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We consider general torsion components in three-dimensional Einstein-Cartan gravity, providing a
geometrical interpretation for matter, and find new solutions of the corresponding equations for the
Riemann curvature and torsion. These geometries involve a peculiar interplay between the vector ðβiÞ and
the singlet (τ) irreducible components of the torsion which, under general conditions, feature a formal
analogy with the equation for a Beltrami fluid. Interestingly, we find that the local AdS3 geometry is now
deformed by effect of the “Beltrami-torsion” βi. Some of these new solutions describe deformations of the
Bañados, Teitelboim, Zanelli black hole due to the presence of torsion. The latter acts as a geometric flux
which, in some cases, removes the causal singularity.
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I. INTRODUCTION

Over the years, three-dimensional gravity with negative
cosmological constant has attracted considerable interest in
view of its many remarkable features [1–6]. Among these is
the fact that it can be formulated in the language of gauge
theories, as aChern-Simons action for anSO(2, 2) connection
[2,3]. Moreover, despite the absence of local degrees of
freedom, including gravitational waves, three-dimensional
gravity exhibits nontrivial solutions, like the Bañados,
Teitelboim, Zanelli (BTZ) black hole [7,8]. This solution,
in particular, features a singularity in the causal structure of
spacetime, different from the curvature singularity of four-
dimensional black holes, and it is a natural candidate for an
exactly solvable model of quantum black holes [6]. Other
three-dimensional black holes, and their relation with the
BTZ solution, were more recently discovered in [9], in the
framework of topologically massive gravity. These features

have sparked considerable interest in the gravity and super-
gravity community, in particular in relation to the AdS=CFT
correspondence [10] [see for example [11–13]].
In this paper we consider the spacetime torsion in the

presence of a flat connection as a way of introducing, in the
Einstein-Cartan formalism, a coupling to matter. We
present novel three-dimensional solutions, while discussing
their properties and their relation to the BTZ black hole.
A well-known example of the effect of torsion on

spacetime geometry is given by a constant, totally anti-
symmetric torsion contribution

Ti½e;ω� ¼ dei þωi
j ∧ ej ¼ τϵijkej ∧ ek; τ ¼ constant:

ð1:1Þ
Here i; j;… ¼ 0, 1, 2 are rigid indices in the vector
representation of the local Lorentz group SO(1,2), while
ei and ωij are the vielbein and Lorentz connection 1-forms,
respectively. In this case, the torsion τ can be traded for a
negative cosmological constant: this can be shown by

redefining the spin connection as ωij ¼ ω
∘ ij þ kij, in terms

of a torsionless, nonflat spin connection ω
∘ ij and a con-

torsion tensor kij [14]. The deformation induced by the
torsion can be captured by the first-order action

S½e;ω∘ �¼−
c4

16πGN

Z
M

�
Rij½ω∘ �∧ekϵijk−

τ2

3
ϵijkei∧ej∧ek

�
;

ð1:2Þ
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where GN is the three-dimensional Newton’s constant, M
is the spacetime manifold we are integrating on and

Rij½ω∘ � ¼ dω
∘ ij þ ω

∘ i
k ∧ ω

∘ kj is the Riemann curvature
tensor.1

The above special example describes locally AdS3
spacetimes, which include the vacuum AdS3-solution as
well as BTZ black holes. Considering more general forms
for Ti½e;ω�, by redefining the spin connection as above, the
torsion tensor can be seen as a geometric way of coupling
matter, with local dynamics, to gravity through its con-
tribution to the energy-momentum tensor. The latter can be
derived from an action principle only in some cases and in
second-order formalism. The local dynamics of this kind of
matter follows from the consistency conditions of the
curvature and torsion equation, that is from the Bianchi
identities.
A nonvanishing torsion that generalizes (1.1) can be

conveniently written in terms of its irreducible components
with respect to the Lorentz structure group SO(1, 2): these
are the singlet τ, a three-vector βi, and a symmetric-
traceless tensor Σij ¼ ΣðijÞ. Integrability of the torsion
equation, expressed by the corresponding Bianchi identity,
poses constraints on the irreducible torsion components.
For the sake of concreteness, in this paper, we will focus on
the Σij ¼ 0 case and we leave a more general analysis,
which includes this component, to a future endeavor.
In [15], the consistency conditions on τ and β≡ βiei were

solved assuming dβ ¼ 0. Interestingly, as we will show,
these equations also allow for configurations, dβ ≠ 0, in
which the components of β satisfy an equation of the same
general form as that of a Beltrami velocity field in fluid
dynamics [16,17] and thus it describes one propagating on-
shell degree of freedom [18]. Furthermore, in this more
general case, β can be interpreted as a connection associated
with the local Weyl-rescaling symmetry of the field equa-
tions. As we shall show, this can be exploited to rescale the τ
component to a constant, by a local gauge choice.
This leads to the explicit construction of novel geom-

etries which yield, in the β → 0 limit, locally AdS3
spacetimes. In particular, we obtain a class of spacetimes
that describe a deformation of the BTZ black hole induced
by the “Beltrami-torsion” 3-vector βi. In some of these
solutions, the effect of β, which can be interpreted as a
geometrical flux, is to remove the causal singularity of the
BTZ solution.
We present here a preliminary analysis of the geometric

properties of these solutions, leaving a more detailed study
thereof, as well as a discussion of their application to
gauge/gravity duality, to future work. Among the geom-
etries considered here, we include the case of a Euclidean
3-dimensional space, where the geometric flux βi satisfies
the same equation as the velocity of a proper Beltrami fluid.

Lastly, this perspective, which revolves around the
spacetime torsion, is also the natural framework in uncon-
ventional sypersymmetry contexts, which play a relevant
role in the construction of analog supergravity models,
providing a macroscopic description of the electronic
properties of graphene-like materials [19–23]. In this kind
of applications, the parameter τ was given the interpretation
of Semenoff mass [22]. In such context, the role of all the
irreducible components of the torsion is currently under
investigation and will be the subject of a forthcoming
publication.
The paper is organized as follows: in Sec. II we introduce

the notion of Beltrami-torsion as the general solution to the
consistency conditions on the irreducible torsion compo-
nents and derive the explicit form of the energy-momentum
tensor induced by it. In Sec. III we present a number of
novel geometries and discuss their properties, in relation to
BTZ black hole and Beltrami fluids. Finally, in Sec. IV, we
discuss possible applications of the results and future
developments.
We summarize our conventions in Appendix A, while

Appendix B is devoted to the study of AdS3 Killing
vectors.

II. GENERAL TORSION IN 2+ 1 DIMENSIONS

In three spacetime dimensions, the general decomposi-
tion of the torsion 2-form in irreducible representations of
the Lorentz group is

Ti½e;ω� ¼ D½ω�ei ¼ τϵijkej ∧ ek þ βei þ Σilϵljkej ∧ ek;

ð2:1Þ

according to the branching rules for the product of
the vector (3) times the twice antisymmetric (3 ∧ 3 ¼ 3)
SO(1, 2)-representations

Ti½jk�∶ 3 × 3 ¼ 1 ⊕ 3 ⊕ 5: ð2:2Þ

Here D½ω� denotes the Lorentz-covariant derivative with
respect to a generic spin connection ω; τ is the 0-form
related to the totally antisymmetric irreducible representa-
tion ðTð1ÞÞijk ≡ τϵijk [corresponding to the singlet in (2.2)];
β ¼ βiei is the 1-form associated with the trace part of the
torsion ðTð3ÞÞijk ≡ β½jδik� [corresponding to the 3 in (2.2)]

and the last term on the right-hand side of (2.1),
ðTð5ÞÞijk ≡ Σilϵljk, is defined by the symmetric traceless

matrix Σij describing the irreducible component of

the torsion tensor (corresponding to the 5 in (2.2). The first
and last terms in (2.1) can be collected into a single
symmetric matrix

1In the following we will use natural units where
8πGN ¼ c ¼ 1.
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Sij ¼ τδij þ Σij: ð2:3Þ

Let us consider here the effects of a Weyl rescaling

ei → λðxÞei; ð2:4Þ

under which, in general, the torsion does not transform as a
tensor

D½ω�ei → D½ω�ei0 ¼ λ

�
D½ω�ei þ 1

λ
dλei

�
:

Nonetheless, it is tempting to consider β as an Abelian
connection, associated to a O(1, 1)-bundle of Weyl rescal-
ings and transforming as

β0 ¼ β þ dλ
λ
: ð2:5Þ

Indeed, let us associate the quantity

T̂i½e;ω; β� ¼ D½ω�ei − βei ¼ Silϵljkej ∧ ek ð2:6Þ

to the torsion (2.1). The above expression transforms
covariantly

T̂i½e0;ω; β0� ¼ λT̂i½e;ω; β�;

provided that we also require

S0ij ¼ 1

λ
Sij ð2:7Þ

to hold. Under these circumstances, T̂½e;ω; β�i becomes a
O(1, 1)-tensor. Quantities transforming tensorially under
Weyl rescalings can then be obtained by defining gener-
alized [Lorentz and O(1, 1)] covariant derivatives

D̂½ω; β�ΦðpÞ ≡D½ω�ΦðpÞ − pβ ∧ ΦðpÞ; ð2:8Þ

ΦðpÞ denoting any of the fields/parameters of the theory and
p the corresponding O(1, 1)-weight. In particular, the
dreibein ei has O(1, 1)-weight p ¼ 1, whereas Sij is a
section of the O(1, 1)-bundle with weight p ¼ −1.
The introduction of such a symmetry implies that it is

always possible to rescale the value of the singlet function τ
to a constant.
In the following, we shall consider a flat Lorentz-

connection ω and restrict to the torsion components τ, β
only, leaving a more general study, which includes the Σij

component, to future work. The relevant field-strengths will
then have the following form:

Rij½ω� ¼ 0; ð2:9Þ

Ti½e;ω� ¼ τϵijkej ∧ ek þ β ∧ ei: ð2:10Þ

A. The torsion Bianchi identity

The torsion equation (2.10) must preserve the nilpotency
of the differential operator d. This yields integrability
conditions involving τ and β. The Bianchi identity for
the torsion reads:

DTi½e;ω� ¼ Rij½ω� ∧ ej ¼ 0; ð2:11Þ

where we have used (2.9).2 The above equation implies,
upon using (2.10), the following condition on the irreduc-
ible components β and τ:

0 ¼ dβ ∧ ei þ ϵijkðdτ þ βτÞ ∧ ej ∧ ek: ð2:12Þ

Equation (2.12) can be rewritten, using differential
forms, as

⋆ dβ ¼ −2ðdτ þ βτÞ; ð2:13Þ

where the Hodge star has been defined in Appendix A. The
rigid component expression of the above equation is

D½i½ω∘ �βj� þ ϵijkð∂kτ þ βkτÞ ¼ 0; ð2:14Þ

while, in terms of curved spacetime indices, Eq. (2.13) can
equivalently be expressed as

1

2

ffiffiffi
g

p
ϵμ

νρ
∂νβρ ¼ −ð∂μτ þ βμτÞ: ð2:15Þ

In the τ ≠ 0 case, if we require covariance of the torsion
under Weyl rescalings, (2.4), we can suitably fix the O(1, 1)
symmetry, in such a way that the totally antisymmetric
component of the torsion becomes constant. Indeed, taking
λ ¼ τ

α ≠ 0, with α constant, yields

τ0 ¼ α; β0 ¼ β þ d ln
�
τ

α

�
; e0 i ¼ τ

α
ei: ð2:16Þ

In this case, the integrability equation, which is covariant
with respect to O(1,1) transformations, reduces to

⋆0 dβ0 ¼ −2β0τ0: ð2:17Þ

The above equation, which is the field equation for the field
β0, interestingly leads to a Proca-like equation for a massive
1-form

2The same condition would hold for any Einstein manifold,
where the Riemann tensor is Rij½ω� ∝ ei ∧ ej.

NEW TORSIONAL DEFORMATIONS OF LOCALLY AdS3 … PHYS. REV. D 108, 044011 (2023)

044011-3



□β0 ¼ ð⋆0 d ⋆0 dÞβ0 ¼ 4β0τ02: ð2:18Þ

The field equation (2.17) is an instance of self-duality in
odd dimensions [18]. Its solution can be seen as a “chiral”
1-form, its chirality being encoded in the sign of τ0 and
propagates one degree of freedom.3

The case in which β0 is closed, and actually vanishing,
implying that β is exact, has already been discussed in the
literature [15]. In the dβ0 ≠ 0 case, (2.17) is reminiscent of
the equation defining a Beltrami flow in fluid-dynamics
and will lead to the novel and interesting geometries, that
we discuss in the next section. For this reason, we will
generally refer to β, satisfying (2.17), as Beltrami-torsion.
Finally, let us notice that this is a special case of the

generalized monopole equation discussed in [24] (see also
[25]), though in a different context.

B. Energy-momentum tensor from torsion

As mentioned in the Introduction, since the explicit form
of the torsion depends on the choice of spin connection, a
generic torsion can always be set to zero by redefining the
spin connection in terms of a torsionless one, ω

∘
, plus a

contorsion k, that is

ωij ¼ ω
∘ ij þ kij; ð2:19Þ

Rij½ω� ¼ Rij½ω∘ � þD½ω∘ �kij þ kik ∧ kkj: ð2:20Þ

By doing so, the resulting Riemann tensor receives a shift,
that can be regarded as (minus) the energy-momentum
contribution of some sort of matter and/or flux to the
Einstein equations.
In fact, in the case at hand, the contorsion tensor

explicitly reads

kij ¼ −τϵijkek þ 2β½iej�; ð2:21Þ

and (2.9) and (2.10) can be rewritten in terms of the
torsionless spin connection as

Rij½ω∘ � ¼ −
1

2
ϵijkϵlpqT klep ∧ eq; ð2:22Þ

Ti½e;ω∘ � ¼ 0: ð2:23Þ

Here the tensor T ij is defined as

T ij ¼ ð−τ2ηij − βiβj − ð∂kτ þ βkτÞϵijk

−Di½ω∘ �βj þDk½ω∘ �βkηijÞ; ð2:24Þ

and in principle has both symmetric and antisymmetric
parts. However, in virtue of (2.14), the antisymmetric part
automatically vanishes, leaving a symmetric tensor, which
reads

T ij ¼ ð−τ2ηij − βiβj −Dði½ω∘ �βjÞ þDk½ω∘ �βkηijÞ: ð2:25Þ

The symmetric tensor T ij is in fact the energy-momen-
tum tensor of the theory: by expanding the Riemann tensor
in the vielbein basis and by taking appropriate traces, one
can build the Einstein’s tensor, which precisely reads

Gij ¼ Rij½ω∘ � −
1

2
ηijR½ω∘ � ¼ T ij; ð2:26Þ

whereRij½ω∘ � indicates the Ricci tensor, whereas R½ω∘ � is the
corresponding Ricci scalar. At last, observe that the right-
hand side is automatically covariantly conserved, in virtue
of the Riemann curvature Bianchi identities, in this torsion-

less spin connection frame. Indeed, D½ω∘ �Rij½ω∘ � ¼ 0 pre-

cisely implies Di½ω∘ �T ij ¼ 0. This is a quadratic equation
on the contorsion tensor condition, but it exactly coincides
with the linear integrability condition (2.13), manifestly
showing the advantages of working in the torsionful
framework.

III. THE SOLUTIONS

In this section, we present new solutions of Eqs. (2.9)
and (2.10) and we discuss their geometric features.

A. Spacelike fibration solutions

Let us consider a constant, completely antisymmetric
torsion component τ and a Beltrami torsion β proportional
to e2, defining a spacelike fibration.
A one parameter family of solutions is given by

e0 ¼ 1

2τ
dt;

e1 ¼ 1

2τ
dx
�
cos
� ffiffiffiffiffiffiffiffiffiffiffiffi

1 − ζ2
p

t
��

;

e2 ¼ 1

2τ

�
dzþ dx

�
sin ð

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ζ2

p
tÞffiffiffiffiffiffiffiffiffiffiffiffi

1 − ζ2
p ��

;

β ¼ 2τζe2; ð3:1Þ

whose associated metric tensor reads

3A massive (2k − 1)-form B in d ¼ 4k − 1 dimensions (in our
case k ¼ 1) has a number of on-shell degrees of freedom given by
ð4k−2
2k−1Þ. However a massive (2k − 1)-form satisfying the massive
self-duality condition ⋆ dB ¼ mB has the same number of
degrees of freedom as a massless form of the same kind, namely
ð4k−3
2k−1Þ ¼ 1

2
ð4k−2
2k−1Þ.
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ds2 ¼
dt2 − dz2 − dx2

�
cos2

� ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ζ2

p
t

�
þ sin2ð

ffiffiffiffiffiffiffi
1−ζ2

p
tÞ

1−ζ2

�
− 2dxdz sin ð

ffiffiffiffiffiffiffi
1−ζ2

p
tÞffiffiffiffiffiffiffi

1−ζ2
p

4τ2
: ð3:2Þ

These expressions are written in terms of local coordinates ðt; x; zÞ, each covering the entire real line. As the metric
components depend only on the coordinate t, one has the following nontimelike Killing vectors:

Kx ¼
∂

∂x
; Kz ¼

∂

∂z
; ð3:3Þ

which one can show being the only admissible ones (together with their linear combinations) for generic values of the
parameter ζ.
The corresponding torsionless Riemann tensor reads

R01½ω∘ � ¼ ð1 − 4ζ2Þτ2e0 ∧ e1; R02½ω∘ � ¼ τ2e0 ∧ e2; R12½ω∘ � ¼ τ2e1 ∧ e2; ð3:4Þ

whereas the Ricci scalar is

R½ω∘ � ¼ 6τ2 − 8ζ2τ2: ð3:5Þ

Notice that the parameter ζ ∈ R controls the strength of the
deformation with respect to an AdS3 space.

4 In particular,
the effect of the spacelike fibration is that of introducing an
AdS3 squashing along the 01 component of the Riemann
tensor. Most interestingly, observe that each Lorentz
component of this tensor is still proportional to the very
same combination of vielbein and that the resulting
spacetime is still an Einstein manifold.
When the Beltrami torsion vanishes, the metric

reduces to

ds2jζ→0 ¼
dt2 − dx2 − dz2 − 2dxdz sinðtÞ

4τ2
; ð3:6Þ

which can be obtained from the following embedding
ðt; x; zÞ ↦ ðXMÞ ∈ R2;2

X0 ¼ 1

τ
cos

�
1

2

�
t −

π

2

��
cosh

�
xþ z
2

�
;

X1 ¼ 1

τ
cos

�
1

2

�
t −

π

2

��
sinh

�
xþ z
2

�
;

X2 ¼ 1

τ
sin

�
1

2

�
t −

π

2

��
sinh

�
z − x
2

�
;

X3 ¼ 1

τ
sin

�
1

2

�
t −

π

2

��
cosh

�
z − x
2

�
; ð3:7Þ

satisfying

ðX0Þ2 − ðX1Þ2 − ðX2Þ2 þ ðX3Þ2 ¼ 1

τ2
: ð3:8Þ

The above equations are well defined for all values of t, x, z
and they show that the coordinates ðt; x; zÞ, in the
ζ → 0 limit, only describe a local patch of AdS3, as
0 < ðX0Þ2 − ðX1Þ2 < 1

τ2
, instead of covering the entire real

line, as in the global coordinate case.
The torsionless spin connection is

ω
∘ 01 ¼ 2τ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ζ2

p
tan
�
t
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ζ2

p �
e1 − τe2;

ω
∘ 02 ¼ −τe1; ω

∘ 12 ¼ −τe0 ð3:9Þ

and the covariantly conserved energy-momentum tensor
associated to this configuration reads

T ij ¼ ð−τ2ηij − 4τ2ζ2δi2δ
j
2Þ: ð3:10Þ

One can immediately see that this correctly reduces to a
cosmological constant contribution in the vanishing ζ limit
and that it is symmetric.

1. Relation to BTZ black holes

Let us analyze here the above-described solution in
relation to the well-known BTZ black hole. To this end,
we will consider two appropriate coordinate patches and
study the associated Killing vectors.Wewill then discuss the
possibility of performing quotients with respect to spacelike
Killing vectors and the consequences on theglobal geometry.
Let us start by defining a convenient parameter ξ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ζ2

p
.

By doing so, we are restricting to the ζ ∈ ½0; 1� range of

4Notice that the value ζ ¼ 1 can be safely included by

supplementing the function sin ð
ffiffiffiffiffiffiffiffi
1−ζ2

p
tÞffiffiffiffiffiffiffiffi

1−ζ2
p with the value t, as

ζ ¼ 1. In this way the vielbein becomes continuous and twice
differentiable in ζ ¼ 1.
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admissible values, which in turn correspond to ξ ∈ ½0; 1�.
The vielbein can then be rewritten as

e0 ¼ 1

2τ
dt; e1 ¼ 1

2τ
dxðcos ðξtÞÞ;

e2 ¼ 1

2τ

�
dzþ dx

�
sin ðξtÞ

ξ

��
:

No singularity case
In a different coordinate patch, parametrized by ðt; r;ϕÞ,

the solution (3.1) can be rewritten, for ξ ∈ ð0; 1� as

e0 ¼ τdt−dϕ
ðrþ− r−Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2− r2þÞðr2−r2−Þ

q
;

e1 ¼−
drr

ξτ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2− r2þÞðr2− r2−Þ

p ;

e2 ¼−
ξðτdtþdϕÞðrþ−r−Þ2− ðτdt−dϕÞð2r2− r2þ− r2−Þ

2ξðrþ−r−Þ
;

ð3:11Þ

with rþ > r− > 0. Here r ∈ Rþnfr�g, while t;ϕ ∈ R.
While the related metric is real for any value of r, let us
observe that the first two components of the vielbein
become imaginary in the internal region r− < r < rþ:
for these values of r, one can perform a complex
Lorentz transformation

Λ ¼

0
B@

0 i 0

−i 0 0

0 0 −1

1
CA∈ SOð3;CÞ; ð3:12Þ

which exchanges the roles of e0 and e1 and crucially leaves
e2 untouched, guaranteeing that β is still real. The asso-
ciated metric can be written in fibration form, like the
original BTZ solution, as

ds2 ¼
�
gtt −

g2tϕ
gϕϕ

�
dt2 þ grrdr2 þ gϕϕ

�
dϕþ gtϕ

gϕϕ
dt

�
2

;

ð3:13Þ

with

grr ¼ −
r2

ðr2 − r2þÞðr2 − r2−Þτ2ξ2
;

gtt −
g2tϕ
gϕϕ

¼ ðr2 − r2þÞðr2 − r2−Þ
Pðr; ξÞ ;

gϕϕ ¼ −τ2Pðr; ξÞ;

gtϕ ¼ τrþr− þ ð2r2 − r2þ − r2−Þ2ð1 − ξ2Þτ
4ðrþ − r−Þ2ξ2

: ð3:14Þ

The explicit expression of the polynomial Pðr; ξÞ

Pðr; ξÞ ¼ ð2r2 − r2þ − r2− þ ξðrþ − r−Þ2Þ2 − 4ξ2ðr2 − r2þÞðr2 − r2−Þ
4τ2ξ2ðrþ − r−Þ2

ð3:15Þ

reduces to a simple form in the ξ → 1 limit

lim
ξ→1

Pðr; ξÞ ¼ r2

τ2
:

Moreover let us notice that the extremal case rþ ¼ r− is
only allowed in the ξ ¼ 1 case.
This geometry admits the following two Killing vectors,

as a consequence of the fact that the metric components
only depend on r:

Kt ¼
∂

∂t
; Kϕ ¼ ∂

∂ϕ
: ð3:16Þ

Out of the six soð2; 2Þ isometries of AdS3, only the above
two are preserved by the Beltrami torsion component β and
generate a soð2Þ ⊕ soð2Þ algebra. A detailed description of
the isometry algebra of AdS3, in this coordinate patch, is
given in Appendix B.
Killing horizons can be described as null hypersurfaces

in which the norm of a Killing vector vanishes: in our case,

let us consider the hypersurfaces generated by the functions
f�ðrÞ ¼ r − r�. These functions define normal covectors
n�μ ∝ ∂μf�ðrÞ, whose associated norm vanishes on the
hypersurface itself

gμνn�μn�νjr¼r� ¼ 0: ð3:17Þ

Moreover, the following linear combinations become
null (and mutually orthogonal) on each hypersurface
respectively:

K� ¼ rþð1� ξÞ þ r−ð1 ∓ ξÞ
2τ

Kt

þ rþð1 ∓ ξÞ þ r−ð1� ξÞ
2

Kϕ: ð3:18Þ

We can therefore conclude that the coordinate singularities
r ¼ r� define Killing hypersurfaces, which, in presence of
a singularity would serve as event horizons. This could also

be argued by noticing that the combination gtt −
g2tϕ
gϕϕ

has the
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same zeros, r ¼ r�, as in the BTZ case, independently of
the deforming parameter ξ.
Ergospheres are another interesting type of hypersurfa-

ces that we wish to study: these are usually defined as those
loci, where the norm of the asymptotically timelike Killing
vector vanishes. In the case at hand, for a nonvanishing β,

both Killing vectors in (3.16) are asymptotically spacelike.
However, in the ξ → 1 limit, Kt coincides with the
asymptotically timelike Killing vector of the BTZ solution.
For this reason, let us consider the points where the norm of
Kt changes sign and analyse the zeros of the gttðrÞ
component of the metric. The latter reads

gttðrÞ ¼
τ2

ðrþ − r−Þ2
�
ðr2 − r2þÞðr2 − r2−Þ −

ð2r2 − r2þ − r2− − ξðrþ − r−Þ2Þ2
4ξ2

�
: ð3:19Þ

The above expression is a quartic polynomial in r, which, depending on the value of ξ, may or may not have real, positive
zeros. In the deformed solution, ξ ≠ 1, two such zeros exist, provided that

ξ� ≤ ξ < 1; ξ� ¼ rþ þ r−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðr2þ þ r2−Þ

p ð3:20Þ

and read

r�� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ξ2Þðr2þ þ r2−Þ þ ξðrþ − r−Þ2 � ξðr2þ − r2−Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2

ξ�2 − 1
q

2ð1 − ξ2Þ

vuut
: ð3:21Þ

In particular, for any such value of ξ, we have the following inequalities:

0 < r− < rþ < r�− ≤ r�þ; ð3:22Þ

where the last equality holds at ξ ¼ ξ�, in which case

r�þ ¼ r�− ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2þ þ r2−Þ

�
ξ� þ 1

2

�s
: ð3:23Þ

If we keep decreasing ξ past the ξ� value, thus increasing the
magnitude of the deformation induced by the Beltrami
torsion term, the zeros of gtt become complex and therefore
disappear.
The nature of these timelike hypersurfaces can be better

inspected by studying their properties for a small defor-
mation: close to the undeformed solution we have

lim
ξ→1

r�þ ¼ þ∞;

lim
ξ→1

r�− ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ þ r2−

q
; ð3:24Þ

while, as ξ decreases, r�− increases and r�þ decreases until
they coincide and then disappear. The behavior of gttðrÞ and
its zeros are shown in Figs. 1 and 2 for a given choice of r�.
Let us observe that, in this limit, the expression of r�−

precisely coincides with that of the ergosphere in the BTZ
solution, whereas r�þ can be identified with the AdS3
boundary. For small deformations, ξ > ξ�, the solution

1.5 2.0 2.5 3.0 3.5 4.0
r

10

–5

5

10

ξ=0.860
ξ=0.930
ξ=0.959
ξ=0.967
ξ=0.974
ξ=1

–

FIG. 1. The behavior of gttðrÞ is shown here for r− ¼ 1, rþ ¼ 2
and for different values of ξ. In this case ξ� ≃ 0; 949, which is
consistent with the zeros that we see appearing starting from the
yellow line.

0.95 0.96 0.97 0.98 0.99 1.00

2

3

4

5

6

7

8

r+*

r–*

rerg

FIG. 2. The orange and light-blue lines represent the depend-
ence of r�� on the parameter ξ, for the values r− ¼ 1, rþ ¼ 2. For
such choice, we have ξ� ≃ 0; 949 and BTZ ergosphere value
rerg ≃ 2.236, depicted here as a green dashed line.
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admits a region where the norm of the Killing vector Kt is
positive, r�− < r < r�þ, indicating the presence of static,
nonrotating observers between the two ergospheres. This
region shrinks to zero as ξ ≤ ξ�, in which case all observers
must rotate. The parameter ξ, which controls the strength of
the torsion deformation, then also determines the width of
this region, bringing the boundary of the locally AdS3
spacetime to a finite r value and uncovering a rotating
region past infinity.
Similarly to the BTZ solution case, let us now perform a

quotient with respect to Kϕ, as in [8]: this is achieved by
identifying points p that belong to the same identification
subgroup defined by

p ∼ esKϕp; σ ∈ 2πZ: ð3:25Þ

This explicitly means considering a curve γðsÞ, such that
γð0Þ ¼ p and dγðsÞ=ds ¼ Kϕ for all s, that is whose
tangent vector is always Kϕ, and then identifying
γð0Þ ∼ γð2πÞ. The solution to this differential equation is
γμðsÞ ¼ sKμ

ϕ þ pμ. If pμ ¼ ðt0; x0;ϕ0Þ and given that the
Killing vector components are Kμ

ϕ ¼ ð0; 0; 1Þ, we have that
γμðsÞ ¼ ðt0; x0;ϕ0 þ sÞ. The identification of points then
implies

ðt0; x0;ϕ0Þ ∼ ðt0; x0;ϕ0 þ 2πÞ ⇒ ϕ0 ∼ ϕ0 þ 2π; ð3:26Þ

which has to hold for any p and therefore for any ϕ0. This
in turn requires ϕ ∼ ϕþ 2π, which signals that the coor-
dinate ϕ becomes compact.

Since Kϕ generates isometries of the solution, the
quotient space inherits the same Riemannian structure,
thus resulting again, locally, in a AdS3 spacetime. This
identification is consistent, provided that we do not alter the
causal structure, by introducing closed timelike/null curves.
This problem is avoided as long as the norm of the Killing
vector with respect to which we are quotienting, Kϕ, is
negative. In the original BTZ solution, there are no
problems for r > 0, but r ¼ 0 defines a locus of points
in which gϕϕðrÞ becomes zero, indicating that Kϕ becomes
lightlike. This locus must then be understood as a singu-
larity of the causal structure, which is consistently hidden
by two event horizons. In the case at hand, for ξ ≠ 1, the
metric component gϕϕðrÞ never vanishes and it is always
negative: we can then conclude that the presence of a
nonvanishing β removes such singularity. In the ξ → 1
case, the quotient space coincides with the BTZ one, whose
known metric reads

ds2BTZ ¼ dt2τ2ðr2 − r2−Þðr2 − r2þÞ
r2

−
dr2r2

τ2ðr2 − r2−Þðr2 − r2þÞ

− r2
�
dϕ −

dtτrþr−
r2

�
2

: ð3:27Þ

Singularity case
Let us now consider yet another patch,5 in which the

vielbein reads

e0 ¼ τdtþ dφ
ðrþ þ r−Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 − r2þÞðr2 − r2

−Þ
q

;

e1 ¼ −
rdr

ξτ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 − r2þÞðr2 − r2

−Þ
p ;

e2 ¼ −
ξðrþ þ r−Þ2ðτdt − dφÞ − ðτdtþ dφÞð2r2 − r2þ − r2

−Þ
2ξðrþ þ r−Þ

: ð3:29Þ

The above expression is written in terms of new ðt;r;φÞ coordinates, with rþ ≥ r− > 0. As in the previous case, r� are
coordinates singularities for the radial coordinate, r ∈ Rþnfr�g, but, differently from before, the extremal case rþ ¼ r− is
allowed for any value of ξ ∈ ð0; 1�. In the range r− ≤ r ≤ rþ, the vielbein can be made real by performing the complex
transformation (3.12). The corresponding metric can again be written in fibration form

ds2 ¼
�
gtt −

g2tφ
gφφ

�
dt2 þ grrdr2 þ gφφ

�
dφþ gtφ

gφφ
dt
�

2

; ð3:30Þ

5This patch can be obtained from the previous one by performing the following change of coordinates:

t ¼ r2þ þ r2−
r2þ − r2−

t −
2rþr−

ðr2þ − r2−Þτ
ϕ; r ¼ r; φ ¼ 2rþr−

ðr2þ − r2−Þτ
t −

r2þ þ r2−
r2þ − r2−

ϕ: ð3:28Þ

Here we also relabeled r� ¼ r�.
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with

grr ¼ −
r2

ðr2 −r2þÞðr2 −r2
−Þτ2ξ2

;

gtt −
g2tφ
gφφ

¼ ðr2 − r2þÞðr2 −r2
−Þ

Pðr; ξÞ ;

gφφ ¼ −τ2Pðr; ξÞ;

gtφ ¼ τrþr− −
ð2r2 −r2þ −r2

−Þ2ð1− ξ2Þτ
4ðrþ þr−Þ2ξ2

ð3:31Þ

and

Pðr; ξÞ ¼ ð2r2 − r2þ − r2
− þ ξðrþ þ r−Þ2Þ2 − 4ξ2ðr2 − r2þÞðr2 − r2

−Þ
4τ2ξ2ðrþ þ r−Þ2

: ð3:32Þ

As in the previous case, the expression of the polynomial
Pðr; ξÞ greatly simplifies in the undeformed case

lim
ξ→1

Pðr; ξÞ ¼ r2

τ2
;

where we retrieve the AdS3 spacetime. The geometry
admits two Killing vectors, which read

Kt ¼ ∂

∂t
; Kφ ¼ ∂

∂φ
; ð3:33Þ

whose norm can again be studied in relation to special
kinds of hypersurfaces.

Let us repeat the discussion about the presence of Killing
horizons and let us consider the null hypersurfaces gen-
erated by f�ðrÞ ¼ r − r�. The following linear combi-
nations become null (and mutually orthogonal) on each
hypersurface respectively:

K0
� ¼ �rþð1� ξÞ − r−ð1 ∓ ξÞ

2τ
Kt

∓ rþð1 ∓ ξÞ − r−ð1� ξÞ
2

Kφ: ð3:34Þ

This indicates that f�ðrÞ define Killing hypersurfaces.
Before considering the presence of singularities, let us

describe the ergospheres in terms of the zeros of gttðrÞ.
The latter explicitly reads

gttðrÞ ¼
τ2

ðrþ þ r−Þ2
�
ðr2 − r2þÞðr2 − r2

−Þ −
ð2r2 − r2þ − r2

− − ξðrþ þ r−Þ2Þ2
4ξ2

�
: ð3:35Þ

Its zeros are real and positive provided that

ξ� ≤ ξ < 1; ξ� ¼ rþ − r−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðr2þ þ r2

−Þ
p ð3:36Þ

and are given by

r�
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ξ2Þðr2þ þ r2

−Þ þ ξðrþ þ r−Þ2 � ξðr2þ − r2
−Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2

ξ�2 − 1
q

2ð1 − ξ2Þ

vuut
: ð3:37Þ

As in the previous case, for any ξ in this range, we have a
set of inequalities

0 < r− ≤ rþ ≤ r�
− ≤ r�þ: ð3:38Þ

The last equality holds at ξ ¼ ξ�, at which value we have

r�þ ¼ r�
− ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2þ þ r2

−Þ
�
ξ� þ 1

2

�s
: ð3:39Þ

Let us observe that a bit of care is needed in the extremal
limit, where ξ� ¼ 0: this value is outside our range of
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validity, (0,1). This simply indicates that the zeros (3.37)
are always real and positive. The corresponding surfaces,
however, will get closer and closer to each other and to
rþ ¼ r−, as ξ decreases, without actually coinciding.
In general, contrary to the previous analysis, the value

(3.39) is not necessarily larger than the BTZ ergosphere
radius,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ þ r2

−
p

, and in particular we have another
possible equality, rþ ¼ r�

−, corresponding to the value

ξ̃ ¼ rþ − r−

rþ þ r−
> ξ�: ð3:40Þ

Again, the extremal case requires some attention, as ξ̃ ¼ 0
is again excluded and cannot be reached.
In the undeformed limit ξ → 1, the zeros (3.37) coincide

with the boundary at infinity and with the proper ergo-
sphere, as in (3.24). The behavior of gtt and its zeros are
shown in Figs. 3 and 4. For small deformations, ξ > ξ�, the
solution admits a region where the norm of the Killing
vector Kt is positive, r�

− < r < r�þ, indicating the pres-
ence of static, nonrotating observers between the two
ergospheres. This region shrinks to zero below the value
ξ�, as the zeros of gtt cease to exist.
At last, let us identify points with respect to the Killing

vectorKφ: this is again performed by identifying points such
that φ ∼ φþ 2π, thus makingφ compact. This identification
is only consistent if we do not introduce closed timelike/
lightlike curves. This in turn depends on the norm ofKφ and
ultimately on the zeros of the metric component gφφðrÞ.
Differently from the previously analyzed case, the poly-
nomial Pðr; ξÞ may admit zeros of the following form:

r̂� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ξ2Þðr2þ þ r2

−Þ − ξðrþ þ r−Þ2 � ξðr2þ − r2
−Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2

ξ�2 − 1
q

2ð1 − ξ2Þ

vuut
: ð3:41Þ

By requiring the above expressions to be real, one can
derive several conditions involving ξ, r−, and rþ. How-
ever, independently of the latter relations, we always find
that r̂− ≤ r̂þ ≤ r−, where the last equality is reached at
ξ ¼ ξ̃. These causal singularities are therefore protected by
the Killing horizons r�, which can be interpreted as event
horizons. Moreover, in the undeformed limit, we only have
one singularity, which precisely coincides with the BTZ
one,

lim
ξ→1

r̂þ ¼ 0: ð3:42Þ

At bit of care is needed again in the extremal case,
rþ ¼ r− ¼ r0, where the zeros reduce to

r̂þ ¼ r0

ffiffiffiffiffiffiffiffiffiffiffi
1 − ξ

1þ ξ

s
; r̂− ¼ r0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3ξ

1 − ξ

s
; ð3:43Þ
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=0.902

–

FIG. 3. The behavior of gttðrÞ is shownhere forr− ¼ 1,rþ ¼ 2
and for different values of ξ. In this case ξ� ≃ 0; 316, which is
consistent with the zeros that we see appearing starting from the
yellow line.
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FIG. 4. The behavior of the zeros of gttðrÞ is shown here for different values of rþ and r−. In both cases r�
− touches rþ before

reaching the BTZ ergosphere value. The value of ξ corresponding to the point where the blue and orange lines touch is ξ�.
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the latter only existing for 0 < ξ ≤ 1=3. Since the param-
eter ξ is strictly positive, the singularities never reach r0, by
decreasing ξ, and therefore never actually coincide with the
ergospheres. In Figure 5 we can see an example of the
behavior of ergospheres and causal singularities in both
nonextremal and extremal cases.
The fact that the causal structures of the two spacetimes

we described differ should not surprise. Their physical
inequivalence is motivated by the fact that they were
obtained by quotienting the same covering spacetime with
respect to two different discrete groups of motion, gen-
erated by Kϕ and Kφ, respectively.

B. Timelike fibration

A different solution to equations (2.9) and (2.10) can be
found by considering a constant totally antisymmetric
torsion component and a trace part proportional to e0, in
such a way that the Beltrami torsion is timelike. In this case,
one explicitly gets

e0 ¼ 1

2τ

 
dtþ dx

 
A
sinh

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2 þ 1

p
z
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2 þ 1

p

þ B
cosh

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2 þ 1

p
z
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2 þ 1

p
!!

;

e1 ¼ 1

2τ
dx
�
A cosh

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2 þ 1

p
z
�
þ B sinh

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2 þ 1

p
z
��

;

e2 ¼ 1

2τ
dz;

β ¼ 2τζe0; ð3:44Þ

which has been written in terms of local coordinates ðt; x; zÞ
each covering the entire real line. Differently from the
spacelike fibration case, we have here two real parameters,
A and B, which cannot simply be eliminated by a real
change of coordinates.

The corresponding metric admits isometries generated by
linear combinations of the following two Killing vectors:

Kt ¼
∂

∂t
; Kx ¼

∂

∂x
: ð3:45Þ

The torsionless Riemann tensor reads

R01½ω∘ � ¼ τ2e0 ∧ e1; R02½ω∘ � ¼ τ2e0 ∧ e2;

R12½ω∘ � ¼ ð1þ 4ζ2Þτ2e1 ∧ e2; ð3:46Þ

while the Ricci scalar is

R½ω∘ � ¼ 6τ2 þ 8ζ2τ2: ð3:47Þ

We again notice that ζ ∈ R parametrizes the deformation
with respect to AdS3: the trace component of the torsion, β,
introduces a squashing along the 12 direction, while main-
taining the structure of an Einstein manifold.
The energy-momentum tensor associated to the chosen

torsion is

T ij ¼ ð−τ2ηij − 4τ2ζ2δi0δ
j
0Þ; ð3:48Þ

which is evidently symmetric and reduces to a cosmologi-
cal constant contribution in the vanishing ζ limit.

C. Solutions for nonrelativistic Beltrami fluids

Let us consider the spacelike fibration solution (3.1) and
perform a complex SLð3;CÞ transformation eiE ≡ Si

jej,
with

S ¼

0
B@

−1 0 0

0 i 0

0 0 i

1
CA; ð3:49Þ

in combination with ζ → −iζ, in order to keep β real. In
particular, the complex transformation S has been chosen

FIG. 5. On the left, we represent ergospheres and singularities in the nonextremal case, whereas on the right we have the extremal one.
The dashed lines represent (from top to bottom) rerg, rþ and r−.
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in such a way as to transform the SO(1, 2) invariant tensor
ηij into the SO(3) one, δij, meaning that the signature turns
Euclidean. The full solution reads

e0E ¼ −
1

2τ
dt;

e1E ¼ 1

2τ
dx
�
cos
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ζ2
p

t
��

;

e2E ¼ 1

2τ

�
dzþ dx

�sin� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ζ2

p
t
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ζ2

p ��
;

β ¼ 2τζe2E: ð3:50Þ

Since all coordinates are on equal footing in an Euclidean
space, the deformations of S3 along the other directions can
be obtained by means of SO(3) rotations

R12 ¼

0
B@

0 0 1

0 1 0

−1 0 0

1
CA; R02 ¼

0
B@

1 0 0

0 0 1

0 −1 0

1
CA: ð3:51Þ

In the Euclidean case, the integrability equation (2.17)
coincides with the Beltrami equation, describing the velocity
of nonrelativistic incompressible three-dimensionalBeltrami
fluids. In this context, the velocity of the fluid is precisely
the vector field βμ, whose interpretation in terms of four-
dimensional energy-momentum tensor will be discussed in a
forthcoming publication.

IV. CONCLUSIONS

One of the goals of the present paper is to emphasize the
role of the spacetime torsion, in the Einstein-Cartan gravity
formalism, as a natural, geometric way to couple gravity to
matter.
The integrability conditions on the considered irreduc-

ible components of the torsion, τ and βi, which follow from
the nilpotency of the differential operator, guarantee the
consistent coupling to gravity of this particular matter
source, i.e., the covariant conservation of the corresponding
energy-momentum tensor. We found, to our surprise, that
these integrability conditions allow for configurations,which
were not considered in the literature, featuring a component
βi of the torsion, which, seen as a 1-form β ¼ βiei, is not
closed. In fact it satisfies a dynamical equation reminiscent of
the one describing Beltrami fluids. The chosen torsion
therefore describes the effect of a massive “chiral” 1-form
field on gravity. Since β has the additional meaning of a
connection associated with local Weyl rescalings, the cor-
responding O(1,1)-bundle is curved.
We then presented different families of solutions to the

curvature and torsion equations (2.9), (2.10). They depend
on a continuous parameter, which measures the deviation

from a locally AdS3 geometry, induced by the Beltrami
torsion β. The latter can be interpreted as a geometric flux,
capable of removing, in certain cases, the usual causal
singularity of the BTZ black hole.
Moreover, as we discussed in the main text, we found

that, in the spacelike fibration case, the Beltrami torsion
breaks the conformal geometry of the two-dimensional
boundary. This peculiar feature is worth investigating
within the gauge/gravity correspondence. Lastly, the
Euclidean solutions discussed in Sec. III C provide con-
crete and novel configurations for the so-called Beltrami
fluids, on nontrivial curved spaces. It would be interesting
to embed these solutions in a four-dimensional spacetime
where the Beltrami torsion could be interpreted as the
velocity field of a Beltrami fluid, and study, in this setting,
the deformations induced by such fluid on the geometry of
the four-dimensional spacetime.
In this paper, besides deriving these new three-

dimensional solutions, we have presented a first analysis
of their geometry. We leave to a future investigation a
thorough description of the causal structure of these space-
times and of their possible applications to the gauge/gravity
correspondence. In particular, it would now be interesting to
derive the surface gravity associated with the Killing hori-
zons and the related black hole temperature, in those cases in
which a singularity exists.
The setup discussed in the present paper could be

generalized in several directions: one would be to include,
as a possible source of gravitational matter, the symmetric
traceless irreducible component of the torsion Σij, which
we disregarded in the present paper, and look for consistent
solutions of the relevant equations. It would also be
interesting to include dynamical matter, such as spin-1=2
fermion fields. This is the case with unconventional
supersymmetry models, which are also appealing because
they are based on a Weyl-invariant action. This particular
application is under investigation and will be the subject of
a forthcoming publication.
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APPENDIX A: CONVENTIONS

The three-dimensional index conventions are the
following
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i; j ¼ 0; 1; 2 Lorentz rigid indices;

μ; ν ¼ 0; 1; 2 Spacetime curved indices: ðA1Þ

A differential p-form (p ≤ 3) can be expressed as

ωðpÞ ¼ 1

p!
ωμ1…μpdx

μ1 ∧ … ∧ dxμp ; ðA2Þ

where ∧ is the wedge-product.
The signature of the invariant tensor of the Lorentz group

SO(1, 2) is ðþ;−;−Þ, whereas the Levi-Civita symbol is

ϵ012 ¼ ϵ012 ¼ 1: ðA3Þ

Finally, the Hodge dual of a p-form is defined as

⋆ ωðpÞ ¼
ffiffiffi
g

p
p!ðd − pÞ! ϵμ1…μdω

μ1…μpdxμpþ1 ∧ … ∧ dxμd ;

ðA4Þ

where d ¼ 3.

APPENDIX B: ISOMETRIES AND KILLING VECTORS OF AdS3

The soð2; 2Þ Killing vectors of AdS3 in the local coordinate patch used in (3.14) read

K01 ¼
r−

τðr2þ − r2−Þ
∂

∂t
þ rþ
r2þ − r2−

∂

∂ϕ
;

K02 ¼ −
gþðrÞ sinhðmþðrÞÞ þ g−ðrÞ sinhðm−ðrÞÞ

2τ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 − r2þÞðr2 − r2−Þ

p ∂

∂t
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 − r2þÞðr2 − r2−Þ

q coshðmþðrÞÞ þ coshðm−ðrÞÞ
2r

∂

∂r

þ hþðrÞ sinhðmþðrÞÞ − h−ðrÞ sinhðm−ðrÞÞ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 − r2þÞðr2 − r2−Þ

p ∂

∂ϕ
;

K03 ¼
gþðrÞ coshðmþðrÞÞ þ g−ðrÞ coshðm−ðrÞÞ

2τ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 − r2þÞðr2 − r2−Þ

p ∂

∂t
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 − r2þÞðr2 − r2−Þ

q sinhðmþðrÞÞ þ sinhðm−ðrÞÞ
2r

∂

∂r

−
hþðrÞ coshðmþðrÞÞ − h−ðrÞ coshðm−ðrÞÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 − r2þÞðr2 − r2−Þ

p ∂

∂ϕ
;

K12 ¼ −
gþðrÞ coshðmþðrÞÞ − g−ðrÞ coshðm−ðrÞÞ

2τ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 − r2þÞðr2 − r2−Þ

p ∂

∂t
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 − r2þÞðr2 − r2−Þ

q ðsinhðmþðrÞÞ − sinhðm−ðrÞÞÞ
2r

∂

∂r

þ hþðrÞ coshðmþðrÞÞ þ h−ðrÞ coshðm−ðrÞÞ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 − r2þÞðr2 − r2−Þ

p ∂

∂ϕ
;

K13 ¼
gþðrÞ sinhðmþðrÞÞ − g−ðrÞ sinhðm−ðrÞÞ

2τ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 − r2þÞðr2 − r2−Þ

p ∂

∂t
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 − r2þÞðr2 − r2−Þ

q coshðmþðrÞÞ − coshðm−ðrÞÞ
2r

∂

∂r

−
hþðrÞ sinhðmþðrÞÞ þ h−ðrÞ sinhðm−ðrÞÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 − r2þÞðr2 − r2−Þ

p ∂

∂ϕ
;

K23 ¼ −
rþ

τðr2þ − r2−Þ
∂

∂t
−

r−
r2þ − r2−

∂

∂ϕ
; ðB1Þ

where we defined

g�ðrÞ ¼
r2 � rþr−
rþ � r−

; h�ðrÞ ¼
r2 − r2þ ∓ rþr− − r2−

rþ � r−
; m� ¼ ðrþ � r−Þðτt ∓ ϕÞ:

These vectors satisfy the following Lie algebra relation

½Kab; Kcd� ¼ Kadη
ð4Þ
bc þ Kbcη

ð4Þ
ad − Kacη

ð4Þ
bd − Kbdη

ð4Þ
ac ; ðB2Þ

where a; b ¼ 0;…; 3 and ηð4Þ is the SO(2, 2) invariant tensor.
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The solution (3.14) only preserves a two-dimensional soð2Þ ⊕ soð2Þ subalgebra of the soð2; 2Þ one, generated by

Kt ¼ −τðr−K01 þ rþK23Þ; Kϕ ¼ rþK01 þ r−K23; ðB3Þ

with ½Kt; Kϕ� ¼ 0.
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