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Singularity-free regular black holes are a popular alternative to the singular mathematical black holes
predicted by general relativity. Here, we derive a generic condition that spherically symmetric dynamical
regular black holes must satisfy to be compatible with the first law of black hole mechanics based on an
expression for the surface gravity at the outer horizon. We examine the dynamical generalizations of
models typically considered in the literature and demonstrate that none of them satisfies the condition
required for compatibility with the first law, suggesting that modifications are required to maintain its
physical meaning. We show that the need for corrections is inherently linked to the introduction of a
minimal length scale and can therefore be seen as a direct consequence of the spacetime regularization.
We explicitly identify the additional work terms in the extended first law, comment on their thermodynamic
interpretation, and show that the linear coefficient of the Misner-Sharp mass suffices to determine the
relevant thermodynamic properties.
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I. INTRODUCTION

In their 1973 milestone paper [1], Bardeen, Carter, and
Hawking introduced four laws of black hole mechanics and
elucidated close analogies with the four laws of thermo-
dynamics. This important link connecting the two fields has
since proven to be a powerful tool in advancing our
understanding of black holes. In particular, the physical
insights revealed in the rigorous mathematical derivation of
the first law in the integral and differential formalism of
Ref. [1] have provided strong motivation for further
investigating their thermodynamic properties [2–7].
While the existence of dark massive ultracompact objects

has been established beyond any reasonable doubt, the
question of whether these objects are black holes is
still open [8–13]. In the absence of a clear answer, singu-
larity-free models of so-called regular black holes
(RBHs) [14–16] have received much attention in recent
years, as they provide a way to avoid the nontrivial causal
structures inherent to the black holes predicted by general
relativity (GR). Unlike the singular mathematical black
holes of GR, which are bounded by globally defined and
physically unobservable event horizons [17], RBH models
are characterized by a separate inner (Cauchy) and outer (in
the case of an evolving RBH spacetime quasilocal, e.g.,
apparent or trapping) horizon. Both the inner and outer
horizon generally have a nonzero surface gravity. However,
inner horizons with nonzero surface gravity are typically

unstable under small perturbations, which gives rise to
so-called mass inflation instabilities, i.e., exponential insta-
bilities characterized by an exponential growth of the
gravitational energy in a neighborhood of the inner horizon
(as measured, for instance, by evaluating the Weyl sca-
lar) [18–23]. Recently, a novel “inner-extremal”RBHmodel
that cures the exponential instability by making the inner
horizon surface gravity vanish, while maintaining the sep-
aration between the inner and outer horizon, and a nonzero
surface gravity at the outer horizon, has been proposed [24].
It is important to note that the original 1973 paper

considered stationary black holes [1]. While the mass loss
of an evaporating black hole is usually ascribed to the
emission of Hawking radiation [5,6], the backreaction of
spacetime geometry is not accounted for in its derivation,
which assumes that the underlying geometry is (at least
asymptotically) stationary. This is a physically significant
omission: if the backreaction from the Hawking flux is not
ignored, variations between nearby equilibrium states are
no longer accurately described by the first law.
To resolve this limitation and go beyond physically

unrealistic stationary scenarios, the concept of a dynamical
(and thus quasilocal) horizon has been developed [25–27].
It allows us to describe the geometry of an evolving black
hole spacetime and has become an indispensable mathemati-
cal tool to accurately model dynamical processes such as the
formation and possible evaporation of black holes, as well as
to enable generalizations of the laws of black holemechanics
and their thermodynamic interpretation [25,28], including
that of surface gravity as a temperature parameter.
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In this article, we investigate the physical consequences of
the first law of black hole mechanics for dynamical models
of RBHs embedded in asymptotically flat spacetimes. We
restrict our considerations to the case where the entropy
scales with the area of the outer horizon.1 Compared to the
evolution of the Universe, the evaporation of black holes is
considered to be a thermodynamically slow process [31].
Therefore, if the first law is true, then the behavior of
dynamically evolving black holes should match that pre-
scribed by the first law in the quasistatic limit. Based on this
assertion, we derive a generic condition that RBHs must
satisfy to be compatible with the first law by considering the
surface gravity at the outer horizon. We explicitly test the
dynamical generalizations of popular models such as those
proposed by Bardeen [32] (Sec. IV C), Dymnikova [33]
(Sec. IV D), Hayward [34] (Sec. IV B), the model consid-
ered in Ref. [35] (Sec. IV E) which produces the strongest
possible corrections to the Schwarzschild geometry while
still being compatible with its asymptotic behavior, and the
aforementioned inner-extremal RBH model [24] (Sec. V).
Our analysis shows that none of these models is compatible
with the conventional form of the first law of black hole
mechanics.
The remainder of this article is organized as follows: In

Sec. II, we introduce mathematical concepts used in the
construction of RBHs (Sec. II A) and review the first law of
black hole mechanics and its relation to surface gravity
(Sec. II B). In Sec. III, we derive a generic condition that
dynamical black holes must satisfy to be compatible with
the first law of black hole mechanics. Based on this
compatibility condition, we test the dynamical generaliza-
tions of commonly considered RBH models and find that
none of them satisfies the required relation (Sec. IV and
Sec. V), suggesting that either these models do not conform
to the first law or modifications of the first law are required
to maintain its essence. In Sec. VI, we briefly outline the
consequences of this result in the context of the so-called
Page evaporation law. Lastly, we discuss the implications of
our findings more generally and comment on possible
directions for future research related to nonsingular black
hole spacetimes (Sec. VII). Throughout this article, we use
the metric signature ð−;þ;þ;þÞ and work in dimension-
less units such that c ¼ G ¼ ℏ ¼ kB ¼ 1.

II. MATHEMATICAL PREREQUISITES

A. Trapped regions and regular black holes

A general spherically symmetric metric in advanced null
coordinates ðv; rÞ is described by the line element

ds2 ¼ −e2hðv;rÞfðv; rÞdv2 þ 2ehðv;rÞdvdrþ r2dΩ2; ð1Þ

where dΩ2 ¼ dθ2 þ sin2 θdϕ2 denotes the line element of
the 2-sphere. Since our argumentation in Sec. II B and
Sec. III is based on the analysis of surface gravity at the
outer horizon [i.e., at r ¼ rþðvÞ] and it is always possible to
write the function hðv; rÞ as a series with respect to the
coordinate distance r − rþðvÞ from the outer horizon (see
Ref. [36] for details),

hðv; rÞ ¼
X∞
i¼1

χiðvÞðr − rþðvÞÞi; ð2Þ

we can assume hðv; rÞ ¼ 0 without loss of generality in
what follows.2 Generic dynamical models of RBHs are then
described by the metric function

fðv; rÞ ≔ gðv; rÞðr − r−ðvÞÞaðr − rþðvÞÞb; ð3Þ

where r−ðvÞ and rþðvÞ denote the inner and outer horizon,
respectively, and a; b ∈ N>0 ¼ f1; 2; :::g are positive inte-
gers labeling their degeneracy. In spherical symmetry,
nonsingular black hole metrics possess an inner horizon
due to the fact that the outer horizon (which is located close
to the classical gravitational radius) cannot cross the center
r ¼ 0 without creating a curvature singularity [37]. The
inner horizon is generated by the additional hair, i.e.,
the minimal length scale l that is introduced to regularize
the spacetime [cf. Eqs. (32), (40), (45), and (50)] and possibly
other parameters such as charge [cf. Eqs. (58) and (62)].
Constraints for the a priori undetermined function gðv; rÞ are
discussed in what follows.
The expansions of ingoing and outgoing radial null

geodesic congruences are given by

θ− ¼ −
2

r
; θþ ¼ fðv; rÞ

r
; ð4Þ

respectively. The existence of a trapped spacetime region is
contingent on the signature of their product θ−θþ ≶ 0.
We follow the widely used convention proposed in
Ref. [38], according to which the presence of a trapped
region bounded by the outer horizon rþ is signified by
θ−θþ > 0 (i.e., the future-directed expansions of both
ingoing and outgoing null geodesics are negative), and
no trapped region is present for θ−θþ < 0. Since θ− is
always negative, this implies that f < 0 inside of the
trapped region r ∈ ðr−; rþÞ, and f > 0 outside of the
trapped region r > rþ, and thus g > 0 and b odd (otherwise
g would have to be negative inside, but positive outside of
the trapped region). The inner and outer horizon are
identified as the roots of the equation f ¼ 0 [39,40]. At
the “disappearance point” of the trapped region v ¼ vd,

1Alternatives have been considered, for instance, in Refs. [29]
and [30].

2Note also that h ¼ 0 for all RBH models typically considered
in the literature, including all of those examined explicitly in
Secs. IV and V.
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they coalesce, i.e., r−ðvdÞ≡ rþðvdÞ. From Eqs. (3) and (4),
it then follows that

θ−θþjv¼vd ¼ −
2

r2
gðvd; rÞðr − rþðvdÞÞaþb ≤ 0 ∀ r; ð5Þ

which implies that the sum aþ b must be even and thus
a odd.
We note that the formation of a trapped spacetime region

in finite time according to the clock of a distant observer
inevitably requires a violation of the null energy condition
(NEC) near the outer horizon [40–43], which posits that
Tμνlμlν ≥ 0, i.e., the contraction of the energy-momentum
tensor with any future-directed null vector lμ is non-
negative. Similarly, violating the NEC is a prerequisite
for the emission of Hawking radiation. While quantum
effects are necessary, it is worth noting that Hawking
radiation is a purely kinematical phenomenon [44], and
neither the Einstein equations nor the Bekenstein entropy
relation [2–4] are required for its derivation.

B. Surface gravity and the first law
of black hole mechanics

The first law of black hole mechanics derived in Ref. [1]
has been proven to hold in any theory of gravity arising
from a diffeomorphism-invariant Lagrangian [45,46].
Assuming δJ ¼ δQ ¼ 0, it can be stated mathematically as

δM ¼ κ

8π
δA; ð6Þ

where M, κ, and A denote the black hole’s gravitational
energy, surface gravity, and horizon area, respectively. The
notion of gravitational energy within a sphere of radius r is
captured by the so-called Misner-Sharp (MS) mass [47]
M ≔ C=2 [see Eqs. (16) and (17)].3 In spherically sym-
metric solutions of the Einstein equations, such as the
static Schwarzschild4 or the nonstatic Vaidya metric,
Cðv; rþÞ ¼ 2MðvÞ ¼ rþðvÞ. Using A ¼ 4πr2þ for the hori-
zon area, this leads to the famous expression for the surface
gravity at the outer horizon:

δM
δrþ

¼ κ

8π

δA
δrþ

⇒ κ ¼ 1

2rþ
: ð7Þ

It is important to note that the surface gravity κ is
unambiguously defined only in stationary spacetimes,

where it is related to the black hole’s Hawking temperature
TH via κ ¼ 2πTH. Nonetheless, even in generic dynamical
black hole spacetimes the first law and its associated
expression for the surface gravity are expected to approach
Eqs. (6) and (7) in the quasistatic limit due to the timescale
of the evaporation process. We show here that this is not
the case for the RBH models typically considered in the
literature.
Generalizations of surface gravity to dynamical space-

times [48,49] are generally related to either the affine
peeling surface gravity [50] or the so-called Kodama
surface gravity [28,51,52]. Since the peeling surface gravity
is ill-defined for a transient object that forms in finite time
of a distant observer [53–55], and there are strong argu-
ments that Kodama surface gravity is the critical quantity
with respect to Hawking radiation [28,55], we focus on this
generalization of surface gravity in what follows.
The main difficulty in the generalization of surface

gravity to evolving black hole spacetimes is that, unlike
their stationary counterparts, they are not guaranteed to
admit a timelike Killing vector field that generates the null
hypersurface (known as Killing horizon) needed to define
surface gravity. However, a dynamical notion of surface
gravity can be defined at the (quasilocal) outer horizon
using the Kodama vector field [51,52], which is well-
defined even in nonstationary spherically symmetric space-
times, and thus in some sense supersedes the concept of a
Killing vector field.
At the outer horizon, the Kodama surface gravity κK is

defined via

κKKν≕
1

2
Kμð∇μKν −∇νKμÞ; ð8Þ

whereKμ denotes the contravariant Kodama vector [51,52].
The Kodama vector field is conserved,

∇μKμ ¼ 0; ð9Þ

and generates a conserved current,

∇μJμ ¼ 0; Jμ ≔ GμνKν; ð10Þ

for any symmetric rank-2 tensorGμν ¼ Gνμ that is invariant
under the spherical symmetries of the spacetime. If Gμν is
the Einstein tensor, then the current’s Noether charge is the
MS mass.

III. DERIVATION OF THE
COMPATIBILITY CONDITION

For the metric specified in Eq. (1) (recall that, as
established in Sec. II A, we can use h ¼ 0 without loss
of generality), Kμ ¼ ð1; 0; 0; 0Þ, and its only nonzero
covariant component at the outer horizon is Kr ¼ 1.

3While the MS mass is technically C=2 by virtue of its
definition in Eq. (16), we often take the liberty to refer to C
itself simply as the MS mass.

4Note that in the Schwarzschild solution, M ¼ const corre-
sponds to the Arnowitt-Deser-Misner (ADM) mass, and the
object’s Schwarzschild radius rg corresponds to the outer horizon,
rg ≡ rþ ¼ 2M.
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Hence the Kodama surface gravity [cf. Eq. (8)] at the outer
horizon is given by

κKjr¼rþ ¼ 1

2
∂rfðv; rÞ

���
r¼rþ

ð11Þ

¼ð3Þ lim
r→rþ

ðr − rþÞ−1þbbgðv; rÞðr − r−Þa
2

; ð12Þ

which implies that a nonzero Kodama surface gravity at the
outer horizon can be achieved only if the outer horizon is
nondegenerate, i.e., b ¼ 1. We thus focus on this scenario
in what follows.
Assuming that fðv; rÞ is decomposable as a rational

function of the radial coordinate r, i.e.,

fðv; rÞ ¼ PnðrÞ
P̃nðrÞ

; ð13Þ

where Pn and P̃n are polynomials (whose coefficients
depend on v in generic dynamical spacetimes) of the same
degree n ≥ 3 in r as motivated in Ref. [37], we can write

gðv; rÞ ¼
P

m
z¼0 λzr

zP
n
i¼0 cir

i ; ð14Þ

where the coefficients λz ≡ λzðr−; rþÞ and ci ≡ ciðr−; rþÞ
depend explicitly only on r−ðvÞ and rþðvÞ (and thus
implicitly on v) as they are the only relevant length scales,
and n −m ¼ aþ 1 and λm=cn ¼ 1 are required to recover
the Vaidya form of the metric in the asymptotic limit
r → ∞. These considerations will prove useful in our
analysis of the inner-extremal RBH model in Sec. V. We
also note that—complemented by the assumptions of
regularity of the spacetime at the origin r ¼ 0 and a proper
Schwarzschild/Vaidya form of the metric in the asymptotic
limit—the polynomial decomposition of the metric func-
tion according to Eq. (13) immediately leads to a class of
metric families of the form (see Ref. [37] for a detailed
derivation)

fðv; rÞ ¼ 1 −
rgðvÞr2

rgðvÞlðvÞ2 þ c1ðvÞrþ c2ðvÞr2 þ r3
; ð15Þ

for the case n ¼ 3, where lðvÞ denotes the minimal length
scale, rgðvÞ ¼ 2MðvÞ, and the case c1ðvÞ ¼ c2ðvÞ ¼ 0

corresponds to the dynamical Hayward metric of
Eq. (34) considered in Sec. IV B.
The metric function f [cf. Eq. (3)] is usually defined in

terms of the MS mass via

fðv; rÞ ≔ ∂μr∂μr ¼ 1 −
Cðv; rÞ

r
; ð16Þ

with the MS mass given by

Cðv; rÞ ¼ rþðvÞ þ
X∞
i¼1

wiðvÞðr − rþðvÞÞi: ð17Þ

By means of Eq. (16), the Kodama surface gravity of
Eq. (11) can then be expressed directly in terms of the MS
mass as

κKjr¼rþ ¼
1

2r2
½Cðv;rÞ− r∂rCðv;rÞ�

���
r¼rþ

¼ð17Þ1−w1

2rþ
; ð18Þ

where the rightmost expression is obtained by explicitly
substituting the MS mass expansion of Eq. (17). Evaluation
at the outer horizon yields

δMjr¼rþ ¼ δC
2

����
r¼rþ

¼ 1

2
ð1 − w1Þδrþ: ð19Þ

Substituting the expression for the surface gravity on the
rhs of Eq. (18) into the rhs of Eq. (6), we obtain

δM ¼ 1 − w1

16πrþ
δA: ð20Þ

Subsequent substitution of Eq. (19) into Eq. (20) leads to

δ

�
rþ
2

�
¼ 1 − w1

16πrþ
δAþ w1

2
δrþ: ð21Þ

Using the relation δA ¼ 8πrþδrþ ¼ 2
rþ
δV between area

A ¼ 4πr2þ and volume V ¼ 4
3
πr3þ, we obtain

δ

�
rþ
2

�
¼ 1 − w1

16πrþ
δAþ w1

8πr2þ
δV; ð22Þ

which is an extension of the standard form of the first law of
black hole mechanics that includes an additional work
term. The notion of internal/thermal energy is captured by
the expression rþ=2, which corresponds to the MS mass
C=2 evaluated at the outer horizon. However, this internal
energy is not necessarily the same as the ADM mass when
matter fields are present [56], as is the case for dynamically
evolving black holes. Comparison with the traditional form
of the first law of mechanics δM ¼ κ

8π δA − pδV [57]
identifies the pressure p in terms of w1, i.e.,

p ¼ −
w1

8πr2þ
: ð23Þ

A few brief comments are in order: first, it is important to
note that higher-order terms i > 1 in the MS mass
expansion have not been neglected in this derivation, but
rather, they simply do not enter the expression for the
Kodama surface gravity of Eq. (18). Second, the conven-
tional form of the first law of black hole mechanics [Eq. (6)]
and its associated expression for the surface gravity κ ¼
1=ð2rþÞ [cf. Eq. (7)] are attainable only if w1 ¼ 0, as can be
seen from Eqs. (18) and (22). Therefore,

w1jr¼rþ ¼ 0 ð24Þ
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is a necessary condition to be compatible with the first law,
i.e., the linear coefficient in the MS mass expansion w1

[cf. Eq. (17)] must vanish at the outer horizon. Physically,
this implies that the metric approximates the Vaidya
solution near the outer horizon. Third, the expressions
derived in Eqs. (18)–(24) apply generically to black holes
described by a metric function of the form of Eq. (16). For
RBHs described by a metric function of the form of Eq. (3),
performing a series expansion of Eq. (17) about the outer
horizon yields

w1jr¼rþ ¼ 1 − gðv; rþÞrþðrþ − r−Þa: ð25Þ

If the inner horizon is nondegenerate (a ¼ 1), as is typically
the case for the RBHs most commonly considered in the
literature (e.g., those of Refs. [32–35] examined in
Sec. IV), the compatibility condition prescribed by
Eq. (24) can be evaluated straighforwardly from the
expression derived in Eq. (25) by considering the series
expansion of the MS mass about the outer horizon using
Eq. (16) since the metric function f (and thus by extension
g) is known explicitly. The case of a degenerate inner
horizon (a > 1) is treated in Sec. Von the basis of the inner-
extremal RBH model proposed in Ref. [24], whereP

z λzr
z ¼ 1 [cf. Eq. (14)]. In this case, the equation

f ¼ 0 has two positive real-valued solutions, and the
smaller one which corresponds to the inner horizon is
degenerate. If the outer horizon r ¼ rþ is a single root, then
the inner horizon root r ¼ r− has to be at least cubic in
order for the inner horizon surface gravity to vanish, which
plays a crucial role in preventing mass inflation instabilities
and ensuring that the backreaction of perturbations van-
ishes asymptotically.
In the next two sections, we investigate whether the

consistency condition Eq. (24) that is required to be
compatible with the first law of black hole mechanics is
satisfied by the RBH models typically considered in the
literature. Since, as argued in Sec. I, dynamical models are
necessary to accurately model the evolution of evaporating
black holes, our analysis in Secs. II and III was designed to
accommodate generic dynamical RBH models, and we
consider the dynamical generalizations of popular models
rather than their static counterparts in what follows. To be
more precise, static RBH metrics belongs to a different
class of black hole solutions whose effective energy-
momentum-tensor component scaling behavior τμν ∼ fk

close to the outer horizon is characterized by k ¼ 1 as
opposed to k ¼ 0 (see chapter 2 in Ref. [36] for a detailed
exposition of the two classes of admissible solutions in
spherical symmetry, or Table 1 in Ref. [58] for a succinct
overview). While the unique k ¼ 1 solution describes black
holes at the instant of their formation, they are described by
a k ¼ 0 solution for the remainder of their entire evolution
or until their disappearance (e.g., through complete evapo-
ration) [53]. The relation between the Kodama surface

gravity at the outer horizon and the linear coefficient w1 of
the MS mass that we derived in Eq. (18) is valid for k ¼ 0
solutions, which includes all dynamical models. However,
it no longer applies (at least not in general) to static metrics
such as the Reissner-Nordström solution briefly considered
in Sec. IV F [cf. Eq. (54)].
While we strive to be as generic as possible in our

analysis, recall that a nondegenerate outer horizon (b ¼ 1)
is necessary to allow for a nonzero Kodama surface gravity
at the outer horizon [cf. Eq. (12)]. However, in Sec. V we
do allow for the possibility that the inner horizon is
degenerate (a > 1), as such models have been shown to
exhibit interesting physical properties making it possible to
evade the mass inflation problem that typically plagues
RBHs (as detailed in Ref. [24]).

IV. TESTING REGULAR BLACK HOLES PART 1:
MODELS WITH A NONDEGENERATE

INNER HORIZON

In this section, we proceed by examining RBH models
with a nondegenerate inner horizon (a ¼ 1), including the
proposals of Bardeen [32] (Sec. IV C), Dymnikova [33]
(Sec. IV D), and Hayward [34] (Sec. IV B). We write
explicit dependencies on v only once when specifying the
metric function fðv; rÞ for the generalized dynamical
model and omit them thereafter for the sake of readability.
However, we later reinstate the explicit dependencies in
Sec. IV F for clarity.

A. A simple nonsingular “dynamical” spacetime

Arguably the simplest nonsingular dynamical spacetime
one can construct based on Eq. (3) is given by the choice
a ¼ b ¼ 1 and

P
z λzr

z ¼ 1 [cf. Eq. (14)], such that Eq. (3)
can be written as

fðv; rÞ ¼ gðv; rÞðr − r−ðvÞÞðr − rþðvÞÞ; ð26Þ
and, by virtue of Eq. (13),

gðv; rÞ ¼ 1

c0 þ c1rþ c2r2
; ð27Þ

where c2 ¼ 1 is necessary to recover the Vaidya form of
the metric in the asymptotic limit. Regularity at the center
r ¼ 0 requires that

c0 ¼ r−rþ; c1 ¼ −r− − rþ; ð28Þ
as can be verified by evaluating the Ricci (gμνRμν) or the
Kretschmann (RμνρσRμνρσ) scalar. However, substitution
of Eqs. (27) and (28) into Eq. (26) reveals that these
coefficients lead to a trivial metric function,

fðv; rÞ ¼ ðr − r−Þðr − rþÞ
r−rþ − ðr− þ rþÞrþ r2

¼ 1: ð29Þ
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In other words, we have rediscovered flat Minkowski
spacetime.

B. Hayward model

A nontrivial minimal RBH model that reduces to a de
Sitter spacetime in the limit r → 0 and a Schwarzschild/
Vaidya spacetime in the limit r → ∞ was proposed by
Hayward in Ref. [34]. In this model, the metric is specified
by the function

fðrÞ ¼ 1 −
rgr2

r3 þ rgl2
; ð30Þ

where l ≥ 0 represents a minimal length scale (which
can be interpreted as an additional hair of the black hole)
akin to a Planckian cutoff, l ¼ 0 corresponds to the
Schwarzschild solution, and rg ¼ 2M denotes the black
hole’s Schwarzschild radius. The horizons are identified
through the equation fðrÞ ¼ 0 [39,40], which can be solved
using Cardano’s formula [59] and admits three real sol-
utions, namely,

r0 ¼ −lþ l2

2rg
þOðl3Þ < 0; ð31Þ

r− ¼ lþ l2

2rg
þOðl3Þ; ð32Þ

rþ ¼ rg −
l2

rg
þOðl4Þ: ð33Þ

Note that this is a necessary requirement in order for the
metric function of Eq. (30) to describe a RBH, as one real
and two complex solutions would imply that no inner
horizon is present [40].
We can generalize this model to describe a dynamical

RBH spacetime by allowing for an explicit dependence of
rg and l on v, i.e.,

fðv; rÞ ¼ 1 −
rgðvÞr2

r3 þ rgðvÞlðvÞ2
: ð34Þ

Using the roots of fðv; rÞ ¼ 0, this can be rewritten as

fðv; rÞ ¼ r − r0
r3 þ rgl2

ðr − r−Þðr − rþÞ: ð35Þ

By comparison with Eq. (3), we identify

gðv; rÞ ¼ r − r0
r3 þ rgl2

> 0; ð36Þ

which is positive due to r0 < 0. The MS mass Cðv; rÞ
[cf. Eq. (17)] for the generalized dynamical Hayward
model is specified by Eq. (34) through the relation given

in Eq. (16). By considering its expansion about the outer
horizon in the regime l ≪ 1, we obtain the linear coefficient

w1jr¼rþ ¼ð33Þ 3l
2

r2g
þOðl4Þ ≥ 0: ð37Þ

This expression is zero only if l ¼ 0, but then r− ¼ 0
[cf. Eq. (32)], indicating that there is no inner horizon.
Consequently, the dynamical Hayward model specified by
Eq. (34) cannot satisfy the compatibility condition Eq. (24)
while l ≠ 0.

C. Bardeen model

The first nonsingular black hole spacetime was proposed
by Bardeen in 1968 [32]. It is defined by the metric
function

fðrÞ ¼ 1 −
rgr2

ðr2 þ l2Þ3=2 ; ð38Þ

where rg and l have the same physical meaning as
in Sec. IV B. Once again, we consider its dynamical
generalization,

fðv; rÞ ¼ 1 −
rgðvÞr2

ðr2 þ lðvÞ2Þ3=2 : ð39Þ

Writing the inner and outer horizon in terms of rg and l, we
find

r− ¼ l3=2ffiffiffiffirgp þOðl5=2Þ; ð40Þ

rþ ¼ rg −
3l2

2rg
þOðl4Þ: ð41Þ

Following the same steps as in Sec. IV B, we obtain

w1jr¼rþ ¼ð41Þ 3l
2

r2g
þOðl4Þ ≥ 0; ð42Þ

which coincides with the linear MS mass coefficient of the
dynamical Hayward model [cf. Eq. (37)] at leading order,
although higher-order contributions will differ once suffi-
ciently high orders OðlxÞ in Eqs. (33) and (41) are taken
into account. Similar to the dynamical Hayward model
discussed in the previous subsection, this expression is only
zero if l ¼ 0 and thus r− ¼ 0 [cf. Eq. (40)].

D. Dymnikova model

Another well-known RBH model was proposed by
Dymnikova [33]. It is specified by the metric function

fðrÞ ¼ 1 −
rgð1 − e−r

3=r3⋆Þ
r

; ð43Þ
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where r3⋆ ≔ l2rg, rg denotes the Schwarzschild radius and l
a minimal length parameter. A generalized dynamical
version is given by

fðv; rÞ ¼ 1 −
rgðvÞð1 − e−r

3=r⋆ðvÞ3Þ
r

; ð44Þ

and the inner and outer horizon can be expressed in terms of
the parameters l and rg as

r− ¼ lð1þOðe−r2g=l2ÞÞ; ð45Þ

rþ ¼ rgð1þOðe−r2g=l2ÞÞ: ð46Þ

From the expansion of the MS mass about the outer
horizon, we obtain its linear coefficient

w1jr¼rþ ¼ð46Þ 3r
2
g

l2
e−

r2g

l2 þOðe−r2g=l2Þ ≥ 0; ð47Þ

which is strictly greater than zero provided that l ≠ 0,
which would once again imply that the inner horizon is
absent, i.e., r− ¼ 0 [cf. Eq. (45)].

E. RBH model with the strongest
Schwarzschild corrections

The RBH considered in Ref. [35] exhibits the strongest
possible corrections to the Schwarzschild geometry while
still being compatible with its asymptotics. It is described
by the metric function

fðrÞ ¼ 1 −
rgr2

ðrþ lÞ3 ð48Þ

and is of particular interest as observational data of the S2
star orbiting Sgr A⋆ can be used to test its geometry and
derive upper bounds for the new length scale l. We once
again generalize this metric by allowing for an explicit time
dependence, i.e.,

fðv; rÞ ¼ 1 −
rgðvÞr2

ðrþ lðvÞÞ3 : ð49Þ

Using the same procedure as in the previous subsections,
we find that the inner and outer horizon are given by

r− ¼ l3=2ffiffiffiffirgp þ 3l2

2rg
þOðl5=2Þ; ð50Þ

rþ ¼ rg − 3l −
3l2

rg
þOðl3Þ: ð51Þ

For the linear coefficient of the MS mass at the outer
horizon, we find

w1jr¼rþ ¼ð51Þ 3l
rg

þ 6l2

r2g
þOðl3Þ ≥ 0: ð52Þ

As in the previously considered models, this expression
cannot be zero unless l ¼ 0 and thus r− ¼ 0 [cf. Eq. (50)].

F. Charged Hayward-Frolov model

In Ref. [37], Frolov proposed a generalization of the
Hayward model to include an electric charge q. In the
generalized dynamical case, the metric function for this
type of RBH is given by

fðv; rÞ ¼ 1 −
ðrgðvÞr − qðvÞ2Þr2

r4 þ ðrgðvÞrþ qðvÞ2ÞlðvÞ2 ; ð53Þ

where, as in Sec. IV B, rg and l denote the Schwarzschild
radius and minimal length scale, and the case q ¼ 0 reduces
to the metric function of the uncharged dynamical Hayward
model [Eq. (34)]. The static case with l ¼ 0 reproduces the
Reissner-Nordström metric. For both q ¼ l ¼ 0, Eq. (53)
corresponds to the Vaidya (or, in the static case,
Schwarzschild) metric.
As alluded to at the end of Sec. III, the Reissner-

Nordström metric belongs to the k ¼ 1 class of black hole
solutions, and thus we must not use Eq. (18) a priori. The
surface gravity of a Reissner-Nordström black hole is
given by

κRN ¼ rþ − r−
2r2þ

; ð54Þ

where

r− ¼ m −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q2

q
; ð55Þ

rþ ¼ mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q2

q
: ð56Þ

The dynamical generalization of the Reissner-Nordström
metric is described by the metric function

fðv; rÞ ¼ 1

r2
ðr − r−ðvÞÞðr − rþðvÞÞ; ð57Þ

with the evolving inner and outer horizon specified by

r−ðvÞ ¼ mðvÞ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðvÞ2 − qðvÞ2

q
; ð58Þ

rþðvÞ ¼ mðvÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðvÞ2 − qðvÞ2

q
: ð59Þ
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Since this is a k ¼ 0 solution, we can make use of Eq. (11)
to determine the Kodama surface gravity at the outer
horizon of an evolving Reissner-Nordström black hole
and find

κKRN
¼ 1

2
∂rfðv; rÞ ¼

rþðvÞ − r−ðvÞ
2rþðvÞ2

: ð60Þ

On the other hand, from the charged Hayward-Frolov
metric [Eq. (53)], we obtain

κKHF
¼ 1 − w1ðv; lÞ

2rþðv; lÞ
; ð61Þ

and the inner and outer horizon are given by

r−ðv; lÞ ¼ r−ðvÞ þ β−ðvÞl2 þOðl3Þ; ð62Þ

rþðv; lÞ ¼ rþðvÞ þ βþðvÞl2 þOðl4Þ: ð63Þ

Following the methodology of Sec. III, considering the MS
mass expansion allows us to identify the linear coefficient,

w1ðv; lÞ ¼
qðvÞ2
rþðvÞ2

þ βðvÞl2 þOðl4Þ; ð64Þ

where βðvÞ denotes a lengthy coefficient that simplifies to
βðvÞ → 3=rgðvÞ2 in the uncharged case qðvÞ → 0, in
agreement with the expression derived for the uncharged
dynamical Hayward model [cf. Eq. (37)]. Substituting this
result into Eq. (61) and using Eqs. (62)–(63), we find

κKHF
¼ rþðvÞ − r−ðvÞ

2rþðvÞ2
þOðl2Þ: ð65Þ

As can be seen by comparison with Eq. (60), this
expression matches that of the evolving Reissner-
Nordström black hole only if l ¼ 0, in which case the
horizons of the charged dynamical Hayward-Frolov
RBH specified by Eqs. (62)–(63) reduce to those of
Eqs. (58)–(59). However, unlike the previously considered
examples, the inner horizon r− ≠ 0 even if l ¼ 0 due to
the presence of a charge term that is independent of l,
cf. Eqs. (58) and (62).
As evident from Eqs. (64) and (65), the condition for the

compatibility of a dynamically evolving charged RBH with
the first law of black hole mechanics is no longer encoded
by the relation w1 ¼ 0. However, in the special circum-
stance where l → 0, the new compatibility condition can be
stated as

w1ðv; 0Þ ¼
qðvÞ2
rþðvÞ2

: ð66Þ

V. TESTING REGULAR BLACK HOLES PART 2:
INNER-EXTREMAL MODEL WITH A
DEGENERATE INNER HORIZON

The inner-extremal RBH model proposed in Ref. [24]
solves the mass inflation instability problem at the expense
of a degenerate inner horizon with vanishing surface
gravity. As argued above, we consider its dynamical
generalization. The metric function is given by choosing
a ¼ 3, b ¼ 1 in Eq. (3) such that in the generalized
dynamical case

fðv; rÞ ¼ gðv; rÞðr − r−ðvÞÞ3ðr − rþðvÞÞ ð67Þ

and by virtue of Eq. (13) the choice
P

z λzr
z ¼ 1 ⇒ m ¼ 0

determines the degree n − 0 ¼ 4 ¼ aþ 1 of the polyno-
mial in the denominator of Eq. (14), i.e.,

gðv; rÞ ¼ 1

c0 þ c1rþ c2r2 þ c3r3 þ c4r4
; ð68Þ

where we have once again omitted the dependencies of the
coefficients ci ≡ ciðr−ðvÞ; rþðvÞÞ for the sake of read-
ability and will omit dependencies on v in what follows as
well. While a ¼ 3 for the model considered in Ref. [24],
our derivation in what follows is valid for arbitrary RBH
models with m ¼ 0 and b ¼ 1 [as otherwise the Kodama
surface gravity would vanish at the outer horizon,
cf. Eq. (12)], i.e., those where Eq. (14) admits the form

gðv; rÞ ¼ 1

c0 þ c1rþ � � � þ caþ1raþ1
; ð69Þ

where caþ1ðr−; rþÞ ¼ 1 is required to recover the Vaidya
form of the metric in the asymptotic limit r → ∞. Based on
dimensional grounds, the generic form of the coefficients
ciðr−; rþÞ is prescribed by

ciðr−; rþÞ ¼
X∞
j¼1

dijrj−r
−j−iþðaþ1Þ
þ ∀ i ≠ aþ 1; ð70Þ

where the coefficients dij are dimensionless.5 If the inner
horizon is absent (r− → 0), then we should also recover the
Vaidya form f ¼ 1 − rþ=r as the black hole center is then
no longer regular. In this case, Eq. (3) is given by

fðv; rÞjr−→0 ¼
raþ1ð1 − rþ

r Þ
c0ð0; rþÞ þ c1ð0; rþÞrþ � � � þ raþ1

: ð71Þ

5Note that the coefficients of our simple nonsingular spacetime
[Sec. IVA, Eq. (28)] are consistent with the required coefficient
form specified in Eq. (70) only if r− ¼ 0 and rþ ¼ 0, i.e., if the
spacetime has no horizons, in agreement with the trivial form of
the metric function in Eq. (29).
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Therefore, to recover the Vaidya form of the metric, we
must have

cið0;rþÞ¼ 0 ∀ i≠ aþ1⇒ gðv;rÞjr−→0¼
1

raþ1
: ð72Þ

Using Eqs. (25) and (69), the compatibility condition
Eq. (24) can be rewritten as

gðv; rþÞrþðrþ − r−Þa ¼ 1; ð73Þ

⇔ ðrþ − r−Þarþ ¼ 1

gðv; rþÞ
¼ð69Þ

Xaþ1

i¼0

ciðr−; rþÞriþ: ð74Þ

Using the binomial theorem to expand the lhs, and
Eq. (70) for the coefficients on the rhs, Eq. (74) can be
rewritten as

Xa
k¼0

�
a

k

�
ð−1Þa−kra−k− rkþ1

þ ¼
Xa
i¼0

X∞
j¼1

dijrj−r
−jþðaþ1Þ
þ þ raþ1

þ :

ð75Þ

Separating the k ¼ a term (whose contribution is raþ1
þ )

from the summation on the lhs, this simplifies further to

Xa−1
k¼0

�
a

k

�
ð−r−Þa−krkþ1

þ ¼
Xa
i¼0

X∞
j¼1

dijrj−r
−jþðaþ1Þ
þ : ð76Þ

Note that the maximum possible exponent of r− on the lhs
is a (for k ¼ 0). Consequently, if Eq. (76) is treated as a
polynomial with respect to r−, then the only way to have a
solution is to truncate the summation over j on the rhs at
j ¼ a. Furthermore, since 0 ≤ k ≤ a − 1 and 1 ≤ j ≤ a, we
can redefine the summation with respect to k on the lhs and
use the transformation j ↦ a − k to rewrite Eq. (76) as

Xa
j¼1

�
a

a − j

�
ð−r−Þjr−jþðaþ1Þ

þ

¼
Xa
i¼0

Xa
j¼1

dijrj−r
−jþðaþ1Þ
þ : ð77Þ

As a result, the compatibility condition Eq. (24) is satisfied
if and only if

Xa
j¼1

rj−

��
a

a − j

�
ð−1Þjr−jþðaþ1Þ

þ −
Xa
i¼0

dijr
−jþðaþ1Þ
þ

�
¼ 0:

ð78Þ

We note that, in consonance with our analysis of non-
degenerate RBH models in Sec. IV, this relation is trivially
satisfied if there is no inner horizon (r− → 0). On the other

hand, if an inner horizon is present (r− ≠ 0), then satisfying
Eq. (78) requires

Xa
i¼0

dij ¼
�

a

a − j

�
ð−1Þj: ð79Þ

This alternative form of the compatibility condition derived
in Sec. III allows us to test RBH models for which
evaluating the expression given in Eq. (25) is not straight-
forward due to the fact that a > 1 and the coefficients in the
polynomial decomposition of g [Eq. (14)] are a priori
undetermined. With the commonly used assumptions of a
positive MS mass C > 0 [cf. Eq. (17)] and regularity
(expressed mathematically through the finiteness of rel-
evant curvature scalars, such as the Ricci and Kretschmann
scalar), it is possible to determine the lowest-order coef-
ficients of Eq. (69). However, this alone does not suffice to
determine whether or not relation Eq. (79) is satisfied in
general, as this would require the ability to determine every
individual coefficient ciðr−; rþÞ. Nonetheless, it is often
possible to evaluate Eq. (79) in physically motivated
scenarios where the degeneracy of the inner horizon a in
Eq. (3) is known explicitly.
We now examine the dynamical generalization

[Eqs. (67)–(68)] of the inner-extremal RBH model with
a ¼ 3 proposed in Ref. [24] and demonstrate that it cannot
satisfy the condition Eq. (79) required to be compatible
with the first law. In this model, c4 ¼ 1 and c3 ¼ −3r−
[cf. Eq. (68)] are necessary to recover the Vaidya form of
the metric asymptotically. The latter can be seen by
expanding Eq. (67) about the point z ≔ 1=r ¼ 0 to re-
present the limit r → ∞, which results in

fðv; rÞj1
r¼0 ¼

1

c4
−
c3 þ c4ð3r− þ rþÞ

c24

1

r
þO

�
1

r2

�
: ð80Þ

Substitution of c4 ¼ 1 in Eq. (80) and subsequent com-
parison with the Vaidya form f¼1−rþ=r yields c3¼−3r−.
From the requirement of regularity, we obtain

c0 ¼ r3−rþ; c1 ¼ −r2−ðr− þ 3rþÞ; ð81Þ

as can be verified, for instance, by evaluating the Ricci or
the Kretschmann scalar.
The remaining coefficient c2 can be determined from the

requirement that f be nondivergent, which in turn requires
that its denominator,

Dðv;rÞ≔1=gðv;rÞ
¼ð68Þr3−rþ−r2−ðr−þ3rþÞrþc2r2−3r−r3þr4; ð82Þ
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be nonzero. We rewrite Eq. (82) as

D̃ðv; rÞ ¼ c̃2r2 þ
�
r −

3r−
2

�
2

þ r3−rþ

�
1 −

r
2

�
3

r−
þ 1

rþ

��
2

; ð83Þ

where

c2 ¼ c̃2 þ
15

4
r2− þ 9

4
r−rþ þ r3−

4rþ
; c̃2 ≥ 0: ð84Þ

Using Eq. (16) to express the MS mass C in terms of f and
expanding about the center r ¼ 0, we find

Cðv; rÞ ¼ r3− þ 4c̃2rþ þ 3r2−rþ − 3r−r2þ
4r3−r2þ

r3 þOðr4Þ: ð85Þ

The positivity requirement for the MS mass then constrains
the coefficient c̃2 via

r3− þ 4c̃2rþ þ 3r2−rþ − 3r−r2þ > 0

⇒ c̃2 ¼
ζ − r3− − 3r2−rþ þ 3r−r2þ

4rþ
; ζ > 0: ð86Þ

Substituting Eq. (86) into Eq. (84) yields

c2 ¼
ζ

4rþ
þ 3r2− þ 3r−rþ: ð87Þ

This is all we need to explicitly identify the dimensionless
coefficients dij introduced in Eq. (70). We find

c0 ¼ r3−rþ ¼ d01r−r3þ þ d02r2−r2þ þ d03r3−rþ
⇒ d01 ¼ 0; d02 ¼ 0; d03 ¼ 1; ð88Þ

c1 ¼ −r3− − 3r2−rþ ¼ d11r−r2þ þ d12r2−rþ þ d13r3−

⇒ d11 ¼ 0; d12 ¼ −3; d13 ¼ −1; ð89Þ

c3 ¼ −3r− ¼ d31r− þ d32r2−r−1þ þ d33r3−r−2þ
⇒ d31 ¼ −3; d32 ¼ 0; d33 ¼ 0: ð90Þ

To proceed with the identification of the coefficients d2j,
we note that the dimensions of ζ are ½ζ� ¼ L3 (i.e., ζ is
cubic in length), as can be seen from Eq. (87). Therefore,
we can write the first term in Eq. (87) as

ζ

4rþ
¼ ζ1r−rþ þ ζ2r2− þ ζ3r3−r−1þ > 0; ð91Þ

where the coefficients ζi are dimensionless. Hence,

c2¼ d21r−rþþd22r2−þd23r3−r−1þ
¼ ðζ1þ3Þr−rþþðζ2þ3Þr2−þζ3r3−r−1þ
⇒ d21¼ ζ1þ3; d22¼ ζ2þ3; d23¼ ζ3: ð92Þ

Next, we use Eq. (79) to determine the coefficients ζi.
We find

X3
i¼0

di1 ¼
�
3

2

�
ð−1Þ1 ¼ −3

¼ d01 þ d11 þ d21 þ d31 ⇒ ζ1 ¼ −3; ð93Þ

X3
i¼0

di2 ¼
�
3

1

�
ð−1Þ2 ¼ 3

¼ d02 þ d12 þ d22 þ d32 ⇒ ζ2 ¼ 3; ð94Þ

X3
i¼0

di3 ¼
�
3

0

�
ð−1Þ3 ¼ −1

¼ d03 þ d13 þ d23 þ d33 ⇒ ζ3 ¼ −1: ð95Þ

Substituting these values into Eq. (91), we obtain

− 3r−rþ þ 3r2− − r3−r−1þ > 0

⇔ 3r2þ − 3r−rþ þ r2− < 0: ð96Þ

Considering Eq. (96) as a polynomial in rþ, its discriminant
is given by −3r2− < 0, which implies that the polynomial
has two distinct complex conjugate roots and is thus always
positive. However, this is in direct contradiction with the
inequality in the second line of Eq. (96), indicating that it is
impossible for the inner-extremal RBH model to satisfy the
necessary relation Eq. (79) that is required to be compatible
with the first law of black hole mechanics.

VI. PAGE EVAPORATION LAW

Building on Hawking’s result [6], Page demonstrated
that the mass loss due to the emission of Hawking radiation
is described by the formula

dM
dt

¼ −
X

j;l;m;p

1

2π

Z∞

0

ωΓjωlmp

e2πω=κ − 1
dω; ð97Þ

where j labels the emitted particle species, and Γjωlmp

denotes the absorption probability6 for an incoming wave

6In practice, these are determined using analytical and numeri-
cal techniques in a formalism originally developed by Teukolsky
and Press [60,61].
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mode labeled by the frequency ω, spheroidal harmonic l,
axial quantum number m, and polarization p. Although
this formula accounts for both angular momentum and
charge, an isolated black hole is expected to be well
approximated by an uncharged spherically symmetric
metric due to the fact that in the Hawking process angular
momentum is shed much faster than mass [7], and charged
black holes rapidly discharge in a Schwinger-like pair
production process [62,63].
Since the ingoing Vaidya metric with decreasing mass

(C0ðvÞ < 0) is the appropriate choice to model the effects of
Hawking radiation (see Table 2 in Ref. [36]), Eq. (97) is
often expressed in advanced null coordinates ðv; rÞ using
several physically motivated simplifying assumptions
(most notably the restriction to l ¼ m ¼ 0 modes and
the approximate relation Γ ≃ ω2r2g; see Refs. [31,64,65] for
a more detailed account) as

dM
dv

≃ −
a
M2

⇔
drþ
dv

≃ −
α

r2þ
; ð98Þ

which implies that a black hole of initial mass M0 will
evaporate in a time te ∼M3

0, and the explicit form of the
coefficients and their expansion about w1 ¼ 0 are given by

α ¼ 8a ¼ −
4

π

1

e
4π

1−w1 − 1
; ð99Þ

α ¼ −
4

π

1

e4π − 1
þOðw1Þ; ð100Þ

respectively. Consequently, the standard Page evaporation
law is modified if the condition w1 ¼ 0 derived in Sec. III is
not satisfied.

VII. CONCLUSIONS

Based on the assertion that the surface gravity of an
evolving black hole horizon should approach the expres-
sion prescribed by the first law of black hole mechanics
[Eq. (7)] in the quasistatic limit, we have derived a
compatibility condition for generic spherically symmetric
dynamical black holes [Sec. III, Eq. (24)]. In our analysis of
the dynamical generalizations of RBH models typically
considered in the literature, we have evaluated the compat-
ibility condition explicitly for the respective metric func-
tions that describe them and demonstrated that none of
them satisfies the necessary condition required to be
compatible with the conventional form of the first law of
black hole mechanics (Sec. IV and Sec. V). As outlined in
Sec. VI, this also implies that—if the decrease in mass
δM < 0 due to the emission of Hawking radiation is indeed
proportional to the surface gravity as stipulated by the first

law—then the dynamical evolution of such RBHs cannot
be accurately described by the standard Page evaporation
law. One may argue that this is a somewhat counterintuitive
result, considering that the derivation of Eq. (97) is based
on Hawking fluxes perceived in the asymptotic limit, and
thus one would naively expect that the minimal length scale
introduced for the purpose of regularization should not
affect the outcome.
Our analysis suggests that the incompatibility of dynami-

cal RBHs with the first law of black hole mechanics is
directly linked to the minimal length scale l (which can be
interpreted as an additional hair) introduced for the regu-
larization and the presence of an inner horizon, which are the
main characteristics (together with their regular center) that
distinguish RBH models from alternative descriptions of
trapped spacetime domains. Since both are necessary ingre-
dients in the regularization procedure to avoid singularities,
onemay conjecture that there is amore fundamental physical
or topological principle at play that prevents nonsingular
black hole spacetimes from satisfying the first law.
In their most conservative form, the conclusions of our

analysis may be stated as follows: nonsingular black holes
are incompatible with the widely accepted semiclassical
description of evaporating black holes that is based on the
results of Refs. [1] and [5–7]. Unless one is willing to give
up either the idea of regularity and an interior that is
physically well behaved all the way down to the center or
the first law of black hole mechanics (and its associated
thermodynamic interpretation of surface gravity as an
effective temperature), our results demonstrate that mod-
ifications of the first law are required even at the level of
semiclassical gravity.
We note that our analysis is consistent with the inter-

pretation of the deviation from the standard form of the first
law [Eq. (6)] as a thermodynamic pressure term as has been
proposed, for instance, in Refs. [25] and [57], which can be
seen from Eqs. (22)–(23). In this sense, the linear coef-
ficient of the MS mass w1 encodes rather specific infor-
mation about the thermodynamic properties of black holes.
In fact, as evident from Eq. (22), knowledge of w1 suffices
to fully specify the generalized first law of black hole
mechanics.
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