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Black holes with dyonic charges in Einstein-Maxwell-dilaton-axion supergravity theory are revisited in
the context of black hole shadows. We consider static as well as rotating (namely the dyonic Kerr-Sen)
black holes. The matter stress-energy tensor components, sourced by the Maxwell, axion and dilaton fields,
satisfy the standard energy conditions. The analytical expressions for the horizon and the shadow radius of
the static spacetimes demonstrate their dependence on P2 þQ2 (P, Q the magnetic and electric charges,

respectively) and the mass parameter M. The shadow radius lies in the range 2M < Rshadow < 3
ffiffiffi
3

p
M and

there is no stable photon orbit outside the horizon. Further, shadows cast by the rotating dyonic Kerr-Sen
black holes are also studied and compared graphically with their Kerr-Newman and Kerr-Sen counterparts.
Deviation of the shadow boundary is prominent with the variation of the magnetic charge, for the relatively
slowly rotating dyonic Kerr-Sen spacetimes. We test any possible presence of a magnetic monopole charge
in the backdrop of recent EHT observations for the supermassive black holes M87� and SgrA�. Deviation
from circularity of the shadow boundary (ΔC) and deviation of the average shadow radius from the
Schwarzschild shadow radius (quantified as the fractional deviation parameter δ) are the two observables
used here. The observational bound on ΔC (available only for M87�) is satisfied for all theoretically
allowed regions of parameter space and thus cannot constrain the parameters. The observational bound on δ
available for SgrA� translates into an upper limit on any possible magnetic monopole charge linked to
SgrA� and is given as P ≲ 0.873M. Constraints on P obtained from other astrophysical effects are however
expected to be far more stringent though rigorous analyses along these lines is lacking in the literature. In
addition, future refined imaging (shadow) observations will surely help in improving the bound on P
arrived at here.

DOI: 10.1103/PhysRevD.108.044008

I. INTRODUCTION

The Reissner–Nordström (RN) geometry representing
the gravitational field due to a charged massive object is
among the earliest known exact solutions in general
relativity coupled to electromagnetism, i.e. the Einstein-
Maxwell theory. A straightforward generalization of this
solution is the dyonic RN spacetime [1] which can be
written down by just replacing theQ2 in RN spacetime with
P2 þQ2, where P represents the “magnetic” charge and Q
is its “electric” counterpart. However, for the dyonic
solution, the definition of the electromagnetic potential
Ai is a little tricky—one needs, as expected for a dyon, a
two-patch definition—one for the northern hemisphere and
the other for the southern. The standard electric-magnetic
duality which arises when both magnetic and electric
charges are present keeps the solution unchanged. The
horizons and other features for the dyonic RN spacetime

resemble those for the usual RN geometry modulo the
presence of the extra magnetic charge.
It is also known that additional matter fields (other than

Maxwell) such as the dilaton and/or the axion appear in the
context of supergravity theories or in low energy effective
actions which emerge out of full string theory [2–4]. In
such scenarios too, one expects dyonic solutions represent-
ing gravitational fields of such objects. Among various
known solutions [2–7] there are static, spherically sym-
metric ones as well as stationary spacetimes wherein
rotation is present. The purpose of this article is to revisit
such known solutions without and with rotation. Our
primary aim is to learn how the various theory parameters
(e.g. electric, magnetic as well as other charges) control the
nature and profile of the shadow/silhouette created by the
gravitational field representing such solutions. We also try
and see if any meaningful constraint can be placed on the
various charges, using the known shadow observations for
the supermassive compact object present in M87� [8–10]
and for SgrA� [11,12]. Though dyonic scenarios presently
have little to do with observations in other contexts, we will
see how one may place bounds on their viability through
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shadow observations. In other words, we try to show that
what is seen in the images may also be explained using
hypothetical constructs which by no means can be ruled out
altogether, unless other observations imply mismatches and
contradictions.
Shadows in Kerr-Sen black holes [4] have already been

studied by several authors [13–15]. The rotating version of
the dyonic black holes in Einstein-Maxwell-dilaton theory
[2,16] and its shadows was studied in [17]. In [18], the
authors investigated shadows of regular (Bardeen) black
holes having magnetic monopole charge sourced by non-
linear electrodynamics coupled to GR. The presence of
axionic hair or the Kalb-Ramond field and their influence
on the shadow of M87� was investigated in [19]. In [20],
the authors investigated the effect of QED on the shadows
of the static black holes with magnetic monopoles. There
are also several other studies on the shadows of hairy black
holes. For example, the authors of [21] studied the shadows
cast by the rotating black holes with anisotropic matter
fields which could describe an extra Uð1Þ field as well as
diverse dark matter. Studies on the shadows of braneworld
blackholes such as in [22,23] are among other examples.
For a more recent study on the shadows of the black holes
in the extended or alternative gravity theories, in the light of
the observations of SgrA�, see [24].
Our article is organized as follows. In Sec. II we recall

the static black hole solutions and discuss the energy
conditions in Einstein-Maxwell–dilaton-axion (EMDA)
supergravity theory. Section III provides a summary of
the corresponding stationary solutions (dyonic) which
include rotation. Shadow calculations and related details
are presented in Sec. IV and connections/comparisons with
observations are outlined in Sec. V. Section VI is a
summary with concluding remarks.
Throughout the paper we consider the units G ¼ 1

and c ¼ 1.

II. BLACK HOLES IN EINSTEIN-MAXWELL–
DILATON-AXION SUPERGRAVITY THEORY

The Einstein-Maxwell–dilaton-axion (EMDA) super-
gravity theory is described by the action [6]

SEMDA ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R −

1

2
ð∂ΦÞ2 − 1

2
e2Φð∂ξÞ2

− e−ΦF2 þ ξFμF̃μν

�
; ð2:1Þ

where Φ and ξ are the dilaton and axion fields, Fμν is the
usual electromagnetic field tensor, F2 ¼ FμνFμν, and
F̃μν ¼ 1

2
ffiffiffiffi−gp ϵμναβFαβ is the dual electromagnetic field ten-

sor. The equations of motion of the dilaton, axion fields are
obtained as

□Φ − e2Φð∂ξÞ2 þ e−ΦF2 ¼ 0; ð2:2Þ

and

□ξþ 2∇μΦ∇μξþ e−2ΦFμνF̃μν ¼ 0: ð2:3Þ

The equation of motion for the electromagnetic vector
potential Aμ (where Fμν ¼ ∂μAν − ∂νAμ) is obtained as

∇μð−e−ΦFμν þ ξF̃μνÞ ¼ 0; ð2:4Þ

along with the usual Bianchi identity,

∇μF̃μν ¼ 0: ð2:5Þ

The equation of motion for the metric tensor gμν is obtained
by varying the action (2.1) with respect to gμν. We get

Rμν ¼
1

2
∇μ∇νΦþ 1

2
e2Φ∇μξ∇νξþ 2e−ΦFμαFν

α

−
1

2
gμνe−ΦF2; ð2:6Þ

where Rμν are the Ricci tensor components.

A. Static black hole solution

The static black hole solution in such a system has
already been obtained in [6], where the authors used
symmetry transformations on the axion and dilaton fields
to obtain its form. In this section, we first outline the
derivation of the same solution by solving directly the
Einstein field equations. Thereafter, we analyze the struc-
ture of the black hole solution.
We consider the ansatz for the spherically symmetric

static line element,

ds2static ¼−Δ2ðRÞdt2þψ2ðRÞ
Δ2ðRÞdR

2þR2ðdθ2þ sin2 θdϕ2Þ:

ð2:7Þ

We also assume nonvanishing components of the electro-
magnetic field tensor,

F01¼−F10¼ EðRÞ; F23¼−F32¼BðRÞsinθ: ð2:8Þ

Then Eq. (2.4) becomes

�
e−ΦER2

ψ
þ ξB

�0
¼ 0; ð2:9Þ

where the prime ( 0) denotes the derivative with respect to
the radial coordinate R. The Bianchi identity is satisfied for
BðRÞ ¼ P (a constant) and P is therefore identified as the
magnetic charge since
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F̃10 ¼ −
P

R2ψ
: ð2:10Þ

Integrating Eq. (2.9), we get

E ¼ ψeΦ
�
Q − ξP
R2

�
; ð2:11Þ

where the integration constantQ is identified as the electric
charge, since, at large R, E ∼Q=R2. The equations of
motion [Eqs. (2.2) and (2.3)] for the dilaton and the axion
field become

�
Δ2R2Φ0

ψ

�0
¼ 2e−ΦψR2

�
E2

ψ2
−
P2

R4

�
þe2Φ

R2Δ2

ψ
ξ02;

ð2:12Þ

and

�
Δ2R2ξ0

ψ

�0
¼ −2

Δ2R2

ψ
Φ0ξ0 − 4e−2ΦPE: ð2:13Þ

Note from Eq. (2.13) that for ξ ¼ 0, P ¼ 0, orQ ¼ 0. From
Eq. (2.6), we get three nonvanishing components which are

R00¼
Δ4

ψ2

�
Δ02

Δ2
−
Δ0ψ 0

Δψ
þðΔ0R2Þ0

ΔR2

�
¼ e−ΦΔ2

�
E2

ψ2
þP2

R4

�
;

ð2:14Þ

R11 ¼
2ψ 0

Rψ
−
Δ02

Δ2
þ Δ0ψ 0

Δψ
−
ðΔ0R2Þ0
ΔR2

¼ 1

2
Φ02 þ 1

2
e2Φξ02 − e−Φ

ψ2

Δ2

�
E2

ψ2
þ P2

R4

�
; ð2:15Þ

R22 ¼ 1 − 2R
ΔΔ0

ψ2
þ Δ2R2

ψ3

�
ψ

R

�0
¼ R2e−Φ

�
E2

ψ2
þ P2

R4

�
:

ð2:16Þ

Using Eqs. (2.14) and (2.15), we get

2

R
ψ 0

ψ
¼ 1

2
Φ02 þ 1

2
e2Φξ02: ð2:17Þ

Demanding proper asymptotic behavior, i.e. Φ → 0 and
ξ → 0, ψ → 1 for R → ∞, we assume

ψ 0

ψ
¼ σ2

RðR2 þ σ2Þ ; or ψ2 ¼ R2

R2 þ σ2
; ð2:18Þ

where σ2 is a constant. From Eqs. (2.14) and (2.16), we get

�
1

2

ðΔ2R2Þ0
ψ

�0
¼ ψ : ð2:19Þ

Solving this equation with the assumption on ψ given in
Eq. (2.18), we obtain the solution for ΔðrÞ as

Δ2ðRÞ ¼ 1 −
2M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ σ2

p

R2
þ P2 þQ2

R2
; ð2:20Þ

where the integration constants are identified as the massM
and the sum of the square of the charges (P2 þQ2). The
black hole resembles the Reissner-Nordström black
holes asymptotically. Using Eqs. (2.18) and (2.20) the
solution for the equations of motion for the dilaton and
axion fields is

eΦ ¼ 1þ 2d
R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ k2 þ d2

p
þ 2ðk2 þ d2Þ

R2
; ð2:21Þ

ξ ¼ 2k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ k2 þ d2

p

R2 þ 2d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ k2 þ d2

p
þ 2ðk2 þ d2Þ ; ð2:22Þ

where d ¼ ðP2−Q2Þ
2M and k ¼ PQ

M are dilaton and axion
charges, respectively, and σ2 ¼ k2 þ d2.
In the absence of both electric and magnetic charges

(i.e. P ¼ Q ¼ 0), the dilaton and axionic charges also
vanish, i.e. k ¼ d ¼ 0, and we recover the Schwarzschild
black hole. For any nonzero P and/or Q, the line element
does not resemble the Riessner-Nordström black holes.
This signifies that these black holes are hairy. Another
distinguishing feature of these black holes is that they have
single horizons—unlike the Riessner-Nordström. Using the
relation k2 þ d2 ¼ ðP2 þQ2Þ2=4M2 in the fðRhzÞ ¼ 0, we
get the horizon radius as

Rhz ¼ 2M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

P2 þQ2

2M2

r
: ð2:23Þ

This feature is also different from Riessner-Nordström and
the dyonic black holes with dilaton field as the only scalar
hair. We notice a double horizon in general and extremal
horizon in a special situation. However, the static version of
the Kerr-Sen black holes shares the similar feature of a
single horizon. For black holes,

M ≥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þQ2

2

r
; ð2:24Þ

otherwise, we have naked singularities. This is illustrated
in Fig. 1.

B. Energy conditions

By identifying the nonzero components of the stress-
energy tensors as T0

0 ¼ −ρ, T1
1 ¼ τ, and T2

2 ¼ T3
3 ¼ p,
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where ρ (energy density), τ (radial pressure), and p
(tangential pressure) are defined in the orthonormal frame
basis, and using the Einstein field equations (Tμν ¼ Gμν=
8πG), we analyze all the energy conditions. We find that:
(a) The null energy conditions (NECs), i.e. ρþ τ ≥ 0 and

ρþ p ≥ 0, are satisfied whenΔ2ðRÞ ≥ 0. This implies
that the NEC is satisfied on and outside the horizon of
the black hole. For a naked singularity, the NEC is
satisfied for all R.

(b) The weak energy conditions (WECs) implies ρ ≥ 0
in addition to the NECs. Using the Einstein field
equation

ρ ¼ 1

8πG

�
1

R2
−
ðΔ2Þ0
Rψ2

−
Δ2

R2ψ2
þ 2

Δ2ψ 0

Rψ3

�
: ð2:25Þ

One can check that ρ ≥ 0 for R ≥ Rhz=
ffiffiffi
3

p
for black

holes, and for all R in case of naked singularities.
Thus, the WEC is also satisfied on and outside the
horizon of the black holes.

(c) The strong energy condition, i.e. ρþ τ þ 2p ≥ 0, is
satisfied for all R irrespective of black holes or naked
singularities.

(d) The dominant energy conditions, i.e. ρ ≥ 0, ρ ≥ jτj,
and ρ ≥ jpj, are satisfied on and outside of the
black hole horizon, and for all R in case of naked
singularities.

It was conjectured [25,26] that “a violation of either the
dominant or the strong energy condition is a necessary
condition for the existence of an antiphoton sphere outside
a regular black hole horizon.” Thus, according to our

analysis of the energy conditions, the static dyonic black
holes in the EMDA theory do not consist of antiphoton
sphere or stable photon orbits.

III. DYONIC KERR-SEN BLACK HOLES

Dyonic Kerr-Sen black holes are the rotating versions of
the static black holes. The Newman-Janis algorithm [27,28]
can be applied to obtain such rotating black holes. After
introducing a new radial coordinate r such that the squared
area radius R2 ¼ r2 − 2dr − k2 or r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ k2 þ d2

p
þ d,

the static line element [(2.7), (2.18), and (2.20)] becomes

ds2 ¼ −fðrÞdt2 þ dr2

gðrÞ þ hðrÞðdθ2 þ sin2 θdϕ2Þ; ð3:1Þ

where

fðrÞ ¼ gðrÞ ¼ 1 −
2Mðr − dÞ − P2 −Q2

r2 − 2dr − k2

¼
�
1 −

2ðdþMÞ
r

þ 2P2 − k2

r2

��
1 −

2d
r
−
k2

r2

�−1
;

ð3:2Þ

and

hðrÞ ¼ R2ðrÞ ¼ r2 − 2dr − k2

¼ r2
�
1 −

2d
r
−
k2

r2

�
: ð3:3Þ

In terms of the advanced Eddington-Finkelstein coordi-
nates (u; r; θ;ϕ), where du ¼ dt − dr=fðrÞ, Eq. (3.1) is
written as

ds2¼−fðrÞdu2−2dudrþhðrÞðdθ2þ sin2 θdϕ2Þ: ð3:4Þ

The inverse metric components of the line element (3.4)
can be decomposed using the null tetrad Zμ

α ¼
ðlμ; nμ; mμ; m̄μÞ as

gμν ¼ −lμnν − lνnμ þmμm̄ν þmνm̄μ; ð3:5Þ

where

lμ ¼ δμr; nμ ¼ δμu −
f
2
δμr ;

mμ ¼ 1ffiffiffiffiffiffi
2h

p
�
δμθ þ

i
sin θ

δμϕ

�
: ð3:6Þ

Using the complex transformation

r → r0 ¼ rþ ia cos θ; u → u0 ¼ u − ia cos θ; ð3:7Þ

where a is the rotation parameter, and replacing the terms
r2 by ρ̂2 ¼ r0r0� ¼ r2 þ a2cos2θ and 2

r by ð1r0 þ 1
r0�Þ ¼ 2r

ρ̂2
,

FIG. 1. P
M vs Q

M parameter space is plotted. The shaded circular
region indicates the allowed parameter space for black holes and
the exterior region in parameter space corresponds to naked
singularities.
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we get the new metric in the Eddington-Finkelstein
coordinates [17,29],

ds2 ¼ −Fðr; θÞdu2 − 2dudrþ 2asin2θ½Fðr; θÞ − 1�dudϕ
þ 2asin2θdrdϕþHðr; θÞdθ2
þ sin2θ½Hðr; θÞ þ a2sin2θð2 − FÞ�dϕ2; ð3:8Þ

where Fðr; θÞ and Hðr; θÞ are complexified forms of fðrÞ
and hðrÞ, respectively. In our case, using Eqs. (3.2) and
(3.3) we get

fðrÞ→Fðr;θÞ

¼
�
1−

2ðdþMÞr
ρ̂2

þ2P2−k2

ρ̂2

��
1−

2dr
ρ̂2

−
k2

ρ̂2

�−1
; ð3:9Þ

hðrÞ → Hðr; θÞ ¼ ρ̂2
�
1 −

2dr
ρ̂2

−
k2

ρ̂2

�
: ð3:10Þ

In Boyer-Lindquist coordinates, the new metric [Eq. (3.8)]
for the rotating black hole finally takes the form [17]

ds2 ¼ −Fdt2 − 2að1 − FÞsin2θdtdϕþ H
FH þ a2sin2θ

dr2

þHdθ2 þ sin2θ½H þ a2sin2θð2 − FÞ�dϕ2: ð3:11Þ

After simplification using the explicit forms of Fðr; θÞ and
Hðr; θÞ in our case, we arrive at the line element for a
rotating dyonic black hole in Boyer-Lindquist coordinates:

ds2 ¼ −
�
1−

2Mðr− dÞ−P2 −Q2

Σ̂

�
dt2

−
2asin2θ

Σ̂
ð2Mðr− dÞ−P2 −Q2Þdtdϕ

þ
�
r2 − 2dr− k2 þ a2 þ a2sin2θ

Σ̂
ð2Mðr− dÞ

−P2 −Q2Þ
�
sin2θdϕ2 þ Σ̂

Δ̂
dr2 þ Σ̂dθ2; ð3:12Þ

where the functions Δ̂ðrÞ and Σ̂ðr; θÞ are

Δ̂¼ r2−2dr−2Mðr−dÞ−k2þa2þP2þQ2; ð3:13Þ

and

Σ̂ ¼ r2 − 2dr − k2 þ a2 cos2 θ: ð3:14Þ

This metric was already derived in [30,31] using a different
method. This is known as the dyonic Kerr-Sen black hole
spacetime. Here, M and a are the mass and rotation
parameters of the black hole. Q and P are the electric
and magnetic charges, respectively. d ¼ ðP2 −Q2Þ=2M
and k ¼ PQ=M are the dilaton charge and axion charge,

respectively. If the magnetic charge of the black hole
vanishes, i.e. P ¼ 0, then it reduces to the Kerr-Sen black
hole. For the special case, P ¼ Q, the dilaton charge
vanishes, i.e. d ¼ 0, but axion charge k ≠ 0. This is a
distinguishing feature of dyonic Kerr-Sen black holes.
There is a curvature singularity at r ¼ 0 covered by the

radius

r� ¼ M þ P2 −Q2

2M
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
M −

P2 þQ2

2M

�
2

− a2

s
: ð3:15Þ

The corresponding event horizon and Cauchy
horizon are given by Rþ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ−2drþ−k2

p
and R− ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2− − 2dr− − k2
p

, respectively. The horizon can exist only
for

�
1 −

Z2
c

2M2

�
2

≥
a2

M2
; ð3:16Þ

where Z2
c ¼ P2 þQ2. Otherwise, the spacetime describes a

naked singularity. This is illustrated in Fig. 2.

IV. BLACK HOLE SHADOWS

In this section we study the shadow cast by the black
holes (both rotating and nonrotating) on the observer’s sky.
We assume the black hole shadow in background light
coming from distant sources only. In reality, other factors,
such as light coming from an accretion disk of the black
hole or light propagation influenced by plasma and dust in
the medium surrounding the black hole, should also be
considered if one is interested in the complete observational
appearance of the shadow. However, the size and shape of
the shadow, which is of interest to us in this study, do not
get significantly affected by these factors [32].
In order to separate the radial (r) and angular (θ) equation

of motion for photons, we use the Hamilton-Jacobi method.
For the rotating casewe use Boyer-Lindquist coordinates. In
nonrotating cases, Schwarzschild coordinates are the stan-
dard choice.

A. Shadows of (rotating) dyonic Kerr-Sen black holes

The Hamilton-Jacobi (HJ) equation for photon trajecto-
ries is given by

Hðxμ; pμÞ þ
∂S
∂λ

¼ 0; ð4:1Þ

where Sðxμ; λÞ is the Jacobi action, λ is the affine parameter,
and Hðxμ; pμÞ is the Hamiltonian corresponding to the
Lagrangian null trajectories given by L ¼ 1

2
gμν _xμ _xν ¼ 0,

and “dot” represents the derivative with respect to the affine
parameter λ. The conjugate momentum is pμ ¼ ∂S

∂xμ ¼ ∂L
∂_xμ.
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We can write S, using separation of variables, as

S ¼ −Etþ Lϕþ SrðrÞ þ SθðθÞ; ð4:2Þ

where E ¼ −pt and L ¼ pϕ are the constants of motion.
As S does not depend explicitly on λ, the HJ equation
becomes H ¼ 1

2
gμνpμpν ¼ 0. Using pr ¼ ∂S

∂r ¼ dSr
dr and

pθ ¼ ∂S
∂θ ¼ dSθ

dθ and the inverse metric components

gtt ¼ −
ðr2 − 2dr − k2 þ a2Þ2 − Δ̂a2 sin2 θ

Σ̂ Δ̂
; ð4:3Þ

gtϕ ¼ gϕt ¼ −
a

Σ̂ Δ̂
ð2Mðr − dÞ − P2 −Q2Þ; ð4:4Þ

gϕϕ ¼ Δ̂ − a2 sin2 θ

Σ̂ Δ̂ sin2 θ
; ð4:5Þ

grr ¼ Δ̂
Σ̂
; gθθ ¼ 1

Σ̂
; ð4:6Þ

we expand the HJ equation and obtain the separated angular
and radial equations of motion for photons. The angular
equation of motion is

dSθ

dθ
¼ E

ffiffiffiffiffiffiffiffiffiffi
ΘðθÞ

p
¼ E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ − l2cot2θ þ a2cos2θ

q
; ð4:7Þ

where χ ¼ C=E2 (C is the Carter constant) and l ¼ L=E.
The radial equation is

dSr

dr
¼ E

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−VðrÞ

p
; ð4:8Þ

where the effective potential

VðrÞ¼ ðl−aÞ2þχ

Δ̂
−
ðr2−2dr−k2þa2−alÞ2

Δ̂2
: ð4:9Þ

For unstable photon orbits VðrphÞ ¼ V 0ðrphÞ ¼ 0. After
simplification, we obtain lðrphÞ and χðrphÞ as

lðrphÞ¼
1

a

�
r2phþa2−2drph−k2−4ðrph−dÞ Δ̂ðrphÞ

Δ̂0ðrphÞ

�
;

ð4:10Þ

χðrphÞ ¼
16ðrph − dÞ2Δ̂ðrphÞ

Δ̂02ðrphÞ

−
1

a2

�
r2ph − 2drph − k2 − 4ðrph − dÞ Δ̂ðrphÞ

Δ̂0ðrphÞ

�
2

;

ð4:11Þ
where Δ̂ðrphÞ and Δ̂0ðrphÞ can be obtained from Eq. (3.13).
To observe the shadow on the sky, one needs to set up a

suitable coordinate system. The four velocity of a timelike
observer around a rotating black hole (such as Kerr
spacetime) is given by [32]

FIG. 2. In (a) the shaded region in the a=M − Zc parameter space corresponds to black holes. In (b) the plot is extended into the full
3-D parameter space of a=M, P=M, and Q=M. Note that Z2

c ¼ P2 þQ2.
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u ¼ ðr2 þ a2Þ∂t þ a∂ϕffiffiffiffiffiffiffi
ΣΔ

p
����
rO;ϑO

; ð4:12Þ

where rO and ϑO are the coordinates of the observer with
respect to a Kerr black hole expressed in Boyer-Lindquist
coordinates. For the dyonic Kerr-Sen black hole,

ffiffiffiffiffiffiffi
ΣΔ

p
in

the expression is just replaced by
ffiffiffiffiffiffiffiffi
Σ̂ Δ̂

p
. We assume for the

observer on Earth, rO ≫ M > a. Then the observer four
velocity takes the form u ≈ ∂t, i.e. a static observer. In
general, the location and motion of the observer affects the
size and shape of the shadow in the observer’s sky.
However, for the distant black holes M87� and SgrA�
these effects are negligible, as discussed in [33]. For such
static observers in an asymptotically flat spacetime, we use
the celestial coordinates (α, β) on the observer’s sky.
These coordinates were introduced by Bardeen [34,35]
(see Fig. 3). In Bardeen’s coordinate system, the Boyer-
Lindquist coordinates describing the black hole spacetime
coincide with the Cartesian XYZ coordinates, at very large
distances from the origin (the location of the black hole).
For such a distant observer, the sky is the α − β plane which
is perpendicular to the line joining the observer to the black
hole. For a light ray reaching the observer, the tangent
drawn from the observer hits the sky at the point (αi, βi).
Thus, α and β have the dimension of length (or mass, for
G ¼ 1, c ¼ 1). Hence, to get the angles which define the
shadow boundary, one has to use ðα=rO; β=rOÞ, where rO is
the distance to the black hole from the observer. Under
these assumptions, the celestial coordinates for the observ-
er’s sky are obtained as [35]

α ¼ −
l

sin θ0
; β ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffi
Θðθ0Þ

p
; ð4:13Þ

where θ0 is the inclination angle of the observer with
respect to the black hole’s rotation axis Z. The parametric

plot αðrphÞ versus βðrphÞ using Eqs. (4.10), (4.11), and
(4.13) gives the shadow profile.
However, for asymptotically nonflat spacetimes, one

needs to use different coordinates. One such coordinate
system [36,37] uses two astronomical angles, azimuthal
angle (ψ ) and colatitude angle (ϑ), to locate a point on the
celestial sphere with the observer at the origin. The angle ϑ
is the angle between the tangent to the light ray and
the radial direction from the observer to the black hole. The
angle ψ is the azimuthal angle of the tangent ray in the
equatorial plane orthogonal to the observer–black hole
direction. Each light ray has a definite set of values (ϑ, ψ).
The shadow is defined by all ½ϑðrphÞ;ψðrphÞ�. The stereo-
graphic projection of all ½ϑðrphÞ;ψðrphÞ� gives the shadow
boundary. The above characterization as well as its relation
with the original Bardeen formalism is elegantly discussed
in the well-known and very recent review [32].
In Fig. 4, the comparison between the shadow profiles

for different values of a=M, Q=M, and P=M are shown for
the Kerr-Newman, Kerr-Sen, and dyonic Kerr-Sen black
holes. We note that as we increase the P=M values the
deviations from the Kerr-Sen and the Kerr-Newman black
holes are more prominent. However, as the a=M value
(rotation parameter) is increased the maximum deviation
from the Kerr-Sen black holes is found to decrease. This is
more prominent in Fig. 5, where all the shadow boundaries
approach the outermost black solid curve for the Kerr black
holes, as the rotation parameter value is increased.

B. Shadows of static black holes

Using the line element [Eq. (2.7)] for static black holes,
the equations of motion for the photon trajectories are

dSθ

dθ
¼ E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ − l2 cot2 θ

q
; ð4:14Þ

dSR

dR
¼ E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−VðRÞ

p
; ð4:15Þ

where χ ¼ C=E2, l ¼ L=E, C is Carter constant, L is
angular momentum. The effective potential for the radial
equation of motion

VðRÞ ¼ ψ2

Δ2

�
χ þ l2

R2
−

1

Δ2

�
: ð4:16Þ

For the photon sphere radius (corresponding to the unstable
orbits), VðRphÞ ¼ V 0ðRphÞ ¼ 0, which leads to the relation

Rph ¼
ΔðRphÞ
Δ0ðRphÞ

: ð4:17Þ

Using the expression of ΔðRÞ [Eq. (2.20)], we obtain a
quadratic equation

FIG. 3. Bardeen’s (α, β) coordinates for the observer’s sky.
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x2 þ bxþ c ¼ 0; where b ¼ Z̃4
c

4
þ 4Z̃2

c − 9;

and c ¼ Z̃6
c − 2Z̃4

c; ð4:18Þ

where x ¼ R2
ph=M

2 and Z̃2
c ¼ ðP2 þQ2Þ=M2. Then we

obtain the photon radius from the root of the quadratic
equation, i.e.

x ¼ R2
ph

M2
¼ −bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − 4c

p

2
: ð4:19Þ

For the celestial coordinates α and β as defined earlier
[Eq. (4.13)] with a ¼ 0, we obtain

α2 þ β2 ¼ χ þ l2 ¼ R2
ph

Δ2ðRphÞ
¼ 1

Δ02ðRphÞ
: ð4:20Þ

Therefore the shadow radius for static black holes is

Rshadow ¼ Rph

ΔðRphÞ

¼ M

2
64 x2

x − 2

ffiffiffiffiffiffiffiffiffiffiffiffi
xþ Z̃4

c
4

q
þ Z̃2

c

3
75
1=2

; ð4:21Þ

where x is given by Eq. (4.19). For the critical value Z̃2
c ¼ 2

the photon-sphere radius vanishes (Rph ¼ 0) but the

FIG. 4. Shadow boundaries are plotted in the observer’s sky, i.e. α
M vs β

M space. The black dashed and the solid blue curves in each part
denote the shadow boundaries of the Kerr-Newman and the Kerr-Sen black holes, respectively. The solid red curve denotes the dyonic
Kerr-Sen black holes. In the top panel, a=M ¼ 0.5 and Q=M ¼ 0.85 for all three parts [(a)–(c)] but P=M increases for the dyonic Kerr-
Sen black holes as we go from (a) to (c). In the bottom panel, the a=M value is increased to a=M ¼ 0.65 for parts (d)–(f). The Q=M
value is also fixed at Q=M ¼ 0.75 but P=M values are increased for dyonic Kerr-Sen black holes as in the top panel. The inclination
angle θ0 ¼ 90 degrees for all of the parts.
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shadow radius does not vanish (Rshadow ¼ 2M). Thus,
the shadow does not exist for naked singularities. For,
P ¼ Q ¼ 0, i.e. Z̃c ¼ 0, Rshadow ¼ 3

ffiffiffi
3

p
M, which is the

case for the Schwarzschild black hole.

V. OBSERVATIONAL BOUND ON ROTATING
BLACK HOLES

We can test the possible existence of rotating dyonic
Kerr-Sen black holes using the observations of black hole
shadows of M87� and SgrA�. To do this, we may define
two observational quantities which are (i) deviation from
circularity (ΔC) [38] and (ii) fractional deviation parameter
(δ) related to the average shadow diameter [12,39,40].
These two quantities are described as follows.
We note that the shadow profile is symmetric about

β ¼ 0, i.e. the α axis. The geometric center of the shadow
image on the α axis is obtained by taking its mean.
Therefore, the center of the shadow profile is

αc ¼
R
αdAR
dA

; βc ¼ 0; ð5:1Þ

where dA ¼ 2βdα is the area element on the shadow image.
From the geometric center of the shadow image, the radial
distance lðϕÞ to any point on the shadow boundary,
making an angle ϕ with respect to the α axis, can be
expressed as

lðϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðαðϕÞ − αcÞ2 þ βðϕÞ2

q
: ð5:2Þ

Then the average shadow radius can be defined as the root
mean squared radius, i.e.

R2
avg ¼

1

2π

Z
2π

0

dϕl2ðϕÞ: ð5:3Þ

Finally, the deviation from circularity is defined as [38]

ΔC ¼ 1

Ravg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2π

Z
2π

0

dϕðlðϕÞ − RavgÞ2
s

: ð5:4Þ

For the computation, it is more convenient to use rph as
the parameter instead of ϕ. Then, we can express Ravg and
ΔC as

R2
avg ¼

1

π

Z
rph−

rphþ
ðβ0ðα − αcÞ − βα0Þdrph; ð5:5Þ

ΔC¼ 1

Ravg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

π

Z
rph−

rphþ
ðβ0ðα−αcÞ−βα0Þ

�
1−

Ravg

l

�
2

drph

s
;

ð5:6Þ

where β0 ¼ dβ
drph

and α0 ¼ dβ
drph

. Here rphþ and rph− are

obtained from the roots of βðrphÞ ¼ 0, i.e. the values of
rph for which the shadow boundary cuts the α axis. In other
words, ϕðrphþÞ ¼ 0 and ϕðrph−Þ ¼ π. The geometric center
of the shadow (αc, βc) can also be expressed in terms of the
parameter rph as

αc ¼
R rph−
rphþ αβα0drphR rph−
rphþ βα0drph

; βc ¼ 0: ð5:7Þ

FIG. 5. Shadow boundaries are plotted in the observer’s sky, i.e. α
M vs β

M space. The black dashed and the solid blue curves in each part
denote the shadow boundaries of the Kerr-Newman and the Kerr-Sen black holes, respectively. The solid red curve denotes values for the
dyonic Kerr-Sen black holes. The outer black solid curve is for Kerr black holes with corresponding rotation parameter (a=M) value. The
inclination angle θ0 ¼ 90 degrees for all of the parts.
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Note that αðrphÞ, βðrphÞ are obtained from Eqs. (4.10),
(4.11), and (4.13).
Six parameters are used to describe a dyonic Kerr-Sen

black hole solution. These are mass (M), rotation (a),
electric charge (Q), magnetic charge (P), dilaton charge
(d), and axion charge (k). However, the dilaton and axion

charges depend on the parameters P and Q, as d ¼ P2−Q2

2M

and k ¼ PQ
M . The black hole massM is determined by other

observations. The geometry of the spacetime and, con-
sequently, the shadow profile possess a symmetry so that

instead of treating P and Q as independent parameters we
define a new parameter Z2

c ¼ P2 þQ2. All possible values
of P and Q satisfying a given fixed value of Zc give the
same geometry and the shadow profile. This is due to the
duality of the dyonic charges. Thus effectively, we have
two free parameters: the rotation a and Zc. We constrain
this parameter space (a=M vs Zc=M) from observations of
the shadows of M87� and SgrA�.
From the observation of the shadow of M87�, the EHT

collaboration has given a bound ΔC ≲ 0.1 for an

FIG. 6. (a) The contour plots for different values of ΔC are shown over a=M vs θ0 parameter space, for Kerr black holes. The black
dashed line corresponds to θ0 ¼ 17o. (b) ΔC is plotted as a function of a=M for the inclination angle θ0 ¼ 17o.

FIG. 7. The contour plots for different values of ΔC are shown over a=M vs Zc=M parameter space for dyonic Kerr-Sen black holes.

For plot (a) the inclination angle is θ0 ¼ 17o and for plot (b) θ0 ¼ 90o. In the plots, Zc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þQ2

p
. The white excluded region of the

parameter space is for naked singularities.
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inclination angle θ0 ¼ 17o [8–10]. However, the bound on
ΔC from SgrA� is not available. From Fig. 6(a), we note
that for Kerr black holes the maximum valueΔC ≲ 0.07 for
all inclination angles (θ0). Considering the orientation of
the observed relativistic jets from the M87�, the inclination
angle is estimated to be θ0 ¼ 17o [41]. In Fig. 6(b), the
variation of ΔC is shown as the function of a=M. Note that
the maximum value ofΔC≲ 0.005 for the inclination angle
θ0 ¼ 17o. For the same inclination angle, we scanned the
parameter space a=M − Zc=M for the dyonic Kerr-Sen
black holes. From Fig. 7(a) we note that ΔC≲ 0.00534 for
θ0 ¼ 17o. As ΔC increases with the inclination angle θ0,
we have also scanned the parameter space for the inclina-
tion angle θ0 ¼ 90o in Fig. 7(b). The maximum possible
deviation is ΔC≲ 0.072. Therefore, we conclude that all
black hole parameters are allowed and the present obser-
vational bound on the deviation from circularity cannot
constrain the parameter space of the dyonic Kerr-Sen
black holes.
The recent EHT papers on SgrA� observations have used

the fractional deviation parameter δ to constrain the
spacetime geometries different from the Schwarzschild
or Kerr black holes. The definition of δ is as follows:

δ ¼ dsh
dsh;Sch

− 1 ¼ Ravg

3
ffiffiffi
3

p
M

− 1; ð5:8Þ

where the average diameter of the shadow dsh ¼ 2Ravg.
Using the observations of the shadow of SgrA� and two
separate sets of prior values of mass and distance of SgrA�
from the VLTI and Keck observations, the EHT collabo-
ration provided the bound on δ [11,12] as

δ ¼
�−0.08þ0.09

−0.09 ðVLTIÞ
−0.04þ0.09

−0.10 ðKeckÞ: ð5:9Þ

Therefore, we get the common range of δ, −0.14 < δ <
0.01, which is in the observational limits of both VLTI and
Keck data.
In Fig. 8, we scan the parameter space a=M − θ0 with the

contours labeled by different values of δ for the Kerr black
holes. It is noted that −0.0704≲ δ < 0 for all parameter
values. Thus, the Kerr black hole parameters are uncon-
strained from the observational bound on δ from SgrA�.
Further, we note that the variation in δ is less sensitive to the
variation of θ0. Moreover, in the observation of SgrA�,
inclination angle greater than 50o is disfavored.
Therefore, we choose θ0 ¼ 50o in Fig. 9(a), where we

scan the parameter space a=M − Zc=M with contours of
different δ values for the dyonic Kerr-Sen black holes. In
the blue shaded region of the plot δ < −0.14 which means
that the corresponding parameter values (a=M; Zc=M) are
not allowed according to the observations of the SgrA�.
Further, we note that for a Zc=M value greater than the
critical limit 0.873, no a=M value can satisfy the

observational constraint. This critical value of Zc=M is
independent of the inclination angle θ0 as the critical
limit corresponds to the a ¼ 0, i.e. the static black hole.
In Fig. 9(b), we show the variation of δ as a function of
Zc=M for static black holes, using the analytical expression
for the shadow radius given in Eq. (4.21). There, we
explicitly show the critical limit of Zc=M. We conclude that
Zc=M ≲ 0.873 and for any of allowed Zc=M values, the
allowed range of a=M must be within the allowed region of
space shown in Fig. 9(a). In other words, a value Zc=M >
0.873 is not allowed for any rotation parameter a.

VI. COMPARISONWITHOTHEROBSERVATIONS

Magnetic monopoles are a natural outcome of grand-
unified theories (GUTs) [42] and were among the original
motivations for cosmic inflation [43,44]. They have been
searched for in various experiments [45–47]. Primordial
black holes with magnetic charges, which have reached the
extremality condition in the course of cosmic evolution and
do not Hawking radiate anymore, can be a possible dark
matter candidate [48]. They are termed as the extremal
magnetic black holes (EMBHs). Various astrophysical
limits on such EMBHs were discussed in [48]. The authors
in [48] put constraints on such black holes with mass range
having the upper limit M < 1033 gm. Therefore, these
black holes cannot be used for modeling supermassive
black holes such as M87� or SgrA�. Hence, bounds
obtained from observations of shadow images, as discussed
in this article, are not directly applicable to such EMBHs.
However, we can develop some qualitative idea on what
type of physical processes can indeed give bounds on any
magnetic charge present in supermassive black holes such

FIG. 8. The contour plots for different values of δ are shown
over a=M vs θ0 parameter space, for Kerr black holes. The black
dashed line corresponds to θ0 ¼ 50o.
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as the one at the center of our galaxy. In the following, we
discuss two such possibilities.
(a) From the observed temperature of clouds of warm

ionized medium (WIM) in the Milky Way [49], we can put
some upper bound on the magnetic charge of SgrA�.
Following the calculations of [48], we get a rough estimate
of an upper bound on any magnetic charge that may be
present in SgrA�. While the magnetized black hole passes
through the surrounding plasma (WIM), the black hole
deposits energy into the plasma. The rate of energy
deposition is given by [48]

dE
dt

¼ 9 × 106
�

P
109 gm

�
erg= sec; ð6:1Þ

where P is the magnetic charge (in the mass unit) of
the black hole. Note that in [48] natural units c ¼ 1, ℏ ¼ 1
are used. In these units, the magnetic charge Qm is unitless
and given by Qm ¼ P=mp, where the Planck mass mp ¼
G−1=2 ¼ 1.22 × 1019 GeV. This process heats up the sur-
rounding gas clouds. On the other hand, the observed
cooling rate per unit volume for the WIM gas clouds in the
Milky Way is

dE
dt

=cm3 ∼ nH × 10−25.65
þ0.11
−0.15 erg= sec; ð6:2Þ

where nH ∼ 0.25 cm−3 is the typical number density of
hydrogen atoms in the gas cloud. The low density WIM
fills more than 20% of the volume within a 2 Kpc thick
layer around the galactic midplane. These results have been

derived from a relatively small number of sight lines that
sample a region of radius 3–4 Kpc about the Sun [50].
Therefore, around SgrA�, consider a region of disk of
radius 8 Kpc (i.e. the distance from the Sun to the SgrA�)
and thickness 2 Kpc. We assume that WIM clouds fill 20%
of this region of space. So, the effective volume of WIM,
V ∼ 80.42 Kpc3. Therefore, the net cooling rate of WIM
surrounding SgrA� up to the distance to the Sun is roughly
ðdEdt =cm3Þ × V ∼ 1.21 × 1040 erg= sec. (Here, note that the
cooling rate per unit volume may be different as we go far
away beyond 3–4 Kpc from the Sun and near SgrA�. But
for a rough estimate we can assume the cooling rate to be
the same throughout the region of space we considered.)
Now the heating rate given by Eq. (6.1) must be less than
the net cooling rate, i.e.

9 × 106
�

P
109 gm

�
2

≤ 1.21 × 1040: ð6:3Þ

Thus the bound on the magnetic charge P ≤ 3.66×
1025 gm. SgrA� has mass M ¼ 4.154× 106M⊙. Thus,
P=M ≤ 4.4 × 10−15.
(b) Another astrophysical constraint comes from the

Parker bound [51] which is based upon the survival of
today’s galactic magnetic field, as the field energy is
drained out by the magnetic monopoles while moving
through the field. This puts an upper limit on the flux of
magnetic monopoles. Monopoles moving through a
magnetic field extract energy from the field at the rate
j⃗M:B⃗ causing dissipation of the field energy in the
characteristic time

FIG. 9. (a) The contour plots for different values of δ are shown over a=M vs Zc=M parameter space for dyonic Kerr-Sen black holes.
The inclination angle is θ0 ¼ 50o. The blue shaded region is observationally disfavored as there δ < −0.14. (b) The black solid line is
the plot of δ as the function of Zc=M for static black holes, i.e. a ¼ 0. The red dashed line corresponds to δ ¼ −0.14 (the observational
limit). It intersects the black solid curve at ZC=M ¼ 0.873, meaning ZC=M ≲ 0.873 to satisfy the observational constraint.
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τ ≃
1

8π

B2

j⃗M:B⃗
; ð6:4Þ

where j⃗M is the magnetic current density and B ∼ 3 ×
10−6 Gauss is the galactic magnetic field. τ > 108 years if
the field can be regenerated in a time as short as
108 years. The “extended Parker bound” obtained by
requiring survival and growth of a small galactic seed
field after the collapse of the protogalaxy is [52]

F ≤ 10−21
�

m
1017 GeV

�
cm−2 s−1 Sr−1; ð6:5Þ

where F is the flux of magnetic monopoles around the
solar system and m ∼ 1015–1019 GeV. The magnetic
current density j⃗M ¼ ρMv⃗, where ρM is the magnetic
charge density and v⃗ is velocity of the charges. The flux

of magnetic monopoles is F ¼ jj⃗M j
4π . The relative velocity

of the SgrA� with respect to the Solar System is v⊙ ∼
220 km= sec and ρM ¼ P

mp
δ3ðr⃗Þ for the magnetic monop-

ole charge of SgrA�. Thus the effective flux of magnetic
charge of SgrA� around the Solar System is

F ¼ 3

16π2
P
mp

v⊙
R3

≤ 10−23 cm−2 s−1 Sr−1; ð6:6Þ

where R ¼ 8 Kpc (distance to the SgrA� from the Solar
System). Therefore, P ≤ 3.59M⊙ and P=M ≤ 10−6.
Clearly, the above astrophysical constraints seem to be

far more stringent, by several orders of magnitude than the
constraint obtained from shadow observations (i.e. the
result P ≤ 0.873M).

VII. DISCUSSION AND CONCLUSIONS

In this paper we have revisited black holes with dyonic
charges in Einstein-Maxwell–dilaton-axion (EMDA)
theory in the context of the observations on shadows of
the supermassive black holes M87� and SgrA�.
First we outlined the derivation of the static black hole

solution by direct integration of the field equations of
EMDA theory. Further, the rotating version (the dyonic
Kerr-Sen black hole) was obtained from the static solution
by applying the Newman-Janis algorithm. Thereafter, we
analyzed the structure of the static black holes in detail. The
differences with the standard Reissner-Nordström (RN)
black holes are parametrized by the quantity Z2

c ¼P2þQ2.
These static black holes have a single horizon (the event
horizon) unlike nonextremal RN black holes. For either
P ¼ 0 or Q ¼ 0 the axion field vanishes. However, the
dilaton field vanishes only when both P ¼ 0 and Q ¼ 0,
which is the case for the Schwarzschild black hole. Thus,
there is no solution with only axion and Maxwell’s
electromagnetic field but without dilaton field. The reason

lies in the structure of the EMDA action where the axion
field is linearly coupled with FμνF̃μν. The static dyonic
black holes satisfy all energy conditions outside the event
horizon. There is also no stable photon orbit outside the
event horizon of these static dyonic black holes.
For the rotating case (a ≠ 0) the axion field is nonzero

even if the axion charge is zero (k ¼ PQ=M ¼ 0) which is
the case for the Kerr-Sen black hole (P ¼ 0, Q ≠ 0, and
a ≠ 0). In the static limit of the Kerr-Sen black holes (i.e.
setting a ¼ 0), the axion field vanishes. This is an interest-
ing difference between the Kerr-Sen black holes and the
dyonic Kerr-Sen black holes, in general.
We study the shadow profiles for both rotating and

static black holes. We have obtained the exact expression
for the shadow radius for static black holes. The parameter
Zc <

ffiffiffi
2

p
M and the shadow radius Rshadow obeys 2M <

Rshadow < 3
ffiffiffi
3

p
M. The effect of magnetic charge/monopole

on the shadow profile of rotating black holes has been
investigated graphically by comparing the dyonic Kerr-Sen
black holes with the Kerr-Newman and the Kerr-Sen black
holes (Fig. 4). The deviation increases with the increase in
magnetic charge. However, the deviation is not so promi-
nent for higher rotation parameter (Fig. 5).
Finally, we test whether the known supermassive black

holes at galactic centers could be modeled as such dyonic
Kerr-Sen black holes. In other words, we look for metric
parameter values for which the shadow features match with
those in the observed shadow images of M87� and SgrA�.
We have used two observational quantities related to black
hole shadows: (i) the deviation from circularity of the
observed shadow boundary (ΔC) and (ii) the fractional
deviation parameter (δ) representing the deviation of the
observed average shadow diameter from that for a
Schwarzschild black hole. The observational bound on
ΔC for M87� is satisfied for all parameter values for the
dyonic black holes. Thus, it cannot be constrained.
For SgrA�, the EHT collaboration provided a bound on
δ which gives a constraint on the black hole parameter

Zc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þQ2

p ≲ 0.873M. Thus, we get an upper bound
on the magnetic monopole charge (if any) for SgrA� as
P≲ 0.873M, where M ¼ 4.154 × 106M⊙ for SgrA�. In
natural units, a magnetic charge Qm ¼ P=mP, where mP ¼
G−1=2 ¼ 1.22 × 1019 GeV is the Planck mass. In these
units, the obtained bound on the magnetic charge of SgrA�

is Qm ≤ 3.33 × 1044.
In the literature any other observational constraint on the

possibility of magnetic monopole charge of SgrA� does not
exist. There are some astrophysical constraints on the
extremal magnetic black holes (EMBHs), which are basi-
cally primordial black holes and dark matter candidates.
But these constraints are not useful for SgrA� and M87� as
the mass of the supermassive black holes is extremely high
as compared to those EMBH mass ranges. However, in
Sec. VI, we have estimated roughly the astrophysical
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constraints on the magnetic monopole charge of SgrA�,
following arguments similar to those discussed in [48].
From the observed cooling rate of the WIM clouds in the
Milky Way, we can get a rough estimate P=M ≤ 4.4 ×
10−15 and from the Parker bound on the flux of the
magnetic charges, we get an estimate P=M ≤ 10−6. Both
of these estimates are more stringent by several orders of
magnitude than those we obtained from the observed
shadow of SgrA�. However, for M87� situated at a distance
of 16.8 Mpc, similar astrophysical observations do not exist
and hence similar constraints (as found for SgrA�) cannot
be estimated.
Thus, at present, it is difficult to reach any definite

conclusion about the viable presence/absence of magnetic
monopole charges in the supermassive black holes such as

M87� and SgrA�. Future observations of shadow images at
greater experimental sensitivities and more concrete analy-
sis of other astrophysical constraints may provide bounds
which are closer in value to each other and hence more
conclusive in nature. However, the theoretical analysis we
have carried out is indeed new and may be of use once more
imaging observations on shadows of black holes are carried
out and presented in future.
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