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A metric that describes a collapsing star and the surrounding black hole geometry accounting for
quantum gravity effects has been derived independently by different research groups. There is consensus
regarding this metric up until the star reaches its minimum radius, but there is disagreement about what
happens past this event. The discrepancy stems from the appearance of a discontinuity in the Hamiltonian
evolution of the metric components in Painlevé-Gullstrand coordinates. Here we show that the continuous
geometry that describes this phenomenon is represented by a discontinuous metric when written in these
coordinates. The discontinuity disappears by changing coordinates. The discontinuity found in the
Hamiltonian approach can therefore be interpreted as a coordinate effect. The geometry continues regularly
into an expanding white hole phase, without the occurrence of a shock wave caused by a physical
discontinuity.
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The Einstein equations predict a collapsing star and the
surrounding spacetime to evolve into regions of very high
curvature. Here we expect quantum gravitational effects to
come into play, radically modifying the classical dynamics.
Effective metrics that take these quantum effects into
account have been extensively explored in the last years.
Among the most promising is a quantum modification of
the Oppenheimer-Snyder (OS) model [1]: a simple descrip-
tion of the gravitational collapse of a homogeneous and
pressureless star. The model has been derived using
physical inputs from loop quantum gravity, both canonical
and covariant, and borrowing techniques from loop quan-
tum cosmology [2–5]. In it, the star reaches a maximum
density and a minimum radius, and then bounces.
There is a remarkable agreement in the literature on the

description of the quantum effects on the collapsing
phase. But there is some disagreement about what
happens when the star reaches its minimum radius. In
the Hamiltonian approach developed in [2,3], which uses
generalized Painlevé-Gullstrand coordinates, a disconti-
nuity in the metric coefficients develops at the bounce.
This has been interpreted as indicating the onset of a
shock wave in the dynamics of gravity, absent in the
continuous geometry studied in [4,5]. Here we show that
in this continuous geometry the Painlevé-Gullstrand
coordinates—and hence the metric written in these

coordinates—become discontinuous at the bounce. This
shows that the discontinuity found in the Hamiltonian
approach is a coordinate effect.
In what follows, we first recall the classical OS model.

Then we describe its quantum-corrected version recently
studied in [4,5]. We then show explicitly how, at the
moment of the bounce, a discontinuity is formed in the
metric components when it is expressed in generalized
Painlevé-Gullstrand coordinates.
The OS model describes the gravitational collapse of a

homogeneous and pressureless star, and it is the prototypi-
cal example of black hole formation by gravitational
collapse. In Planck units (c ¼ G ¼ ℏ ¼ 1), and assuming
the star’s boundary to be in free fall and to start at
rest at past infinity, the metric in the interior of the star
reads as

ds2 ¼ −dT2 þ a2ðTÞðdR2 þ R2dΩ2Þ: ð1Þ

The coordinate T is the proper time of observers moving at
constant radial and angular coordinates, aðTÞ is the scale
factor that determines the size of the star at time T, R ∈
½0; Rstar� is the comoving radial coordinate, and dΩ2 is the
line element of a unit two-sphere. The trajectory of the
boundary of the star in the interior metric is given by
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R ¼ Rstar. The Einstein field equations give the Friedmann
equation for the scale factor

ȧ2

a2
¼ 8π

3
ρ; ð2Þ

where the overdot means differentiation with respect to T
and

ρ ¼ m
4
3
πðRstaraÞ3

ð3Þ

is the uniform density of the star. Equation (2) can be
solved:

aðTÞ ¼
�
9mðT − T0Þ2

2R3
star

�
1=3

: ð4Þ

Without loss of generality we can take the time at which the
star collapses to zero physical radius to be T ¼ 0.
The exterior of the star is described by the Schwarzschild

metric

ds2 ¼ −fðrÞdt2 þ f−1ðrÞdr2 þ r2dΩ2; ð5Þ

where

fðrÞ ¼ 1 −
2m
r

: ð6Þ

The worldsheet of the boundary of the star in the exterior
spacetime is given by the trajectory rðTÞ, where T, the time
coordinate of the interior metric, is also the proper time on
the boundary of the star.
A continuous and differentiable geometry requires the

geometry of the interior and the geometry of the exterior to
match on the boundary of the star. That is, the induced
metric and the extrinsic curvature of the boundary of the
star have to match on the two sides. This requirement
determines the trajectory of the boundary of the star in the
exterior region.
The metric described above takes a particularly simple

form in Painlevé-Gullstrand (PG) coordinates, where the
matching conditions are manifestly satisfied. The full
spacetime metric can be written in a unique coordinate
patch using these coordinates. Let us show this explicitly.
Changing the comoving radial coordinate R in the star
interior to the area (or Schwarzschild) radius

rðT; RÞ ¼ aðTÞR ð7Þ

and changing the exterior Schwarzschild time coordinate t
to the PG time coordinate

Tðt; rÞ ¼ tþ 2
ffiffiffiffiffiffiffiffiffi
2mr

p
þ 2m ln

����
ffiffiffiffiffiffiffiffiffiffiffi
r=2m

p
− 1ffiffiffiffiffiffiffiffiffiffiffi

r=2m
p þ 1

���� ð8Þ

in the exterior region, the full spacetime metric can be
written as

ds2 ¼ −dT2 þ ðdrþ NrðT; rÞdTÞ2 þ r2dΩ2; ð9Þ

where

NrðT; rÞ ¼
(
−2r=3T r ≤ rstarðTÞffiffiffiffiffiffiffiffiffiffiffi
2m=r

p
r > rstarðTÞ

ð10Þ

and

rstarðTÞ ¼
�
9mT2

2

�
1=3

: ð11Þ

The same result can be obtained from a Hamiltonian
formalism for Lemaître-Tolman-Bondi (LTB) spacetimes,
of which the Oppenheimer-Snyder model is a particular
case. The choice of PG coordinates leads to a particularly
simple set of Hamiltonian equations of motion. Assuming
initial conditions corresponding to a constant density dust
star and a vacuum exterior, the solution for the whole
spacetime is identical to what is obtained from the matching
procedure described above [2].
Let us next describe the quantum gravitational correc-

tions to this model. Consider first the interior metric in
Eq. (1). Loop quantum gravity modifies the Friedmann
equation [3,6,7] for the scale factor in Eq. (2) to

ȧ2

a2
¼ 8π

3
ρ

�
1 −

ρ

ρc

�
; ð12Þ

with the critical density ρc being a parameter of Planckian
value. This equation can be integrated to give

aðTÞ ¼
�
9mT2 þ Am

2R3
star

�
1=3

; ð13Þ

where A ¼ 3=ð2πρcÞ is a parameter of Planckian value with
the dimensions of a squared mass. Equation (13) gives the
quantum correction to the classical equation (4). It shows
that in the quantum-corrected effective metric, the physical
radius of the star never collapses to zero, but it rather
reaches its minimum size

rM ¼ að0ÞRstar ¼ ðAm=2Þ1=3 ð14Þ

at T ¼ 0, before bouncing and starting to increase.
Let us next address the quantum correction to the

exterior metric. This can be derived in two distinct ways,
which remarkably converge. It can be simply derived by
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requiring the exterior geometry to have the same symmetries
as in the classical case, and then imposing the matching with
the quantum-correctedmetric of the star [4]. Equivalently, the
quantum corrections to the exterior metric coming from loop
quantum gravity can be studied separately from the interior
region, using an effective Hamiltonian formalism containing
loop quantum gravity corrections adapted to spherical
symmetry [2,3,8], checking then the matching at the boun-
dary. These two different roads lead to the same exterior
metric. The same Hamiltonian approach can be performed
for LTB spacetimes, and for the case that there is an exterior
vacuum region, themetric in that region is again the same [9].
Let us write this metric explicitly. Consider a generic

spherically symmetric metric having a hypersurface-
orthogonal Killing vector field. Its line element reads as

ds2 ¼ −FðrÞdt2 þGðrÞdr2 þ r2dΩ2; ð15Þ

where F and G are functions of the radial coordinate and
the hypersurface-orthogonal Killing vector is ∂t. In order
for matching with the interior metric to be possible, the
exterior parametric trajectory ðtðTÞ; rðTÞÞ of the boundary
of the star needs to be a radial geodesic of the exterior
metric. Such trajectories satisfy

Fṫ ¼ E; ð16Þ

where E is the conserved energy associated to ∂t, and

Gṙ2 ¼ E=F − 1: ð17Þ

The matching of the induced metric and of the extrinsic
curvature of the boundary of the star on the two sides
uniquely fixes the functions F and G to [4]

FðrÞ ¼ G−1ðrÞ ¼ 1 −
2m
r

þ Am2

r4
ð18Þ

for all r > rM.
The maximal extension of this exterior geometry in the

absence of the star has been extensively studied in [4,10],
and its conformal diagram is reported in Fig. 1. It is very
similar to the Reissner-Nordström geometry. A radially
free-falling geodesic, e.g., the wordline of the star’s
boundary, bounces in an interior region which is neither
trapped nor antitrapped, and that separates a trapped (black
hole) and an antitrapped (while hole) region. The con-
formal diagram of the quantum-corrected OS spacetime is
shown in Fig. 2. This completes the construction of the

FIG. 1. Section of the conformal diagram of the spacetime
defined by Eqs. (15) and (18) plotted using global Kruskal
coordinates defined in [11] and m ¼ 1, A ¼ 0.99 (Planck units).
The trajectories of three different radially free-falling observers
are plotted in green, and the constant T surfaces at the time of
their turning point are plotted in blue.

rstar
T=- 2.5

T=- 2

T=- 1

T=0

T=1

T=2

T=3

FIG. 2. Conformal diagram of the quantum-corrected OS
spacetime with m ¼ 1 and A ¼ 0.99 (Planck units).
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quantum-corrected OS model. A further quantum correc-
tion of this metric that gets rid of the residual curvature
singularity and of the Cauchy horizon, and that has a single
asymptotic region, is constructed in [5].
Now we come to our main observation. Given the

simplicity of the classical OS metric in PG coordinates,
it is natural to study also the quantum-corrected geometry
in the PG coordinates. Let us see what happens. The interior
metric can be easily written in PG coordinates by perform-
ing the coordinate transformation in Eq. (7), where aðTÞ is
now the quantum-corrected scale factor. For the exterior
metric, the differential of the PG coordinate time T satisfies
the relation

dT ¼ dt −
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − F

p

F
dr: ð19Þ

The full spacetime metric can then be written as

ds2 ¼ −dT2 þ ðdrþ NrðT; rÞdTÞ2 þ r2dΩ2; ð20Þ

where

NrðT; rÞ ¼
(
− 6rT

9T2þA r ≤ rstarðTÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − FðrÞp

r > rstarðTÞ
ð21Þ

and

rstarðTÞ ¼
�
9mT2 þ Am

2

�
1=3

: ð22Þ

The metric in Eqs. (20) and (21) is exactly the metric found
in [2,3] by separately studying the quantum corrections to
the interior and the exterior metric in PG coordinates. This
proves the equivalence of the two different constructions
for the exterior metric and the overall consistency of the
quantum-corrected OS model.
There is a problem however. The function NrðT; rÞ in

Eq. (21) becomes discontinuous for T > 0. This is immedi-
ately seen from the fact that the expression valid in the
interior of the star changes sign after the bounce while the
expression valid outside the star does not. In [3,9] this
discontinuity was tentatively interpreted as a physical
discontinuity of the gravitational field and it was argued
that a shock wave must form as a consequence of it.
We have however now all the ingredients to clarify the

reason for the discontinuity of the function NrðT; rÞ.
Consider in fact the interior geometry of the star. The
coordinate T is the proper time of observers moving at
constant comoving radial coordinate R, which in the area
coordinate r [see Eq. (7)] means

rðTÞ ∝ aðTÞ: ð23Þ

This means that the time coordinate T in the interior region
is well adapted to bouncing observers, with T ¼ const

surfaces adapted to infalling observers for T < 0 and to
outgoing observers for T > 0. In the exterior region
however, as extensively discussed in the Appendix and
shown in Fig. 1, the PG time coordinate T is only adapted
to infalling observers, thus creating the discontinuity at the
star’s surface for T > 0. This discontinuity in the PG time
coordinate can be clearly seen from Fig. 2, where T ¼
const surfaces for the complete quantum-corrected OS
spacetime are plotted.
In [3,9] a dust field was used as a relational clock to

gauge fix the Hamiltonian constraint. The time Painlevé-
Gullstrand coordinate T has then a physical interpretation
as a clock time. The chronogeometry measured by this dust
field taken as a clock is indeed discontinuous. That is, if
one uses surfaces of constant dust time to reconstruct the
four-dimensional geometry, then a discontinuity in the
metric is unavoidable. The above analysis shows that it
is possible to interpret this discontinuity as a discontinuity
of the clock field, evolving in a continuous geometry. The
geometry in this spacetime is continuous, and the disconti-
nuity in the metric comes only from using the dust field as a
relational clock. No shock wave is formed.
An interesting feature of the model studied in [2,3] was

that the star bounces out in the same asymptotic region
where it collapsed, with a predicted lifetime of the order of
m2. As shown in [5], it is still possible to also have a single
asymptotic region when the geometry is continuous during
and after the bounce by gluing together different spacetime
patches and breaking the local Killing symmetry also
around the horizon.1 In this case the lifetime is a free
parameter of the spacetime, ultimately to be determined by
a quantum gravity calculation.
Confusing coordinate artifacts are common in general

relativity. A famous example is the r ¼ 2m singularity in
the Schwarzschild metric, that prompted Einstein and many
others to believe that spacetime ends at the horizon.
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APPENDIX: INCOMPLETENESS OF
THE PG COORDINATES IN THE
EXTERIOR VACUUM REGION

Consider the exterior vacuum region defined by Eqs. (15)
and (18) in the absence of the star. The conformal diagram of
this spacetime for r > rM is given in Fig. 1. The PG
coordinate time T is the proper time of radially free-falling
observers that start at rest at infinity. In Schwarzschild
spacetime such observers all hit the singularity inside the
black hole. But this is no longer the case in the metric in
Eqs. (15) and (18). In the latter the trajectories of free-falling
observers starting at rest at infinity satisfy

ṙ2 ¼ 1 − F: ðA1Þ

All these trajectories have a turning point at ṙ ¼ffiffiffiffiffiffiffiffiffiffiffiffi
1 − F

p ¼ 0, which is solved by r ¼ rM. This means that
instead of hitting the singularity in the interior of the black
hole, radially free-falling observers reach a minimum dis-
tance from it at r ¼ rM and then bounce back out of it in a
second future asymptotic region. A few of these trajectories,

together with the constant T surfaces at the time of their
turning point, are plotted in Fig. 1.
From this discussion it is clear that the PG coordinates do

not cover the vacuum spacetime region at r < rM. The PG
coordinate time T is the proper time of the radially free-
falling observers, and none of these observers penetrates
inside the r ¼ rM surface: there is no PG coordinate time T
inside the region at r < rM. This is consistent with the
expression of the metric in PG coordinates given in
Eqs. (20) and (21). In fact, since NrðT; rÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − FðrÞp
,

the metric is well defined only for 1 − FðrÞ > 0, which is

r > rM: ðA2Þ

This same constraint was found in [2] during the con-
struction of the quantum-corrected vacuum exterior region
from loop quantum gravity first principles. This constraint
was interpreted as a physical property of the quantum-
corrected spacetime. The discussion above shows that it is
an artifact of the specific coordinate system employed.
In fact, this is a general phenomenon. As pointed out in

[12], the PG coordinates fail wherever the Misner-Sharp
mass is negative, as is precisely the case in the metric
defined by Eqs. (15) and (18) for r < rM.
Furthermore, Fig. 1 clearly shows that the PG coordi-

nates do not cover the full spacetime region traversed by the
radially free-falling observers, and hence also by the
boundary of the star in the quantum-corrected OS model,
but only the spacetime region they cover before their
turning point. There is then no hope for the PG coordinates
to provide a global coordinate patch for the quantum-
corrected OS model, as instead they do in the classical case.
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