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The Kramers-Kronig relation is a well-known relation, especially in the field of optics. The key to this
relation is the causality that output comes only after input. We first show that gravitational lensing obeys the
causality in the sense that (electromagnetic/gravitational) waves emitted from the source arrive at an
observer only after the arrival of the signal in geometrical optics. This is done by extending the previous
work which is based on the thin lens approximation. We then derive the Kramers-Kronig relation in
gravitational lensing, as the relation between real and imaginary parts of the amplification factor, which is
the amplitude ratio of the lensed wave to the unlensed wave. As a by-product, we find a new relation that
equates integration of the square of the real part of the amplification factor over frequency to that for the
imaginary part of the amplification factor. We also obtain a sum rule which relates the integral of the
imaginary part of the amplification factor with the magnification of the first arrival image in geometrical
optics. Finally, we argue that an incorrect separation of the observed gravitational waveform into the
amplification factor and the unlensed waveform generically leads to the violation of the Kramers-Kronig
relation. Our work suggests that examining the violation of the Kramers-Kronig relation may be used for
correctly extracting the lensing signal in the gravitational wave observations.
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I. INTRODUCTION

Light passing through a gravitational field is bent. This
phenomenon is known as gravitational lensing (GL) [1,2],
and gravitational waves (GWs) are also subject to this
effect [3,4]. One of the prominent features of GWs over
light is their long wavelength nature. Because of this, in
some cases, geometrical optics which only deals with null
geodesics breaks down and the propagation of GWs should
be described by wave optics [5,6]. In the regime of wave
optics, the lensed GWs carry more information about a lens
object since they pass through a more extended region due
to diffraction [7].
Recently, there has been a discussion about the arrival

time difference between light and GWs due to GL [8–10]. It
was argued in [9] that GWs never arrive earlier than light if
they depart from the source at the same time. This can be
rephrased as that GL signal in wave optics regime comes
only after the signal in geometrical optics. This fact gives us
inspiration that the Kramers-Kronig (K-K) relation, which
is satisfied as long as any system under consideration
satisfies the causality condition that output comes only after
input, also holds in GL.
The K-K relation is directly derived from causality, and

actually, it is the relation between real and imaginary parts
of a response function [11]. It is often used in the field of
optics, for example, as a relation between the refractive
index and the extinction coefficient. The typical application
is optical data inversion [12]: we can obtain data of the

refractive index from that of the extinction coefficient, or
vice versa. However, to the best of our knowledge, the K-K
relation has never been discussed in the context of GL. This
observation is sufficient to motivate us to clarify the K-K
relation in GL and to investigate potential applications to
the observations of GL of GWs.
In this paper, we first revisit the causality of GL.While the

previous study used the so-called thin-lens approximation
[13] to show the causality, we provide an explicit proof that
the causality holds true without resorting to the thin-lens
approximation. In Sec. III, we derive the K-K relation in GL
which gives a nontrivial relation between the real part of and
the imaginary part of the amplification factor. We also derive
some relations which directly follow from the K-K relation.
In Sec. IV, we argue that an incorrect separation of the
observed gravitational waveform into the amplification
factor and the unlensed waveform generically leads to the
violation of the Kramers-Kronig relation. Given that it is
observationally challenging to discern a lensing effect from a
characteristic of a source [14], examining the violation of the
Kramers-Kronig relation has a potential to correctly extract
the lensing signal in the gravitational wave observations.

II. CAUSALITY OF GRAVITATIONAL LENSING

In this section, we investigate the causality of GL, which
is needed to derive the K-K relation. Propagating waves are
either GWs or electromagnetic waves both of which have
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polarization degrees and the waves can be written as a
product of wave amplitude ϕ and polarization vector/tensor.
The change of the polarization vector/tensor due to GL is
suppressed by the gravitational potential (≪ 1) [2] and we
ignore the polarization in this paper. The background
metric gBμν on which the wave propagates is given by

ds2 ¼ gBμνdxμdxν ¼ −ð1þ 2ΦÞdt2 þ ð1 − 2ΦÞdx2; ð2:1Þ

where Φ is the gravitational potential of the lensing
objects.1 The wave equation for ϕ is that for a massless
scalar field [16]

∂μð
ffiffiffiffiffiffiffiffi
−gB

p
gμνB ∂νϕÞ ¼ 0: ð2:2Þ

The lensed wave ϕL is a solution of this equation. To
represent the effects of GL, it is customary to move to the
frequency domain where the lensed waveform is simply
given a product of the unlensed waveform and the
amplification factor FðωÞ:

ϕLðωÞ ¼ FðωÞϕ0ðωÞ; ð2:3Þ

where ϕLðωÞ=ϕ0ðωÞ are the lensed/unlensed wave in the
frequency domain, evaluated at the observer’s position.
Then Eq. (2.2) can be solved in terms of F and the formal
solution is given by the path integral [5]2:

FðωÞ ¼
Z

DθðrÞeiωT½θ�; ð2:4Þ

where

T½θ� ¼
Z

r0

0

dr

�
1

2
r2
�
dθ
dr

�
2

−Φðr; θðrÞÞ
�
; ð2:5Þ

and θ is a two-dimensional angular vector perpendicular to
the line of sight, r is a radial coordinate along the line of
sight (the observer is located at r ¼ 0 and the source is at
r ¼ r0) (see Fig. 1). The time dependence of Φ, which can
arise when the source varies in time, is encoded in r
dependence through r − t ¼ const. The first term of
Eq. (2.5) represents the deviation of a path from the straight
line, while the second term represents the time delay caused
by the gravitational potential.
What we want to compute is the Fourier transform of

FðωÞ, and to do so we first discretize the path integral. We
divide the distance to the source into N parts and define

rj ≡ jΔr; ð2:6Þ

θj ≡ θðrjÞ; ð2:7Þ

Φj ≡Φðrj; θðrjÞÞ; ð2:8Þ

Tj ≡ Δr
�
1

2
r2j

�
θjþ1 − θj

Δr

�
2

−Φj

�
; ð2:9Þ

where Δr ¼ r0=N. Then we get

FðωÞ ¼
Z �YN−1

j¼1

Njd2θj

�
exp

�
iω

XN−1

j¼1

Tj

�

¼
Z YN−1

j¼1

d2θjFj; ð2:10Þ

where

Fj ≡ NjeiωTj ; ð2:11Þ

and

Nj ¼
ωr2j

2πiΔr
ð2:12Þ

is the normalization factor required for F ¼ 1 in the
absence of the gravitational potential. The Fourier trans-
form of FjðωÞ is

fjðtÞ ¼
Z

∞

−∞

dω
2π

FjðωÞe−iωt

¼ r2j
2πΔr

d
dt

δðt − TjÞ; ð2:13Þ

hence that of FðωÞ becomes

FIG. 1. Schematic picture of GL. The dotted line represents a
path of the waves, and all paths contribute to the path integral.

1Here we ignore the expansion of the Universe because it is
not important in this discussion (see Ref. [15]).

2In fact, this solution is derived under the eikonal approxi-
mation and θ ≪ 1 [5].
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fðtÞ ¼
Z

∞

−∞

dω
2π

FðωÞe−iωt

¼
Z �Y

j

d2θj

�Z
∞

−∞
dt2 � � � dtN−1f1ðt − t2Þ � � � fN−2ðtN−2 − tN−1ÞfN−1ðtN−1Þ

¼
Z �Y

j

r2j
2πiΔr

d2θj

�Z
∞

−∞
dt2 � � � dtN−1

d
dt

δðt − t2 − T1Þ � � �
d

dtN−2
δðtN−2 − tN−1 − TN−2Þ

d
dtN−1

δðtN−1 − TN−1Þ

¼
Z �Y

j

r2j
2πiΔr

d2θj

�
dN−1

dtN−1 δ

�
t −

X
j

Tj

�
; ð2:14Þ

where we have used the fact that the Fourier transform of a product becomes a convolution integral and the properties of the
delta function:

gðt0Þ d
n

dtn
δðt − t0Þ ¼ gðt0Þð−1Þn dn

dt0n
δðt0 − tÞ ¼ δðt0 − tÞ d

n

dtn
gðtÞ: ð2:15Þ

Taking N → ∞ limit, Eq. (2.14) yields

fðtÞ ∝ d∞

dt∞

Z
Dθδðt − T½θ�Þ; ð2:16Þ

thus we conclude that

fðtÞ ¼ 0 if t < Tmin ≡min
θ
fT½θ�g: ð2:17Þ

This means that there is no lensing signal before t ¼ Tmin.
Since Tmin is the time delay in the geometric optics limit,
we can conclude that GWs never arrive earlier than light if
these are emitted at the same time. This is the causality of
GL which is crucial to prove the Kramers-Kronig relation
for the amplification factor in the next section. As we
mentioned before, Ref. [9] has shown the same result with
the thin lens approximation. Thus our proof is the gener-
alization of that.

III. KRAMERS-KRONIG RELATION

A. Derivation

In this subsection, we derive the K-K relation in GL. All
that is needed for this is the causality and the asymptotic
behavior of FðωÞ [11]. First, let us verify the analytic
behavior of FðωÞ that is related to the causality. From
Eq. (2.17), FðωÞ can be written as

FðωÞ ¼
Z

∞

Tmin

dtfðtÞeiωt; ð3:1Þ

or

FphðωÞ≡ FðωÞe−iωTmin ¼
Z

∞

0

dtfðtþ TminÞeiωt: ð3:2Þ

Then FphðωÞ can be analytically continued to the upper
half of the complex ω-plane (we shall write Iþ):

Fphðuþ ivÞ ¼
Z

∞

0

dtfðtþ TminÞeiute−vt; ð3:3Þ

where v > 0. If we assume that FphðωÞ does not have any
poles on the real axis (this is physically reasonable), then
FphðωÞ is also regular in Iþ, because the term e−vt only
improves the convergence of the integral. Furthermore,
FphðωÞ has its physical meaning. Since the time delay
Tmin itself is not directly measurable, it is sensible to
remove this degree of freedom and to use FphðωÞ rather
than FðωÞ. From now on, we focus on FphðωÞ and use
FðωÞ for FphðωÞ.
Besides, we have to know the asymptotic behavior of

FðωÞ. In ω → ∞ limit, excepting some special cases,3

FðωÞ does not diverge:

jFðωÞj < C; ð3:4Þ

where C is some constant. On the other hand, in ω → 0
limit, Fð0Þ ¼ 1 because waves with extremely long wave-
lengths do not feel the gravitational field. This can also be
understood from Eq. (2.2). When ω ¼ 0, any time
derivatives in Eq. (2.2) disappear and the wave equation
coincides with the free propagation equation, thus
ϕLð0Þ ¼ ϕ0ð0Þ.

3In the case of the point mass lens with the impact parameter
y ¼ 0, FðωÞ diverges as FðωÞ ∝ ffiffiffiffi

ω
p

. However, in this case
Eq. (3.7) also holds because jGðωÞj → 0.
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From above, if we define GðωÞ by

GðωÞ≡ FðωÞ − 1

ω
; ð3:5Þ

then GðωÞ has no poles on the real axis4 and in Iþ, and in
ω → ∞ limit jGðωÞj → 0. Therefore, by using Cauchy’s
integral theorem with the path Γ shown in Fig. 2, the
following equation holds:

GðωÞ ¼ 1

πi

Z
�

∞

−∞

dω0

ω0 − ω
Gðω0Þ ð3:6Þ

or

FðωÞ ¼ 1þ ω

πi

Z
�

∞

−∞
dω0

ω0 − ω

Fðω0Þ − 1

ω0 ; ð3:7Þ

where

Z
�

∞

−∞
≡ lim

ϵ→0

�Z
ω−ϵ

−∞
þ
Z

∞

ωþϵ

�
ð3:8Þ

denotes Cauchy’s principal value. Equation (3.7) is the K-K
relation in GL, and this is the relation between the real and
imaginary parts of FðωÞ:

ReFðωÞ ¼ 1þ ω

π

Z
�

∞

−∞
dω0

ω0 − ω

ImFðω0Þ
ω0 ; ð3:9Þ

ImFðωÞ ¼ −
ω

π

Z
�

∞

−∞
dω0

ω0 − ω

ReFðω0Þ − 1

ω0 : ð3:10Þ

These two are equivalent, and the K-K relation states that
the real and imaginary parts must be related to make the
system causal.
In order to follow the notation used in the literature, let us

define KðωÞ and SðωÞ by5

ReFðωÞ≡ 1þ KðωÞ; ð3:11Þ

ImFðωÞ≡ SðωÞ: ð3:12Þ

In terms of these quantities, the K-K relation becomes

KðωÞ
ω

¼ 1

π

Z
�

∞

−∞
dω0

ω0 − ω

Sðω0Þ
ω0 ; ð3:13Þ

SðωÞ
ω

¼ −
1

π

Z
�∞

−∞
dω0

ω0 − ω

Kðω0Þ
ω0 : ð3:14Þ

B. Confirmation of the Kramers-Kronig
relation for some examples

In this subsection, we consider two examples to confirm
that the amplification factor, whose analytic expression is
known in the literature, actually obeys the K-K relation
derived above. The formulas for the amplification factor used
in this section are all based on the thin-lens approximation.
This is the approximation that the lensing effect occurs only
in a single plane, and its validity was confirmed in Ref. [13].

1. A point-mass lens

The first example is the point-mass lens. The analytic
expression of FðωÞ is given by [2]

FðωÞ ¼ exp

�
πw
4

þ iw
2

�
ln

�
w
2

�
− 2τmin

��
Γ
�
1 −

iw
2

�
1F1

�
iw
2
; 1;

iwy2

2

�
; ð3:15Þ

where w≡ 4GMω with the lens mass M and y is the impact parameter, and τmin is the dimensionless time delay

FIG. 2. Path of the complex integral. The small semicircle’s
contribution is the residue at ω0 ¼ ω, and the larger semicircle’s
contribution is 0.

4It is possible for GðωÞ to diverge at ω ¼ 0, for example, in the case that FðωÞ contains a term like ω lnω. However, even in this case,
there is no divergence on Γ in Fig. 2 since jGðωÞj < 1=ω (ω → 0) and improper integral converges.

5K and S coincide with the magnification and phase shift when K; S ≪ 1 [17]. Away from the weak lensing regime, K and S just
represent the real and imaginary parts of F, respectively.
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τmin ¼
2

ðyþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 4

p
Þ2

− ln

�
yþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 4

p
2

�
: ð3:16Þ

It is obvious from Fig. 3 that Fð0Þ ¼ 1 and jFð∞Þj < C.
Besides,Fðuþ ivÞ haspoles atw ¼ −2ni (n ¼ 1; 2;…) that
come fromΓð1 − iw

2
Þ but does not have any poles in Iþ. There

is also a branch cut that comes from lnw, but this must be
placed on the lower half of the complex ω-plane in order to
satisfy Fð−ωÞ ¼ F�ðωÞ which comes from the condition
that the wave in time domain is not complex but real.
Therefore, F is regular in Iþ and satisfies the K-K relation.

2. Born approximation

The second example is the weak lensing in which the
amplification factor is computed to linear order in Φ [15].
In this approximation, K and S are given by (we also use
the thin lens approximation for simplicity):

KðωÞ ¼
Z

d2k⊥
ð2πÞ2

Σ̃ðk⊥Þ
Σ0

sinðr2Fk2⊥=2Þ
r2Fk

2⊥=2
; ð3:17Þ

SðωÞ ¼
Z

d2k⊥
ð2πÞ2

Σ̃ðk⊥Þ
Σ0

cosðr2Fk2⊥=2Þ − 1

r2Fk
2⊥=2

; ð3:18Þ

where Σ̃ðk⊥Þ is the Fourier transformed surface mass
density and Σ0 is a constant that has the dimension of
surface mass density, and

rFðωÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rlðr0 − rlÞ

ωr0

s
ð3:19Þ

is called the Fresnel scale [18] with lens position r ¼ rl.
Here, we show that Eq. (3.18) can be obtained from
Eq. (3.17) by applying the K-K relation (3.14). In prepa-
ration for that, we define Ω≡ rlðr0 − rlÞk2⊥=2r0. Then
using Eq. (3.17), the K-K relation (3.14) requires that SðωÞ
should be given by

SðωÞ¼−
ω

π

Z
�∞

−∞

dω0

ω0−ω

1

ω0

Z
d2k⊥
ð2πÞ2

Σ̃ðk⊥Þ
Σ0

sinðr2Fðω0Þk2⊥=2Þ
r2Fðω0Þk2⊥=2

¼−
ω

π

Z
d2k⊥
ð2πÞ2

Σ̃ðk⊥Þ
Σ0

Z
�

∞

−∞

dω0

ω0−ω

1

Ω
sin

�
Ω
ω0

�
: ð3:20Þ

Then, using the formula [[19], Eq. (5.129)]

1

π

Z
�

∞

−∞

dω0

ω−ω0 sin
�
Ω
ω0

�
¼H

�
sin

1

t

�
ðω=ΩÞ¼ cos

�
Ω
ω

�
−1;

where H½� denotes the Hilbert transform, SðωÞ given by
Eq. (3.20) reproduces Eq. (3.18). Thus, the K-K relation
holds, or in other words, the causality is satisfied in the
Born approximation.

C. Implications of the Kramers-Kronig relation

In this subsection, we report some implications that
directly follow from the K-K relation.

1. Relation between squares

First, we show a new relation between the square of the
real and imaginary parts of F. Substituting Eq. (3.14) to
Eq. (3.13), we get

KðωÞ
ω

¼ −
1

π2

Z
�

∞

−∞

dω0

ω0 − ω

Z
�

∞

−∞
dω00

ω00 − ω0
Kðω00Þ
ω00 ; ð3:21Þ

then we have

Z
∞

−∞
dω

K2ðωÞ
ω2

¼ −
1

π2

Z
∞

−∞
dω

KðωÞ
ω

Z
�

∞

−∞
dω0

ω0 − ω

Z
�

∞

−∞

dω00

ω00 − ω0
Kðω00Þ
ω00

¼ 1

π2

Z
∞

−∞
dω0

Z
�

∞

−∞
dω

ω − ω0
KðωÞ
ω

Z
�

∞

−∞
dω00

ω00 − ω0
Kðω00Þ
ω00

¼
Z

∞

−∞
dω0 S

2ðω0Þ
ω02 ; ð3:22Þ

FIG. 3. ReF (solid) and ImF (dashed) in the case of point mass
lens with y ¼ 1.
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where we have exchanged the order of integration with
respect to ω and ω0, and used Eq. (3.14) again. Finally, we
get the new relation6

Z
∞

−∞
dω

K2ðωÞ
ω2

¼
Z

∞

−∞
dω

S2ðωÞ
ω2

: ð3:23Þ

This relation may become useful in future observations of
GL caused by the dark matter inhomogeneities. In such
observations, measurements of hK2ðωÞi and hS2ðωÞi en-
able us to determine the matter power spectrum on
subgalactic scales and provide a novel avenue to probe
small-scale matter fluctuations [15,20]. In this respect,
Eq. (3.23) can be used in principle to verify the correctness
of observed KðωÞ and SðωÞ if the measurements cover a
wide frequency range to allow estimation of both left and
right-hand sides of Eq. (3.23) to a good approximation.
As a final remark of this subsection, it is straightforward

to show that the relation (3.23) leads to

Z
∞

−∞
dω

K2ðωÞ þ S2ðωÞ
ω2

¼
Z

∞

−∞
dω

K2ð2ωÞ
ω2

: ð3:24Þ

On the other hand, it was shown in [21] that within the Born
approximation for GL caused by dark matter fluctuations
the variances of K and S satisfy the universal relation

hK2ðωÞi þ hS2ðωÞi ¼ hK2ð2ωÞi: ð3:25Þ

Because of the simplicity and universality of the relation, it
is expected that there is a simple explanation for the relation
(3.25) based on some fundamental physical principles. The
coincidence between the relation (3.25) and the ensemble
average of the integrand of Eq. (3.24) may suggest that the
causality is partially responsible for the relation (3.25)
to hold.

2. Sum rule

Second, we show the so-called sum rule. The sum rule is
known in the field of optics as the relation between the sum
over all frequencies of absorption of a medium and its
electric density [12]. To derive the GL version of this, we
deform Eq. (3.7) like

FðωÞ ¼ 1þ 1

πi

Z
�∞

−∞
dω0

�
ω0

ω0 − ω
− 1

�
Fðω0Þ − 1

ω0

¼ 1þ 1

πi

Z
�

∞

−∞
du

Fðωþ uÞ − 1

u
−
2

π

Z
∞

0

dω0 Sðω0Þ
ω0 ;

ð3:26Þ

where we have used Fð−ωÞ ¼ F�ðωÞ in the second line.
We now consider complex frequency ω ¼ uþ iv and take
u; v → þ∞ limit, introducing the geometric optics limit:

FðωÞ ¼ ffiffiffiffiffi
μ1

p þ
Xn
j¼2

ffiffiffiffiffi
μj

p
exp½iðωT1j − πnjÞ�; ð3:27Þ

where n is the number of images, μj is the magnification
factor of the jth image size, T1j is the arrival time difference
between the 1st and jth image, and nj is some numbers but
not important here. In u; v → þ∞ limit, the oscillating
parts of Eq. (3.27) are damped, and then FðωÞ → ffiffiffiffiffi

μ1
p

.
Using this result and taking the real part, Eq. (3.26)
becomes7

ffiffiffiffiffi
μ1

p ¼ 1 −
2

π

Z
∞

0

dω
SðωÞ
ω

: ð3:28Þ

This is the GL version of the sum rule, whose meaning is
that summing up the imaginary part of F for all frequencies
yields the magnification factor of the earliest arriving
image. We expect that this relation could be used as a
consistency check in future observations.

IV. APPLICATION OF THE KRAMERS-KRONIG
RELATION

A. Method for determination of the amplification factor

In this section, we investigate a potential application of
the K-K relation to observations of GL of GWs. In
observations of GWs, what we directly observe is the
lensed waveform and the separation of the observed
waveform into the unlensed waveform and the amplifica-
tion factor requires additional procedures. One approach is
to employ the unlensed waveform based on templates of
some typical sources characterized by the source param-
eters and to determine the best fit parameters [22]. In this
case, the amplification factor is determined by dividing the
measured waveform with the unlensed template. However,
if the template is determined incorrectly, the obtained
amplification factor will also be different from the true
one. Such an error will occur, for example, when the source
is the precessing binary stars [23,24] since the waveform of
the unlensed precessing binary and the microlensed unpre-
cessing binary are very similar [14]. Hence, one may
mistake the effect of precession for that of GL, resulting
in the wrong amplification factor. Here we first assume the
ideal situation with no measurement error and argue that the
K-K relation, in principle, can tell us whether the measured
amplification factor is truly due to GL or not. Then
measurement error is discussed at the end of this sub-
section. Again, the analysis assumed in the following

6As it is clear from the derivation, the relation (3.23) holds not
only for the amplification factor but also for any other response
functions as long as the K-K relation of the type (3.13) and (3.14)
holds true. 7The imaginary part becomes 0 ¼ 0.
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discussion does not use a template for the amplification
factor, but only for wave sources. Therefore, when we
simply refer to “template” below, we are referring to the
template for wave sources.
If the true unlensed waveform is ϕ0 but we mistakenly

employ a different template ϕ̂0, we obtain the incorrect
amplification factor F̂ given by

F̂ ¼ ϕ0

ϕ̂0

F; ð4:1Þ

where F is the correct one that satisfies the K-K relation.
Now, we demonstrate that F̂, in general, does not satisfy the
K-K relation. To this end, we decompose F̂ as F̂ ¼ F þ δF
and assume an extreme case where the error δF only occurs
in ω1 ≤ ω ≤ ω2

8:

δFðωÞ
�≠ 0 ω1 ≤ ω ≤ ω2

¼ 0 ω < ω1;ω2 < ω
: ð4:2Þ

Substituting F̂ for both sides of Eq. (3.7) and using that F
satisfies the K-K relation, we have

ðLHSÞ − ðRHSÞ

¼ F̂ðωÞ − 1 −
ω

πi

Z
�

∞

−∞
dω0

ω0 − ω

F̂ðω0Þ − 1

ω0

¼ δFðωÞ − ω

πi

�Z
�

−ω1

−ω2

þ
Z
�

ω2

ω1

�
dω0

ω0 − ω

δFðω0Þ
ω0 : ð4:3Þ

In general, the second term of the second line is nonzero
even when ω < ω1 or ω2 < ω, for which case the first term
is zero by assumption. Thus the K-K relation must be
broken by the misselection of templates. This shows that
testing whether Eq. (4.3) vanishes or not in principle
enables us to conclude whether the claimed lensing signal
is correct or not.9

In real observations, there is another cause that leads to
the violation of the K-K relation: truncation of the fre-
quency range due to the limited sensitivity of GW detec-
tors. When the observable frequency range is restricted to
½ωmin;ωmax�, computation of the integral in the right-hand
side (rhs) of Eq. (3.7) by using observational data is
possible only when the range of integration is restricted
to this range. Thus we must limit the integration as

Z
�∞

−∞
→

Z
�−ωmin

−ωmax

þ
Z
�ωmax

ωmin

: ð4:4Þ

Then, this causes a further violation of the K-K relation in
addition to the misselection of templates. Based on this
observation, we introduce a quantity that is a measure of the
violation of the K-K relation as

ΔðωÞ≡ F̂ðωÞ − 1 −
ω

πi

�Z
�

−ωmin

−ωmax

þ
Z
�

ωmax

ωmin

�

×
dω0

ω0 − ω

F̂ðω0Þ − 1

ω0

¼ ΔtemðωÞ þ ΔtrðωÞ; ð4:5Þ

where

ΔtemðωÞ≡ δFðωÞ − ω

πi

�Z
�

−ωmin

−ωmax

þ
Z
�

ωmax

ωmin

�
dω0

ω0 − ω

δFðω0Þ
ω0 ;

ð4:6Þ

and

ΔtrðωÞ≡ ω

πi

�Z
ωmin

−ωmin

þ
Z

−ωmax

−∞
þ
Z

∞

ωmax

�
dω0

ω0−ω

Fðω0Þ−1

ω0

¼2ω

πi

�Z
ωmin

0

þ
Z

∞

ωmax

�
dω0

ω02−ω2

�
Kðω0Þþ i

ω

ω0Sðω0Þ
�

ð4:7Þ

is the contribution of the truncation, and we have used
Fð−ωÞ ¼ F�ðωÞ in the last line. Notice that once F̂ is given
by observation, Δ can be calculated, but Δtem and Δtr
cannot be determined respectively. Considering the region
ωmin ≪ ω ≪ ωmax, we get

ReΔtrðωÞ ≃ C1 þ C2

�
ω

ωmax

�
2

; ð4:8Þ

ImΔtrðωÞ ≃D1

ωmin

ω
þD2

ω

ωmax
; ð4:9Þ

where

C1 ¼ −
2

π

Z
ωmin

0

dω
SðωÞ
ω

; ð4:10Þ

C2 ¼
2ω2

max

π

Z
∞

ωmax

dω
SðωÞ
ω3

; ð4:11Þ

D1 ¼
2

πωmin

Z
ωmin

0

dωKðωÞ; ð4:12Þ

8This assumption is reasonable, at least in the case of the
precessing binary. Because precession is the post-Newtonian
correction [23], it is not negligible only at the end of the inspiral
phase, which means that only the high-frequency region is
modulated.

9If one uses templates not only for the unlensed waveform but
also for the amplification factor based on some particular lens
model, violation of the K-K relation does not appear.
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D2 ¼ −
2ωmax

π

Z
∞

ωmax

dω
KðωÞ
ω2

; ð4:13Þ

are dimensionless constants. To know the magnitude ofΔtr,
we focus on ReΔtr.

10 In the region ωmin ≪ ω ≪ ωmax, the
second term of Eq. (4.8) is negligible. Moreover, assuming
that ωmin is so small that the weak lensing is a good
description, we can calculate C1 explicitly by using the
Born approximation. Substituting Eq. (3.18) into Eq. (4.10)
yields

C1 ¼
Z

d2k⊥
ð2πÞ2

Σ̃ðk⊥Þ
Σ0

Wðr2�k2⊥=2Þ; ð4:14Þ

where r� ≡ rFðωminÞ and11

WðxÞ≡ −
2

π

�
cos x − 1

x
þ SiðxÞ − π

2

�
: ð4:15Þ

Let us compare WðxÞ with sin x=x, which is the filter
function of Eq. (3.17). As can be seen from Fig. 4, the
orders of magnitude ofWðxÞ and sin x=x coincides in all x.
From above, we can say that

ReΔtrðωÞ ≃ C1 ¼ Oð1Þ × KðωminÞ; ð4:16Þ

which means that from the observed value of KðωminÞ, we
can predict how much the K-K relation is violated by the
truncation if the claimed amplification factor is correct. In
this sense, KðωminÞ is the threshold for ReΔðωÞ. If the
observed ReΔðωÞ is sufficiently larger than this value, we
can assert that the selection of the template is wrong,12 by

which we may be able to find correct unlensed waveform
and the amplification factor. This conclusion remains valid
as long as the two assumptions (i) ωmin ≪ ω ≪ ωmax and
(ii) weak lensing approximation at the lowest frequency
ωmin are simultaneously satisfied.
What if ωmin is so large and in the geometric optics

regime that the Born approximation is no longer valid? In
this case, by using Eqs. (3.27) and (3.28), Eq. (4.10)
becomes

C1 ¼ ffiffiffiffiffi
μ1

p
− 1þ

Xn
j¼2

2
ffiffiffiffiffi
μj

p
π

Z
∞

ωmin

dω
sinðωT1j − πnjÞ

ω

¼ ffiffiffiffiffi
μ1

p
− 1þ

Xn
j¼2

2
ffiffiffiffiffi
μj

p
π

cosðωminT1j − πnjÞ
ωminT1j

þO
�

1

ðωminT1jÞ2
�
; ð4:17Þ

thus C1 ¼ Oð ffiffiffiffiffi
μ1

p − 1Þ. Therefore, similar to the discus-
sion under Eq. (4.16), we can warn of the incorrectness of
the amplification factor, if the calculated Δ is sufficiently
larger than the observed value of

ffiffiffiffiffi
μ1

p
. However, we must

be careful when F̂ is given by the form of Eq. (3.27), but
with parameters different from the true ones:

F̂ðωÞ ¼
ffiffiffiffiffi
μ01

q
þ
Xn0
j¼2

ffiffiffiffiffi
μ0j

q
exp½iðωT 0

1j − πn0jÞ�: ð4:18Þ

In this case, since this F̂ itself can be regarded as high-
frequency limit of a physically sensible amplification factor
that satisfies the K-K relation, the K-K relation is violated
only by the truncation, and therefore Δ ¼ Oð ffiffiffiffiffi

μ01
p

− 1Þ.
Thus, we cannot report an error in F̂ from the violation of
the K-K relation.13 This result can be interpreted as the loss
of information obtained from the K-K relation due to the
absence of the wave effect.
In addition, it is worth emphasizing that the all above

discussion in this subsection is based on the assumption
ωmin ≪ ωmax. If this assumption is not satisfied, the K-K
relation would be severely broken by lack of information,
as can be seen from the fact that the second term of
Eq. (4.8) is no longer negligible. It should be also noted that
ωmax can be in any regime as long as ωmin ≪ ωmax is
satisfied.
Furthermore, in the realistic case, the amplification factor

has a statistical error due to detector noise, which is another
factor which may degrade the effectiveness of the K-K

FIG. 4. Comparison of WðxÞ and sin x=x. They have different
shapes, but the order coincides in all regions.

10If we focus on ImΔtr, we have to know the value of D1 and
D2. However, we cannot use the same method for D2 as for C1,
because it is not reasonable to assume that ωmax is in the weak
lensing regime and use the Born approximation. This is why
we only focus on ReΔtr.

11SiðxÞ is the sine integral defined by SiðxÞ≡ R
x
0

sin t
t dt.

12Since C1 has Oð1Þ uncertainty, if observed ReΔðωÞ is of the
same order as C1, it is not possible to make the assertion.

13If we take the quasigeometric optics corrections [25] into
account, correction terms in Eq. (4.17) start with Oð1=ωÞ.
However, even in this case, C1 ¼ Oð ffiffiffiffiffi

μ1
p − 1Þ. It also does

not change the fact that F̂ of Eq. (4.18) satisfies the K-K relation.
Thus the discussion here remains the same.
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relation. Crudely speaking, if the GW waveform is mea-
sured with a statistical significance level given by a signal-
to-ratio SNR, the measurement error of the amplification
factor will be at the level of Oð1=SNRÞ [22]. This
uncertainty will propagate into Δ and give an additional
contribution to the violation of the K-K relation by an
amount Oð1=SNRÞ. Thus the threshold for Δ to falsify the
claimed source template and the lensing signal should be
set to maxðC1; 1=SNRÞ.
Finally, it is important to note that the above discussion

does not depend on what the GWs source and lensing
object are.

B. Example: A point mass lens

As a demonstration of the methodology described above
for general lensing objects, we show how much the K-K
relation is violated by the truncation and statistical error in the
case of the point mass lens for which the amplification factor
is given by Eq. (3.15). As a realistic setting, herewe consider
LISA. Then we set the observable frequency range as
fmin ¼ 10−4 Hz, fmax ¼ 10−1 Hz. As a lens object, we
consider SMBH with M ¼ 106M⊙ and y ¼ 1. In this
case, fmin is in the week lensing regime because
wmin ¼ 8πGMfmin ≃ 10−2. We also assume SNR ¼ 103

because this is SNR of the BH binary source with
M ¼ 106M⊙, a typical target for LISA [26]. In Fig. 5, we
plot ReΔtr with Kmin ≡ KðωminÞ and 1=SNR. From this

figure,we can see that Eq. (4.16) holds except for frequencies
close to fmin or fmax. Also, in this typical example, SNR is
sufficiently smaller thanKmin, and thus the threshold for ReΔ
should be set toKmin ≃ 0.01. Therefore, if the template error
is greater than a few percent, we can falsify such template.

V. CONCLUSION

It is known that the Kramers-Kronig relation holds true
when any system under consideration respects the causality
that output comes only after input. We showed that the
signal of the gravitational lensing obeys the causality:
waves from a distant source, which propagate in the
gravitational potential created by the lensing objects during
their journey, never arrive earlier than the null geodesics
emitted from the same source simultaneously. Inspired by
the fact that gravitational lensing has such causality, we
showed that the Kramers-Kronig relation holds for the
amplification factor F. Since this is a completely new
attempt, there are some interesting implications that have
not been mentioned in the literature. One of them is
Eq. (3.23), which is expected to be used in observations
of gravitational lensing caused by the dark matter inho-
mogeneities. And the other is the sum rule Eq. (3.28) which
relates the integral of the imaginary part of the amplifica-
tion factor with the magnification of the first arrival image
in geometrical optics.
We also proposed the potential application of the

Kramers-Kronig relation to observations of gravitational
lensing of GWs. To determine the amplification factor
correctly, we need to use the correct template of the GWs
source. We argued that the false selection of templates can
be detected by examining the violation of the K-K relation
and also calculated the limit of this detection due to the
truncation of the frequency range caused by the detector’s
sensitivity. Our work suggests that examining the violation
of the Kramers-Kronig relation may be used for correctly
extracting the lensing signal in the gravitational wave
observations.

ACKNOWLEDGMENTS

We would like to thank Morifumi Mizuno and Ryuichi
Takahashi for useful comments and discussions. This work
is supported by the MEXT KAKENHI Grants
No. 17H06359 (TS), JP21H05453 (TS), and the JSPS
KAKENHI Grant No. JP19K03864 (TS).

FIG. 5. Violation of the K-K relation caused by the truncation
ReΔtr (solid). The parameters are M ¼ 106M⊙, y ¼ 1 and the
frequency range is decided by fmin ¼ 10−4 Hz and fmax ¼
10−1 Hz. We also plot Kmin (dashed) and 1=SNR (dotted).
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