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Recently, a generalization of invertible disformal transformations containing higher-order derivatives of
a scalar field has been proposed in the context of scalar-tensor theories of gravity. By applying this
generalized disformal transformation to the Horndeski theory, one can obtain the so-called generalized
disformal Horndeski (GDH) theories which are more general healthy scalar-tensor theories than ever.
However, it is unclear whether or not the GDH theories can be coupled consistently to matter fields because
introducing matter fields could break the degeneracy conditions of higher-order scalar-tensor theories and
hence yield the unwanted Ostrogradsky ghost. We investigate this issue and explore the conditions under
which a minimal coupling to a matter field is consistent in the GDH theories without relying on any
particular gauge such as the unitary gauge. We find that all the higher-derivative terms in the generalized
disformal transformation are prohibited to avoid the appearance of an extra degree of freedom in a generic
gauge. Our analysis shows that, if one considers matter-coupled GDH theories, an extra degree of freedom
shows up, though it might be a harmless nonpropagating mode when the scalar field has a timelike gradient.
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I. INTRODUCTION

Extending general relativity allows us to study various
unresolved issues in the Universe. For instance, the
mechanism of the accelerated expansion of the late
Universe is yet unknown, which motivates the active study
of modified gravity as an alternative to dark energy. A
modification of gravity at high energies is also strongly
motivated because general relativity is considered a low-
energy effective theory. It is thus interesting to explore
physics beyond general relativity in a strong gravity
regime. Furthermore, modified gravity models are useful
also for comparison with general relativity in the context of
testing gravity (see, e.g., Refs. [1–3] for reviews). For
instance, in recent years, the direct detection of gravita-
tional waves [4] and imaging of black hole shadows [5]
have been successfully achieved, making it increasingly
feasible to test gravity in the strong-field regime.
Given a huge variety of modified theories of gravity to

tackle different problems in gravitational and cosmological
physics and to be tested against observations and experi-
ments, it is practically impossible to examine each theory
individually. It is therefore highly desirable to construct as
general a framework as possible to handle many different

theories of gravity in a unifying manner. We are thus
motivated to consider a general framework for modified
theories of gravity and then limit the theory space based on
some criteria that variable theories must satisfy.
Modified gravity is described, at least effectively, by

theories equipped with new gravitational degree(s) of free-
dom (d.o.f.s) on top of the massless graviton d.o.f.s, and as
such scalar-tensor theories are often studied where a scalar
d.o.f. is taken into account. Once one goes beyond general
relativity, one may naturally consider higher-derivative
terms in the gravitational Lagrangian, but higher-derivative
theories are plagued by the Ostrogradsky instability in
general [6–8]. Therefore, in generalizing theories of grav-
ity, one must be careful not to induce such an instability
arising from higher derivatives. Even if the Lagrangian
itself contains higher derivatives, this instability can be
avoided as long as the field equations are intrinsically of
second order. The Horndeski theory [9–11] is the most
general scalar-tensor theory having second-order Euler-
Lagrange equations, and due to this merit it has been studied
extensively over the recent years. However, the Horndeski
theory is not themost general scalar-tensor theory that is free
from the Ostrogradsky instability. The point here is that, if
the system is degenerate, higher-order field equations
contain less number of d.o.f.s than anticipated from the
order of derivatives [12–16]. Degenerate higher-order
scalar-tensor (DHOST) theories [17–19] exploit this loop-
hole and extend the Horndeski theory to a large family of
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higher-derivative scalar-tensor theories having a single
scalar and two tensor d.o.f.s (see Refs. [20,21] for reviews).
An invertible transformation is a useful tool to construct

such a general framework of gravitational theories.
Actually, given that two theories related via invertible
field redefinition have the same number of dynamical
d.o.f.s [22,23], an invertible metric redefinition is a
convenient and useful way of generating nontrivial class
of healthy scalar-tensor theories from existing ones that are
manifestly ghost free. In particular, derivative-dependent
transformations yield higher-derivative theories that are
nevertheless free from the Ostrogradsky ghost. For exam-
ple, by applying to the Horndeski theory a disformal
transformation, which is a general metric redefinition
involving the first derivative of the scalar d.o.f. [24], we can
obtain a certain subset of DHOST theories [25]. Indeed, the
first example of scalar-tensor theories beyond Horndeski
was obtained in that way [26]. It is important to note that,
among subclasses of DHOST theories that are systemati-
cally constructed by imposing the degeneracy conditions,
only the subclass generated via invertible disformal trans-
formation from the Horndeski theory is physically inter-
esting because cosmological solutions can be stable (and
tensor perturbations remain dynamical) only in that sub-
class [27,28].1 Such disformally generated DHOST theo-
ries include, e.g., the so-called “beyond Horndeski” or
GLPV theories [31,32] as specific cases.
Recently, a generalization of invertible disformal trans-

formations involving second (and higher) derivatives of
the scalar d.o.f. was proposed [33]. By applying this
novel class of generalized disformal transformations to
the Horndeski theory, we can derive yet more general
higher-order scalar-tensor theories than ever constructed,
which we call generalized disformal Horndeski (GDH)
theories [34]. Since two theories thus related via invertible
disformal transformation are equivalent, GDH theories are
also free from the Ostrogradsky instability (even though the
field equations are apparently of higher order). However,
this statement should be taken with care. The equivalence
holds only in vacuum, and the Horndeski theory with
minimally coupled matter and GDH theories with mini-
mally coupled matter are not equivalent. Therefore, the
inclusion of (minimally coupled) matter fields in GDH
theories could result in extra ghost d.o.f.s. The possible
appearance of extra d.o.f.s can be understood by moving
back to the “Horndeski frame” where the gravity sector is
described by the Horndeski theory and the matter sector is
coupled to a generalized disformal metric involving second
derivatives of the scalar d.o.f. In the Horndeski frame, the
matter fields are thus coupled with second derivatives of the

scalar d.o.f., possibly breaking the degeneracy conditions.
This issue has been pointed out already in the context of
DHOST theories [35,36]. Motivated by this concern, the
consistency of matter couplings in GDH theories has been
investigated in Refs. [34,37,38]. In those previous studies,
however, the unitary gauge is taken, which is justified only
if the scalar field has a timelike gradient. The conditions
that remove extra ghost d.o.f.s derived in Refs. [34,37,38]
should therefore be weaker than those that would be
derived without assuming any particular gauge. In other
words, upon imposing the degeneracy conditions validated
only in the unitary gauge, there would be an apparent
Ostrogradsky ghost away from the unitary gauge. Such a
gauge-dependent Ostrogradsky ghost would be a non-
propagating “shadowy mode,” and hence harmless [39,40].
Having said that, we need to remove such an extra d.o.f. in
any gauge to safely consider, e.g., static stars and black
holes dressed with a static scalar profile. Also, since such
theories are rather tricky and the shadowy mode requires a
careful treatment, we are interested mostly in theories
without the shadowy mode. Along this line of thought,
in this paper, we explore, without assuming any particular
gauge, the conditions under which matter couplings to
GDH theories are consistent and there is no extra d.o.f.
This paper is organized as follows. In the next section,

we briefly review the generalized disformal transforma-
tion [33] and introduce the action for GDH theories by
applying a generalized disformal transformation to the
Horndeski theory. In Sec. III, we study the consistency
of matter couplings in the GDH theory. We review the
previous results obtained in the unitary gauge [34,37,38],
and then investigate the conditions for the matter couplings
to be consistent away from the unitary gauge. We finally
draw our conclusions in Sec. IV.

II. GENERALIZED DISFORMAL
TRANSFORMATIONS

A. Invertible disformal transformations
with higher-order derivatives

Let us consider a generalized disformal transformation
defined as [33]

ḡμν ¼ F0gμν þ F1ϕμϕν þ 2F2ϕðμXνÞ þ F3XμXν; ð1Þ

where ϕμ ≔ ∇μϕ and Xμ ≔ ∇μX with X ≔ ϕμϕμ. Here, Fi

(i ¼ 0; 1; 2; 3) are functions of ðϕ; X; Y; ZÞ, where Y ≔
ϕμXμ and Z ≔ XμXμ. Restricting the form of the functions
to be F0 ¼ F0ðϕ; XÞ, F1 ¼ F1ðϕ; XÞ and F2 ¼ F3 ¼ 0, we
obtain the conventional disformal transformation [24]

ḡμν ¼ F0ðϕ; XÞgμν þ F1ðϕ; XÞϕμϕν: ð2Þ

In this sense, the transformation (1) involves the conven-
tional one (2).

1A noninvertible subclass of disformal transformations can
also be used to generate a certain subclass of DHOST theories,
but this subclass does not accommodate stable cosmological
solutions or otherwise the tensor perturbations are nondynamical
[29,30].
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Following Ref. [33], we summarize the conditions under
which the transformation (1) is invertible. The essential
ingredient of the invertible generalized disformal trans-
formation is the requirement that a set of generalized
disformal transformations forms a group under the follow-
ing two operations:

ðḡ · ĝÞμν ≔ ḡμαgαβĝβν; ðMatrix productÞ ð3Þ

and

ðḡ∘ĝÞμν½g;ϕ�≔ ḡμν½ĝ;ϕ�: ðFunctional compositionÞ ð4Þ

We are then allowed to construct the inverse of the
transformed metric and the inverse transformation. Note
that, in contrast to the case of conventional disformal
transformation (2), the closedness under the functional
composition for the generalized disformal transformation
(1) is nontrivial as the transformation law involves the
derivative of the metric. For the set of generalized disformal
transformations to form a group, it is sufficient that the
following conditions are satisfied [33]:

F0 ≠ 0; F ≠ 0; X̄X ≠ 0;

X̄Y ¼ X̄Z ¼ 0;

���� ∂ðȲ; Z̄Þ
∂ðY; ZÞ

���� ≠ 0; ð5Þ

where

X̄ ≔ ḡμνϕμϕν; Ȳ ≔ ḡμνϕμX̄ν; Z̄ ≔ ḡμνX̄μX̄ν; ð6Þ

and

F ðϕ; X; Y; ZÞ ≔ F2
0 þ F0ðXF1 þ 2YF2 þ ZF3Þ

þ ðY2 − XZÞðF2
2 − F1F3Þ: ð7Þ

Note that, among the conditions in Eq. (5), the one that
guarantees the closedness under the functional composition
is X̄Y ¼ X̄Z ¼ 0. Suppose that these conditions are satis-
fied. The inverse metric ḡμν of ḡμν is then given by

ḡμν ¼ f0gμν þ f1ϕμϕν þ 2f2ϕðμXνÞ þ f3XμXν; ð8Þ

where

f0 ≔
1

F0

; f1 ≔ −
F0F1 − ZðF2

2 − F1F3Þ
F0F

;

f2 ≔ −
F0F2 þ YðF2

2 − F1F3Þ
F0F

;

f3 ≔ −
F0F3 − XðF2

2 − F1F3Þ
F0F

: ð9Þ

The following formula is also useful for reconstructing the
barred metric ḡμν [Eq. (1)] when its inverse is given in the
form of Eq. (8):

F0 ≔
1

f0
; F1 ≔ −

f0f1 − Zðf22 − f1f3Þ
f0H

;

F2 ≔ −
f0f2 þ Yðf22 − f1f3Þ

f0H
;

F3 ≔ −
f0f3 − Xðf22 − f1f3Þ

f0H
: ð10Þ

Here, we have defined

Hðϕ; X; Y; ZÞ ≔ f20 þ f0ðXf1 þ 2Yf2 þ Zf3Þ
þ ðY2 − XZÞðf22 − f1f3Þ; ð11Þ

which is obtained simply by replacing Fi in Eq. (7) by fi.
Having constructed the inverse metric explicitly, let us next
look at the inverse transformation. The inverse transforma-
tion of (1) is expressed as

gμν½ḡ;ϕ� ¼
1

F0

ḡμν −
X̄2
XF1 − 2X̄ϕX̄XF2 þ X̄2

ϕF3

X̄2
XF0

ϕμϕν

− 2
X̄XF2 − X̄ϕF3

X̄2
XF0

ϕðμX̄νÞ −
F3

X̄2
XF0

X̄μX̄ν; ð12Þ

where Fi’s in the right-hand side are given as functions of
ðϕ; X̄; Ȳ; Z̄Þ. Thanks to the group structure of the set of
generalized disformal transformations, one can thus obtain
the inverse metric and inverse transformation.

B. Generalized disformal Horndeski theories

We now define a scalar-tensor theory obtained by
applying a generalized disformal transformation to the
metric in the Horndeski theory. The Horndeski theory
(in vacuum) is described by the action [9–11]

SHor½gμν;ϕ� ≔
Z

d4x
ffiffiffiffiffiffi
−g

p
LHor½gμν;ϕ�; ð13Þ

where

LHor ≔ G2ðϕ; XÞ þ G3ðϕ; XÞ□ϕþ G4ðϕ; XÞR
− 2G4;Xðϕ; XÞ½ð□ϕÞ2 − ϕμνϕμν�

þ G5ðϕ; XÞGμνϕμν þ
1

3
G5;Xðϕ; XÞ½ð□ϕÞ3

− 3□ϕϕμνϕμν þ 2ϕμνϕ
μρϕν

ρ�; ð14Þ

with ϕμν ≔ ∇μ∇νϕ. Performing a generalized disformal
transformation satisfying the invertibility conditions (5), we
obtain a new action for a scalar-tensor theory [34]
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SGDH½gμν;ϕ� ≔ SHor½ḡμν;ϕ�

¼
Z

d4x
ffiffiffiffiffiffi
−g

p
JLHor½ḡμν;ϕ�; ð15Þ

where we have defined

J ≔
ffiffiffiffiffiffi
−ḡ

p
ffiffiffiffiffiffi−gp ¼ F0F 1=2 ¼ f−10 H−1=2: ð16Þ

This theory was dubbed the generalized disformal
Horndeski (GDH) theory [34]. Since the generalized
disformal transformation is just a field redefinition,
SGDH½gμν;ϕ� and SHor½ḡμν;ϕ� are mathematically equivalent
as long as the transformation satisfies the invertibility
conditions (5). This in particular means that there are
one scalar and two tensor d.o.f.s in the (vacuum) GDH
theory as in the (vacuum) Horndeski theory, even though
the field equations in the former theory contain higher
derivatives in general. However, in the presence of matter
fields, things become subtle and the relation between the
two theories must be examined carefully.
To see this point more closely, let us add matter field(s)

(collectively denoted by Ψ) minimally coupled to the GDH
theory,

SGDH½gμν;ϕ�þSm½gμν;Ψ� ¼ SHor½ḡμν;ϕ�þSm½gμν;Ψ�: ð17Þ

We see that the matter fields are coupled with the
generalized disformal metric (12) in the Horndeski frame
(the right-hand side) in which the gravitational part of the
action is written manifestly in the Horndeski form in terms
of the metric ḡμν. Since the generalized disformal metric
(12) contains higher-order derivatives of ϕ, there is no
guarantee that the coupling to matter is consistent, i.e., no
unwanted d.o.f. appears as an Ostrogradsky ghost through
this coupling. If such an additional dangerous d.o.f. were to
appear, then the GDH theory in the presence of (minimally
coupled) matter would be inconsistent, albeit healthy in
vacuum.2 In the next section, we will study this point in
detail.

III. CONSISTENCY OF MATTER COUPLING

A. Unitary gauge

In this subsection, we briefly review the consistency of
matter coupling in the GDH theory under the unitary gauge,
where the scalar field is spatially uniform. Though it is not
always justified, one is allowed to take the unitary gauge at
least in the context of cosmology where the scalar field is
supposed to have a timelike gradient. The case of bosonic

matter fields was discussed in Refs. [34,37,38]. As we saw
in Sec. II B, in the Horndeski frame, the matter fields are
coupled to the generalized disformal metric (with respect to
the metric that describes the gravity sector), and hence the
matter action involves higher-order derivatives of ϕ. This
indicates that the matter action yields the time derivative of
the lapse function under the unitary gauge, which generi-
cally makes the (otherwise nondynamical) lapse function
dynamical. Thus, the GDH theory would give rise to the
Ostrogradsky ghost in general in the presence of matter
fields. Fortunately, one can remove the Ostrogradsky ghost
by restricting the generalized disformal metric to the
following form [34,37,38]:

ḡμν ¼ F̃0gμν þ F̃1ϕμϕν þ 2F̃2ϕðμX νÞ þ F̃3XμX ν;

Xμ ≔
�
δαμ −

ϕμϕ
α

X

�
∂αX; ð18Þ

where Xμ is the derivative of X projected onto a constant-ϕ
hypersurface and F̃i ¼ F̃iðϕ; X;ZÞ, with

Z ≔ XμXμ ¼ Z −
Y2

X
: ð19Þ

The point is that the object Xμ does not contain the time
derivative of the lapse function under the unitary gauge
where ϕ ¼ ϕðtÞ. Note that Eq. (18) is embedded in the
original generalized disformal transformation (1) as

F0 ¼ F̃0; F1 ¼ F̃1 −
2Y
X

F̃2 þ
Y2

X2
F̃3;

F2 ¼ F̃2 −
Y
X
F̃3; F3 ¼ F̃3: ð20Þ

On the other hand, the case of fermionic matter fields needs
a separate treatment as the matter action is written in terms
of the tetrad rather than the metric itself. The authors of
Ref. [38] developed the transformation law for the tetrad to
show that the consistency of fermionic matter coupling
requires an additional condition F̃3 ¼ 0 [38].
Here, it should be emphasized that all these results were

obtained in the unitary gauge, and hence the scalar field
was assumed to have a timelike gradient. Away from the
unitary gauge, apparently there would be an Ostrogradsky
mode, but thismode could be harmless because it would be a
nonpropagating “shadowy mode” that satisfies a three-
dimensional elliptic differential equation on a spacelike
hypersurface, leading to a configuration completely deter-
mined by boundary conditions. (See Refs. [39–41] for a
more detailed discussion in the context of U-DHOST
theories.) Having said that, by removing the Ostrogradsky
mode in any gauge, one may safely consider, for example,
static stars and black holes dressed with a static scalar field.
Also,we need a careful treatment for the shadowymode, and
hence theorieswithout the shadowymode are still of primary

2We expect that the mass of the Ostrogradsky mode would be
proportional to some negative power of the energy density of the
matter field. Therefore, from the EFT point of view, the ghost
would be irrelevant if we push its mass above the cutoff scale.
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interest to us. Inwhat follows,we investigate the consistency
of matter coupling away from the unitary gauge and derive
degeneracy conditions without any extra mode.

B. Away from the unitary gauge

Let us now explore the consistency of the matter
coupling away from the unitary gauge. We start with the
Horndeski-frame Lagrangian

L½gμν;ϕ� ¼ LHor½gμν;ϕ� þ Lm½ḡμν;ψ �; ð21Þ

where ḡμν is defined in Eq. (1). Note that we have
interchanged the roles of gμν and ḡμν as compared to those
in Eq. (17). In any case, so long as the (generalized)
disformal transformation is invertible, the barred metric is
some disformal transformation of the unbarred metric and
vice versa, and hence this is just a matter of convention.
Note, however, that the Lagrangian (17) makes sense as a
theory of gravity nonminimally coupled to matter even if
the disformal transformation is noninvertible, though one
cannot move to the equivalent description in the GDH (or
Jordan) frame in this case. Therefore, in this subsection, we
study a system described by the Lagrangian (17) without
imposing the invertibility conditions for the disformal
transformation from the outset.3 For simplicity, we assume
that the matter sector is described by a massless scalar
field ψ ,

Sm½ḡμν;ψ � ≔ −
1

2

Z
d4x

ffiffiffiffiffiffi
−ḡ

p
ḡμνψμψν

¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
J ḡμνψμψν; ð22Þ

where ψμ ≔ ∇μψ and ḡμν is the inverse metric associated
with ḡμν defined in Eq. (8).
We expect that the system described by the Lagrangian

(17) has four physical d.o.f.s, where three come from the
gravity sector (gμν and ϕ) and one from the matter scalar
field ψ . In order to avoid an unwanted fifth d.o.f., terms
with the highest time derivatives must possess a degenerate
structure. In order to study the kinetic structure of the
Lagrangian (17) in detail, let us introduce the Arnowitt-
Deser-Misner (ADM) variables as

gμνdxμdxν¼−N2dt2þhijðdxiþNidtÞðdxjþNjdtÞ; ð23Þ

where N is the lapse function, Ni is the shift vector, and hij
is the induced metric. Note that we do not choose the

unitary gauge, and hence the timelike unit normal vector
nμ ¼ −Nδ0μ associated with a constant-t hypersurface is not
proportional to ϕμ. The extrinsic curvature is written in
terms of the ADM variables as

Kij ¼
1

2N
ðḣij − DiNj − DjNiÞ; ð24Þ

where a dot denotes the time derivative and Di denotes the
covariant derivative associated with hij. We also define the
variables associated with the first and second time deriv-
atives of ϕ and the first time derivative of ψ as follows:

A� ≔ nμ∇μϕ; X�≔ nμ∇μX; ψ� ≔ nμ∇μψ : ð25Þ

The kinetic structure of the Lagrangian (17) can be
captured by the Hessian matrix H of the Lagrangian (21)
with respect to Kij, X�, and ψ�. Written explicitly, one has

H ¼

0
BB@

Kij;kl 0 0

0 A M

0 M P

1
CCA; ð26Þ

with

Kij;kl ≔
∂
2L

∂Kij∂Kkl
; A ≔

∂
2L
∂X2�

;

M ≔
∂
2L

∂X�∂ψ�
; P ≔

∂
2L
∂ψ2�

: ð27Þ

Note that there is no kinetic mixing between the gravita-
tional and matter sectors: The gravitational (Horndeski)
sector concerns onlyKij;kl, while the matter sector concerns
only A, M, and P. In order to kill the unwanted d.o.f.
revived due to the matter coupling, we require that the 2 × 2
lower-right submatrix of H is degenerate, i.e.,

D ≔ AP −M2 ¼ 0: ð28Þ

The quantityD can be rewritten in the form of a polynomial
in fA�; X�;ψ�;Q1;Q2;Q3g as

D ¼
X

i;j;k;l;m;n≥0
dijklmnðϕ; X; Y; ZÞAi�X

j
�ψk�Ql

1Q
m
2 Q

n
3; ð29Þ

with

Q1≔ gμνψμψν; Q2 ≔ gμνψμϕν; Q3 ≔ gμνψμXν: ð30Þ

Note that the coefficients dijklmn depend only on the
functions fi characterizing the generalized disformal trans-
formation. In order for D to vanish for any configuration of

3Precisely speaking, we assume the first two conditions in
Eq. (5) to guarantee the existence of the barred inverse metric ḡμν,
but do not necessarily impose the last three conditions. The
authors of Ref. [37] used a similar approach to specify the
degeneracy conditions under the unitary gauge without imposing
the invertibility conditions from the outset.
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ϕ and ψ , we shall fix fi’s so that all dijklmn’s vanish.
4 Since

the full expression of D is extremely involved, we proceed
step by step: Among nonvanishing dijklmn, we first focus on
the simplest one(s) to read off condition(s) that fi’s should
satisfy. We then substitute the condition(s) back into D,
which simplifies some of dijklmn ’s. With simplified
dijklmn’s, we follow the same steps, selecting the simplest
one(s) to find additional condition(s) on fi’s. Repeating this
procedure, we finally obtain a set of conditions on fi’s
under which all dijklmn’s vanish, i.e., D ¼ 0. In what
follows, we apply this strategy to fix the functional form
of fi ’s. It should be noted that we assume F0 ≠ 0 and J ≠
0 throughout the following discussion because otherwise
one cannot define the barred inverse metric ḡμν.
The condition that the coefficient of ψ2� vanishes

yields

f3 ¼ 0: ð31Þ

Likewise, from the coefficients of A4�Q2
3 and X

4�Q2
2, we find

that f2 must be of the form

J f2 ¼ α2ðϕ; XÞ; ð32Þ

where α2 is a function of ϕ and X which is arbitrary at this
step. From the coefficients of Q1 and A2�Q1, we see that f0
must take the form

J f0 ¼ α0ðϕ; XÞ þ β0ðϕ; XÞY; ð33Þ

where α0 and β0 are arbitrary functions of ϕ and X. Then,
from the coefficient of A2�ψ2�, we find that α2 must be
related to β0 by

α2 ¼ −β0: ð34Þ

The coefficient of A�X3�Q2
2 leads us to the following

relation:

β0ðJ f1Þ;ZZ ¼ 0: ð35Þ

We now have the two branches of solutions, β0 ¼ 0
and ðJ f1Þ;ZZ ¼ 0.
Let us first consider the branch β0 ¼ 0. In this case, from

the coefficients of Q2
2, A

2�Q2
2, and A4�Q2

2, we see that f1
must take the form

J f1 ¼ α1ðϕ; XÞ; ð36Þ

where α1 is an arbitrary function of ϕ and X. Combining
the conditions obtained so far, we obtain the following
relations:

f0 ¼
α0
J

; f1 ¼
α1
J

; f2 ¼ f3 ¼ 0: ð37Þ

On top of these, we have J −1 ¼ f0H1=2 with H defined in
Eq. (11), which yields

J ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α30ðα0 þ α1XÞ

q
: ð38Þ

We now know fi’s as functions of ðϕ; XÞ. Written explic-
itly, we have

f0 ¼
α0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α30ðα0 þ α1XÞ
q ; f1 ¼

α1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α30ðα0 þ α1XÞ

q ;

f2 ¼ f3 ¼ 0: ð39Þ

By use of Eq. (10), the barred metric can be reconstructed as

ḡμν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α0ðα0 þ α1XÞ

p
gμν −

α0α1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α0ðα0 þ α1XÞ

p ϕμϕν: ð40Þ

Note that both coefficients are now functions of ðϕ; XÞ, and
hence this is nothing but a conventional disformal
transformation.
Let us now study the other branch of solutions for

Eq. (35), i.e., ðJ f1Þ;ZZ ¼ 0. After straightforward manip-
ulations, one can show that all dijklmn’s vanish if and only if

f0 ¼
α0 þ β0Y

J
; f1 ¼

α0α1 þ β20Z
J ðα0 þ β0YÞ

; f2 ¼ −
β0
J

;

f3 ¼ 0; J 2 ¼ α0ðα0 þ α1XÞðα0 þ β0YÞ2; ð41Þ

with α0ð≠ 0Þ, α1, and β0 being functions of ðϕ; XÞ. By use
of Eq. (10), the coefficient functions of the barred metric
can be reconstructed from Eq. (41) as

F0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α0ðα0 þ α1XÞ

p
; F1 ¼ −

α0α1
F0

;

F2 ¼
α0β0
F0

; F3 ¼
Xβ20
F0

; ð42Þ

or written explicitly,5
4Under the unitary gauge, we have A� ¼ ð−XÞ1=2, X� ¼

−Yð−XÞ−1=2, and ψ�¼−ð−XÞ−1=2Q2. Hence, we obtain a weaker
condition that the coefficients in front of Ql

1Q
p
2Q

n
3 vanish, i.e.,P

i;j;k≥0ð−1Þjþkð−XÞði−j−kÞ=2Yjδkþm;pdijklmnðϕ; X; Y; ZÞ ¼ 0 for
all l; n; pð≥ 0Þ.

5Our result is consistent with that derived taking the unitary
gauge (see Sec. III of Ref. [37]).
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ḡμν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α0ðα0 þ α1XÞ

p �
gμν −

α1
α0 þ α1X

ϕμϕν

þ 2β0
α0 þ α1X

ϕðμXνÞ þ
Xβ20

α0ðα0 þ α1XÞ
XμXν

�
: ð43Þ

Interestingly, one can check that the generalized disformal
transformation (43) satisfies the degeneracy condition even
in the presence of a k-essence matter scalar field whose
Lagrangian is written as a general function of ψ and
ḡμνψμψν. Note, however, that the above result does not
satisfy a part of the invertibility conditions (specifically,
X̄Y ¼ X̄Z ¼ 0) in general. Indeed, for the above choice of
fi’s, we have

X̄ ¼ X

�
f0 þ Xf1 þ 2Yf2 þ

Y2

X
f3

�

¼ X½α20 þ Xα0α1 − β20ðY2 − XZÞ�
J ðα0 þ β0YÞ

; ð44Þ

which has a nontrivial dependence on Y and Z unless
β0 ¼ 0. If β0 ¼ 0, the generalized disformal transformation
(43) reduces to Eq. (40), i.e., the conventional one.
So far, we have found that there exists a nontrivial family

of generalized disformal metrics described by Eq. (43) that
allows for consistent coupling of a k-essence scalar field
without an extra mode. As mentioned above, this family
does not satisfy a part of the invertibility conditions in
general, meaning that one cannot move to the equivalent
description in the Jordan frame. The only exception is the
case β0 ¼ 0, where Eq. (43) reduces to the conventional
disformal metric (2). Nevertheless, even if β0 ≠ 0, the
theory makes sense as gravity nonminimally coupled to
matter, and hence we could keep it in our consideration.
However, as we shall show in the Appendix, this family
does not allow for consistent coupling of fermionic matter
fields unless β0 ¼ 0. Therefore, all the higher-derivative
terms in the generalized disformal metric are prohibited
when we require that both bosonic and fermionic matter
couplings do not introduce an extra mode, even if we do not
impose the invertibility conditions. Our analysis shows
that, if one considers the generalized disformal trans-
formation with nontrivial higher-derivative terms, an extra
mode shows up. When the scalar field has a timelike
gradient, this extra mode is nothing but a shadowy mode.
As clarified in Refs. [39,40], the shadowy mode itself is
harmless as it satisfies a three-dimensional elliptic differ-
ential equation on a spacelike hypersurface and hence does
not propagate. However, this extra mode does propagate
around a background with a spacelike gradient of the scalar
field, which is problematic.

IV. CONCLUSIONS

In this work, we have considered a general framework of
modified theories of gravity and explored the viable theory
space based on the criterion of whether or not gravity can
be coupled consistently to matter fields. To do so, we have
investigated the degeneracy conditions of generalized
disformal Horndeski (GDH) theories in the presence of a
minimally coupled matter field, which is represented by a
canonical scalar field. We have started with the Horndeski-
frame Lagrangian (21) where the gravitational action is
given by the Horndeski one while the matter field is
coupled to the generalized disformal metric (1). We have
rewritten the total Lagrangian in terms of the 3þ 1
language and constructed the Hessian matrix so that we
can investigate the kinetic structure of the theory. The
degeneracy conditions are required for the matter coupling
to be consistent, giving the conditions that the determinant
of the Hessian matrix vanishes. The degeneracy conditions
have been written in the form (29) as a polynomial in
fA�; X�;ψ�;Q1;Q2;Q3g, which are independent functions
of spacetime constructed out of the derivatives of the
gravitational scalar field ϕ and the matter scalar field ψ
[see Eqs. (25) and (30)]. In order for the degeneracy
conditions to be satisfied for arbitrary configurations of
ϕ and ψ , all the coefficients dijklmn of the polynomial must
vanish. We have thus arrived at the following conclusions:
(i) if one sticks to the invertible transformations satisfying
the conditions (5) so that the equivalent GDH theory in the
Jordan frame exists, only the conventional disformal metric
can be consistently coupled to the kinetic term of the matter
scalar field; and (ii) however, if one gives up the invert-
ibility conditions and just considers a scalar field coupled
nonminimally to the gravitational scalar d.o.f. ϕ through
the generalized disformal metric, a nontrivial coupling
(containing second derivatives of ϕ) given by Eq. (41)
[or, equivalently, Eqs. (42) and (43)] is allowed.
We note that our analysis in the present paper is based on

the Horndeski-frame Lagrangian, which itself makes sense
even if the metric to which the matter fields are minimally
coupled is not associated with invertible disformal trans-
formations. In this regard, it would be intriguing to take into
account more general higher-order derivatives that are not
covered by our transformation law (1) (e.g., □ϕ) to study
what types of higher-derivative couplings to matter fields
can survive. It would also be interesting to investigate the
consistency of matter coupling in a class of scalar-tensor
theories with a nondynamical scalar field, i.e., the cuscu-
ton [42] or its extension [43]. These issues will be left for
future work.
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APPENDIX: CONSISTENCY OF FERMIONIC
MATTER COUPLING

In Sec. III B, we showed that the generalized disformal
transformation (1), with which we define the GDH theory,
is restricted to be of the conventional form (2) so that a
matter scalar field can be consistently coupled without
introducing an extra mode, provided that the invertibility
conditions (5) are satisfied. On the other hand, our analysis
was based on the Horndeski-frame Lagrangian (21), which
itself makes sense as a theory of gravity nonminimally
coupled to matter field(s) even if the disformal trans-
formation is noninvertible. Interestingly, if we relax the
invertibility conditions, there is a nontrivial family of
generalized disformal transformations given by Eq. (43)
that allows for consistent coupling of a matter scalar field,
where the deviation of Eq. (43) from the conventional
disformal transformation is characterized by the function
β0 ¼ β0ðϕ; XÞ. However, it remains unclear whether the
transformation (43) with β0 ≠ 0 accommodates consistent
coupling of fermionic matter fields. In this appendix,
following the discussion in Ref. [38], we argue that further
imposing the consistency of spinorial matter coupling leads
to β0 ¼ 0, i.e., we are again left with the conventional
disformal transformation.
For this purpose, one needs to study the transformation

law for the tetrad under the generalized disformal trans-
formation, since the action of fermions in curved spacetime
is written in terms of the tetrad. The authors of Ref. [38]
developed the tetrad transformation law for the class of
generalized disformal transformations defined by Eq. (18),
which we repeat here for convenience,

ḡμν ¼ F̃0gμν þ F̃1ϕμϕν þ 2F̃2ϕðμX νÞ þ F̃3XμX ν;

Xμ ≔
�
δαμ −

ϕμϕ
α

X

�
∂αX; ðA1Þ

where Xμ is the derivative of X projected onto a constant-ϕ
hypersurface and F̃i ¼ F̃iðϕ; X;ZÞ, with Z ≔ XμXμ. The
reason why they focused on this particular type of gener-
alized disformal transformation is that it trivially accom-
modates consistent bosonic matter coupling under the
unitary gauge [34,37]. The analysis in Ref. [38] shows
that F̃3 ¼ 0 is necessary to avoid the revival of the
Ostrogradsky ghost for fermionic matter coupling.
One can recast the generalized disformal metric (43) into

the form

ḡμν¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α0ðα0þα1XÞ

p �
gμνþ

β20Y
2þ2α0β0Y−α0α1X
Xα0ðα0þα1XÞ

ϕμϕν

þ2β0ðα0þβ0YÞ
α0ðα0þα1XÞ

ϕðμX νÞþ
Xβ20

α0ðα0þα1XÞ
XμX ν

�
; ðA2Þ

but this is not of the form (A1) because some of the
coefficient functions depend on Y, which cannot be written
in terms of ðϕ; X;ZÞ. Nevertheless, the discussion in
Ref. [38] itself applies even if the coefficient functions
F̃i in Eq. (A1) had Y dependence, as we shall see below.
In what follows, let us promote the coefficient functions

F̃i in Eq. (A1) as functions of ðϕ; X; Y; ZÞ. The trans-
formation law for the tetrad eaμ associated with the
generalized disformal transformation can be written in
the form [38]

ēaμ ¼ ðE0δ
α
μ þ E1ϕμϕ

α þ E2ϕμXα þ E3XμXαÞeaα; ðA3Þ

with

E0¼
ffiffiffiffiffiffi
F̃0

q
; E1¼

ffiffiffiffiffiffiffiffiffiffi
X=X̄

p
−

ffiffiffiffiffiffi
F̃0

p
X

;

E2¼
F̃2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F̃0þZF̃3

p ; E3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F̃0þZF̃3

p
−

ffiffiffiffiffiffi
F̃0

p
Z

: ðA4Þ

Indeed, it is straightforward to verify that ḡμν ¼ ηabēaμēbν .
Note that one could add a term Xμϕ

α inside the parentheses
in Eq. (A3), but it can always be absorbed into a local
Lorentz transformation [38]. Having introduced the tet-
rad transformation law, let us consider the generalized
disformal transformation of the action for a fermionic
matter field represented by a free massless Dirac spinor
λ, i.e.,

Sm½eaμ; λ� ¼
Z

d4xe

�
−
1

2
λ†iγ0̂eμaγa∇μλþ c:c:

�
; ðA5Þ

where e ≔ det eaμ, c.c. denotes the complex conjugate, and
γa denotes the gamma matrices in the Minkowski space-
time such that γaγb þ γbγa ¼ 2ηab1, with 1 being the
identity matrix in the spinor indices. Note that we put
hats on local Lorentz indices (a; b; � � � ¼ f0̂; 1̂; 2̂; 3̂g).
The covariant derivative acting on the Dirac field is
defined by

∇μλ ≔
�
1∂μ þ

1

4
ωμ

abγab

�
λ: ðA6Þ

Here, γab ≔ ðγaγb − γbγaÞ=2 and the (torsion-free) spin
connection ωμ

ab is defined by
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ωμ
a
b ¼ −eνbð∂μeaν − Γα

μνeaαÞ; ðA7Þ

where Γλ
μν is the Christoffel symbol associated with

the metric. We now consider the generalized disformal
transformation of the spinor action (A5). Since we are
only interested in the degeneracy structure of the
action (A5), let us focus on terms that involve time
derivatives [38],

Sm½eaμ; λ� ⊃
Z

d4x
ffiffiffi
h

p �
i
2
λ†λ̇ −

i
2
λ̇†λþ i

4
λ†ð3Þek

î
ð3Þėĵkγ

î ĵλ

�
;

ðA8Þ

where ð3Þeîk denotes the triad such that hkl ¼ δî ĵ
ð3Þeîkð3Þe

ĵ
l

and h ≔ det hkl ¼ ðdet ð3ÞeîkÞ2. Replacing the tetrad by the
barred one, we obtain [38]

Sm½ēaμ;λ�⊃
Z

d4x
ffiffiffi
h

p
E2
0ðE0þZE3Þ

×

�
i
2
λ†λ̇−

i
2
λ̇†λþ i

4
λ†ð3Þek

î
ð3Þėĵkγ

î ĵλ

−
i
4

ZE2
3

E0ðE0þZE3Þ
XmẊ lλ

†ð3Þek
î
ð3Þel

ĵ
γ î ĵλ

�
: ðA9Þ

As detailed in Ref. [38], under the unitary gauge, the last
term inside the square brackets leads to nondegenerate
higher-order derivatives in the equations of motion for the
lapse function and the spinor field. Therefore, one needs to
impose E3 ¼ 0, i.e., F̃3 ¼ 0 in order not to avoid the
Ostrogradsky ghost. Note that this condition obtained
under the unitary gauge should be a necessary condition
for the fermionic matter coupling to be consistent in an
arbitrary coordinate system. Since the transformation (A2)
has F̃3 ∝ β20, the condition F̃3 ¼ 0 requires β0 ¼ 0.
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