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As a possible alternative to black holes, horizonless compact objects have significant implications for
gravitational-wave physics. In this work, we utilize the standard linearized theory of general relativity to
calculate the quadrupolar tidal Love numbers of a nonexotic compact object with a thin shell proposed by
Rosa and Piçarra. It is found that both types of tidal Love numbers are positive and increase with the initial
radius for almost all values of the compactness parameter. Furthermore, they have an unexpected upper
bound and vanish in the most compact configurations. As a result, this model is indeed a suitable mimicker
of a black hole. However, we also observed that the speed of sound within the fluid on the shell diverges in
the black hole limit.
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I. INTRODUCTION

Relativistic astrophysics tells us that a sufficiently
massive star cannot maintain hydrostatics equilibrium at
the end of its life and must undergo complete gravitational
collapse to form a black hole (BH) [1], a region where even
light rays have no way to escape. While astronomers have
found much evidence that BHs do exist in our universe,
especially the Event Horizon Telescope Collaboration
showed us the images of the supermassive BHs in the
center of the galaxies [2,3], the inevitable curvature
singularity in BH spacetime is a very hot potato, at least
in the purely classical theory of general relativity (GR).
Observations of neutron stars have also revealed some
clues that exceed the theoretical expectations [4,5]. These
factors led to increasing interest in so-called exotic
compact objects (ECOs), such as wormholes [6], boson
stars [7], and gravastars [8]. These models can usually
present a compactness arbitrarily close to that of a BH
without developing any singularities in spacetime, making
them potential candidates for BH alternatives. We refer
readers to Ref. [9] for a comprehensive review.
Rosa and Piçarra proposed two simple models of non-

ECOs based on the Schwarzschild constant density star
solution in Ref. [10]: the first via the collapse of the external
layers of the fluid into a thin shell by performing a matching
with the exterior Schwarzschild solution at a matching
radius smaller than the star radius, while the second is via
the creation of a vacuum bubble inside the star by matching
it with an interior Minkowski spacetime. They have
provided a detailed analysis of the stability and the validity
of the energy condition of these two models. It is found that
for a wide region of the parameter space, both models are

linearly stable against radial perturbations and satisfy all of
the energy conditions. More interestingly, they can present a
compactness arbitrarily close to that of a BH without
developing any singularities inside the objects. Recently,
Rosa himself studied the observational properties of such
models with accretion disks. The results indicate that the
mass stored in the thin shell has a great impact on its shadow
if the light ring is naked, and the most compact configu-
ration will produce optical observational features similar to
those of BHs [11].
In gravitational-wave astronomy, the tidal Love numbers

(TLNs) are a set of observable coupling constants that
characterize the deformability of a self-gravitating object
immersed in an external tidal field and encode the informa-
tion of the object’s internal structure. Flanagan and Hinderer
pointed out that the tidal interaction between coalescing
binary neutron stars can be measured by the current second-
generation gravitational-wave detectors, and the influence of
tidal effects to the waveform of an early inspiral stage is a
small phase correction, which only depends on the TLNs of
the neutron star [12,13]. An intriguing fact is that the TLNs
of BHs are precisely zero [14]. Cardoso et al. studied the
TLNs of several ECOs and found significant differences
from those of neutron stars [15]. Thus, the presence of one of
the models proposed in [10] in a coalescing binary system
could affect the gravitational wave signal and be potentially
detectable. In this paper, we shall focus on the first model
due to its relatively natural and receptive formation process.
The remainder of this paper is organized as follows. For

convenience, in Sec. II we briefly review the junction
conditions for the metric when the spacetime features a
thin shell of matter. To calculate the TLNs, in Sec. III we
explicitly rewrite the metric of the first model proposed in
Ref. [10]. In Sec. IV, we adopt the standard linearized theory
of GR to obtain the electric-type and magnetic-type TLNs of*djliu@shnu.edu.cn
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the object. Additionally, an analysis of the speed of sound
on the shell is also provided. Finally, we summarize our
findings with a brief discussion in Sec. V.
We work in geometric units ðc ¼ G ¼ 1Þ throughout the

paper, unless otherwise noted.

II. JUNCTION CONDITIONS

In GR, if a hypersurface Σ separates the spacetime
manifold into two regions V� with different metric tensors
g�μν, some junction conditions must be imposed on the
metric to ensure that the whole spacetime is a valid
distributional solution to the Einstein field equations [16].
Let Σ be a timelike hypersurface with matter for our

purpose. Following the previous index notation conventions
on the metric, we shall also label other quantities in regions
Vþ and V− by attaching a superscript (or subscript) þ and
−, respectively. Introducing a symbol “⟦ ⟧” to measure the
discontinuity of a given quantity across the hypersurface, for
example, ⟦A⟧≡ AþjΣ − A−jΣ, the Darmois-Israel junction
conditions can be written as [17,18]

⟦γab⟧ ¼ 0; ð1Þ

⟦Kab⟧ − γab⟦K⟧ ¼ −8πSab; ð2Þ

where γab and Kab are the first and second fundamental
forms on the hypersurface, respectively, andK is the trace of
Kab, while Sab denotes the surface stress-energy tensor that
leads to the intrinsic singularity of spacetime at Σ. For the
definition of γab and Kab, cf., e.g., Refs. [16,19].
Obviously, if Sab vanishes, there is no matter on the

hypersurface, the smooth junction conditions (1) and
⟦Kab⟧ ¼ 0 are automatically recovered.

III. BACKGROUND SOLUTION

To calculate the TLNs, we first need to explicitly get the
background solution of the first model proposed in Ref. [10].
Because of the spherical symmetry of the object, we work
with ordinary Schwarzschild coordinates ft; r; θ;φg.
Following Rosa and Piçarra closely, our starting point is

a Schwarzschild constant density star with mass M and
radius R. It is well-known that Rmust be greater than 9M=4
due to the restriction from the Buchdahl theorem [20];
otherwise, a curvature singularity will emerge inside the
star. Next, let RΣ be a radius smaller than R, and we leave
the region of the star where r < RΣ fixed and squeeze all
the matter from RΣ to R onto an infinitesimally thin shell
located at RΣ. In general, one finally reaches a spherical
object with mass M and a new radius of RΣ.
The surface of the object is exactly a timelike hypersur-

face defined by r ¼ RΣ. Following the notation conventions
discussed in Sec. II, hereafter, we use þ and − to label the
quantities in regions r > RΣ and r < RΣ, respectively.

In this model, the spacetime geometry is governed by
the metric

ḡ�μν ¼ diag½−e2α�ðrÞ; e2β�ðrÞ; r2; r2 sin2 θ�; ð3Þ

with (see the Appendix for a detailed derivation)

e2αþ ¼ e−2βþ ¼ 1 −
2M
r

; ð4Þ

e2α− ¼

0
BB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

R3 r2
q

− 3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

R

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

R3 R2
Σ

q
− 3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

R

q
1
CCA

2�
1 −

2M
RΣ

�
; ð5Þ

e−2β− ¼ 1 −
2M
R3

r2: ð6Þ

The solution of the ordinary constant density star is
recovered when we take RΣ ¼ R, as expected.
It is straightforward to verify that the induced metrics

γab are the same on both sides of the shell; namely, the
junction condition (1) is automatically satisfied. However,
the extrinsic curvature Kab is no longer continuous across
the shell. If we regard the shell to be composed by a perfect
fluid, its stress-energy tensor is simply

Sab ¼ ðσ þ ptÞuaub þ ptγab; ð7Þ

where σ and pt are, respectively, the surface energy density
and the tangential pressure measured by a comoving
observer ua ¼ ½−eαðRΣÞ; 0; 0�. Combining Eqs. (2), (3),
and (7), it follows that

σ ¼ −
1

4πRΣ
⟦ 1

eβ ⟧; ð8Þ

pt ¼
1

8πRΣ
⟦ 1

eβ ⟧þ
1

8π ⟦
α0

eβ ⟧; ð9Þ

where the prime denotes a derivative with respect to the
radial coordinate r. Clearly, both σ and pt vanish when
RΣ ¼ R.
It has been shown in [10] that σ > 0, pt > 0, and the

existence of linearly stable solutions when the weak and the
strong energy conditions hold. More importantly, the junc-
tion radius RΣ can be arbitrarily close to the Schwarzschild
radius 2M without developing any singularity inside the
object. Therefore, being an exception to the Buchdahl limit,
this model is a competitive BH mimicker.
For completeness, let us compare this model with the

thin-shell gravastars reported in [21]. First, although both
of them are matched to the Schwarzschild exterior through
a thin shell of matter, the interior of the gravastars is a
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de Sitter core, while the interior of this model remains a
uniform density star. Second, the surface energy density and
tangential pressure of this model are both positive, but the
shell of the gravastars is described by a fluid with σ ¼ 0 and
pt < 0. Third, the TLNs of the gravastars are negative [15];
however, as we shall see below, the TLNs of this model are
always positive.

IV. PERTURBED CONFIGURATION

Imagine that a compact object introduced in the previous
section is immersed in an external tidal field, which, for
example, arises from its companion in a binary system.
Consequently, the original spherical body is deformed by
the tidal force and develops some mass multipole moments
in response to the tidal field. Intuitively speaking, TLNs
characterize the deformability of the objects, the bigger
TLNs, the bigger deformation.
Let us consider how the spacetime geometry of the

object is perturbed by the external tidal field. To do this, we
will employ the standard linearized theory of GR to
calculate the TLNs of the object. Then, we write

g�μν ¼ ḡ�μν þ h�μν; ð10Þ

where ḡ�μν is the background metric defined by Eq. (3),
whereas h�μν is a small perturbation owing to the tidal field,
satisfying jh�μνj ≪ jḡ�μνj.
In the Regge-Wheeler gauge [22], according to the parity

of the spherical harmonics Ylmðθ;φÞ under the rotation on a
2-sphere S2, the perturbation metric can be decomposed
into even and odd parts,

h�μν ¼ heven;�μν þ hodd;�μν ð11Þ
with

heven;�μν ¼

2
666664

−e2αH�
0 H�

1 0 0

H�
1 e2βH�

2 0 0

0 0 r2K� 0

0 0 0 r2 sin2 θK�

3
7777775
Ylm;

ð12Þ

hodd;�μν ¼

2
666664

0 0 h�0 S
lm
θ h�0 S

lm
φ

0 0 h�1 S
lm
θ h�1 S

lm
φ

h�0 S
lm
θ h�1 S

lm
θ 0 0

h�0 S
lm
φ h�1 S

lm
φ 0 0

3
777775
; ð13Þ

where H0; H1; H2; K; h0, and h1 are only functions of
radial coordinate r and Slmθ ≡ −∂φYlm= sin θ and Slmφ ≡
sin θ∂θYlm are two axial vector spherical harmonics. All the
functions in Eq. (11) are independent of time twhich means

that the tidal field is assumed to be stationary. Actually, this
is a typical scenario occurring in the inspiral stage of a
coalescing binary system.
Henceforth, we shall focus our attention on the lowest

quadrupolar order (l ¼ 2) in perturbations, because it
dominates the tidal deformation of the objects. Because
of the spherical symmetry of the background (3), we set the
azimuthal number m ¼ 0 without loss of generality. For a
nonrotating object, the even-parity sector decouples com-
pletely from the odd-parity sector, and we therefore can
deal with them separately.

A. Even-parity sector

In this case, substituting metric (10) with Eqs. (3) and (12)
into Einstein field equations and keeping only up to the first
order terms in the perturbations, one obtains in turnH�

1 ¼ 0,
H�

2 ¼ −H�
0 , K

0
� ¼ −2α0�H�

0 − ðH�
0 Þ0, and

2e2β�K� ¼ ½1 − 3e2β� þ rðα0� þ β0� − 2rα02�Þ�H�
0

− r2α0�ðH�
0 Þ0: ð14Þ

Collecting these results, by virtue of the incompressible
nature of the object [23], we finally obtain a single two-order
homogeneous differential equation for H� ≡H�

0 as

H00
� þ P�ðrÞH0

� þQ�ðrÞH� ¼ 0; ð15Þ

in which the coefficients are

P� ¼ α0� − β0� þ 2

r
; ð16Þ

Q� ¼ 2ðα00�−α0�β
0
�−α02�Þþ

7α0� þ 3β0�
r

− e2β�
6

r2
: ð17Þ

Outside the object, in the region r > RΣ, Eq. (15)
reduces to

H00þ þ 2ðr−MÞ
rðr−2MÞH

0þ−
2ð2M2−6Mrþ3r2Þ

r2ðr−2MÞ2 Hþ ¼ 0; ð18Þ

where Eq. (4) was used. The general solution to the above
equation in terms of the associated Legendre functions P2

2

and Q2
2 is found to be

Hþ ¼ a1P2
2

�
r
M

− 1

�
þ a2Q2

2

�
r
M

− 1

�
; ð19Þ

where two combination coefficients a1 and a2 are evaluated
by integrating Eq. (15) outward in the domain r < RΣ with
a regular initial condition near r ¼ 0 and matching the
exterior solution (19) at the surface RΣ. To this end, with the
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help of Eqs. (10), (3), and (12), we may turn the junction
condition (1) at first order in the perturbations into1

⟦H⟧ ¼ ⟦K⟧ ¼ 0: ð20Þ

Eventually, the asymptotic behavior of the solution (19)
at infinity determines the quadrupolar electric-type TLNs
as follows2 [13,14,23,24]:

kE2 ¼ 4

15
C5

a2
a1

; ð21Þ

an expression that is too complicated to be written
explicitly, where C≡M=RΣ stands for the compactness
of the object.
The relations between the quadrupolar electric-type

TLNs kE2 and the compactness C of the object are illustrated
in Fig. 1, and those typical values of the initial radius R are
obtained in the Newtonian limit (C → 0) of Eq. (21). When
R ¼ RΣ, in the absence of the shells, we recover the profile
of Schwarzschild constant density stars [23], as expected.
Regardless of the value of the initial radius R, we identify
that the kE2 vanishes in the BH limit (C → 0.5). Besides this
extreme case, for each certain equilibrium configuration, the

values of kE2 are monotonically increasing with the increase
in the initial radius R. However, the kE2 cannot be arbitrarily
large, as it has an upper bound derived from the limit of
R → ∞, i.e.,

kE2 ¼
8

5
C5

ξðξþ 1Þ
4CðC2 − 6Cþ 3Þþ 3ξðξþ 1Þ lnξ ð22Þ

with ξ≡ 1–2C. This is nothing but a purely thin shell
of matter.

B. Speed of sound on the shell

If we do not consider the thin-shell material to be stiff
and supplement an equation of state that relates the surface
density to pressure,

pt ¼ ptðσÞ; ð23Þ
then the speed of sound within the fluid is well-defined and
can be obtained reasonably.
Taking into account thatH itself is a continuous function

across the shell, the junction condition (2) along with
Eqs. (10), (3), and (12), to first order in the perturbations,
implies that

8πδσ ¼ ⟦H
0

eβ ⟧ −
HðRΣÞ
RΣ

⟦ 1

eβ ⟧þ 2HðRΣÞ⟦ α
0

eβ ⟧; ð24Þ

16πδpt ¼
HðRΣÞ
RΣ

⟦ 1

eβ ⟧ −HðRΣÞ⟦ α
0

eβ ⟧; ð25Þ

where δσ and δpt are the fluctuations of thin-shell matter to
the background (8) and (9), respectively. Hence, the speed
of sound in the fluid is evaluated by the adiabatic relation

v2s ¼
δpt

δσ
; ð26Þ

which depends on C, R, H−ðRΣÞ, and H0
−ðRΣÞ.

For nonexotic matter, the magnitude of sound speed
should fall within the interval 0 < v2s < 1. Indeed, for a
wide region of the compactness parameter C, it is easily
verified that the v2s on the shell is positive and less than one
everywhere, as long as R ≠ RΣ. The speed of sound is
identically vanishing in the case of R ¼ RΣ, which is caused
by the density step at the surface of the Schwarzschild
constant density stars. Nevertheless, the values of v2s
increase with increasing compactness C, and ultimately
tend to infinity in the BH limit; see Fig. 2.

C. Odd-parity sector

For odd-parity perturbations (13), the linearized Einstein
field equations require h�1 ¼ 0 and h� ≡ h�0 satisfying the
following equation:

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.5

1.0

1.5

2.0

FIG. 1. Quadrupolar electric-type TLNs kE2 as a function of the
compactness C for four typical values of the initial radius R. The
dashed black line corresponds to a Schwarzschild constant
density star and coincides with the results of Damour and Nagar
[23], while the solid red line corresponds to a purely thin shell of
matter. All the lines vanish at the bottom right, just as a BH.

1It should be noted that the K here comes from the matrix (12)
[or Eq. (14)] instead of the trace of the extrinsic curvature in
Eq. (2), so be careful not to confuse them.

2The definition of kE;Bl we use in this paper is fully consistent
with that of Binnington and Poisson [14], but differs from the one
used by Cardoso et al. [15,19] by a factor of C2lþ1.
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h00� þ F�ðrÞh0� þ G�ðrÞh� ¼ 0 ð27Þ

with

F� ¼ −ðα0� þ β0�Þ; ð28Þ

G� ¼ −2ðα00� − α0�β
0
� þ α02�Þ − e2β�

6

r2
: ð29Þ

Outside the object, the above equation reduces to

h00þ þ 2ð2M − 3rÞ
r2ðr − 2MÞ hþ ¼ 0; ð30Þ

and the general solution of this simple equation can be
expressed as [24,27]

hþ ¼ b1

�
r
2M

�
2

2

F1

�
−1; 4; 4;

r
2M

�

þ b2

�
2M
r

�
2

2

F1

�
1; 4; 6;

2M
r

�
; ð31Þ

where 2F1 denotes the hypergeometric function, while
constants b1 and b2 are determined by the interior numeri-
cal solution of master Eq. (27), exterior solution (31), and
the following junction conditions:

⟦h⟧ ¼ 0; ð32Þ

⟦
h0

eβ ⟧ ¼ 2hðRΣÞ⟦
α0

eβ ⟧; ð33Þ

which are derived by plugging Eqs. (10), (3), and (13) into
Eqs. (1) and (2), respectively.
Finally, the coefficients b1 and b2 are related to the

quadrupolar magnetic-type TLNs via [14,24]

kB2 ¼ −
32

3
C5

b2
b1

: ð34Þ

In Fig. 3, we plot the quadrupolar magnetic-type TLNs
kB2 as a function of the compactness C for the same typical
values of R. Similar to kE2 , k

B
2 is also positive, increases with

the initial radius R for a given compactness C, and
possesses an upper bound. However, kB2 is not a monot-
onical function of C for a given value of R. In the BH limit,
kB2 vanishes. Meanwhile, kB2 also converges to zero in the
Newtonian limit due to the fact that kB2 is fully relativistic.

V. CONCLUSIONS AND DISCUSSIONS

In the present work, we have considered a class of
compact objects proposed by Rosa and Piçarra [10] that
consist of a constant density star with some of its mass
collapsed into a thin shell. The freedom to choose the radius
of the compact object in such a model means that it can be
arbitrarily close to the Schwarzschild radius, thus providing
a model of compact objects that could mimic a BH. We
computed both the electric-type and magnetic-type quad-
rupolar TLNs of the objects. The results show that the
matter stored in the thin shell has a significant effect on the
TLNs. It is found that both types of TLNs cannot be
arbitrarily raised, but are bounded by the property of matter

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

1.0

FIG. 2. Speed of sound v2s on the shell against the compactness
C for a few values of R. Except for the case of R ¼ RΣ (dashed
black curve), it is easily found that v2s ranges between (0,1) for a
wide region of C, but diverges in the BH limit. Actually, the
sound speed of the R → ∞ configuration (solid red curve) has
already reached the speed of light, when C ¼ 0.48 [25,26].

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.5

1.0

1.5

2.0

FIG. 3. The 100 times quadrupolar magnetic-type TLNs kB2
versus the compactness C for different values of R.
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on the thin shell. Furthermore, for almost all final equilib-
rium configurations of the object, both types of TLNs
increase as the initial radius increases, and regardless of the
value of the initial radius, they both vanish in the most
compact configurations of the object. Therefore, this non-
exotic compact object with a thin shell is indeed an
exception to the Buchdahl theorem and does serve as a
suitable BH mimicker.
It is remarkable that, compared with those of ECOs such

as wormholes and thin-shell gravastars, which are negative
in the case of high compactness [15], both types of TLNs of
the object are always positive. Note that the TLNs of the
object are also different from those of boson stars in this
respect, because the magnetic-type TLNs of boson stars are
negative, even though the electric-type are positive.
Given the sizable value of the TLNs of the object, it is

expected that current gravitational-wave detectors will be
able to constrain the parameters of the object. However,
although there exist differences between the tidal deform-
ability of this object with those of BHs in modified theories
of gravity and of other ECOs, it is difficult to distinguish
the object from BHs and other ECOs by measuring its
TLNs via gravitational-wave observations, especially in
the high-compactness regime. The situation may change
as the next-generation ground-based detectors such as
ET [28] or space-based detectors such as LISA [29] are
put into operation.
In addition, we conducted an analysis of the speed of

sound within the fluid on the shell using a unified
framework. For a wide region of the compactness param-
eter of the model, we verify that the speed of sound is less
than the speed of light. Thus, the shells are composed by
physically relevant matter in these circumstances. However,
the sound speed on the shell diverges in the BH limit, which
means that the thin-shell matter becomes increasingly stiff
as the compactness increases.
Finally, it would be interesting to investigate whether the

I-Love-Q relations [30] remain valid by anchoring an
angular momentum onto this model. This issue, however,
extends from the scopes of the present work.
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APPENDIX: DERIVATION OF THE
BACKGROUND METRIC

To avoid confusion, we here provide a derivation of the
background metric in Sec. III.

First, the spacetime outside the object is definitely
described by the exterior Schwarzschild solution (4).
Then, we assume that the matter inside the object can be
modeled as an isotropic perfect fluid, and its energy-
momentum tensor is given by

Tμ
ν ¼ diag½−ρðrÞ; pðrÞ; pðrÞ; pðrÞ�; ðA1Þ

where ρ is the energy density and p the pressure. The
Einstein field equations under the ansatz (3) and (A1) yield

e−2β− ¼ 1 −
2m
r

; ðA2Þ

α0− ¼ 4πpr3 þm
rðr − 2mÞ ; ðA3Þ

p0 ¼ −ðρþ pÞα0−; ðA4Þ

where m is the mass function defined by

mðrÞ≡ 4π

Z
r

0

ρx2dx: ðA5Þ

Note that in the model we are considering, only the
external layers of a constant density star are collapsed, and
nothing happened in the region r < RΣ, which means that
neither the density nor the central pressure of the object has
changed [10],

ρ ¼ 3

4π

M
R3

; pð0Þ ¼ ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

R

q
− 1

1 − 3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

R

q : ðA6Þ

Thus, from Eqs. (A2)–(A5) one obtains Eq. (6),

p ¼ ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

R

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

R3 r2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

R3 r2
q

− 3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

R

q ; ðA7Þ

and

e2α− ¼ c1
ðρþ pÞ2 ; ðA8Þ

where c1 is an integration constant to be determined by the
junction condition (1) with Eq. (3), i.e.,

e2α−ðRΣÞ ¼ e2αþðRΣÞ ¼ 1 −
2M
RΣ

: ðA9Þ

Using these expressions above to eliminate c1 from
Eq. (A8), we finally arrive at Eq. (5).
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