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We investigate the interplay between numerical relativity (NR) and point-particle black hole perturbation
theory (ppBHPT) in the comparable mass ratio regime. In the ppBHPT framework, the secondary black
hole is treated as a point particle, neglecting its finite size. Our study focuses on addressing the missing
finite size effect in the ppBHPT framework and proposing a method for incorporating the size of the
secondary into the perturbation theory framework. We demonstrate that by considering the secondary as a
finite size object, the BHPT waveforms closely match NR waveforms. Additionally, we revisit the α-β
scaling technique, which was previously introduced by Islam et al. [Phys. Rev. D 106, 104025 (2022)], as a
means to effectively match ppBHPT waveforms to NR waveforms. We further analyze the scaling
procedure and decompose it into different components, attributing them to various effects, including the
corrections arising from the finite size of the secondary black hole.
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I. INTRODUCTION

Efficient detection and accurate characterization of gravi-
tational wave (GW) signals from binary black hole (BBH)
mergers require computationally cheap yet accurate multi-
modal waveform models. The development of such models
[1–15] relies heavily on accurate numerical simulations of
BBH mergers. The most accurate way to simulate a BBH
merger is by solving the Einstein equations using numerical
relativity (NR). Significant progress has been made in
refining NR pipelines for BBH systems with comparable
masses, i.e., with 1 ≤ q ≤ 10 (where q ≔ m1=m2 is themass
ratio of the binary with m1 and m2 being the mass of the
primary and secondary black hole respectively) over the past
two decades [16–23]. However, accurately simulating BBH
mergers in the intermediate to large mass ratio regime
(10 ≤ q ≤ 100) remains a challenging task. NR simulations
in this mass ratio range become computationally demanding
due to various factors. As a result, accurately modeling GW
signals from BBH mergers in this regime using NR simu-
lations becomes increasingly difficult.
On the other hand, point particle black hole perturbation

theory (ppBHPT) [24–33] provides an accurate modeling
approach for extreme mass ratio binaries (q → ∞). In
ppBHPT, the smaller black hole is treated as a point

particle orbiting the larger black hole in a curved space-
time background. Substantial progress has been made in
accurately simulating BBHmergers in this regime using the
ppBHPT framework. However, as the mass ratio becomes
less asymmetric and approaches the comparable to inter-
mediate mass ratio regime, the assumptions of the ppBHPT
framework start to break down. Consequently, the ppBHPT
framework cannot generate accurate gravitational wave-
forms in this regime.
Understanding the interplay between NR and ppBHPT

framework in the comparable to intermediate mass ratio
regime is an active and exciting area of research in the field
of gravitational waves. Several studies [34–36] have been
conducted to investigate the limitations and accuracy of
both approaches in this regime.
Recently, significant advancements have been made in

expanding the domain of NR and ppBHPT frameworks.
These advancements include the development of the
BHPTNRSur1dq1e4 surrogate model [37] and a fully
relativistic second-order self-force model [38], as well as
the expansion of numerical relativity (NR) techniques to
simulate BBH mergers with higher mass ratios [39–42].
The BHPTNRSur1dq1e4 surrogate model, based on the
ppBHPT framework, has demonstrated remarkable accu-
racy in predicting waveforms for BBH mergers in the
comparable to large mass ratio regime. Through a simple
but nontrivial calibration process called the α-β scaling,
the ppBHPT waveforms are rescaled to achieve excellent*tislam@umassd.edu
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agreement with NR data specifically in the comparable
mass ratio regime. In parallel, the fully relativistic second-
order self-force model has also shown promising results in
accurately reproducing NR waveforms in the comparable
mass ratio regime.
In this paper, we investigate the interplay between NR and

ppBHPT framework in the comparable mass ratio regime
through the lens of the α-β scaling. In particular, we focus on
understanding the corrections due to themissing finite size of
the secondary black hole in ppBHPT framework and
proposing a robust method for incorporating the size of
the secondary into the perturbation theory framework. The
remaining sections of the paper are structured as follows.
Section II provides a concise overview of ppBHPT, the α-β
scaling, and the perturbation theory framework that partially
incorporates the size of the secondary black hole. In Sec. III,
we present our main findings and results. To begin, Sec. III A
focuses on estimating the expected size of the secondary
black hole. Next, in Sec. III B, we delve into the impact of
considering the finite size of the secondary within the BHPT
framework on the waveform. Section III C demonstrates the
close agreement between the BHPTwaveforms, incorporat-
ing the finite size secondary, and the NRwaveforms. Finally,
in Sec. IV, we revisit the α-β scaling and offer a detailed
breakdown of its components. We attribute these compo-
nents to different effects, including the corrections arising
from the finite size of the secondary black hole.

II. BLACK HOLE PERTURBATION THEORY

In this section, we present a concise summary of the
perturbative techniques employed in this work to generate
waveforms from BBHmergers in the comparable mass ratio
regime.

A. Point-particle perturbation theory

In the ppBHPT framework, the smaller black hole is
modeled as a point-particle with no internal structure and a
mass of m2, moving in the spacetime of the larger Kerr
black hole with mass m1 and spin angular momentum per
unit mass a. Here, we provide an executive summary of this
framework and refer to Refs. [24–27] for additional details.
First, we compute the trajectory taken by the point-particle
and then we use that trajectory to compute the gravitational
wave emission.
During the initial adiabatic inspiral, the particle follows a

sequence of geodesic orbits driven by radiative energy and
angular momentum losses. The flux radiated to null infinity
and through the event horizon are computed by solving the
frequency-domain Teukolsky equation [28–31] using the
open-source code GremlinEq [32,33] from the Black
Hole Perturbation Toolkit [43]. The inspiral trajectory is
then extended to include a plunge geodesic and a smooth
transition region following a procedure similar to one
proposed by Ori-Thorne [44]. We compute the transition
between initial inspiral and the plunge using a generalized

Ori-Thorne algorithm [45,46]. Our trajectory model does
not include the effects of the conservative or second-order
self-force [47].
Once the trajectory of the perturbing compact body is

fully specified, we solve the inhomogeneous Teukolsky
equation in the time-domain while feeding the trajectory
information into the particle source-term of the equation
[24–27,48]. This involves a four step procedure: (i) rewrit-
ing the Teukolsky equation using compactified hyperbol-
oidal coordinates is shown using standard Boyer-Lindquist
coordinates that allow us to extract the gravitational wave-
form directly at null infinity while also solving the issue of
unphysical reflections from the artificial boundary of the
finite computational domain; (ii) obtaining a set of (2þ 1)
dimensional PDEs by using the axisymmetry of the back-
ground Kerr space-time, and separating the dependence on
azimuthal coordinate; (iii) recasting these equations into a
first-order, hyperbolic PDE system; and finally (iv) imple-
menting a high-order WENO (3,5) finite-difference scheme
with Shu-Osher (3,3) time-stepping [48]. The point-particle
source term on the right-hand-side of the Teukolsky
equation requires some specialized techniques for a
finite-difference numerical implementation [24,25]. We
set the spin of the central black hole to a value slightly
away from zero, a=m1 ¼ 10−8 for technical reasons.1

B. Scaling between perturbation theory
and numerical relativity waveforms

While building a ppBHPT based waveform model for
comparable to extreme mass ratio binaries Ref. [37]
introduced a simple but nontrivial scaling called the α-β
scaling between ppBHPT waveforms and NR. It reads:

hl;mfullðt; qÞ ∼ αlh
l;m
pp ðtβ; qÞ; ð1Þ

where αl and β are determined by minimizing the L2-norm
between the NR and rescaled ppBHPTwaveforms. Note that
while αl modifies the amplitude of the various spherical
harmonic modes, β changes the time/frequency evolution of
the binary by rescaling the time. After this α-β calibration
step, the ppBHPTwaveforms exhibit remarkable agreement
with NR waveforms. For instance, in the comparable mass
ratio regime, the dominant quadrupolar mode of the rescaled
waveform agrees to NR with errors smaller than ≈10−3.
Additionally, the rescaled ppBHPT waveforms exhibit
excellent match to recent NR simulations in the high mass
ratio regime (q ¼ 15 to q ¼ 128) [37,49].

C. Perturbation theory with finite size
of the secondary black hole

To incorporate the effect of a finite sized object in the
context of the point-particle approach summarized above,

1For example, to avoid a change in the definition of the
coordinates from Kerr to Schwarzschild.
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we simply follow the method presented previously in
Ref. [50]. In particular, we consider an extended object
as a composition of point-particles arranged in a manner
consistent with the shape and size of the object. As seen in
Ref. [50] the dominant affect arises from the object’s extent
in the azimuthal φ direction. In fact, the impact on the wave
amplitude of the hlm mode can be computed by introducing
an analytical factor as derived in Sec. IV in Ref. [50] for
circular orbits of radius r0. The factor fðmÞ is given by

jfðmÞj2 ¼ 2ð1 − cos ηÞ=η2; η≡ 2πmL=r0: ð2Þ

Here L represents the size of the extended object in the
azimuthal direction and m is the multipole mode. It is clear
from the above expression that if the size of the object is
small compared to the orbital radius, the factor has little
effect. Therefore, the finite size correction is negligible
during most of the slow inspiral phase of the binary
evolution. However, this factor may deviate strongly from
unity as the waveform peaks, i.e. when the orbital radius is
close to the light-ring r0 ¼ 3M.

III. RESULTS

In this section, we now provide a detailed discussion on
how to associate a length scale to the secondary black hole
in the BHPT framework and its effect on the waveform.
Furthermore, we offer a comparison between the waveform
of finite-sized BHPT and NR for various spherical har-
monic modes.

A. Estimating the size of the secondary black hole

The horizon area A of a Kerr black hole (BH) with mass
m and spin χ is given by

A ¼ 8π

�
Gm
c2

�
2

ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2

q
Þ: ð3Þ

This enables us to associate a length scale with the black
hole through its radius,

rH ¼
ffiffiffiffiffiffi
A
4π

r
: ð4Þ

In BBH merger simulations, such as in NR simulations,
the total mass of the binary is typically normalized to unity
in geometric units. The mass of the secondary BH is then
determined as follows:

m2 ¼
1

1þ q
: ð5Þ

Subsequently, we estimate the radius of the secondary BH
for various mass ratios

rs ¼
2

1þ q
ð6Þ

and present the results in Fig. 1. It is worth noting that while
the secondary BH in the ppBHPT framework accurately
accounts for its mass, it is treated as a point particle and
lacks a notion of radius. Conversely, NR simulations
incorporate the size of the secondary BH.

B. Understanding the effect of finite size
in ppBHPT waveforms

After proposing a notion for the expected radius of
the secondary black hole, we now delve deeper into
investigating the impact of the secondary’s size on the
waveform. Specifically, we choose q ¼ 5 and generate
waveforms using the framework described in Sec. II C for
different sizes of the secondary BH. We simulate BBH
mergers for six distinct values of the secondary’s radius
(rS ¼ ½0.2; 0.4; 0.8; 1.2; 1.6; 2.0�M), while keeping the
mass of the secondary constant.
In Fig. 2, we present the amplitudes of the BHPT

waveforms with varying sizes for the secondary BH.
The waveforms are aligned such that the peak of the
(2,2) mode corresponds to t ¼ 0M. For comparison, we
also include the amplitudes of the ppBHPT and NR
waveforms. All the waveforms are scaled with the mass
scale of M. To generate the NR waveforms, we utilize the
NRHybSur3dq8 waveform model [4], which is a surro-
gate waveform trained on NR data hybridized with post-
Newtonian-corrected effective-one-body inspirals. The use
of NRHybSur3dq8 introduces minimal systematic errors

FIG. 1. We show the expected horizon radius of the secondary
black hole, computed from Eq. (4), as a function of the mass ratio
q. More details are in Sec. III A.
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in our results, as the error in NRHybSur3dq8 waveforms
when compared to NR is close to the error between NR
simulations with different resolutions [4]. Specifically, we
extract the portion of the NRHybSur3dq8 waveform
corresponding to the last ∼5000M of the binary evolution,
which corresponds to pure NR waveform data. We observe
that the (2,2) mode amplitude is initially the largest for the
ppBHPTwaveform. However, as we increase the size of the
secondary BH, the amplitude gradually decreases. At a
certain point, when the radius of the secondary becomes
comparable to or larger than the expected radius for this
mass ratio [which is rS ¼ 0.33M as obtained from Eq. (4)],
the amplitudes start to exceed those of the NR waveforms.
Next, we proceed with the α-β calibration to the NR

waveforms for each of the finite size BHPT waveforms
generated. This allows us to determine the calibration
parameters αl and β for the (2,2) and (3,3) modes. We
should note that the finite-size BHPT framework, outlined
in Sec. II C, incorporates finite-size effects solely in the
fluxes, while retaining the trajectory followed by the point
particle. Consequently, these corrections affect only the
amplitudes and do not impact the trajectory or the time/
frequency evolution. This implies that although we may
anticipate different values of αl for the finite-size BHPT
waveforms, the value of β will remain unchanged as
compared to the ppBHPT case.
In Fig. 3, we present the scaling parameters as well as the

error between the rescaled BHPT and NR data after
calibration, plotted as functions of the size of the secondary
BH. As expected, the value of the scaling parameter β
remains constant regardless of the size of the secondary BH
used in waveform generation. Conversely, αl varies as we
change the size of the secondary BH. It is also worth noting

that as the size of the secondary deviates from the expected
value (i.e., rS ¼ 0.33), the error after calibration begins to
increase. This presents an alternative approach to determine
the correct size of the secondary by minimizing the error
after calibration.

C. ppBHPT waveforms with correct size
of the secondary

It is promising to observe that assigning a finite size to
the secondary black hole alters the waveform amplitude
and could potentially offer an alternative method for
matching BHPT waveforms to NR without performing
any calibration. However, this approach relies on accurately
determining the correct size of the secondary black hole

FIG. 2. We show the amplitudes of six BHPT waveforms at
q ¼ 5 generated using a finite size secondary black hole. For
comparison, we also include the amplitudes obtained from NR
(thick red line) and ppBHPT (thin red line) waveforms. More
details are in Sec. III B.

FIG. 3. We show the scaling parameters α22, α33, and β as a
function of the radius of the secondary black hole used in BHPT
simulations (upper panel). Furthermore, we show the L2-norm
error between the rescaled BHPTwaveform and NR after the α-β
calibration for each simulation (lower panel). Dashed vertical
lines denote the expected size of the secondary (i.e., rS ¼ 0.33)
from Eq. (4). More details are in Sec. III B.
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from the outset. In this section, we explore whether it is
feasible to establish such a framework. To begin with, we
opt to employ the expected size of the secondary black
hole, as estimated from Eq. (4), as the input for our finite
size BHPT simulation. It is somewhat encouraging to
observe that, in Fig. 3 for q ¼ 5, the error after the α-β
calibration exhibits the minima very close to the expected
radius obtained from Eq. (4).
We generate finite size BHPT waveforms for four

different mass ratios: q ¼ ½4; 5; 8; 10�. Subsequently, we

compare these waveforms, particularly their amplitudes,
with both NR2 and ppBHPT waveforms. In Fig. 4 (left
panels), we present the (2,2) mode amplitudes of the finite
size waveforms, as well as those of the NR and ppBHPT
waveforms. We observe that while ppBHPT waveforms
consistently exhibit larger amplitudes than the NR data, the

FIG. 4. We compare the amplitudes of the ðl; mÞ ¼ ð2; 2Þ mode between finite size BHPT waveforms (red dashed lines), NR (solid
black lines), and ppBHPT (yellow dashed lines) for mass ratios q ¼ ½4; 5; 8; 10� (left panels). Additionally, we present the corresponding
relative errors with respect to NR (right panels). More details are in the text (Sec. III C).

2We use NRHybSur3dq8 waveforms as a proxy of the NR
data.
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finite size BHPT waveforms closely match the amplitudes
of NR waveforms for all the mass ratios examined in this
study. To gain a deeper understanding of this agreement, we
also plot the relative differences in the amplitudes com-
pared to the NR data for both ppBHPTand finite size BHPT
waveforms (right panels of Fig. 4). Remarkably, we
observe that the finite size BHPT waveforms consistently
yield errors that are approximately one order of magnitude
smaller than the errors between ppBHPT and NR wave-
forms. This clearly demonstrates the potential of the finite

size BHPT framework in providing accurate waveforms in
the regime of comparable mass ratios.
Next, we turn our attention to the higher order modes,

specifically the (3,3) and (4,4) modes. We find that even
with the inclusion of the expected size of the secondary in
our BHPT simulations, the amplitudes of these higher order
modes still exceed those of NR waveforms (Fig. 5). It is
worth noting that the most significant impact of the finite
size secondary is observed around the merger, where the
amplitude of the finite size BHPT waveform decreases

FIG. 5. We compare the amplitudes of the ðl; mÞ ¼ ð3; 3Þ and ðl; mÞ ¼ ð4; 4Þmode between finite size BHPTwaveforms (red dashed
lines), NR (solid black lines), and ppBHPT (yellow dashed lines) for mass ratios q ¼ ½4; 5; 8; 10� (left panels). Additionally, we present
the corresponding relative errors with respect to NR (right panels). More details are in the text (Sec. III C).
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significantly. As expected, the effects of finite size correc-
tions are more pronounced for smaller mass ratios, such as
q ¼ 4, compared to larger mass ratios, such as q ¼ 10.
We further observe that the amplitude ratio between the

finite size BHPT waveform and NR waveform follows
roughly similar scaling for both the (3,3) and (4,4) modes.
Specifically, for a mass ratio of q ¼ 10, we find the
following approximate relation:

Aq¼10
33;NR ≈ 0.81 × Aq¼10

33;fsBHPT; ð7Þ

Aq¼10
44;NR ≈ 0.80 × Aq¼10

44;fsBHPT; ð8Þ

where A33;NR and A33;fsBHPT represent the (3,3) mode
amplitudes of the NR and finite size BHPT waveforms
respectively. As an example, in Fig. 6, we show A33;NR and
A33;fsBHPT as well as the scaling for q ¼ 10. We identify that
the numbers 0.83 and 0.81 closely match the transforma-
tion factor νq between waveforms expanded in terms of 1

q

and ν. For q ¼ 10, this transformation factor is 0.79. We
generalize this relation as:

Aq
l≠2;NR ≈ ξl≠2;q × Aq

l≠2;fsBHPT; ð9Þ

where ξl≠2;q is the scaling parameter required to match a
finite size BHPT mode amplitude to NR. In Fig. 7, we
present the scaling factors ξl;q extracted for both the (3,3)
and (4,4) modes across the four mass ratio values studied.
Interestingly, we find that these scaling factors can largely
be attributed to the simple scaling from the 1

q expansion to
the ν expansion as mentioned earlier.

It is important to note that the finite size effect is smaller
for the dominant (2,2) mode. Consequently, the discrep-
ancies in amplitudes observed in Fig. 5 or Fig. 6 may not be
easily discernible for this mode. Therefore, when compar-
ing waveforms generated with NR and BHPT frameworks,
it becomes crucial to consider the higher order modes.

IV. MODELLING THE FINITE SIZE EFFECT

Based on the results presented in Sec. III C, we now aim
to revisit the α-β calibration procedure and break it down
into smaller components to identify the effects of finite size.
In Ref. [37], fitting formulas for the calibration param-

eters αl and β have been developed for the α-β calibration
procedure, as a function of the mass ratio q. These formulas
read:

αlðqÞ ¼ 1þ Aα;l

q
þ Bα;l

q2
þ Cα;l

q3
þDα;l

q4
; ð10Þ

and

βðqÞ ¼ 1þ Aβ

q
þ Bβ

q2
þ Cβ

q3
þDβ

q4
: ð11Þ

Values of the fit coefficients are given in Tables I and II for
αl and β, respectively.
The calibration parameters αl and β account for two

distinct effects in the context of the α-β calibration
procedure: (i) the difference in mass scales between

FIG. 6. We show the (3,3) mode amplitudes of the NR and finite
size BHPT waveforms for q ¼ 10 as well as the scaling between
them. More details are in Sec. III C.

FIG. 7. We show the scaling factor ξl≠2;q, required to match a
finite size BHPT mode amplitude to NR, as a function of the mass
ratio q. For comparison, we also show the expected trans-
formation factor (νq) between expanded in terms of 1

q and ν.
More details are in Sec. III C.
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ppBHPT and NR; and (ii) the absence of finite size effects
in the ppBHPT waveforms. Specifically, the mass scale in
NR simulations is determined by the total mass of the
binary M, whereas the mass scale used in ppBHPT
corresponds to the mass of the primary black hole m1.
As a result, the transformation factor between the two mass
scales can be expressed as 1

1þ1=q. Furthermore, the findings
presented in Sec. III C suggest that even after incorporating
the expected size of the secondary, the amplitude of the
higher order modes needs to be rescaled by a factor that
closely resembles a transformation between the 1

q expansion
and the ν expansion. Furthermore, we observe that such a
correction is unnecessary for the (2,2) mode.
Based on the results presented in Sec. III C, we can

decompose the α-β scaling into individual components and
approximately determine the corrections resulting from
finite size effects as:

αl¼2 ¼
1

1þ 1=q
× αl;size ð12Þ

and

αl≠2 ¼
1

1þ 1=q
× ðνqÞ × αl;size; ð13Þ

where αl;size represent the finite size corrections in the amp-
litudes and need to be applied to the ppBHPT waveforms.
It is important to note that although we could not

extensively investigate β due to its unchanged nature under
the finite size correction implemented in Sec. II C, it
exhibits similar qualitative and quantitative behavior as
αl¼2. Hence, we express the potential finite-size correction
in β as:

β ¼ 1

1þ 1=q
× βsize; ð14Þ

where βl;size is the correction due to the missing finite size
of the secondary in ppBHPT framework.

We can establish a connection between the αl and β
parameters [obtained from the fits presented in Eqs. (10) and
(11)] and the radius of the secondary black hole [obtained
from Eq. (4)] for various mass ratios ranging from q ¼ 3 to
q ¼ 8. This in turn gives us the connection between αl;size
(βl;size) and the radius of the secondary (Fig. 8).
This connection reveals the following behaviors:

αl¼2;size ≈ 0.9965083 − 0.1436961 × rS

þ 0.2885172 × r2S − 0.4157566 × r3S; ð15Þ

αl¼3;size ≈ 1.0661084 − 0.7671928 × rS

þ 2.78573195 × r2S − 3.77344743 × r3S; ð16Þ

TABLE I. Fitting coefficients for αl parameters as defined in Eq. (10).

l Aα;l Bα;l Cα;l Dα;l

2 −1.330� 0.007 2.720� 0.116 −5.904� 0.556 5.548� 0.833
3 −3.067� 0.017 6.244� 0.265 −9.944� 1.261 6.437� 1.894
4 −3.909� 0.032 9.431� 0.498 −14.734� 2.367 9.744� 3.556
5 −4.509� 0.102 4.751� 1.554 21.959� 7.381 −52.350� 11.085

TABLE II. Fitting coefficients for β parameters as defined in Eq. (11).

Aβ Bβ Cβ Dβ

−1.238� 0.003 1.596� 0.049 −1.776� 0.237 1.0577� 0.356

FIG. 8. We show the calibration parameters αl;size, which
correct for the missing finite size effects, utilized in the α-β
scaling of the BHPTNRSur1dq1e4 model, as a function of rS,
the expected radius of the secondary black hole. Vertical gray
lines indicate q ¼ 3 and q ¼ 8. More details are in Sec. IV.
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αl¼4;size ≈ 1.04769829 − 0.98742265 × rS

þ 1.98206353 × r2S − 2.33710155 × r3S; ð17Þ
αl¼5;size ≈ 1.58061793− 6.60322364× rS

þ 17.10135734× r2S− 16.75259602× r3S; ð18Þ
and

βsize ≈ 1.00082016 − 0.1298413 × rS

þ 0.07899518 × r2S − 0.05206764 × r3S: ð19Þ
It should be noted that smaller values of αl;size correspond
to larger corrections due to finite size effects. As antici-
pated, we observe that αl;size decreases as the value of q
decreases, indicating that the finite size effect becomes
more significant as the binary approaches an equal mass
system. Additionally, the impact of the finite size effect is
more pronounced in higher order modes compared to the
dominant (2,2) mode (Fig. 8).
Finally, we repeat the fitting in terms of q and obtain:

αl¼2;size ≈ 0.98999937 − 0.14513987 ×

�
1

q

�

þ 0.22474979 ×
�
1

q

�
2

− 0.58826966 ×
�
1

q

�
3

;

ð20Þ

αl¼3;size ≈ 1.01037758 − 0.2900019 ×

�
1

q

�

þ 1.81636983 ×

�
1

q

�
2

− 5.63171863 ×

�
1

q

�
3

;

ð21Þ

αl¼4;size ≈ 1.01009073 − 1.1386684 ×

�
1

q

�

þ 2.65047754 ×

�
1

q

�
2

− 4.53281099 ×

�
1

q

�
3

;

ð22Þ

αl¼5;size ≈ 1.30116152− 6.914990×

�
1

q

�

þ 26.51652×

�
1

q

�
2

− 40.08021×

�
1

q

�
3

; ð23Þ

and

βsize ≈ 0.9994668 − 0.2303172 ×

�
1

q

�

þ 0.3294111 ×

�
1

q

�
2

− 0.2743849 ×

�
1

q

�
3

: ð24Þ

We now compute the fitting errors in the scaling
parameters αl;size and βsize (Fig. 10). To do this, we

compare the numerical values of these parameters to the
analytical fits constructed in this section. We evaluate the
relative differences for 500 randomly chosen points in the
mass ratio range of q ¼ 3 to q ¼ 8. The fitting errors are
found to be very small, with values around 10−6 for β
regardless of whether the fits are based on rS or 1

q. This
demonstrates the reliability of the fits.

V. DISCUSSION AND CONCLUSIONS

In this study, we have investigated the impact of finite
size effects on BBH waveform modeling using the BHPT
framework (described in Sec. II C). We explored the
behavior of the waveforms by incorporating a finite size
for the secondary BH and compared them with both NR
and ppBHPT waveforms. One key observation is that the
introduction of a finite size for the secondary BH leads to a
decrease in waveform amplitudes compared to the ppBHPT
waveforms (Sec. III C; Figs. 4 and 5).
Additionally, we have performed the α-β calibration

(proposed by Islam et al. [37]) to match finite size BHPT
waveforms with NR waveforms (Sec. III B; Figs. 2 and 3).
Interestingly, we found that αl;size varies as the size of the
secondary changes, indicating the specific impact of finite
size effects on different multipole modes.
We further extracted the finite size corrections αl;size and

βsize from the calibration parameters αl and β used to
rescale a ppBHPT waveform so that it matches NR
remarkably well in the comparable mass ratio regime.
These corrections provide a systematic way to account for
the missing finite size effects in the BHPT framework. We
derived fitting formulas for αl;size and βsize as functions of

FIG. 9. We show the calibration parameters αl;size, which
correct for the missing finite size effects, utilized in the α-β
scaling of the BHPTNRSur1dq1e4 model, as a function of the
mass ratio q. More details are in Sec. IV.
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the mass ratio as well as the expected radius of the
secondary, which allows for a convenient determination
of these corrections based on the physical properties of the
binary system (Sec. IV; Figs. 8 and 9).
Overall, we demonstrated that the amplitude of the finite

size BHPT waveforms closely matches that of the NR
waveforms for various mass ratios after efficiently

incorporating finite size effects in the BHPT framework.
This highlights the potential of accurately modeling BBH
waveforms in the comparable mass ratio regime by con-
sidering the finite size of the secondary BH. However,
further investigations are needed to explore methods for
reliably determining the correct size in practical scenarios,
as the correct size information is essential for achieving
accurate waveform modeling.
It is worth noting that the finite-size BHPT framework

(described in Sec. II C; and in Ref. [50]) solely addresses
the absence of finite size effects in the fluxes and ampli-
tudes during the late inspiral-merger-ringdown phase of the
waveform. Furthermore, it still relies on the trajectory of the
point particle. While these limitations need to be addressed
to develop a robust finite-size BHPT framework, it can
already provide valuable insights into the dynamics of the
binary and the intriguing interplay between NR and BHPT.
Our findings shed light on the interplay between NR and

perturbation theory in the context of binary black hole
waveforms. They underscore the significance of finite size
effects and offer valuable insights into the potential of
incorporating them into BHPT waveform models. By
bridging the gap between perturbative approaches and
NR simulations, these advancements enhance our under-
standing and modeling capabilities of GW signals from
BBH mergers.
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