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We study the generalized free energy of the five dimensional charged Gauss-Bonnet anti–de Sitter (AdS)
black holes in the grand canonical ensemble by treating the black hole radius and the charge as the order
parameters. On the two dimensional free energy landscape, the lowest points in the basins represent the
local stable black holes and the saddle point represents the unstable black hole. We show that the black hole
is the topological defect of gradient field of the landscape. The black hole stability is determined by the
topography of the free energy landscape in terms of the basin depths and the barrier height between
the basins and is not by the topology of the gradient field. In addition, we study the stochastic dynamics of
the black hole phase transition and obtain the dominant kinetic path for the transition on the free energy
landscape. Unlike the one dimensional landscape, the dominant kinetic path between the small and the
large black hole state does not necessarily pass through the intermediate black hole state. Furthermore, the
inhomogeneity in diffusions can lead to the switching from the coupled cooperative process of black hole
phase transition to the decoupled sequential process, giving different kinetic mechanisms.
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I. INTRODUCTION

Recently, the concept of the generalized free energy has
been proposed to investigate the thermodynamics and the
kinetics of the black hole phase transition [1,2]. In this
aspect, the key ingredient is to introduce the order param-
eter of the phase transition that describes the microscopic
degrees of freedom at the coarse-grained level [3,4]. It is
also shown that the generalized free energy can be derived
from the Euclidean gravitational action of the nonequili-
brium black holes with the Euclidean conical singular-
ities [5]. This derivation established a concrete foundation
of the free energy landscape description of the thermody-
namics of the black hole phase transition.
The free energy landscape can be explored to quantify

the underlying topography such as the basin depths and the
barrier height between the basins of the attraction [6–9].
From the free energy landscape topography, one can easily
read off the stabilities of the on-shell black holes.

The reason is that, if there are several on-shell states at
a fixed ensemble temperature, the thermodynamically
favored state is given by the state with the smallest free
energy. Another advantage of free energy landscape
quantification is that it allows us to study the kinetics of
the phase transition process by treating the landscape as
the thermodynamical potential that provides the determin-
istic driving force and treating the interaction between the
black hole system and the bath as the thermal fluctuations
that provide the stochastic force. Based on these assump-
tions, the Markovian dynamics and the non-Markovian
dynamics of the black hole phase transition have been
investigated [10–12].
In the previous works [1,2], the order parameter of the

black hole is chosen to be the radius of the event horizon
and the generalized free energy is defined as the function of
a single variable or the order parameter. Then, the free
energy landscape is represented as a one dimensional
curve [13–28]. In general, for other complex systems,
for example, proteins in biophysics, chemical reaction
systems, etc. the free energy is the function of multiple
order parameters and the landscape is intrinsically high*Corresponding author: jin.wang.1@stonybrook.edu
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dimensional [8,9]. One question naturally raised is whether
there is high dimensional landscape to describe the black
hole phase transition.
In the present work, we consider the thermodynamic

phase transition of the five dimensional charged Gauss-
Bonnet black holes [29–32]. It was shown in [33,34] that
the small/large black hole phase transition, which exhibits
analogy with the Van de Waals liquid-gas system [35–37],
holds in five-dimensional spherically symmetric charged
Gauss-Bonnet-AdS black holes when its potential Φ is

fixed within the range of 0 < Φ <
ffiffi
3

p
4
π. Based on this

observation, we work in the grand canonical ensemble and
define the generalized free energy as the function of the
black hole radius and the black hole charge. The corre-
sponding free energy landscape can then be represented as
an intrinsic two dimensional surface. As far as we know,
this example is the only case that the two order parameters
can be introduced and the free energy landscape is two
dimensional.
The black hole states are represented as the points on the

landscape, and the on-shell black hole states are the
extremum points of the landscape. From the topography
of the landscape, one can easily read off the stabilities of the
on-shell black holes. We find that the thermodynamically
stable Gauss-Bonnet black holes correspond to the lowest
points in the sink on the landscape, while the unstable
Gauss-Bonnet black hole corresponds to the saddle point. It
should be mentioned that, in Ref. [38], by introducing a
parameter Θ and an ancillary vector field ϕ, the authors
argued that the positive and negative winding numbers of
the defects correspond to the local thermodynamical stable
and unstable black holes. In the present work, we propose
that, in order to reveal the relation between the topology of
the landscape and the stabilities of the on-shell black holes,
one should investigate the intrinsic topological properties
of the gradient field of the free energy landscape, even for
the one dimensional landscape. We find that the black hole
can be treated as the topological defects of the gradient field
of the landscape, but there is no indication that the topology
is relevant to the stabilities of the on-shell black holes. We
emphasize that the stabilities of the black holes is com-
pletely determined by the topography of the landscape.
We also study the phenomenological description of the

black hole phase transition based on the stochastic dynam-
ics. Considering the black hole as the thermal entity, there
should thermal fluctuation and particle number fluctuation
in the grand canonical ensemble. Without those fluctua-
tions, the local stable black holes will remain in the basin of
the free energy landscape and no phase transition occurs. In
analogy to the Van derWaals fluid-gas phase transition [39],
if these fluctuations are taken into account, the local stable
black hole will undergo a stochastic motion on the land-
scape, which can be effectively described by the Langevin
equation for the trajectories or the Fokker-Planck equation
for the time evolution of the associated probability

equivalently. For the two dimensional free energy land-
scape as discussed in the present work, one can determine
the dominant kinetic path for the stochastic motion on the
landscape by using the path integral formalism of the
stochastic dynamics. For the one dimensional landscape,
the kinetic path between the small black hole state and the
large black hole state must pass through the intermediate
black hole state [23]. By minimizing the abbreviated action
functional [40–43], we show that the dominant kinetic path
passes through the intermediate black hole state when the
fluctuation is very small while at the finite fluctuations it
does not necessarily pass through the intermediate black
hole state. Furthermore, we find that the inhomogeneity in
diffusions can lead to the switching from the coupled
cooperative process of black hole phase transition to the
decoupled sequential process, giving rise to different
kinetic mechanisms.
This paper is arranged as follows. In Sec. II, we defined

the generalized free energy of the charged Gauss-Bonnet
black holes and discuss the corresponding landscape in the
grand canonical ensemble. In Sec. III, we discuss the
stabilities of the on-shell black holes from the topography
of the landscape. In Sec. IV, we address the question of how
to study the intrinsic topological properties of the land-
scape. In Sec. V, we study the dominant kinetic path of the
phase transition by using the path integral formalism. The
conclusion is presented in the last section.

II. FREE ENERGY LANDSCAPE OF
GAUSS-BONNET AdS BLACK HOLES

In this section, we introduce the charged Gauss-Bonnet
black holes in five dimensions and summarize the primary
thermodynamics properties. Then, we will give the defi-
nition of the generalized free energy in the grand canonical
ensemble, which is the function of the black hole radius and
the charge. The corresponding landscape is also presented.
For our purpose, we consider the spherically symmetric

charged Gauss-Bonnet AdS black hole in D ¼ 5 dimen-
sions that is described by the line element [29–32]

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2
3; ð1Þ

where the metric function fðrÞ is given by

fðrÞ¼ 1þ r2

2α

 
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ32αM

3πr4
−
4αQ2

3r6
−
16παP

3

s !
; ð2Þ

and the line element of the unit 3-sphere S3 in hyper-
spherical coordinates ðψ ;ϕ;φÞ is given by

dΩ2
3 ¼ dψ2 þ sin2 ψðdθ2 þ sin2 θdφ2Þ: ð3Þ
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For the hyperspherical coordinates ðψ ;ϕ;φÞ, ψ and θ run
over the range 0 to π, and ϕ runs over 0 to 2π. The volume
of the hypersphere S3 is 2π2.
In the expression of the metric function fðrÞ, the

parameter M is the black hole mass, the parameter Q is
the charge of the black hole, and the pressure P ¼ −Λ=8π
is defined in terms of the cosmological constant [44,45].
One can infer to [46,47] for the discussion on the
thermodynamic pressure in Lovelock AdS black holes. It
should be noted that, in order to have a well-defined
vacuum in the theory, the effective Gauss-Bonnet coeffi-
cient α should satisfy the constraint [33,34]

0 ≤
64παP

ðD − 1ÞðD − 2Þ ≤ 1: ð4Þ

The thermodynamics of this black hole has been com-
prehensively discussed [33,34]. Let us summarize the
primary conclusions. The mass, the Hawking temperature,
the entropy, and the electric potential of the event horizon
can be expressed in terms of the black hole radius rh
as [33,34]

M ¼ 3

8
πr2h

�
1þ α

r2h
þ 4

3
πPr2h

�
þ πQ2

8r2h
;

TH ¼ 3r4h þ 8πPr6h −Q2

6πr3hðr2h þ 2αÞ ;

S ¼ π2

2
rhðr2h þ 6αÞ;

ΦH ¼ πQ
4r2h

: ð5Þ

In these expressions, we can observe that these thermo-
dynamic quantities can be considered as the function of the
black hole radius rh and the charge Q. It has been shown

that, when 0 < ΦH <
ffiffi
3

p
4
π, there exists the small/large

black hole phase transition in the grand canonical ensem-
ble [33,34]. For the charged Gauss-Bonnet AdS black holes
in the canonical ensemble, the phase transition can happen
in arbitrary higher dimensions. The landscape of the phase
transition in canonical ensemble is intrinsically one dimen-
sional. Previous studies [33,34] showed that for the Gauss-
Bonnet AdS black holes in the grand canonical ensemble,
the phase transition can only happen in five dimensions.
For the phase transition in the grand canonical ensemble,
one can introduce two order parameters, which results in
the two dimensional free energy landscape. In this way, the
topological number of the stationary point on the landscape
can be rigorously defined. In this paper, we focus on the
two dimensional landscape. This is the reason why we
only consider the five dimensional Gauss-Bonnet AdS
black hole in the present work. In the following, we will

investigate the phase transition in the framework of the free
energy landscape.
We now define the generalized free energy function for

the charge Gauss-Bonnet black holes in the grand canonical
ensemble as [48–50]

Fðrh; QÞ ¼ Mðrh; QÞ − TSðrhÞ −QΦ

¼ 3

8
πr2h

�
1þ α

r2h
þ 4

3
πPr2h

�
þ πQ2

8r2h

−
π2

2
rhðr2h þ 6αÞT −QΦ: ð6Þ

Note that in the definition of the generalized free energy,
the two parameter T and Φ are considered as the ensemble
parameter. This is to say that T and Φ are the temperature
and the chemical potential of the thermal and the particle
bath that the system contacts with. They are adjustable and
determined by the external environment or the bath.
Therefore, in the grand canonical ensemble, the free energy
function Fðrh; QÞ is defined as the function of black hole
radius rh and charge Q and the corresponding landscape is
intrinsically two dimensional.
In Fig. 1, the two dimensional free energy landscape for

the charged Gauss-Bonnet AdS black hole is plotted. In this
plot, we have chosen the ensemble temperature T and the
chemical potential Φ to be the same as the critical temper-
ature Tc and the critical chemical potential Φc of the small/
large black hole phase transition. We show that the land-
scape has two separated basins and the basins are connected
by a saddle point. At the critical point of phase transition,
the two basins have the same depths. Otherwise, the two

FIG. 1. Two dimensional free energy landscape for the charged
Gauss-Bonnet AdS black holes. The ensemble temperature and
chemical potential are taken as the critical temperature and
chemical potential of the small/large black hole phase transition.
The two basins have the same depths. In this plot, α ¼ 0.01,
P ¼ 0.5, T ¼ 0.514, and Φ ¼ 0.6.
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basins have different depths depending on the ensemble
temperature and the chemical potential.
The corresponding two dimensional contour plot of the

generalized free energy is presented in Fig. 2. In this plot,
there are three special points, i.e., the two lowest points in
each basin and the saddle point, which are denoted by
different colors. They are the extremum points on the
landscape, which are determined by the necessary con-
ditions for the extremum of the free energy function

∂F
∂rh

¼ ∂F
∂Q

¼ 0: ð7Þ

It is easy to verify that the two conditions give rise to the
expressions of the Hawking temperature TH and the electric
potentialΦH in Eq. (5). This means that the three extremum
points on the landscape represent the three branches of on-
shell black hole solutions, and their Hawking temperature
as well as the electrical potential are equal to those of the
ensemble temperature and potential. The three branches of
black holes are in equilibrium state with the bath. In this
way, the necessary conditions (7) for the extremum are also
the equilibrium conditions for the on-shell black holes.

III. STABILITY OF BLACK HOLE FROM THE
TOPOGRAPHY OF FREE ENERGY LANDSCAPE

In this section, we discuss the stabilities of the small/
intermediate/large Gauss-Bonnet black holes from the
topography of free energy landscape.
The generalized free energy provides us not only the free

energies of the on-shell black holes, but also the free
energies of the off-shell black holes. As mentioned, the
equilibrium conditions Eq. (7), i.e., the extremum

conditions for the landscape, lead to the expressions of
the Hawking temperature and the electric potential of the
on-shell black hole solutions. This is to say that the
extremum points on the landscape just represent the on-
shell black hole solutions, while other points represent the
off-shell black hole states. From Figs. 1 and 2, we observe
that the small, and the large black holes are represented by
the lowest points of the basins on the landscape, and the
intermediate black hole is represented by the saddle point.
In the plots of Figs. 1 and 2, the two basins have the same

depths because the external parameters are selected to be
the critical parameters of the black hole phase transition.
Then, in this case, the small and the large black holes have
the same on-shell free energies while the intermediate black
hole has the higher free energy. Obviously, the small, and
the large Gauss-Bonnet black holes are thermodynamically
stable and the intermediate black hole is unstable.
One can also consider the case that the ensemble

temperature is not equal to the critical temperature of
phase transition. In Fig. 3, the upper/bottom plot shows that

FIG. 2. The contour plot of the two dimensional free energy
landscape in Fig. 1. The red, the blue, and the green points
represent the small, the intermediate, and the large Gauss-Bonnet
AdS black holes.

FIG. 3. Two dimensional free energy landscape at the ensemble
temperature that is lower (upper plot) and higher (bottom plot)
than the critical temperature of phase transition.
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the ensemble temperature is lower/higher than the critical
temperature. In these two cases, the two basins on the
landscape have different depths. The black hole state that is
represented by the lowest point in the deeper basin is
globally stable while the black hole state that is represented
by the lowest point in the shallower basin is locally stable.
From the plots, we can conclude that below the critical
temperature the small black hole state is globally stable
while above the critical temperature the larger black hole
state is globally stable. The stabilities of the black holes are
completely determined by the topography of the free
energy landscape characterized by the basin depths and
the barrier height between the basins. From the free energy
landscape, one can easily read off the stabilities of the on-
shell black holes.

IV. THE TOPOLOGY AND DEFECTS OF THE
FREE ENERGY LANDSCAPE

In this section, we discuss the recent proposal of treating
black holes as topological defects. Recently, based on the
concept of the generalized free energy, the topological
properties of the thermodynamic parameter space was
investigated in Ref. [38]. It is further argued that black
hole can be treated as topological defect and the topological
number can be used to characterize the stability of black
hole. By introducing an ancillary parameter Θ, the authors
found some universal topological properties in the
“extended” parameter ðrh;ΘÞ space. In particular, it is
conjectured that the positive and negative winding numbers
of the defects correspond to the local thermodynamical
stable and unstable black holes. It was also tested by some
other types of black holes [51–53]. In this subsection, we
will point out that there is an inconsistency in this
proposal [54,55].
More recently, another method was introduced to study

the intrinsic topological properties of black hole thermo-
dynamics [56]. Using the spinodal T − rh curve, thermo-
dynamic critical points of a black hole are endowed with
the topological quantity of Brouwer degree. In addition, the
topological transition between the different thermodynamic
systems and the topological classification for them can be
conveniently investigated. However, their analysis are not
based on the free energy landscape. The relation between
the topology of the free energy landscape and the stabilities
of the on-shell black holes was not discussed.
First, let us discuss whether the artificially introduced

vector field ϕ in the rh − Θ space can be used to describe
the topology of the landscape intrinsically [38]. Note thatΘ
is an ancillary parameter. The intrinsic topology should not
depend on the explicit form of the introduced vector field ϕ.
It is obvious that, if we set the Θ component of the vector
field ϕ as an arbitrary positive definite function, the vector
field ϕ has no zero point on the whole parameter space.
Figure 4 shows the unit vector field na ¼ ϕa=kϕk for the
Schwarzschild black holes when ϕΘ is set to be eΘ. There is

no topological defects on the whole thermodynamic
parameter space. Then, the winding number for arbitrary
loop is zero. Therefore, the topological defect and the
calculation of the winding number by using the ancillary
parameter Θ is not intrinsic. This conclusion is obviously
valid for other types of black holes. The reason is that the
generalized free energy F in the canonical ensemble is
intrinsically one dimensional and it only depends on the
order parameter rh. The introduced parameter Θ and the
vector field ϕ have no significant physical meaning. It
appears that the intrinsic topological properties of the
parameter space cannot be revealed by the artificially
introduced vector field ϕ.
Then, let us consider whether there is an intrinsic

definition of topological defects based on the generalized
free energy function. In canonical ensemble, the general-
ized free energy F is the one variable function of the order
parameter rh. One can naturally introduce the gradient field
ϕ ¼ dF=drh to describe the intrinsic topology of the free
energy function. As an illustration, we consider the case of
RNAdS black holes. In Fig. 5, the free energy landscape
and the gradient field of the RNAdS black hole are plotted.
We can define an unit vector field as n ¼ dF=drh

jdF=drhj. Notice
that this unit vector has singularities (where dF=drh ¼ 0)
on the landscape. Obviously, these singularities can be
treated as the topological defects according to Duan’s
ϕ-mapping theory [57]. In addition, these singularities
are just the on-shell black hole solutions. Therefore, black
hole solutions can be treated as the topological defects of
the gradient field of the free energy function, because the

FIG. 4. The plot of the vector field ϕ ¼ ð1
2
− 2πTrh; eΘÞ for the

Schwarzschild black hole. Comparing to the Fig. 1 in Ref. [38],
there is no topological defect in this plot.
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on-shell black hole solutions correspond to the zero points
of the gradient field on the free energy landscape.
Comparing the claim that black hole solutions are the
topological defects for the artificially introduced field ϕ,
our definition of topological defects are more natural and
intrinsic.
One can associate a topological charge with the singu-

larity as following. Explicitly, one can define the index or
Brouwer degree for the gradient dF=dr as [56,58]

inddF=drhðrhÞ ¼
1

2
ðSign½njrhþϵ� − Sign½njrh−ϵ�Þ: ð8Þ

Note that the unit vector n reflects the direction of the
gradient of the landscape and the gradient changes the
direction at the singularities. These singularities are just
the basin or the barrier top on the landscape. For the basins,
the index is þ1. For the barrier top, the index is −1. The
results are trivial for the one dimensional landscape. It
seems that the index is related to the stabilities of the black
holes because the basins are locally stable while the barrier
top is unstable.

Let us consider a little bit more nontrivial example, i.e.,
the free energy landscape for the five dimensional Gauss-
Bonnet AdS black holes in the grand canonical ensem-
ble [33,34]. The topological property of the free energy
landscape can be naturally described by the gradient field of
the surface, which is defined as ϕ ¼ ð∂F

∂rh
; ∂F
∂QÞ. It is easy to

see that the on-shell black holes are all the critical points of
the gradient field and also the singularities of the unit vector
na ¼ ϕa

kϕk. Once again, we observe that the black hole

solutions can be treated as the topological defects of the
gradient field of the landscape. This can be further
explained by using Duan’s ϕ-mapping [57] as follows.
With the two-dimensional vector field ϕ ¼ ðϕ1;ϕ2Þ, the

topological current theory tells us that each zero point zi of
ϕ can be endowed a winding number Wi. By introducing
the topological current jμ as

jμ ¼ 1

2π
ϵμνρ∂νna∂ρnb ¼ δ2ðϕÞJμ

�
ϕ

x

�
; ð9Þ

where xμ ¼ ðt; rh; QÞ, it can be shown that

W ¼
Z
Σ
j0d2x ¼

XN
i¼1

Wi; ð10Þ

where N is the number of the zero points of vector field ϕ.
The Jacobian vector JμðϕxÞ is defined as

ϵabJμ
�
ϕ

x

�
¼ ϵμνρ∂νϕ

a
∂ρϕ

b: ð11Þ

The above equations explicitly show that the zero points the
gradient field ϕ ¼ ð∂F

∂rh
; ∂F
∂QÞ of the generalized free energy

landscape, which correspond to the on-shell Gauss-Bonnet
AdS black holes, are just the defects of the topological
current.
In the current case, the small and the large black holes are

the sink points on the landscape, and the intermediate black
hole is the saddle point. From the conclusion of the
topology, one knows that the index of the saddle point
is −1, while the index of the sink point is þ1. Therefore,
from the topology of the two dimensional free energy
landscape, one can reach the conclusion that the index of
the thermodynamic stable black holes isþ1while the index
for the unstable black holes is −1. It seems that the index is
related to the stabilities of the black holes.
Although the two cases we have considered support the

conjecture that the topological numbers are related to the
stabilities of black holes apparently, one can easily give a
counterexample to this argument. Note that

δ2ðϕÞ ¼
XN
i¼1

1

jJ0ðϕxÞjzi
δðx1 − z1i Þδðx2 − z2i Þ; ð12Þ

FIG. 5. Upper panel: Generalized free energy for the RNAdS
black holes at the phase transition critical point. Lower panel: The
gradient of the generalized free energy. The red, blue, and black
points represent the small, intermediate and large black holes.
They are also the singularity or the topological defects of the
gradient field.
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where J0ðϕxÞ can be explicitly expressed as

J0
�
ϕ

x

�
¼ ∂

2F
∂rh2

∂
2F

∂Q2
−
�

∂
2F

∂rh∂Q

�
2

: ð13Þ

Then the winding number can be derived as

Wi ¼ Sign

�
J0
�
ϕ

x

������
zi

: ð14Þ

On the one hand, J0ðϕxÞ is the Jacobian between ðϕ1;ϕ2Þ
and ðrh; QÞ. On the other hand, J0ðϕxÞ is the determinant of
the Hessian matrix of the two-dimensional free energy
Fðrh; QÞ, where the local extremum points yield J0ðϕxÞ > 0

and the saddle points yield J0ðϕxÞ < 0. Namely, the stable
minimums and the unstable maximums possess the same
winding number þ1, which is disobedient from the view
that the positive or negativewinding number corresponds to
the stable and unstable black holes.
The above explanation shows that, in the two dimen-

sional landscape, there may exist source, sink/basin, and
saddle points [see Fig. 13(b) in [8] for an illustration]. Only
the sink/basin points are thermodynamically stable. The
source (the top of the mountain) and saddle points are
unstable. On the other hand, from the knowledge of
topology, the winding numbers of the source and the
sink/basin are all þ1, and for the saddle point, the winding
number is −1. To be more clear, it is instructive to consider
the Mexican-hat potential as illustrated in Fig. 6. The state
that represented by the top of the potential is unstable while
the winding number isþ1. This simple example shows that
the topological number-wingding number cannot be used to
characterize the stability of the states on the free energy
landscape in general. For a more concrete example, one can
refer to the non-equilibrium free energy landscape that
presented in Fig. 13(b) in Ref. [8]. Therefore, the topology
is not relevant to the stabilities of thermodynamic systems
in this setup. We should emphasize that the thermodynam-
ics stabilities of the black holes are completely determined
by the topography not the topology of the free energy
landscape.

V. DOMINANT KINETIC PATH OF THE
STOCHASTIC TRANSITION ON THE LANDSCAPE

In this section, we discuss the stochastic motion of the
local stable black hole state on the landscape by taking the
thermal and charge fluctuations into account. We will
quantify the dominant kinetic path of the phase transition
from one stable black hole state to another.

A. Stochastic dynamics of black hole state
on the landscape

We have shown that the local stable black holes are
represented by the sink points on the free energy landscape.
Without the fluctuations, an unstable state deviated from
the local stable point will return to the local stable state
under the driving force provided by the landscape. In this
case, no phase transition will happen because the thermo-
dynamic driving force is a deterministic force that pulls the
unstable state to the valley bottom on the landscape.
Considering the black hole as a thermal entity, there are

fluctuations from the external fluctuations of the bath and the
intrinsic statistical fluctuations. These fluctuations are the
results of the interactions between the degrees of freedom of
the black hole and the degrees of freedom of the bath. These
fluctuations will in turn result in the stochastic motion of the
black hole state on the landscape. For simplicity, wewill use
r to denote rh. We propose that the stochastic motion of the
black hole state is described by the Langevin equation that
determines the stochastic evolution of the black hole order
parameters ðr;QÞ as follows [10]

dX⃗
dt

¼ f⃗ þ η⃗; ð15Þ

where X⃗ ¼ ðr;QÞ is the vector composed by the order

parameters. In the above equations, f⃗ ¼ −D
↔
·∇ðβFÞ is the

driving forcewhich is given by the gradient of the landscape
Fðr;QÞ, and η⃗ is Gaussian noise termwhere its correlation is

hη⃗ðX⃗; tÞη⃗ðX⃗; t0Þi ¼ 2D
↔
δðt; t0Þ with D

↔
being the diffusion

coefficient matrix. In the present work, we take the diffusion

coefficient matrix D
↔

as the diagonal constant matrix

FIG. 6. An illustration of the Mexican-hat potential

ϕðx; yÞ ¼ − 2e−
1
2
ðx2þy2Þðx2þy2−1Þffiffi

3
p ffiffi

π4
p .
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DiagfDr;DQg. In general, Dr ≠ DQ, which represents
the inhomogeneity of the diffusion along the different
directions of the order parameters. Then the driving force
f⃗ ¼ ð−βDr∂rF;−βDQ∂QFÞ with β being the inverse
temperature.

It is well known that the stochastic dynamics can be
formulated in terms of the path integral. The probability of
starting from an initial configuration x⃗0 at t ¼ 0 and ending
at a final configuration x⃗ at time t is given by the Onsager–
Machlup functional [59,60]

Pðx⃗; t; x⃗0; 0Þ ¼
Z

½DX⃗� exp
�
−
Z

dt

�
1

2
∇ · f⃗ þ

�
dX⃗
dt

− f⃗

�
·
1

4D
↔ ·

�
dX⃗
dt

− f⃗

��	
; ð16Þ

where 1=D
↔

means the inverse matrix of the diffusion
coefficient matrix. The integral over DX⃗ denotes the
sum over all possible paths from the state x⃗0 at time
t ¼ 0 to the state x⃗ at time t, and the exponential factor
gives the weight for each path. Therefore, the path integral
is the sum of the weights of all possible paths and can be
approximated with a set of dominant paths. The dominant
kinetic path gives the path of the stochastic state transition
process on the landscape with the highest optimal weight.
To proceed, one can introduce the action for the path

integral as [43]

S ¼
Z

dtLðX⃗ðtÞÞ

¼
Z

dt

��
dX⃗
dt

− f⃗

�
·
1

4D
↔ ·

�
dX⃗
dt

− f⃗

�
þ 1

2
∇ · f⃗

�
: ð17Þ

The dominant kinetic path with the optimal weight can be
obtained by minimizing the action or Lagrangian. The
Lagrangian can be explicitly written as

L ¼ 1

4Dr

�
dr
dt

− fr

�
2

þ 1

4DQ

�
dQ
dt

− fQ

�
2

þ 1

2
ð∂rfr þ ∂QfQÞ: ð18Þ

The corresponding Euler-Lagrangian equations for the
dominant paths are given by

1

2D
↔
d2X⃗
dt2

¼ ∇VðX⃗Þ;

VðX⃗Þ ¼ f⃗ ·
1

4D
↔ · f⃗ þ 1

2
∇ · f⃗; ð19Þ

or in the component form as

1

2Dr

d2r
dt2

¼ 1

2Dr
fr∂rfr þ

1

2DQ
fQ∂rfQ

þ 1

2
ð∂2rfr þ ∂r∂QfQÞ; ð20Þ

1

2DQ

d2Q
dt2

¼ 1

2Dr
fr∂Qfr þ

1

2DQ
fQ∂QfQ

þ 1

2
ð∂r∂Qfr þ ∂

2
QfQÞ: ð21Þ

It is easy to check that the conserved equation is

E ¼ 1

4D
↔

�
dX⃗
dt

�2

− VðX⃗Þ; ð22Þ

where E is a conserved quantity. This equation can be
viewed as a particle with the effective mass 1

2D
↔ moving

along the two dimensional effective potential −VðX⃗Þ.
In principle, one can solve the Euler-Lagrangian equa-

tions with the fixed boundary conditions to obtain the
dominant kinetic path for the stochastic motion of the black
hole state on the landscape. However, this is a numerically
challenging problem when dealing with the two end
boundary conditions especially for high dimensions. In
the following, we invoke the Hamiltonian-Jacobian
approach [40] to obtain the dominant kinetic paths.

B. Dominant kinetic path from
Hamiltonian-Jacobian method

We focus on the most probable path with the maximal
contribution to the Onsager-Machlup functional, which
means that the exponential weight e−S is maximum and
hence the action S is minimum. In addition, we have
observed that the effective dynamics is conserved. This
problem can be solved by using Maupertuis’ principle in
classical mechanics [40–43], which is about the physical
path that connects given initial and final positions with the
initial energy E fixed. Different from Hamilton’s principle,
where the path as the function of time is determined,
Maupertuis’s principle determines only the shape of the
path. This is to say that we will switch from the time-
dependent Newtonian description to the energy-dependent
Hamilton-Jacobi description [41–43].
Specifically, we want to identify the dominant kinetic

path that minimizes the action S. As stated, we can use the
Maupertuis’s principle to solve this problem [41–43].
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Maupertuis’s principle states that the dominant kinetic path
connecting given initial and final positions with fixed
energy E is obtained by minimizing the abbreviated action
functional [40]

S0 ¼
Z

x⃗f

x⃗i

P⃗ · dX⃗; ð23Þ

where P⃗ is the generalized canonical momentum

P⃗ ¼ ∂L

∂
_X⃗
¼ 1

2D
↔ ·

�
dX⃗
dt

− f⃗

�
: ð24Þ

Note that it does not always work for arbitrary energy value
E. But what we are considering is the path that minimizes
the action S0 not the time that the particle takes from the
initial position to the final position. The final time that the
particle arrives at the final position is flexible which means
that there will be many valid physical paths for a wide range
of energy values.
By using the conserved equation (22), the abbreviated

action functional can be rewritten as

S0 ¼
Z

x⃗f

x⃗i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEþ VðX⃗ðlÞÞÞ=D

q
dl; ð25Þ

where dl is an infinitesimal displacement along the path
trajectory. Note that because the driving force f⃗ is a
gradient force, its integral is path independent. Its con-
tribution to the action has been omitted in the expression of
the action functional. In fact, E is a free parameter that
determines the total kinetic time of the transition process. In
the present work, we adopted the simple choice
E ¼ Maximumf−Vðx⃗iÞ;−Vðx⃗fÞg, which corresponds to
the longest kinetic time.
In practice, we should firstly discretize the abbreviated

action by dividing the path into N steps [42,43]. Then the
discretized action can be written as

S0 ¼
XN−1

n¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEþ VðnÞ=D

p
Δln;nþ1 þ λP; ð26Þ

where P is a penalty function

P ¼
XN−1

n¼1

ðΔln;nþ1 − hΔliÞ2; ð27Þ

which is introduced to keep all the length elements close to
their average and irrelevant in the continuum limit. The
minimization of the discretized abbreviated action can be
performed by applying both simulated annealing and
conjugate gradient algorithm [42,43]. Finally, the dominant
kinetic path can be visualized by projecting the numerical

results to the order parameter ðrh; QÞ space. The weight for
the dominant kinetic path can be obtained by substituting
the path into the abbreviated action.
The numerical results are presented in Figs. 7 and 8,

where the dominant kinetic paths for different diffusion
coefficients are plotted. In Fig. 7, the dominant kinetic
paths for the diffusion coefficientsD at the zero limit (black
line) and at finite value (red line) are plotted in the order
parameter ðrh; QÞ space. It is shown that when the diffusion
coefficient is very small, the dominant kinetic path for the
transition between the small and the large Gauss-Bonnet
black holes passes through the intermediate black hole
state. The diffusion coefficient D in the zero limit corre-
sponds to the case when the fluctuations are very small. In
this case, the term ∇ · f⃗ in the effective potential VðX⃗Þ in
Eq. (19) can be ignored, then the dominant path does pass
through the saddle point. When the diffusion coefficients
are finite, the fluctuations are also finite. Then the con-
tribution from the term ∇ · f⃗ can be significant and the
resulting dominant kinetic path does not necessarily pass
through the saddle point. The red line in Fig. 7 shows that
when Dr ¼ DQ ¼ 0.005, the dominant kinetic path of the
transition process does not pass through the intermediate
Gauss-Bonnet black hole state. This is very different from
the kinetic path for the one dimensional landscape [23],
where the kinetic path between the small black hole state
and the large black hole state must pass through the
intermediate black hole state.
In Fig. 8, the black line is the optimal path that dominates

the action functional when Dr ¼ DQ. It is clear that this
dominant kinetic path originates from the largeGauss-Bonnet
black hole state, and ends on the small Gauss-Bonnet black

FIG. 7. Dominant kinetic paths of the phase transition process
on the free energy landscape for the diffusion coefficients at zero
limit (black line) and at finite value (red line). In this plot, the
black line and the yellow line are obtained by settingDr ¼ DQ ¼
10−8 and Dr ¼ DQ ¼ 0.005, respectively.
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hole state, but does not pass through the intermediate black
hole state. The red and blue lines show that dominant kinetic
paths that correspond to the diffusion coefficients Dr < DQ

and Dr > DQ. We can observe the same conclusion that the
dominant kinetic path does not necessarily pass through the
intermediate black hole state. In addition, when there is a
contrast between the diffusion coefficients characterizing the
degrees of fluctuations in different directions in order
parameter space, the dominant paths bias toward the higher
diffusion direction the first and move along the lower
diffusion direction the last. This shows that the inhomoge-
neity in diffusions can lead to the switching from the coupled
cooperative process of black hole phase transition between rh
andQ along the diagonal line in the order parameter space to
the decoupled sequential process with first moving in rh
direction and thenQ direction, or first moving inQ direction
and then rh direction. This gives rise to the new kinetic

mechanisms ranging from cooperative to sequential process
for the black hole phase transitions.

VI. CONCLUSION

In summary, we have studied an example that the free
energy landscape is an intrinsic two dimensional surface. In
this example, the black hole radius and charge are selected
to be the order parameters, and the generalized free energy
of the five dimensional charged Gauss-Bonnet black holes
is defined properly in the grand canonical ensemble.
The landscape as the quantitative representation of the

generalized free energy function indicates the stability of
the on-shell black holes. We have emphasized that the
stability of black hole is completely determined by the
topography of the free energy landscape. On the landscape,
we showed that the on-shell Gauss-Bonnet black holes are
the extremum points and other points represents the off-
shell black holes. In our case, there are three branches of
charged Gauss-Bonnet black hole solutions, which are
classified by their black hole radii. The global/local stable
black holes are at the lowest points in the basins while the
unstable black hole is at the saddle point. We also comment
on the recently proposal of viewing black hole as topo-
logical defect. We argued that the black hole can be treated
as topological defect of the gradient field of the landscape,
but the stability is not necessarily related to the topology of
the gradient field of the landscape.
In addition, we studied the stochastic dynamics of the

black hole phase transition and quantified the dominant
kinetic path for the state transition on the two dimensional
free energy landscape. We showed that the dominant
kinetic path passes through the intermediate black hole
state when the fluctuation is very small while at the finite
fluctuations it does not necessarily pass through the
intermediate black hole state. The inhomogeneity in dif-
fusions can switch the coupled cooperative process of black
hole phase transition to the decoupled sequential process,
leading to different kinetic mechanisms.
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