ R+ D> 20708, R,

n=2 j=1
(2.1)

where A is the cosmological constant, £ is a characteristic
length scale from which on the effects of higher-derivative

>For the sake of simplicity, we will assume that no covariant
derivatives of the curvature appear on the action. We will also
assume the absence of parity-breaking terms.

terms have to be taken into account, f3, ; are dimensionless
couplings and R, ;) stands for the different contractions of
curvature tensors at order 2n in derivatives that one may
construct, each of them labeled by j.

Now, consider a general static and spherically symmetric
D-dimensional configuration. In an appropriate coordinate
system, it can be expressed in terms of two unknown
functions N(r) and f(r) as follows:

dr?

dsy , = =N*(r)f(r)dt +f(r)

+r2dQ3,_,, (2.2)

where dQ?, , stands for the round metric of the (D — 2)-
dimensional sphere. Also, let Ly ; = r®=2N(r)L|y ; be the
effective Lagrangian evaluated on the SSS ansatz (2.2)
and Ly =Ly ;.

Definition 1. A theory L£(¢*,R,p.q) is said to be a
generalized quasitopological gravity if and only if

oL, doL, d L,
of draf’  dr?of”

. =0. (2.3)

Such definition was first put forward in [75]. By now,
the consequences arising from demanding (2.3) to hold
have been extensively explored in the literature as men-
tioned in the References section. Here we quote the most
relevant ones:

(1) The equations of motion of GQTGs are second order
in derivatives when linearized around maximally
symmetric backgrounds. As a consequence, they
only propagate a massless and traceless graviton on
such backgrounds [17,18,74-78].

(2) They admit [asymptotically flat, de Sitter (dS) or
anti—de Sitter (AdS)] SSS solutions characterized
by N(r) =1 and having (at most) a second-order
equation in derivatives for the ansatz function f(r).
These solutions are interpreted as natural generaliza-
tions of the (asymptotically flat, dS, or AdS)
Schwarzschild-Tangherlini solution of Einstein grav-
ity, since they turn out to be completely characterized
by its Arnowitt-Deser-Misner mass [92-94]. The
equation for f(r) is obtained by varying Ly , with
respect to N(r) and afterwards imposing N(r) =1,

£SSS — Ly s _ EaLN.f
ON |y_, dr oN" |,_,
& Ly,
N=1

According to the order (in derivatives) of &555,
GQTGs may be divided into the two following
subfamilies:
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(a) Those for which £555 is an algebraic equation for
f(r). These theories are called quasitopological
gravities [15,70-72,76]. They exist for D > 5.

(b) Those for which &5 is of second order in
derivatives. The corresponding theories are
called proper GQTGs (or genuine GQTGs) or,
whenever no confusion may arise, just GQTGs
[18,74,75,81]. They have been shown to exist
for D > 4.

Additionally, we may identify the class of trivial

GQTGs, defined as those vanishing identically when

evaluated on the SSS ansatz (2.2) with N(r) = 1.

(3) GQTGs admit solutions with (D — 2)-dimensional
hyperbolic and planar sections too [i.e., solutions of
the form (2.2) but replacing dQ3, , by the corre-
sponding hyperbolic or planar metrics], with N(r) =
1 and second-order equation (at most) for f(r).

(4) Black hole thermodynamics can be computed ana-
lytically [15,18,70,72,73,75,78,81,85,95-97]. This
is also the case for the extended thermodynamics
approach, in which the cosmological constant is
interpreted as the pressure of the black hole [98,99].

(5) Any gravitational effective action of the form (2.1)
can be mapped, perturbatively order by order, to a
certain GQTG [79]. Thus, GQTGs form a spanning
set of the space of effective field theories of gravity
which is specially suited for the study of SSS
configurations.

(6) There are particular subsets of GQTGs that addi-
tionally allow for reduction-of-order in the equations
of motions on other gravitational configurations, like
Taub-NUT/Bolt metrics [100], wormhole geom-
etries [101,102] or cosmological backgrounds
[82-84,87,103-109].

Apart from the aforementioned properties, there are two
additional aspects that are worth mentioning. On the one
hand, it turns out that GQTGs are very useful in the
holographic context as well, since they allow one to explore
CFTs whose correlators take the most generic form
allowed by conformal symmetry [30-32,44], identify novel
universal relations that hold for arbitrary CFTs [43,46,49],
examine aspects of holographic entanglement entropies
[42,45,110,111] or study generic features of holographic
transport and superconductivity [50,98,99,112]. On the other
hand, it is possible to extend the definition for GQTGs
provided in (2.3) to allow for the inclusion of nonminimally
coupled matter, such as a U(1) vector field [32,113-116].

Definition 2. Let £()) and £ be two nontrivial
GQTGs. Assume the SSS ansatz (2.2) with N(r) =1
and let €355 and €35 be the corresponding equations of
motion for f(r). Then, £() and L£? are said to be
equivalent if &35 and &5° are linearly dependent.
Otherwise, we say they are inequivalent.

Definition (2) naturally introduces classes of equivalence
of GQTGs, two GQTGs belonging to the same class if

and only if they are equivalent. When working with
SSS configurations (2.2), it suffices to work with a
representative of each equivalence class. By convention,
we will also assume that trivial GQTGs are all equivalent to
0 in the sense we have just introduced.

For D > 5, it was proven in [81] that there exist n — 1
inequivalent GQTGs constructed solely from contractions
of n curvature tensors, one of them being a QTG and the
remaining n — 2 ones being proper (or genuine) GQTGs. At
D = 4 instead, there seems to be a single proper GQTG at
each order, although no rigorous proof has been offered up
to date, to the best of our knowledge. For D = 3, no
nontrivial GQTGs exist (apart from the Einstein-Hilbert
term, of course).

Taking into account the previous considerations and that
the GQTG condition expressed in (2.3) is linear, the most
general combination of all inequivalent GQTGs can be
expressed as follows:

0

ﬁGQTG =-2A+R+ Z fz(”‘l)a,,Z(,l)
n=2
o n-—l
+Y Y ANB, Sy, D25 (25)

Logrg = 20+ R+ > VB8, D=4, (26)

n=3

where Z,) and S, ;) stand for particular representatives of

QTGs and proper GQTGS,6 respectively. Consequently,
finding the expression of all inequivalent GQTGs requires
the knowledge of a representative of every equivalence
class of GQTGs at every order in the curvature.

GQTGs comprise the well-known Lovelock gravities’
[11,12,62,63,117,118] (which contains Einstein gravity),
but there exist of course explicit instances of GQTGs which
are not Lovelock theories. Let us show an example of a
(non-Lovelock) QTG and of a proper GQTG.

Example 1. Let us consider the following density8 in
D >5 [15]:

®Observe that the sum on proper GQTGs starts from n = 3,
since no proper quadratic GQTG exists.

"In particular, whenever a Lovelock gravity of order n
in spacetime dimension D > 5 does not vanish identically nor
it is topological, it belongs to the equivalence class of QTGs of
order n.

*In this section, we will use some appropriate superindices on
densities to make reference to the initials of the authors that
introduced them.
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1
(2D -3)(D - 4)
y 3(3D—8)R 3(3D - 4)
8 2
—3(D = 2)R,pqR*? ,R% 4 3DR ., ;R R?

3D
+6(D —2)R,‘R.’R,* + ?R3 .

Zl(\g[;{ — RahcdRhedeeafc +

abcdRadeR _ RacRCaR

(2.7)

Example 2. Let us now write the following density [75]:

SHKM — L 14R ) R R, P + 2R RO RY —

2(4D? + 9D — 30)

It can be checked that the theory defined by (2.7) satisfies
the condition (2.3) when evaluated on the ansatz (2.2) with
N(r) =1, so it belongs to the GQTG family. Further
inspection reveals that the subsequent equation of motion
for f(r) can be integrated into an algebraic equation, so
(2.7) provides an example of a QTG. It is not trivial for
D >5 and was the first nontrivial and non-Lovelock
instance of a GQTG ever given in the literature.

(38 — 29D + 4D?)
4D-2)2D-1)
4(2D? = 35D + 66)

RabcdRabcdR

_ R RacRbd _ RbRcRa
(D-2)2D—1) " 3(D-2)2D—1) "“7b7¢
(4D% = 21D + 34) R ROR (4D* = 13D + 30) 3 28)
(D-2)2D—1) ~* 12(D-2)2D-1) ‘

This theory is seen to fulfill the requirement (2.3) when evaluated on the SSS ansatz (2.2) with N(r) = 1, showing that it
forms part of the GQTG family. The equation of motion for f(r) can be integrated into an equation of second order in
derivatives, so (2.8) defines a proper GQTG. For D = 4, SHKM j5 equivalent (as a GQTG) to the following theory:

P = 12R, LR R+ Rap“Reg” Rop — 12R e gRR" + 8RLRERY,

(2.9)

The theory (2.9) was first identified in [17] and called Einstenian cubic gravity. This was the first example of proper GQTG

ever provided in the literature.

The previous examples are of cubic order in the curvature, but GQTGs of higher order are known. On the one hand,
recurrent relations to construct QTGs and one single example of a proper GQTG at every order have been found [73]. For

the benefit of the reader, let us present them here,

sen 3(n+3)ZFMZRE) 3+ 4)ZEHZEH (4 3)(n+ 4) 2P zpch, 2.10)
5 D(1=D)(n+1) DD -1)n nD(D-1)(n+1) '

gcH _ 3(n +3)SPSHSE,)  3(n +4)SEHSHC, (4 3)(n+ 4)SEHSE, 211
(nt3) 41 = D)(n+1) 4(D - 1)n 4n(D-1)(n+1) '

where the recurrent relations begin with the densities

Zl(g,f)H and S?"%H with m =1, 2, 3, 4, 5 as given in [73].

Amusingly, Egs. (2.10) and (2.11) are formally equivalent,
just differing by an innocent prefactor. On the other hand, in
this reference an explicit formula for a QTG at each order n
in D > 5 and the expression for a proper GQTG at every
curvature order in D > 4 were derived. However, these
formulae are somewhat involved and it would be desirable
to have at disposal more manageable and more direct
expressions for them.

Furthermore, it turns out that the covariant form (i.e., not
evaluated in any particular ansatz) for a representative of
each equivalence class of GQTGs at every order n and for
generic D > 5 has not been obtained yet in the literature.

Although their expression when evaluated on the reduced
SSS ansatz (2.2) with N(r) = 1 is known [81], an explicit
covariant characterization of all inequivalent GQTGs is
clearly of relevance when it comes to the study of gravi-
tational configurations that do not possess such static and
spherical symmetry. Consequently, we devote ourselves to
the finding of covariant expressions for representatives of
each equivalence class of GQTGs at every order n in the
curvature.

III. RECONSTRUCTING OFF SHELL DENSITIES
FROM ON SHELL DENSITIES IN D > 5

Let us consider the reduced SSS ansatz (2.2) with
N(r)=1,

044016-5
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ds? = —f(r)df* + ar + r?dQ? (3.1)
7 G
Define
_ ") __f' _1=f(r)
A= 5 B=- > y=—7" (3.2)

For every D >5, we may always pick [81] GQTG
representatives Z and Stn with j=2,...,n—1,whose
evaluation on the reduced SSS ansatz (3.1) reads,’

1

Zmly = DG, [’"D "((2n = D)z(0) — 2n7(1))]. (3.3)
1 d B D .
Sy = D2, [’D ! ((2 _Z(J + 1))7(11.())
-+ Dy + 0= I)T(n.j+l)>:|7 (3.4)

where n > 1 for Z<n)\f and j =2,...,n— 1 with n > 3 for

Sinj)lr- We have also defined

Tink) = l//n kBk k=0,...,n. (35)
Now, it is natural to wonder if it is possible to find an
algorithm with which to uplift the on shell' expressions
(3.3) and (3.4) into fully covariant or off shell expressions.
This way, we would achieve to find a representative for
every equivalence class of GQTGs at every order in the
curvature.

To tackle the problem, we could try to find a dictionary
which allows to relate any on shell expression X(r) into a
covariant combination of curvature invariants R whose
evaluation on the background (3.1) precisely yields'
Rl|; = Z(r). To this aim, we first notice that for D >4

the Riemann tensor, when evaluated on (3.1), can be written
as [119]

ab
R cd

= 2[—AT[ %+ 2BT6") + yo' ”q

e L % T WO 0y|s  (3.6)

’Notice that we employed a basis for S, ;) different from the
one presented in Eq. (37) in [81] (see pubhshed version, in vl of
arXiv there seems to be a small typo in the coefficient of their
T(n,j+1)» Which should read (j— 1)(Dj —4n)), since their 7, ;
turn out not to provide a set of n — 2 inequivalent GQTG for
certain values of n and D. An explicit example of this issue can be
seen for n =5 and D =5, after noticing that the subsequent
proper GQTGs labeled by j = 3 and j = 4 coincide identically.

l()Throughout this document, on shell refers to “evaluated on
the particular SSS ansatz (3.1).”

"Note that such dictionary can never be one-to-one—indeed,

there are many different combinations of curvature invariants that
produce the same expression when evaluated on (3.1).

where T = 676}, 4 6¢5, and of, = & — T are the pI‘OJCC—
tors into the (1, r) and angular dlrectlons respectlvely In
turn, these implies that

(D-2)B—-A)T§ +

(2B+ (D -3)y)oy,  (3.7)

Rla7|f:

R|; =4(D-2)B-2A+ (D -3)(D-2)y (3.8)
Similarly, the Weyl tensor W ., and the traceless Ricci
tensor Z,;,, which are the proper objects—together with the
Ricci scalar and the metric—appearing in the Ricci
decomposition of the Riemann tensor, read,

Wl = o) =22 = e
(D =3)T oy + Hﬂ’ (3.9)
Zi|, = 0(r )[ Dz_ T“+UZ] (3.10)
where
_4=4f(r) +4rf'(r) = 2r°f"(r)
Q(r) = D-1)(D-2)7 . (311)
- — f(r —Drf'(r) + 2" (r
@(r>:2(D 3)(1 = f(r) + (D = 4)rf'(r) + r°f"(r)

Dr?
(3.12)

For completeness, we also present P(r)
f(r) and its derivatives,

(D =2)((D=3)(1 = f(r))

}"2

= R|; in terms of

o) = 20'(r)) = 1" ()

(3.13)

Now we continue the following proposition, part of which
was already proven in [79,119].

Proposition 1. Let m, p, and ¢ be positive integers such
that m?> + p? > 2 and assume D > 4. Then, if (W"ZPRY),
stands for a generic curvature invariant constructed from m
Weyl tensors, p traceless Ricci tensors and ¢ Ricci scalars,

(WMZPRI),|, = c;Q"OPPA, (3.14)
where c¢; is a certain numerical coefficient that depends on
the specific invariant considered.

Proof.—Follows directly by observation of Egs. (3.9)—
(3.12). Indeed, the contraction of the different projectors

"Observe that TT =
o4 =D-12.

TS, ob a0 = 0¢, Tbah =0,7T% =2, and
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appearing in these equations will just give numerical
contributions, encoded in c;. u
Note that if m = p = 0 in the previous proposition, the
statement is trivial, while the case 0 < m? + p*> < 2 is not
|

considered since there are no curvature invariants built out
with just one Weyl tensor, just one traceless Ricci tensor or
with one Weyl tensor and one traceless Ricci tensor.

Let us now define the following densities for'® D > 5:

4
W, = W, . Wabcd’ 315
*T(D-2P(D-1)(D-3) (3.15)
2= 53 A% (3.16)
2T D(D-2) :
W = 8 w deW efW ab (317)
3 (D—3)(D—2)(2(2—(D_3)2)+(D_2)2(D_3)2) a cd ef
Y, = 8 747<W _bd (3 ]8)
3 DZ(D—Z)(D—S) b=d'" ac > )
X, = - 8 Zow ybede 1o
; (D—-1)2(D—-2)(D-3)(D-4) »Wacde , '

Z, = 4 Zuzbzc (3 20)
3= D(D—2)(D—4) b&ctar )
Y=~ 10 787 o Z g Whiee (3.21)
YT DD -2)(D-3)(D—4) b -

Xy =- 32 zabyy - weefawd (3 22)
) D(D —1)2(D—-2)(D-3)*(D-4) acbd efgr :

It turns out that
W, = Q2 2,y = @2 Wsl, = Q% Y;|, = 0%Q,
X3l =Q°0,  Z3|, =0, Y, =0Q X, =Q. (3.23)

Proposition 2. Let R, be any curvature density of
arbitrary order n. Then there exist certain coefficients a; and

non-negative integers b, with m e {1,...,9} and i €

{1,2,...,k,} for certain positive integer k,, such that

i

(@) _p)

bl ) b
4 6 7
X' Z,

k, . . . .
(i) () i) i)
D)y gD b b
_ b 2 3 8
'R(n)|f_§ a;(R""W,* Z,> Wy
i=1

) gl ( (
b b

5 9
Y; Y X,

)y
(3.24)

Proof.—Given any R,), let us replace all its Riemann
and Ricci tensors by Weyl tensors, traceless Ricci tensors
and Ricci scalars. This way, R, is written as a linear
combination of densities with the structure (W™Z?R%). By
Proposition 1, it turns out that all densities of the form
(W™ZPRY), when evaluated on the reduced SSS ansatz
(3.1), are proportional to Q"®PPY. Since it always holds

that either m = p =0 or m?> + p> > 2 (see explanation
below Proposition 1), it is possible to express R, | ¢ in
terms of the densities in Eqgs. (3.15)—(3.22) as in (3.24) [for
appropriate choices of a; and bg,’,)] and we conclude. =

Proposition 2 is the key result that will allow us to
translate on shell expressions into proper covariant or off
shell densities. Indeed, if we define

I

T =W (1 =)W, + mW3),  (3.25)
I-nr,

IEZ) = 2271((1 —11)2y + mZ3), (3.26)
ﬂ

TV =Wy (1 —m)Xs +mXy).  (3.27)

“The case D = 4 is treated separately in Sec. V.
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I-m;

IV =27 (1-m)Ys +xYy).,  (3.28)
where
0 [even
= , (3.29)
1 [ odd

we can construct the following dictionary relating'* on shell

quantities to off shell covariant densities,”” with [ > 0:
Onshell Offshell
Q(r)+? — iV (3.30)
12 2)
o(r)*™ — I, (3.31)
e(r)Q(r)+? — 7 (3.32)
Q(ne(n+? — 1" (3.33)
P(r) — R. (3.34)

Equipped with this dictionary, the procedure to follow to
obtain a covariant fixed expression for a representative of
each equivalence class of GQTGs at all curvature orders is

(1) Start with the on shell expressions (3.3) and (3.4).

(2) Massage the corresponding on shell forms to write
everything in terms of P(r), Q(r), and O(r).

(3) Apply the dictionary [Egs. (3.30)—(3.34)] to obtain
off shell expressions whose evaluation on (3.1)
precisely yields the initial on shell quantity.

The algorithm is clear, but there is a subtle issue to
address. Indeed, observe that there are a priori three types
of terms that are not covered by the previous dictionary;
P10, P1Q2, and P1GQ. Nevertheless, those terms can never
come from a covariant off shell expression, since no
curvature invariants may be formed with just one Weyl
tensor, just one traceless Ricci tensor or one Weyl tensor
and one traceless Ricci tensor. Therefore, for a potential on
shell GQTG to arise from a true off shell combination of
densities, such terms cannot appear.

IV. ALL GENERALIZED QUASITOPOLOGICAL
GRAVITIES

Once presented the method to convert on shell expres-
sions into off shell densities, we are in position of finding a

14It is not a bijective relation, of course.
“Note that there are different choices of a; and bm in
Proposition 2 that produce the same expression R, | s Therefore,

the dictionary we present here is just a convenient instance of the
many different dictionaries that one may construct.

representative of each equivalence class of GQTGs. We will
start finding a representative of the unique QTG that exists
at each order in curvature (for D > 5), and then we will
continue with the characterization of inequivalent proper
GQTGs in D > 5, commenting also on the number of
curvature invariants that are needed to write them.

A. Quasitopological gravities

Let us follow the procedure described in Sec. III. We start
with Eq. (3.3), which we write in terms of A, B, and y as
defined in (3.2) [73],

Z(ylp = —4n(n = 1)B*y" 2 4+ n(2A — 4(D — 2n)B)y"""!
— (D —=2n)(D-2n-1)y", (4.1)

where n > 1. The second step of the procedure requires to
express Z,) | ¢ in terms of P, Q and ©. For that, we note

B 1 (D -2)(D-3)

A=—ppopPte % (4.2)
1 D-4 D-3

B=bm-n 2(D—2)® PR (43)

W:D(D1_1>P+D2_2®+%Q. (4.4)

Substituting in (4.1) and massaging carefully the sub-
sequent expression, a somewhat involved calculation and
direct use of the dictionary [Eqgs. (3.30)—(3.34)] produces
the unique inequivalent covariant QTG existing at each
curvature order for D > 5.

Theorem 1. A representative of the unique equivalence
class of QTGs existing at each curvature order n > 3 for
D > 5 can be chosen to be'’

n—2
n n—I— 2
Z(n) =R"+ ZR ! 2(7@1,—2,11—;1) + 77:‘1.—21-5 )>
=0

w

n—

n—I— 3 4
+> R 3(}’;1,—1.11; ) +7’n.1,—1I§ >)

EM

:
-l>~

n—I—-4

+ Yn
]

R--r=az 0T >3 (45)

Il
o

p=0

'®We normalize the coefficient of R” to one.

"We remind the usual convention that whenever the upper
limit of a summation is bigger than the lower limit, such
summation is identically zero.
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where the constants y,,; , are only nonzero for /, p > =2 and [/ + p +4 < n, in which case

n(D(D(1=2)+4)(I+1) +4(D=1)(DI+1)(p +2) +4(D = 1)*(p +2)*)
270 (D2 — D)y 73 (D —2)2 (1 +2)1(p + 2)!(n—1— p — 4)! ’

Ynlp =

Let us present here the explicit form of Z,) from n =1 to n = 4:

Z1) =R, (4.7)

., (D=1)DW, . W 4(D-1)DZzt ~ D(D-1)
o =K+ (D—3)(l§iZ) - (D—2)2h “D-2D-3"* (4.8)

2(D = 1)2D*(2D = 3)W ;W . W ;4 N 24(D - 1)*D*Z8Z5W . .2

(D =3)(D=2)(D((D-9)D +26) —22) (D -3)(D-2)

16(D — 1)2D*Z875Z5  24(D — 1)2D*Z8W 40 q.WPe4¢ 3(D — 1)DRW g g Wab<d
(D—-2F T D-HD-3)(D-27 | (D=3)(D-2)

12(D — 1)DRZ4 7%

o (4.9)

Zp =R+

3(D = 1)2D*(3D — 4) (W gWeed)?  384(D = 1)’D*Z8Z .. Z 4, WP¥ce
(D-37(D -2)* (D-4)(D-3)(D-2)*
8(D —1)2D*(2D = 3)RW ;"W ;"W ,;**  96(D — 1)>D*RZ4Z5W .7
(D =3)(D =2)(D((D —9)D +26) —22) (D -3)(D-2)
64(D — 1)2D*RZ8Z5Z5  96(D — 1)2D?RZ4W 4o WP
(D—-2)* (D=4 (D-3)(D-2)?
24(D = 12D*(D(TD = 10) + 4)W 1 d W™PZEZL 192(D — 1)*D2(282)?
(D=3)(D-2)° (D-2)
192(D = 1)3D?Z4W ,gWeIW4 ;) 6(D — 1)DR*W o W4 24(D — 1)DR?Z4Z5,
B (D —4)(D* = 5D + 6)? (D-3)(D-2) (D —2)? ’

Zy =R+

(4.10)

where X is the Gauss-Bonnet density. Observe that Z 3 is equivalent (as a QTG) to the cubic theory presented in
Eq. (2.7), since

4(D - 1)>D*(2D - 3) 1
Z3) = ZMR 4 — X 4.11
0 = D=3 D-2)D(D-9D+26)—22) \"® T3¢ ) (4.11)
where X is the cubic Lovelock density, given by
Xﬁ = _8RacbdRcedeeafI7 + 4RadeRcdefRefah - 24RabcdRabCeRdg
+ 3RupeaRPCIR + 24R 1o qyR“ R + 16RERS R — 12R ,, R R + R3. (4.12)

For the benefit of the reader, we also show in the appendix the explicit form of the QTG densities (4.5) forn = 5Sand n = 6.

Theorem 1 provides a representative of the unique equivalence class of QTGs that exists at each curvature orderin D > 5.
Remarkably, Eq. (4.5) turns out to be dramatically simpler than the explicit QTGs at all orders and dimensions given in [73],
which we have verified to differ from our QTGs by trivial GQTGs. Additionally, we have explicitly checked that the
Lagrangian (4.5) satisfies the recurrence relation (2.10) up to trivial densities—that is, the on shell evaluation of (4.5)
satisfies (2.10) exactly.
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The QTGs (4.5) are defined for D > 5. In the case D = 4, we explained before that there seems to be no QTGs (apart
from Einstein gravity), which will be rigorously proven18 in Sec. V.

B. Generalized quasitopological gravities in D > 5

Again, we have to apply the procedure explained in Sec. III. We start by writing the on shell expressions for the n — 2
inequivalent GQTG representatives in (3.4) in terms of the variables A, B, and y defined in (3.2):

(D+Dj—4n)2n—-D+1) | . e . N i
Swily = 231 y" = (D +Dj—4n)y"'B+ j(j + 1)Ay" /B!

(o DEn=D = 4+ Dy IB = (7 = DAy B
(DG = 1)+ (14 3] = dm)y" 7 B =2 = 1)1+ = my 2B, (4.13)

withn > 3 and j = 2, ..., n — 1. The following step requires us to express A, B, and y in terms of P, Q, and ®, which may be
done by use of Egs. (4.2)—(4.4). Then, after some involved computations, one can write the subsequent expression for (4.13)
in a form which is readily adapted for application of our on shell to off shell dictionary given by Egs. (3.30)—(3.34). This way,
one gets the covariant form for the n —2 GQTGs existing19 at each curvature order n in D > 5.

Theorem 2. Representatives of each of the n — 2 equivalence classes of proper GQTGs existing at each curvature order
n >3 with D > 5 can be taken to be

n-2 n-3
n n—I— 1 2 n—l— 3 4
Sy =R"+ ZR ! 2(%,]',—2,115 ' +6,)1-0Z) )) + ZR ! S(Un.j.—l.ll-g Vo7 ))
1=0 =0

n—4 n—Il-4
+3°3 G, RV, n2 3, (4.14)
I=0 p=0

where j =2,...,n — 1 and where the constants o, ;;, with [, p > =2 are given by

_ Pajirapr2 | (D=3)(D=2) Un j14+2.p+2

Onjlp = D2—D 4 Pnjl+2.p+1 ~ Pnjl+1p+2 — jT’ (4-15)
pn,j,l,p = 2]’1(D2 - D)n_l (jﬂn—j,j—l,l,p - (.] - l)ﬂn—j—l,j,l,p) (416)
Vn,j,l,p = (Dz - Dyl_l[(D + D.] - 41’1)(21’1 +1- D)/"n,().l,p - ZH(D =+ D] - 4”)”11—1.1,[,[)

=2n(j+ 1) (D =14 j=2nm)p,_j;1p +2n(D(j = 1)+ j(1 +3j =4n))uy_jo1 js11p

—4n(j = D)(j+ 1 =n)u_jjio1p)s (4.17)

i
i k—l—pd-n—j-1) (D + 1

Hnjlp = Z’ln.j.l.p,kpfri]+ P )<ﬁ>’ (4.18)

k=0

where Pff”ﬁ ) (x) stands for the Jacobi polynomial and where the coefficients #,, ;; ,, for j > I —k are given by

i (G2 (32 oo () L)

and are zero otherwise.
Despite the quite intricate expression for the coefficients o, ;; ,, we note they are just numbers for each dimension D > 5.
Therefore, we have explicitly found, for the first time, the covariant form for a representative of all equivalence classes of

"®We recall that, for D = 3, the only densities satisfying the GQTG condition (2.3) are trivial ones (except for the Einstein-Hilbert
term, of course) [80].
We normalize the coefficient of the term R" to one.
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GQTGs in D > 5. We have checked that a linear combination of such inequivalent GQTGs happens to be identical to the
explicit GQTG found at each curvature order in [73], up to the addition of trivial GQTGs.
For n = 3, 4, the formula (4.14) produces the following GQTGs:

S R (D —1)’D*(D((D = 3)D = 5) + 11)W ,,“/W ;' W, ;4 _12(D - 1)DRZ}Z!
3.2 2(D =3)(D=2)(D((D - 9)D + 26) — 22) (D—2)?
6(D =5)(D = 1)°D*Z3ZqW, " (D —4)(D = 1)*D*(D +4)Z; 227,
(D =3)(D-2)3 B (D—2)*
3(D = 1)2D(D + 4)Z8W 4oqo WPe4e 3(D = 1)DRW gy W4
2(D=3)(D-2)? (D-3)(D-2)

(4.20)

8(D—=1)D*(D —3)(D —1)(D(D +4) = 52)Z4Z . Z 4, W"dc¢
(D—4)(D-3)*(D-2)*
(D —1)’D¥(D = 4)(D((D = 3)D = 6) + 11)(Wapeg W**')?
(D—4)(D-3)*(D-2)*
2(D - 1)21)2(1) (D =3)D = 21) + 35)RW ;"W ., W,
3(D=3)(D-=2)(D((D-9)D +26)—22)
_8(D—13)(D = 1)’D’RZ3Z;W, " 4(D —1)’D*(D*> — 48)RZ}Z2Z;,
(D=3)(D-2) 3(D-2)*
2(D — 1)2D*(D? — 48)RZEW 4q, WP 4(D —1)3D*((D — 8)D? + 144)(Z4Z5)?
(D—4)(D-3)(D-2)? 3(D -2)°
4(D = 1)2DX(D(D(D(2D — 3) — 41) + 60) — 24)W ., W25 Z]
(D=3)(D -2)
4(D=1)’D*(D(11D = 12) — 140)ZPW 4 pg W IW9 p 6(D — 1) DR?W o g W4
3(D-4)(D-2)*(D-3) (D-3)(D-2)
24(D — 1)DR*Z87",

- CEDE ba, (4.21)

8(4’2) - R4 +

\_//\

3(D=1)’D3*(D(D((D — 8)D + 18) — 4) — 11)(W g W*c?)?
4(D -3)%(D-2)*
120(D — 1)*D3Z4Z,.Z4,W"¥¢  24(D —5)(D — 1)*D*RZ4Z5W ,.>¢
(D-3)(D-2)* (D-3)(D-2)3
2(D - 1)2D*(D((D —3)D = 5) + 11)RW ,,“*W ., W ;4
(D -3)(D—2)(D((D-9)D +26) —22)
4(D—4)(D-1)>D*(D +4)RZ4Z%Z5  6(D — 1)2D*(D + 4)RZ4W 4 g, WPE4e
(D-2)* (D -3)(D-2)?
N 3(D - 1)2D*(D(D(D((D —9)D + 11) + 53) — 80) + 32) W ,WecdZ8Z?
(D-3)(D-2)°
4(D = 1)°D*(2(D =3)D = 11)Z°W 4epa W/ I W, sy 6(D = 1)DR*W o g W
(D—27(D-3) T D-3D-2)
(D —1)3D*(D*((D —9)D + 32) — 192)(Z¢Z%)* 24(D — 1)DR?Z4Z},

~ D25 oo (4.22)

8(4.3) = R4 ‘l‘

The density S3 ) can be related to the expression (2.8) as follows:
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3(D - 1)2D*(2D — 1)

2(D — 1)2D*(D — 4)(2D — 3)(D(D(19D — 141) +220) —22) _, o

562 =33 15- DD T 0
(D—1)2D*(D((D -3)D —=5) + 11) ¥
" 8(D=3)(D-2)(D((D-9)D +26)-22)" %

In Appendix B we provide the explicit covariant expres-
sions for representatives of all equivalence classes of
GQTGs existing at n = 5 and n = 6 for D > 5. In another
vein, we have checked that a specific combination of the
n — 1 inequivalent GQTGs—i.e., proper GQTG (4.14) and
QTG (4.5) densities—existing at each order n satisfies the
recurrence relation (2.11) up to trivial GQTG densities.

1. Number of curvature invariants in GQTGs for D > 5

Let us consider a certain scalar off shell density R, of
the form

kil
Ry = D ai(RMWZy WS VI XS ZYEXY).  (4.24)

i=1

Its curvature order is given by n = b; +2(b, + b3)+
3(b4 + b5 + b6 + b7) + 4(bg + bg) FOHOWil’lg thlS Obser-
vation, we are now interested in answering the following

question: What is the number of off shell densities #ELG>QTG

of the form (4.24) that appear after direct application of the

dictionary [Egs. (3.30)—(3.34)] to the on shell expressions

(4.1) and (4.13)? Naively, one would expect #5ZG>QTG to

coincide with the number #, of off shell terms that may be
constructed from products of the densities in Egs. (3.15)—
(3.22) (and Ricci scalars). We can easily see that this is not
the case by inspecting the situation up to fifth order in
curvature. The lowest five-order densities are given by

d, = {R}, (4.25)
dy =R-d; U{W,,Z,} (4.26)
dy=R-dy U{W;,X5.Y5.Z5}. (4.27)
dy =R-dyU{W2 22 X,. Y} (4.28)

ds = R - dy U {W, W3, W, X5, W, Y3, W,Z5, Z, W3, Z,Xs,
Z,Y5,2,25}, (4.29)

where the notation R - d; means that all elements of d; are
multiplied by R. We observe that #; = 1, #, =3, #; =7,
#, = 12, and #5 = 20 respectively. However, when study-
ing their on shell evaluation, at order five there exist two
equivalent ways of obtaining the on shell quantities Q@2
and Q2@3,

8(D —3)(15—=D(D +5))(D =2)(D((D = 9)D +26) —22) ~ )

(4.23)
9362 — W3ZZ|f - W2Y3 |f’ (430)
QZ®3 — WZZ3|f — X322|f (431)

This implies that among the #s = 20 possible densities
existing at n = 5, two of them are not independent when
they are evaluated on the SSS ansatz (3.1). As a conse-
quence, since we are using the specific dictionary provided
by Egs. (3.30)—(3.34), the off shell expression of the QTG
and GQTG following (4.5) and (4.14) will include only
#gG)QTG = 18 terms. Another example of this degeneracy is
given at n =6, as the combinations W3|; = W3|, and
Z3|; = Z3|; yield the same on shell result.

It is possible to find explicitly both #, and #,QG)QTG by
following the same procedures of [80,116]. There, they
used the technique of generating functions, which is well
known in number theory within the problem of integer
partitions. Regarding #,, we have been able to obtain it
using the generating function

1 1 1 1
1—x(1=x*)2(1=x)*(1=x%%"

G(x) = (4.32)

where x indicates the curvature order n. Its Maclaurin
expansion reads

G(x) = Y #a" = 1+ x + 32 + 707 + 120% + 202

+ 38x% + 58x7 + O(x?). (4.33)
The coefficient of the monomial of degree n gives precisely
#,. These coefficients are observed to satisfy the following
recurrence relation for any n:

(l’l + 25>#n + (l’l + 27>#n+1 + (n + 33)#n+2 + 19#n+3

- (n - 2)#n+4 - (n + 4')#n+5 - (I’l + 6)#n+6 =0, (434)

Now, we look for a generating function G(@QTG(x) for

# 99T Ag such, GRS (x) quantifies the number of off
shell densities that the (G)QTG involves at a certain order
in curvature n. By inspection, we find that
x—x3—x

(G)QTG = - -
g (x) =1+ G

(4.35)
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renders the desired result. In this case the expansion reads
GOQTG (x) = Z#,(lG)QTGx” =14+x+3x>+73 + 12x*
n

+ 18x3 + 25x° 4 33x7 + O(x?). (4.36)

We have been able to find a closed expression for #E,G)QTG.

The result reads,

—1)(n+4
40016 gaera_ (= D(n+4)

) , > 1.
1 2 n

(4.37)

Interestingly enough, #9976 matches with the number of

curvature invariants that are needed to produce the QTGs
of [73]. In another vein, in this reference an instance of
proper GQTG at each curvature order n is presented as
well, explaining that they contain 2n — 1 curvature invar-
iants. We argue that the fact that such number of curvature
invariants grows linearly with n instead of quadratically as
in (4.37) is due to the particular GQTG considered™ at each
curvature order in [73]. This was chosen to connect
smoothly with the D =4 case, for which a unique
inequivalent GQTG exists (as we will prove in next

section). In fact, remarkably, 2n — 1 is precisely the number

#E,G)QTG‘M) of terms that are necessary to write the four-

dimensional GQTGs presented in Eq. (5.33), as we will
comment afterwards.

V. GENERALIZED QUASITOPOLOGICAL
GRAVITIES IN D=4

The algorithm developed in previous section works for
D > 5. Nevertheless, it fails for D = 4, since the generic on
shell analysis carried out in [81] cannot be applied. Despite
this, they argued that there only exists a unique inequivalent
GQTG at each derivative level. The purpose of this section
to prove this statement rigorously and construct explicitly a
representative of such unique equivalence class of GQTGs
at every curvature order.

For that, we need to adapt the generic algorithm of
Sec. Il to D = 4. First, we observe that Proposition 1 is
valid as well for D = 4. Secondly, we note the following
very special property of curvature invariants in D = 4.

Proposition 3. Let us consider a curvature invariant
purely built out from Weyl tensors, Ricci scalars and an odd
number of traceless Ricci tensors in D = 4 (schematically,
it would of the form W™ZPR?, with m, p, and ¢ non-
negative integers such that p is odd and m # 1). Then it is
identically zero when evaluated on the ansatz (3.1).

200f course, for D > 5, it will correspond to a particular linear
combination of the GQTGs S, j of Eq. (4.14), up to trivial
GQTGs.

Proof.—The expressions of W, and Z2 in terms of the
projectors T¢ and o, into the (7, ) and angular directions
are obtained by setting D = 4 in Egs. (3.9) and (3.10),

a o ab a b a b
Wb 4 = Q(”)[T[ Td% - TL%% + Gh%}]’

le

(5.1)

Z3 = O(r)[-T§ + o, (5.2)
where Q(r) and ©(r) are given by Egs. (3.11) and (3.12)
after imposing D = 4. Define the linear map f on the space
of (1,1) tensors whose application on the projectors 7% and
o, reads

i(T3) =03, f(op) =T (5.3)
In particular, f(62) = &%. Given a tensor product of n
projectors Alel)bl Al(lzz)bz e A(a':L", with each A being either
T or o, we can extend naturally the definition of f as
follows:

FAD, Al = Al ) A ) (5.4)

1777 Tayb, ab; apby,

This map commutes with the contraction of projectors,
since f(AB5) = f(AL)f(B;), with A, B being either T or
o. We have that

FWPealp) =Wl HZ5l) ==Z5l,. (5.5)
Now, let us consider a rank-two tensor K obtained through
an arbitrary contraction of m Weyl tensors and p traceless
Ricci tensors. Schematically,
9p r:!c]dl"'cmdmh]“'hpa

enfm 79 g
Zhl o .thuelfl“'emfmgl gpb ’

(5.6)

K§ =W, 4. W

Cm dm

where the tensor E is made up of Kronecker deltas that
ensure the contraction of the different Weyl tensors and
traceless Ricci tensors. Observe that any curvature invariant
constructed purely from m Weyl tensors, p traceless Ricci
tensors and ¢ Ricci scalars may be expressed as R7K% for
certain integer ¢ > 0. Since the Weyl and traceless Ricci
tensors are built through the projectors 79 and o}, when
evaluated on the reduced SSS ansatz (3.1), then K¢ | s is also

purely expressed in terms of these projectors,

Kg|f = 5T} + 5,07, (5.7)
for certain functions s; and s,. However, taking into
account the definition of Kj in Eq. (5.6) and using
Eq. (5.5),

f(Ky) = (=1)7K3. (5.8)
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Therefore, we learn that s; = (—1)”s,. Specifically, if p is
odd (that is, there is an odd number of traceless Ricci
tensors), we have that K¢, is actually proportional to Z$ and,
in particular, traceless. Taking into account that any
curvature invariant constructed purely from Weyl tensors,
traceless Riccis and Ricci scalars may be expressed as
RIK¢ for appropriate integer ¢ > 0 and tensor K¢, we
conclude. L]
The previous proposition modifies drastically the
situation.”' Indeed, it implies that no terms of the form
P"Q"@%*+! may come from an actual covariant density.
Define the following densities in D = 4:

1 :

W, = 3 W apea W, (5.9)
1 ab

22 - ZZ Zab’ (510)
2 cdef ab

W3 — § WadeW Wef N (51 1)
1 ab 7cd

Y3 - ZZ Z Wacbd- (512)

Proposition 4. Let R, be any curvature density of
arbitrary order n in D = 4. Then there exist certain
coefficients a; and non-negative integers bﬁ,’l), with m €
I,..5and i € 1,2,...,k, for certain positive integer k,

such that
b pO b S b0 Y
R<n)|fzz;ai(R PW Z WY )| (5.13)

Proof.—Goes along similar lines to that of Proposition 2,
taking into account Proposition 3. m

The corresponding on shell to off shell dictionary takes a
simpler form in D = 4. Indeed, now it just reads:

Onshell Offshell
() — 1V (5.14)
14+
O — (1-1)2) (5.15)
I-r
QMO — (1 - 2)Z7 Ys, (5.16)
P(r) — R, (5.17)

21Proposition 3 only holds for D =4 since it is the unique
dimension for which Z,,|, is an eigenvector of the linear map f
defined in Eq. (5.3). For D > 4, observe that f(Z,,|,) (after
extending canonically the definition of { for any dimension
D > 4) is no longer proportional to Z| .

with [ > 0 and where 7 §1> is as given in (3.30). Also, note
that Q(r), ©(r), and P(r) are obtained by taking D = 4
in (3.11)—(3.13).

At this point, we have to note another difference with
respect to the case D > 5. In that situation, we could rely on
the results of [81], in which it was explicitly proven that
there only exist n — 1 inequivalent GQTGs at each curva-
ture order, providing as well their on shell form. For D = 4,
their argument does not work, and it is not true that there
are exactly n — 1 equivalence classes in four dimensions.
We may understand this from Proposition 3 and from the
four-dimensional dictionary [Eqgs. (5.14)—(5.17)], since
there is no way by which terms P"Q"®%**! come from
an actual covariant density. This reduces the number of
inequivalent GQTGs at each curvature order to be one, as
we proceed to show now.

Let us consider the on shell expressions Z,|, and
Snj) | f presented in Egs. (3.3) and (3.14). Now, they will
not generically correspond to actual GQTG densities, but
let us maintain the notation for the sake of simplicity.
Consider

n—1
Fn = anZ(n)|f + Z/Bn.jS(n,j)|f’ nz3, (518)
=

for arbitrary coefficients a,, f3, ;. The question is: do there
exist choices of @, and f,; which guarantee that F,
contains no terms of the form P"Q"®%*+1? Otherwise, F,
would not arise from an actual covariant density. Note that
we impose n > 3, since for n =1 and n =2 the corre-
sponding F, can be trivially seen to circumvent these
issues.

It turns out that there exists a unique choice for @, §, ;
that prevents the presence of terms P"Q"@%*+!,

Proposition 5. Let F, to be as in (5.18). It corresponds
to the on shell evaluation of an actual covariant curvature
invariant if and only if

ay=p.;=0, j=2,...n-2. (5.19)
Proof.—Observe that
dF; 27
—=| ==Ta 5.20
Oy, 25 (5.20)
dF 9 1
d—(“34 00 = - g (4(14 + ,B4’2)PQZ -27 ((14 + 3—2,64‘2) Q3,

(5.21)
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dFs

45 117 15 27
0 o0 —<Zas +— ﬁs 2 + ﬂs 3)1393 6l (40!5 Psr— —,55 3)P292 ~138 (160as + 65, +9Ps3). (5.22)
n—1
Zh 0Bl n > 6, (5.23)
where B = Lz %Q [it corresponds to taking D = 4 in (4.3)], Q = iz + %Q and
n—-2
hug = —An(n=1)(n = 2)a, +2(2n =3) > (14 j—n), ;. (5.24)
=2
n—-2
hnl :8n(n— 1)( —2)(1,14-6( _n)ﬂn2_4(n_1) (1+j_n)ﬂn.j’ (525)
j=2
hpy = —4n(n—1)(n=2)a, +6(n—1)(n = 3)p,, + 12(4 = n)p, 3, (5.26)
hy3 = (18 =8n)(n = 3)f,2 +8(n—1)(n—4)B,5 +20(5 = n)p, 4, (5.27)
hn.l = 2(” - l><l - 3)(” =1 =+ 1>ﬂn,l—2 + (n - l)(4l’l + (3l —4n - l)l - 6)ﬁn,l—1
+ U+ D) +2)(I+2-n)p +2(0+D)(n—-1)n—=1-1)p,;, [=4,...n-2, (5.28)
hn,n—l = 4(” - 4)ﬂn,n—3 - (”2 —n+ 2>:Bn,n—2- (529)

Assume that F, comes from an actual covariant density.
Then, it is necessary that df" o lg_o = 0. For the cases
3 <n <5, we directly derlve Eq (5.19) by inspection of
the previous equations. For n > 6, the vanishing of (5.23)
implies that s, ;, = 0, with k =0, ..., n — 1. This produces
a linear system of n equations for the n —2 variables
(. PnrPuzs s Pun—). Among them, one may study in
further detail the subsystem of n — 3 equations posed by
h,; =0, with [=3,...,n—1, whose variables are
(Bu2.Pu3s - Prn). Let C be the matrix of coefficients
associated to such subsystem of equations. The determinant
of C can be computed to be

F(n-=1)I'(n-2)C'(n-2/3)
[(7/3)

detC = —(—1)"3-3 (5.30)

The previous determinant is nonzero for every n > 3.
Consequently, the subsystem of equations £, ; = O with [ =
3,...,n—1 has a unique solution that corresponds to
Bur = Pnz = ... = Ppn— = 0. Then, the remaining equa-
tions are satisfied if and only if @, = 0, so that Eq. (5.19) is
obtained.

Conversely, assume that a,=p,; =0, for j=
2,...,n—2 and n > 3. Then, application of the dictionary
Egs. (5.14)—(5.17) provides the off shell density presented
below in Eq. (5.33) and we conclude. (]

|
The previous proposition states that the only choice for
F, that comes from an actual covariant density is

_ 3 n—2 2
Fu = Sy = 13u (P = 3Q)" (2P = 6(n - 2)PQ
+3(n—1)(16n0* + 3(2 — 3n)Q?)), (5.31)

where we imposed j=n—1 and D =4 in (4.13) and
simplified the resulting expression. For n = 1 and n = 2,
we have that

P p? 3Q?
fl:_z - T

- 2@ -
2 2464

(5.32)
JF trivially corresponds to the Einstein-Hilbert term (up to
a constant), while F, is the on shell evaluation of a term
proportional to the Gauss-Bonnet density in four dimen-
sions, which is known to be topological. Therefore, to
quadratic order we verify that the only four-dimensional
GQTG is Einstein gravity. For n > 3, direct application of
the dictionary [Egs. (5.14)—(5.17)] in (5.31) proves the
following result, after normalizing the coefficient of the
term R" to one.

Theorem 3. There exists a unique inequivalent GQTG
at each curvature order n > 3 in D = 4. A representative of
such unique equivalence class can be taken to be
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n=2
S = R+ 7 R2Zy + R Y5+ Y AR (R 422, (5.33)
=0

where

(=3)*2(1+1)(31 + 4)n!
2(l+2)(n—1-2)! ~°

n=-2dn(n-1. p=-30-2. = (5.34)

48(n—1-2)(n—1-3)
I+ 1D)(Bl+4)

A = (5.35)

Theorem 3 and the argumentation above provide, to the best of our knowledge, the first rigorous proof of the fact that
there exists one and only one inequivalent four-dimensional GQTG at each curvature order n. Theorem 3 also presents the
explicit off shell expression of a representative of the unique equivalence class existing at every n, which we have proven to
coincide with the four-dimensional GQTGs found in [73] up to trivial GQTGs. Also, we have checked that (5.33) satisfies
the recurrence relation (2.11) up to trivial GQTG densities. Equation (5.33) provides the following four-dimensional
GQTGs at orders n =3, 4, 5, and 6:

4)
S 3

o = R3 + 18RW 4 g Wd — 36RZ4ZE — 126W W ./ W, ;9P + 108Z4 ZGW .7, (5.36)

S4) = R+ 36R>W 4eWPe! = TIRPZLZ — SOARW 3 W oI W o0 + 432RZYZGW 1

+ 135 (W e g W) = 216W g WA Z5 2L (5.37)

Sa) = RS + C0RW e W = 120R3Z4ZE — 1260R>W o, W o W o
+ 1080R2ZYZGW 1.2 + 6TSR(W 1o g W*)? = 1080RW 1o g W Z5.Z1,

— T404W o WPAW W TW T+ 2160Z8ZEW W (9 W 1,4, (5.38)

Sig) = RO+ 0R*W e W = 180R*ZZl; — 2520RW o I W o/ W
+ 2160R3Z4ZEW .4 + 2025R* (W 4o g Wbe?)? — 3240R2Wabcdwab€dz;zé
— 8424RW 1oy WAW (MW 1TW jf + 12960RZ4ZEW W, (90 W 4

+ 1080(W 1o Wed)? = 1620(W o g W42 25 ZL. (5.39)
The cubic density SE;‘; is related to Einsteinian cubic gravity (2.9) via

Sy =18(T - P). (5.40)
where 7 is a trivial GQTG in D = 4 which has the following expression:
T = 12RacbdRcedeeafb _ 6RabcdRcdefRefah + 42RabcdRabceRde _ 6RRabcdRubcd
— 48RRR g — 28RIRER, + 24RRPR ,;, — 2R3, (5.41)

On the other hand, regarding the number of curvature invariants #SQTG’(4) appearing in (5.33), if one takes into account that
there are five curvature invariants at n = 3 and that the sum generates two new terms at each order 7, it is immediate to
deduce that

4OQIG4) _ o 1. (5.42)

As mentioned before, this is precisely the number of terms that need to be included in the specific GQTGs found in [73].
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VI. CONCLUSIONS

In this paper we have carried out the classification of all
inequivalent GQTGs in dimension D > 4. This characteri-
zation has been possible thanks to the dictionary derived in
Sec. IIl for D > 5 and in Sec. V for D = 4, which allowed
the conversion of the on shell classification of GQTGs
developed in [81] into a fully covariant one. On one hand,
we were able to provide the covariant form of a simple
representative of the unique equivalence class of QTGs (see
Theorem 2) and of the n — 2 equivalence classes of GQTGs
(see Theorem 2) existing in D > 5 at every curvature order
n. Until now, only somewhat cumbersome expressions for
QTGs and for a single example of GQTG at each curvature
order were known [73]. On the other hand, we managed to
rigorously prove that there exists one and only one
equivalence class of (proper) GQTGs in four dimensions
and to obtain the off shell expression of a representative of
such unique class in Theorem 3. This is the first explicit
proof regarding the existence of a unique class of inequi-
valent GQTGs in D =4. Also, the four-dimensional
GQTGs to arbitrary order in the curvature presented in
Eq. (5.33) are much simpler in form than those provided
before in the literature, cf. [73].

Regarding future directions, there are several possibil-
ities worth exploring. First, it would be interesting to have a
better understanding on the role played by trivial GQTGs,
such as parity-breaking densities. Indeed, note that we have
carried out the classification of inequivalent GQTGs, which
precisely mods out trivial GQTGs, so a full characterization
of trivial GQTGs order by order would be necessary in
order to obtain all GQTGs. This aspect is intimately
connected with the study of non-SSS solutions in
GQTGs, since trivial GQTGs need not be vanishing on
different Ansitze and, as such, may affect properties of
solutions. In particular, it would be useful to investigate
the properties of cosmological solutions and rotating

black-hole solutions in GQTGs, examining the effects of
adding or removing trivial GQTGs. This program has
already been initiated for particular GQTGs [82-87], so it
would be of interest to extend it in more generality. Also,
taking into account that GQTGs span the set of effective
gravitational theories [ 79] after considering the possibility of
metric redefinitions, the present classification, together with
a potential complete characterization of trivial GQTGs,
could help to unveil the minimum amount of GQTGs to
obtain a basis for the set of effective theories of gravity.

The methods developed in this work could be of utility in
other setups. For example, one could consider the set of
higher-curvature gravities which admit a holographic
c-theorem [120,121]. These theories are characterized by
admitting domain-wall type solutions with second-order
equations of motion which interpolate between two asymp-
totically AdS regions representing the ultraviolet and
infrared fixed points of the renormalization group flow
[122,123]. Having at disposal the form of such theories
when evaluated on the domain-wall like ansatz [124], one
could wonder whether it is possible to apply similar
techniques to the ones presented in our work to obtain
the covariant expression of theories satisfying holographic
c-theorems at arbitrary orders.

In more generality, it is natural to ask as well which new
avenues our classification of inequivalent GQTGs may
open up within the holographic context.
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APPENDIX A: QTG DENSITIES AT n=5 AND n=6

We present here the QTGs Z,) of curvature order n =5 and n = 6 that are obtained via Theorem 1 for arbitrary
dimension D > 5. We write them in terms of the Weyl tensor W .., traceless Ricci tensor Z,, and the Ricci scalar R:

25 =R+

4(D — 1)°D*(4D — 5)W 4pe g WIW , 9"W ) T W 1

(D—3)2(D-2(D((D - 9)D + 26) — 22)

240(D = 1)’ D*W o WP IZ4W oy W/ 40(D — 1)DR3 287"

(D—4)(D-3)*(D-2)*
1920(D — 1)*D3RZ¢Z . Z 4, WPdee

(D-2)
15(D — 1)2D*(3D — 4)R(W g WePed)?

(D—4)(D-3)(D-2)*

(D-37(D-2)

_160(D ~ 1)’D(D(11D - 12) + YW g W28 2} 72

(D —4)(D-3)(D-2)°
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40(D = 1)*D3(D(17D — 28) + 12)Z4Z5W oy W 1" W 5,4
(D =3)(D-2)*(D((D-9)D + 26) —22)
1920(D = 1)*D’Z3Z5Z4ZW " 256(D — 1)*D*(D + 4)Z32525247¢

(D -3)(D-2)% (D —4)(D-2)7
20(D —1)’D*(2D = 3)R*W W ., W ;" 240(D — 1)2D*R2Z§Z5W . 2¢
(D-3)(D-2)(D((D—-9)D +26) —22) (D-3)(D-2)*

160(D — 1)2D?R*Z375Z5  240(D — 1)2D*R*Z4W 4 g, WP
(D -2)* (D -4)(D-3)(D -2)?
L 1200 - 1)2DX(D(D = 10) + 4)RW 3. WZ5ZL 960(D — 1)* D*R(2525)?
(D=3)(D-2) (D-2)°
~960(D — 13D?RZPW 4paWTIWY ) 10(D — 1) DRPW g Wb
(D—4)(D—-3)*(D-2)? (D-3)(D-2)

5(D=1)3D°(5D = 6)(W 4 g W<?)3  24(D = 1)>D*(4D — 5)RW 1o g WP IW . 9"W ), I W 1
(D-3)3(D-2)° (D—-3)%(D-2)*(D((D-9)D +26) —22)
1440(D = 1)> D*RW 4o g WA ZEW o WM N 60(D —1)*D*(D(31D —54) +24) (Wu,,ch””“’)zz;ZZ
(D—-4)(D-3)>(D-2)* (D-3)*(D-2)7
~960(D — D)*D*W 4 g WP AZIW ey WKW ~320(D - 1)*D*(D(23D = 32) + 12)W ,,“W .,/ W ,* 23 21 Z!
(D—-4)(D-3)*(D-2)* (D—=4)(D-3)(D-2)>(D((D-9)D +26)—22)
15360(D — 1)3D*Z4Z5Z5Z ., Z ;W9 5760(D — 1)>D3R2Z8Z 1 Z 4o WP
(D—-4)(D-3)(D-2)’ (D—-4)(D-3)(D-2)*
~960(D = 1)*D¥(D(11D - 12) + A)RW 4o g W28 2} 7
(D—-4)(D-3)(D-2)¢
240(D —1)*D3(D(17D = 28) + 12)RZ ,, Z* W oo f W 9" W 4 N 11520(D = 1)*D*RZ{Z5Z5Z5W .
(D—=3)(D=2)*(D((D-9)D +26) —22) (D-3)(D-2)°
1536(D — 1)*D*(D + 4)RZ2425757¢7¢ N 960(D — 1)*D*(D(8D = 7) + 2)W yed W4 (2521 )
(D-4)(D-2)’ (D-3)(D-2)}
N 1280(D — 1)°D3(D +2)(Z§Z5)*  40(D —1)?D*(2D = 3)R3W W ., W ;4
(D-2)° (D-3)(D-2)(D((D-9)D +26)—22)
480(D — 1)2D*R3Z4Z5W . b4 320(D —1)2D?R3Z87575  480(D — 1)2D>R3Z4W 4 g, WPEe
(D-3)(D-2)* (D-2)* (D—-4)(D-3)(D-2)?
360(D —1)?D*(D(7D — 10) + 4)R2Wabch“b”dZ;Z£ 2880(D — 1)>D*R*ZPW g W lIW,
* (D—3)(D-2) - (D-4) (D=3 D-2)
2880(D — 1)3D*R*(Z4Z5)? N 45D3(3D —4)(D — 1)?R2(W 4o g W) 15(D — 1)DR*W .y Web<d
(D—-2)5 (D-3)*(D-2)* (D-3)(D-2)
60(D —1)DR*Z4Z?,
- (D _ 2)2 : (AZ)

Ze =R+
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APPENDIX B: GQTG DENSITIES AT n=5 AND n=6

Here, we present the GQTG densities S, ;) of Theorem 2 at fifth and sixth order for D > 5 in terms of the Weyl tensor
W .pea» traceless Ricci tensor Z,;, and the R1001 scalar R. At each order, there are j = 2, ..., n — 1 inequivalent densities—
this is, three at » = 5 and four at n = 6:

(D —1)*D*(D(5(D = 3)D = 33) + 55)W 4o g WAW . 9" W, T W, 7
3(D-3)%(D —2)3(D((D —9)D + 26) — 22)
5(D=1)*D*(D(23D = 32) = 276)W e g W Z4W o W/
6(D —4)(D —3)%(D—2)*
5(D = 1)2D¥(D((D = 3)D = 15) + 23)R(W e qW?P<4)2  20(D = 1)*D*(D(D + 4) — 100)RZ4Z ;. Z 4, WP¥¢¢
2(D-372(D-2) i (D—4)(D-3)(D-2)
5(D — 1)*D(D(D(D(43D — 52) — 1044) + 1152) — 384) W ., W12 2} Z{
3(D—4)(D-3)(D-2)¢
5(D —1)*D3*(D(D(D(24D — 61) — 351) + 648) — 284) Wabcdwcdefwefabzgzg
3(D =3)(D =2)*(D((D —9)D + 26) — 22)
20(D ~1)*D*(D(7D +12) = 300)Z3ZLZGZiW oo 32(D = 1)*D3(D(5D — 24) — 96) 242525247
3(D=3)(D -2y * 3D=4)(D-2)
5(D—1)2D*(D((D —3)D = 45) + T1)R*W ,,“*W .,/ W, ;4
6(D —3)(D —2)(D((D - 9)D + 26) — 22)
_10(D =25)(D = 1)’D*R*Z3Z{W, " 5(D —1)’D*(D*> = 96)R*Z3 28 Z;,

+

(D-3)(D-2)} 3(D-2)*
10(D = 1)2D*(D(D(D(2D — 3) — 83) + 120) — 48)RW . W25 Z]
(D -3)(D-2)°
10(D = 1)*D*((D - 8)D* + 288)R(Z3Z5)*  40(D — 1)DR*Z;7Z)
3(D—2)° (D —2)?
5(D = 1)2D*(D? = 96)R*Z&W g WP 10(D — 1)DR3W . Wb<d
2(D —4)(D -3)(D -2)? (D-3)(D-2)

10(D — 1) D*(D(11D — 12) — 284)RZ“PW 1,y WeTIWY, 1,
3(D —4)(D —3)%(D —2)?

(B1)

(D —1)*D*(D(5D((D — 8)D + 18) — 16) — 55)W o WIW , "W, T W, 1
4(D -3)X(D -2)*(D((D - 9)D + 26) — 22)
5(D = 1)*D*(D(D(19D = 132) + 155) + 330)W e WA ZEW o gy WM
8(D —4)(D —3)%(D —2)*
N 15(D = 1)2D*(D(D((D = 12)D + 30) + 20) — 55)R(W g W4b<d)?
16(D —3)%(D —2)*
30(D = 1)*D3*(D(D +9) — 72)RZ¢Z .. Z 4, WPdee
(D—4)(D-3)(D-2)*
5(D =1’ D*(D(D(D(D(11D = 96) + 97) + 686) — 768) + 256)W o W4 252} Z2
2(D-4)(D-3)(D-2)°

S =R+
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5(D(D(D(D(8D —71) + 146) + 147) — 398) + 184)W ,, /W .,/ W ;40 247}
2(D-1)73D3(D-3)(D -2)*(D((D - 9)D +26) —22)
10(D = 1)*D*(D((D = 8)D = 30) + 216)Z{ ZLZ4Z5W ../
* (D=3)(D-2)
(D= 1)*D3*(D(5D((D — 10)D + 64) — 512) — 2048) 247572574 Z¢
+ 2D—-4)(D-2)
5(D=1)2D*(D((D = 3)D — 13) + 23)R?W ,,“ W .,/ W .,
2(D =3)(D =2)(D((D =9)D +26) — 22)
30(D = 9)(D = 1)’D*R*Z3Z5W, " 5(D —1)*D*(D* = 32)R*Z3 227,
(D =3)(D-2)° (D-2)
)
(

15(D — 1)2D*(D? — 32)R*Z4W 4 g, WPE4e
2(D - 4)(D -3)(D -2)?
15(D = 1)2D*(D(D(D((D = 17)D + 23) + 217) = 320) + 128)RW 0, W25 Z,
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