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We discuss the wormholes in general dimensions by studying the Einstein-phantom scalar field with and
without the cosmological constant. Solving anti—de Sitter (AdS) wormholes in general dimensions is hard
due to the nonlinear nature of the theory. In this work, we implement the AdS/Ricci-flat correspondence,
extended to include the axion field (the phantom scalar field), to construct AdS wormholes. Wormholes of
the Ellis-Bronnikov class are discussed in general dimensions.
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I. INTRODUCTION

The wormhole is thought to be the tool for fast
interstellar travel, for it connects different parts of space-
times via the throat [1,2]. Traversable wormholes have been
studied in four dimensions and higher dimensions [3]. The
most intuitive wormhole is the Ellis wormhole from the
theory § = 2= [‘dx*\/=g(R + 1 (dy)?). The singularity in
Schwarzschild spacetime hinges the exploration of particle
theories in gravitational fields as it is not geodesically
complete. The Ellis wormhole was constructed in the effort
to remove the problematic singularities in Schwarzschild
spacetimes [4—6]. It was first discussed in four dimensions
where it was illustrated as a drainhole. The Ellis worm-
hole in higher dimensions was later studied in different
settings [7-9]. Having the general ansatz in a higher
dimension, the general Ellis-Bronnikov class wormhole
was also constructed [10-12]. Specific solutions of worm-
holes with a bare cosmological constant in four dimensions
were found under various conditions [13,14].

However, wormholes with a bare cosmological constant
in higher dimensions are yet to be constructed [15].
Such anti—de Sitter (AdS) wormholes play a crucial role
since AdS/CFT correspondence becomes a rich field of
study [16-19]. In the context of AdS/CFT correspondence,
the dimension of the conformal field theory on the
boundary is of codimension 1 to the AdS gravity in the bulk
with generic dimensions. Thus looking for AdS wormhole
solutions in a general dimension is of particular interest.
In this paper, we use the Ricci-flat/AdS correspondence
to construct the solutions of wormholes with a bare
cosmological constant in general dimensions from Ellis-
Bronnikov wormhole solutions.

The AdS/Ricci-flat correspondence relates the solutions
in asymptotically AdS space on a torus and asymptotically
flat space on a sphere [20,21]. Kuluza-Klein (KK) reduction
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was used to demonstrate the validity of this correspondence.
KK reduction comes from the string compactification. It
reduces higher dimensional theories to lower dimensional
ones, keeping the additional dimensions compactified [22].
Previous works show that this correspondence was used to
construct new solutions in supergravity theories [23], where
a matter field was added to the AdS theories on torus. The
correspondence interchanges the matter field with the Ricci
scalar of the sphere in the pure gravity theory.

In this paper, we consider the action for the AdS
wormbhole is given by

S= 16;G/dx"\/—_g<R—2A+%(6)()2>, (1)

where y is the phantom scalar field. In this paper we add
matter fields, the phantom field y, to both theories in the
correspondence. We found that the matter fields descend
down after the KK reduction calculation for both theories.
So the AdS/Ricci-flat correspondence interchanges the
phantom field in the Ellis-Bronnikov wormhole with the
matter field in the AdS wormhole. Such an AdS wormhole
needs to violate the null energy condition [24,25]. The null
energy condition is believed to be satisfied in general
relativity. However, the Ellis wormhole is opened via the
addition of a ghost field, or what we call an axion. So the
criterion for a solution to be a wormhole is that the solution
violates the null energy condition. The solution constructed
from AdS/Ricci-flat correspondence does satisfy this
requirement.

The organization of this paper is as follows. In Sec. II, we
describe the correspondence of two theories and discuss
the identification of parameters. In Sec. III, we find the
solutions of wormholes with an axion field, namely the
Ellis wormhole, and then we use the correspondence
map to construct the solutions of AdS Ellis wormholes.

© 2023 American Physical Society
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In Sec. IV, we further the discussion in the last section to
include the generic solution of the Ellis-Bronnikov worm-
hole. We see that in four dimensions, this generic solution
reduces back to the form in previous sections. In Sec. V, we
find the solution of the AdS wormhole in the general
dimension by applying AdS/Ricci-flat correspondence. We
show this solution reduces back to the AdS Ellis wormhole
via coordinate transformations. In Sec. VI, we demonstrate
that the AdS wormhole solution violates the null energy
condition so that it indeed satisfies the criterion for a
wormhole to be traversable. In the appendixes, detailed
computations of the KK reduction and the Ellis-Bronnikov
wormbhole are presented.

II. CORRESPONDENCE VIA KALUZA-KLEIN
REDUCTION

In this section, we extend the AdS/Ricci-flat correspon-
dence to include an additional axion field [20,23]. The
inclusion of the axion field allows us to later explore the
connections between wormholes with a cosmological
constant and wormholes in flat space, thus gaining access
to exact results of the otherwise impregnable problems.
Let us start by introducing the correspondence. One of
the theories is the D-dimensional Einstein gravity with an
axion field (phantom field) y,

/ dPxL;, (2)

>

" 162G

where the Lagrangian density L is simply the Einstein-
Hilbert one

Ly =/~sR+(99)). 3)

The correspondence is obtained by performing spherical
reduction for this theory and then torus reduction for the
other one. For spherical reduction, the ansatz is given by

d§y = e**idsy + e dQy, (4)

where D = d 4 n. This reduction is what we call “diago-
nal” since it does not mix any off-diagonal elements in the
metric tensor. One can regard the reduction as removing the
fiber part of the bundle, keeping only the theory on the base
manifold. This we can do as the dimension of the fibers are
extremely small as compared to the base,

Ly =" /=gxP~2 <R + (D -1)(D -2)(0x)2x2

+n(’;;1)+;(0x)2),

(5)
where the term n(n—1)/¢? is the curvature of the

n-sphere. This theory has Newton’s constant G, = #"G.
The other theory we consider in the correspondence is

- 1 S
N / Py,
162G
- - 1
Lp = \/—§<R—2A+5(0;?)2). (6)
For the torus reduction, we use the metric ansatz,

d53 = d5j + Y?ds2,, (7)
where D = d + Q. In the reduction, the field y is directly
reduced from the higher dimension to the low dimension as
a scalar field [22],

| = Voy/g1° (R L 0(0 - 1)(ar)y?

e ] ®)

where i = —(D — 2) and the parameter 7 is related to the
bare cosmological constant A by

A= P-DD-2) 9)
20

Vo is the volume of the torus, giving us Newton’s constant
G, = Vél G. Thus we found that the two theories match at a

lower dimension, provided that we identify the parameter in
the following way:

X=y"' =27 G=V,G. (10
The dimensions of the two theories are related by the two
equivalent maps,

nein=-(D-2)e 0« —-(D-2). (11)

We note that the mapping of the dimension parameters are
represented by the <> rather than equality. We observe the
negative sign in the mapping for Q. Thus we are mapping
one theory with positive dimensions to another one with
negative dimensions. The second map implies that we get
inverted power for parameters X and Y. Implementing
this correspondence, we are able to find exact solutions
for one theory by the dictionary as we demonstrate in the
next section, providing that we know the solution for the
other one.

III. MAPPING OF THE SOLUTIONS OF ELLIS
WORMHOLE TO AdS ELLIS WORMHOLE
IN GENERAL DIMENSIONS

In this section, we demonstrate that some special worm-
holes in higher dimensions with a cosmological constant
could be solved exactly using the mapping we obtained in
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the previous section. We first present the exact solution
of the well-known Ellis-Bronnikov wormholes in higher
dimensions, i.e., where we set f(r) = 1 in the metric of the
wormholes [7]. Then we apply the dictionary to extract
the exact solution of a special class of wormholes with a
cosmological constant by comparing the overall factor in
the reduced Lagrangian from the two wormhole theories.
We shall start with the wormhole in Ricci-flat theory and
find the AdS wormbhole solution by the dictionary. Recall
that we have for the Ellis wormhole the action

S=1or | PR (VP (12)

We are working with the metric ansatz as for the hat theory
in the previous section which we dimensionally reduced

on sphere. For the D = p 4 2 + n dimensional theory, the
metric becomes

2 2

d
= ~f(NAF 4 2o+ ()R} = 5

= 23 (ds + £dQ3).

(13)

Note that p = 0 and D = 2 + n. The functions f(r) and
p(r) satisfy the equations of motion [7],

—11’2 = (D—Z)p—/ <Ji’+ (D—3)p;/>

2 p\f
. . 1
—(D=-2)(D-3)—,
( ) )fp2
1/2 . p//
2 (D=2
51 = )p,
C
){’=pr_2- (14)

We find the integration constant C? = (D —2)x

(D —3)a??=3), Thus we find the solution to the equations
of motion as

flr)=1,
p(r)=14/1- (%) Z(M)’
- - He dr
2(r) = \/2(D = 2)(D - 3)aP= /p(r)[)_z. (15)

We have set f(r) = 1 for this particular class of wormhole
solutions to better illustrate the structure of the dual theory.
Now, in order to see the wormhole structure of this theory,
we note that

dp ~
/1= 2(D-3)
" (a/p) ,
d
dr = P —,
1 - (a/p)*P~3)
2 dp?

r :W. (16)

This we can do as it is a mere coordinate transformation.

After swapping the variables p and r, we can rewrite the ds?
metric as

dp?

d? = —dP + ————
1= (a/pP

+p2dQ2. (17)

The metric of the dimensionally reduced theory is given
by

a5 = <—fdt2 . d72> - ; (—fdt2 + d72) (18)

So apply the mapping, we find that
~ dr? AN dr?
’ 7)o 7

From here, we recover the full tilde theory by lifting the
reduced metric back to higher dimensions. Then the
D = Q + 2 dimensional metric becomes

e dr? o
d§2D = P <—fdt2 + TV + dy-’dy-’), (20)

where the functions f(r) and p(r) should satisfy the
equations

1/2: p_/<£_ 1p_l> 1 1
X=0—1% (Q+)p +Q(Q+)}p2,

2 p\f
1 P p//
2% - Q p k)
Cp1
X =—, (21)
f

where we used the identification we discussed in the
previous section,

Q < —(D-2). (22)
Again we can express r in terms of p instead,

dp
1= (pfayi@r)

do_

3= V1= (a/p) e = dr=

(23)
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Putting this back to the D = Q + 2 dimensional metric, we
can rewrite it as

fz dp2
~2 2
dSD =— (—dt + —1 ( / ) @D + dy dyj) (24)

and
Q
£p) =20(@ + Do [ L
/1= (2)He+)
2 - p@tl
=\o11 aresin gy (25)

We show that in general the solution obtained via the
correspondence is the wormhole solution in Sec. VI.

IV. ELLIS-BRONNIKOV WORMHOLE
IN GENERAL DIMENSIONS

Now we proceed to the exact solution of the AdS
wormhole in general dimensions. For the n-dimensional
wormhole in Ricci flat spacetime, it was found that with
specific metric ansatz [10], one can obtain the generic
solution:

4)/(n-3)

ds? = —F(r)72de® + F(r)> "3 G(r)~-

x (dr* 4+ G(r)y;;(z)dz'dz/), (26)

where the functions F(r) and G(r) satisfy

_F(n)" F(r)  F(r)G(r)
=Fe Fo TFmor @
_F(;’)’Z_EG(}")’2 (n—3)2_ (n=-3) C? (28)
COFr) 4Gr) G(r) 2(n-2)G(r)’

and we also have a master equation for G(r) from
E;+E; =0,
G(r)"=2(n-3)>=0. (29)

The general solutions of these equations, in the case of the
Ellis-Bronnikov class solution of this metric, are given by

ast =~ (1?)2 P+ F(ABG(R) (AP + G(FAQ?),
F(7) = Fyexp (ﬁ arctan 1%) ) ;
G(7) = (n—3)2(P + R?), (30)

where we have relabeled the original coordinates ¢ and r as
7 and 7. Putting all the pieces together, we can write the
metric explicitly as

72

d_t2+ eZﬂ arctan (7/R)/(n—
0

x ((n=3)*(F + R?)~"

x (d7? + (n = 3)%(# + R?)dQ?). (31)

—e 2 arctan (7/R) 3)F(2)/(n—3)

ds? =

4)/(n=3)

We arrive at the following metric after redefining the
variables 7 and 7 and defining U(r) and V(r) as in
Appendix B

ds2 — _e—ZﬂU(r)de 4 eZ/)’U(r)/(n—f&)v(,,)1/()1—3)

x <‘f(—'j) + r2d92>. (32)

This solution reduces to the desired wormhole solution
that we derived in the previous section in the f =1 case.
To see this, we first take the following coordinate trans-
formation:

M2 1/(n-3)

so the metric can be further rewritten in the form

. . M? 2/(n=3)
2 = 28U 2 4 2PUX)/(n=3) -
ds e dr* +e (1 + 16x2<”_3>>

x (dx? + x2dQ?). (34)

We can check explicitly, in four dimensions, that this metric
indeed coincides with the Ellis wormhole with f =1, or
equivalently, f = 0. To see this, suppose we set n =4,
and let a = MTZ; we define another new coordinate p as the
following:

M2 2(D-3)
2 — 2
(i)

The metric (34) thus becomes

d§? = —dr* + + pdQ2.

—
1 - MT/,OZ(D 3)
We have shown that this solution is equivalent to Eq. (17).

V. AdS WORMHOLE IN GENERAL DIMENSION

Finally, we proceed to use the mapping to compute the
solutions of the tilde theory. We already have the hat theory
given as
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d[z 2
F(r)?

p(r) = ()1 OIG(r)! 203,

ds? = (ds3 + £%2dQ?),

+ F(r)Z/(D—3)G(r)—(b—4)/([)—3)(drz + G(r)dQ?) = p(f’;)

£? 1 A I
a3 = (_ Fo F(r)z/(D‘3)G(r)‘(D‘4)/<D‘3>dr2>,

p(r)
p(r)? 1 p- b
X2 o :ﬁF(r)MD 3>G(r)1/(D 3),
pU 2b-3) 20 M
F(r) = FoelV"), G(r) = r*P=)v(r), U(r) = arctan< o ), V(ir)=1 +m. (36)
Apply the mapping:
1 - -
Y2 — = C2E(r)Y (@O G (r)1 /(2
. r ~ U(r) . 2 8 P2 e+
F(V)IFoeﬁU(), G(V):rz(Q+1), U(V):arctan<W>, V(r):1+f (37)
Thus the D = 2 + Q dimensional metric becomes
2 2 dr? B N\=2/(0+1) () - (042 1,2 i v/
ds? = v?( - a )2+F(r) NN G (r)=(2+2/(2+D)ds2 4 dy/dy ). (38)
F(r
Last, we write the tilde theory explicitly,
. V(r)1/(Q+1) 2(0+1) ~ 71/(0+1)
452 — 22 ( —e-20me+n V() A2+ qp2 4 20/(0+1) Ldyjdyj _ (39)
r? V(r) r?

This is the desired wormhole solution in general dimensions. We notice that the dimension parameter Q ranges from
negative infinity to positive infinity. Now we do similar coordinate transformation as for the hat theory in the previous
section. Take

2 _2
r?=x2 <1 - sz(Q“)) o (40)

Then the metric after this transformation becomes

£? M? o - dx? - o
d3? = — (1 + 1_6x2<Q+1)> N _em2p0/(Q D g2 4 2 —— + U/ dyidyi |, (41)
x (1 +%x2(g+1))g+1
A further coordinate transformation
2 _ 2 M 504 o
pr=x 1+1—6x<Q+) (42)
gives us the desired form of solution
o 0 —2BU/(0+1) 442 dp? 280/(Q+1) dvi i
dSD = ? —e drs + m +e dy dy . (43)
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We discuss criteria [1] for qualifying a wormhole for our
solution obtained above. The metric solution satisfies
Einstein field equations everywhere. And the throat of
the metric solution is at p = a~2@*1). Furthermore, the
solution does not have a horizon by inspecting its form. In
fact, this theory could be schematically written in the form
as a worhmholelike Eq. (2.1) in Ref. [16]. And it meets the
definition of the spacetime wormhole which is defined as
“connected geometries whose boundaries have more than
one compact connected component [26].”
In particular, for the case f = 0, the solution takes the
form
o 2 dp? i qyi
dSD_p_2<_dt —I—m—ﬁ—dydy). (44)

This is the same as the solution (24) we found in Sec. I1I. In
the next section, we discuss the necessary condition for our
wormhole solution to be traversable.

VI. NULL ENERGY CONDITION

It is known that in order for a solution to be a traversable
wormhole, it necessarily needs to violate the null energy
condition [24]

T, n'n’ > 0. (45)

To demonstrate that our solution indeed satisfies this
condition, we use the null vector

n, = (Gur» V9119pp+ 0s 0), (46)

whose covariant counterpart is given by

nt = (1’\/gtt/gpp’o?o>' (47)

The null energy condition takes the form
T n*n* =Tin'n, + Tyn’n, = —g,(=T; + T),).  (48)
We found that

T

v P
;wnﬂ” =Ty =941}

_a+0p T +al”A

ap?

(1 at*\
t 2l 2t 2 4420
4 ap”—p

= + <0. (49)

This theory violates the null energy condition and thus
indeed is a traversable wormhole.

VII. CONCLUSION AND SUMMARY

The wormholes with a cosmological constant in higher
dimensions are in general hard to solve directly. We found
the general exact solution of wormholes with a cosmo-
logical constant in higher dimensions. This was achieved
by implementing the mapping method that we learned
from the Kaluza-Klein reduction of two different theories
which were identified after dimensionally reducing to
the same lower theory. We also studied the property of
such a solution and demonstrated that they are indeed
good wormholes. It is of further interest if one could try to
find a correspondence more general that maps different
theories with gauge fields involved, thus solving more
profound problems that were otherwise impossible to
tackle with.
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APPENDIX A: KALUZA-KLEIN REDUCTION

In this appendix, we focus on deriving the reduced
Lagrangian in a lower dimension. In Sec. II, we have the
metric ansatz (4) for spherical reduction,

d§3 = e*idsy + e2dQ]. (A1)

We choose the following vielbien for this reduction:

E* = e®E?,  E = /PE. (A2)
Upon taking the exterior derivative,
dE* = -0 ANE" — 0 A B/
= d(e*E%) = d(e™) A B + e*1dE”
= a0, E? A B + ™ (—w§ A EP)
= ae™ 9, EP A B — 0§ A B, (A3)

where we used Cartan’s first structural equation in the first
line and the fact that 7 = 0 for our diagonal reduction
ansatz in the third line. So we can read off the spin
connection 1-form as

'y = 0% + ae™* (abébll::a - aa¢1]::65cb)- (Ad)
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The curvature 2-forms Q’s can be computed by using the

spin connection 1-forms we found. To proceed, we recall

We obtain all the spin connections in a similar way and list
the definition
(A6)

them here:
@'y = 0, + ae™* (5b¢1]::a - aad’lEC(Scb)v
Q%) = da", + @ A @ + 0% AWy

o'y =o',
(A5) The first term is given by

&', = pe=*19.pE".
|

da®, = a(—ae™™)(dp;) A (0 E* — 0°$1ES,;) + dw?, + ae™1d(0,¢p, E* — 09 ES,)
(A7)

= do?, — a?e™ 29, E° A (0,0, B — 0 E48,,) + ae 201 (0,0,¢, EC A EY — 0,0, E° A E¥5,,)

+ ae™ 1 (0, dE* — 0%¢,dE5,,).
Note that the terms in the last brackets involve exterior derivatives of E’s, and we want to show in detail the computation of

these terms:
ae“"/’lﬁbqﬁldﬁa = ae™0,¢, (—ae“"/’lacqﬁlﬁa ABC— . A EC)
(A8)

= 02€_2a¢lab¢lac¢1ﬁc A Ea — ae‘“¢‘6b¢1a)“c AN EC.

Plug Eq. (A8) back into Eq. (A7), and we find that
da)ab = d(l)ab - 0{2(3_2‘”’510645101,4)1]@16 A Ea + aze_za‘placd)la“gblﬁc A Ed5db + a€_2a¢l (0001,451]@10 A Ea - 000"451]30 AN Edédb)

+a’e 20,0, B AEY — ae™19,p 0% . AEC — P21 09¢h,0,p1 EC A BIS g, + ae” 1 00! AET Sy,
= dw®, — ae™2%1 (3,0, E* + w”cf()bd)l]::‘f) A EC 4 ae 2 (9.0, B + a)dcféacﬁll::f)édb AEC
= dw®, + ae 200 (V Ve, E95,, — V,V . EY) AEC, (A9)
where in the last line, we used the definition
VvVl =0,V’ + o, Ve,
(A10)

vavb = aavb - COacbvca
(Al1)

where the @,¢;, comes from the definition
w?y = 0, E°.

Then we can compute the curvature 2-form Q%,,
Q) = (do’), + 0%, A 0°) + ae (V. VB8, — V, V. EY) AE + a?e 21 (0. B — 0 E5,,)
N (O B = 091 B/ 6py) + ae™ P [ A (ppi BT = 0°h B 37) + (0001 B = 01 E6,0) A 0]

— pPe 219, E A ab¢2Ej5kj
= Q%) + ae 2 (cha¢1ﬁd5db - vacd)lﬁa) AES + o?e 21 (0, B — aad)lﬁd&dc) A (Oppi B — ac¢1ﬁf5fb)-
(A12)

By noting that E* A E/§, = E/ A B/ =0, we could further simplify the curvature 2-form. We list here all the curvature

2-forms:
Qab = Qah + ae_z{”/" (chaqﬁll::dédh - vac¢ll::a) A EC - aze_z’"p‘ (0¢1)2Ea AN Eféfb

+ e 200, qp (pp B — 0°p B/ 5p) A EC,
(A13)

Q= Q- e (0, B A B,
Q) = —ape2h (ac¢1ab¢2]::c + 0.h20pp E° — aa¢2aa¢1ﬁc5cb) A B 4 pe b (0,0, + vac(ﬁz)ﬁc AEL
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Now we use the following equation to read off the Riemann curvature:

N

| A . N
QAB - ERABMNEM A\ EN, (A14)

where A,B,M,N € {1,...,d,d+1,...,d + n}. We first look at

A
Q) == RynEM AEY

_ % Re, B A B+ %kabijﬁf AB 4 %ie“,,cjlizf N (A15)
compare this with Eq. (A13), and note that
Qf = %RgMNEM AEN = %RZCdEC A B4
= e~2h %Rgcdﬁc AE? (A16)
We can read off Riemann curvatures,

R%peq = € MRy g — a2 €721 (0gh1 )2 (8 :Spg — 6 4Bpc) + ae 21 (VY op1 6%y — ViV p 6,
— VN p16pq + VOV ap18pc) — eV (0ph10.p16% 4 — 0pp10ah15° c = 0“ 1018y + 0" 104h1 )
kihjd = afe™"(20,1p,04h> 5" i 204020,18'j — 20,010 h25p48' ;) — 2Pe ~2901 (B0yp10aps + ViV ahy)8' I
Ry = e R, — 27200 (0h ) (81,8, — 818 1), (A17)
where we antisymmetrized the indices to ensure the antisymmetry of the Riemann curvature tensor. Finally, we contract
Riemann curvatures,

N

Ryg = R%a + Rijig
= e 2N Ry, — (d - 1)a?e 21 (0, )*6py — ae™1 ((d — 2)V,V ypy + Oep1834) + a*e 271 ((d — 2)0yh1 04,
+ (0p1)*Spa) + 2nafe 1 (04¢p1 0y + 0uthr0pp1 — 0410 PrSpa) — 2nPe™ " (B0 hr0aths + ViV ahs),
Ry = e 7R, — (n— 1)1 (0gh,)25 . (A18)

Then use R = R?), + R/ ;- Eventually, we find that

R= eh R 4 e Wh:Rg — n(n — 1)fPe 9 (V)2 — d(d = 1)ede ™ (V)2 + 2(d — Dae 2 (O, — a(Veh)?)
— e (B(Vhy)? + Ohs) + (4n — 2nd)afe 0V by Vochs. (A19)

Now note the metric determinant in a lower dimension given by

Nars \/_(ezaasl)d(gzﬁzﬁz)ng — edethtnpn /=g, (A20)
Collecting the pieces above, we find the reduced Lagrangian,
Ly = =IR = y=gle R+ e :Rq +2(d — 1)ae b (Opy = (V) = 2npe 4 (B(Vp,)? + D)
+20(2 = djape 2V Vg, — d(d = De™ (V2 = n(n = 1) (Vpy edebr b

= V=gl (R +2(d = Da(Cgy = a(Veh)?) = 20B(B(V)* + D) — d(d = 1)a? (Ve
— n(n = DV + 20(d = 2)apdp Vohs) + e~ Roedet 10 (a21)
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Setting
¢ —llnX ¢ —lln(Xf) (A22)
1 — a 5 2 — ﬁ .
We arrive at the reduced Lagrangian,
Ly ="\ /—gxP-2 (R + (D =1)(D =2)(0X)*X2
nn—1)
t——2 > (A23)

where D = d + n and the last term is the curvature of the
n-sphere.

APPENDIX B: SOLVING THE HIGHER
DIMENSIONAL WORMHOLES

Here we derive in detail the solution of Ellis-Bronnikove
wormholes. We start with the action

s [axyma(rego07). @D

The equations of motion are given by

8(n—3)

o =2 [ F"
E', = F(r)=G(r)s <” <8 - +8

F'G Fj iQ+4(n—3)2 1C?
FG F?2 G2

1

OZRIW_E

1

0:IZ|¢—\/_

Assume that ¢ = ¢(r), and use the metric ansatz (26), and
then we find from the last equation that

0u(v/=99" 0uh).- (B2)

d¢ C
—_ = B3
dr  G(r) (B3)
Now we use the equation
E',+E,;,=0. (B4)

Then we conclude that the master equation for G(r) is

G'-2(n-3)>=0. (B3)
Then for E’, and E",, we use Mathematica with math-

ematical induction and find the equation of motion in a
generic dimension to be

G 4G*)

, - -2 F? G? 4(n-3)? 1C?
Er, = F(BGr e (o (—a = -2 ) 2> ), B6
= F(r) (r)3<8(n_3)< o - >+4G2) (B6)
Since we have E,, =, then E’, =0 and E", = 0, so
1C? -2 (JF' FG F? G” 4(n-3)°
== 88— =y Hn =37 (B7)
4G ( -3) F- G G
Substitute this back into E”,
pa [ B—2 F? G? 4(n-3) F" F'G'"  F? G? 4(n-3)?
E.=FraGr)s— (4 - 18- 18 S O I
r = F(r)=6(r) (8(11—3)( ZeE ¢ CPFTre TRt G >>
- 2 F// F/G/ F/2
0=F(aGre (21— (8o 18- 2 _g~_)),
= (AR )
F// F/G/ F/2
o= (F+re-1) (B8)
Also from E’", = 0, we find that
, - -2 F? G? 4(n-3) 1C?
0= F(NBGra (1o (gt 2 297 L 2 )
(r) (r) 3<8(n—3)< F2+G2 G >+4G2)
F/2 1G/2 _32 -3 C2
cIE L ) ek B (B9)

TP 4 G  2(n-

2) G?
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We completed the derivation of Egs. (27) and (28). Now we
derive the Ellis-Bronnikov class solution of this metric; in
the case that G(r) has no real roots, its solution for (B5) can
be written as

G(r) = (n=3)*r* + G,, (B10)
then
G =2(n-3)°r
and Eq. (B8) becomes
F// F/Z 2 -3 2 F/
cor —<”22)’ - (B11)
F F (n=3)r"+GyF
The solution of F(r) is given by
F(r) = Fy exp <ﬁ arctan <%>>, (B12)
where we defined the constant G as
Gy = (n—3)*R%. (B13)

F( and f are integration constants; in particular, we absorbed
a constant % in front of the arctan into the constant j3.

Now going back to Eq. (28), we find the constant C to be

C*=2R*(n-2)(n-

33(1+4%). (B14)

Use Eq. (B3), ¢' = and we find the axion field to be

2)(1+p%)

B(r) = o £ || = arctan <I;> (B15)

A coordinate change can put the metric into a better form.
For convenience, let us simply relabel the original coor-
dinates ¢ and r as 7 and 7, and then

I N2~
ds? = ~Fp i+ FOPG() = (AP + G(7)dQ?),
F(7) = Fyexp <ﬂ arctan <I’;>>
G(F) = (n=3)2(P + R?). (B16)

We can write the metric explicitly as

72

d_t2 + e2/i arctan (7/R)/(n=3)
0

x ((n=3)*(7 + R?)~"

x (472 + (n = 3)2(7 + R?)dQ2).

ds?2 = —¢ 2 arctan (7/R)

4)/(n-3)
(B17)

Now we express 7 and 7 in terms of the new coordinates ¢
and r,

_ 2R3
f=Fyt, 7= Ar/l . M=2(n-3)RF,. (BI8)
Defining
213
U(r) := arct , B19
(r) = arctan ( i ) ( )
M2
we can write the axion fields as
2(n=2)(1 +p?)
¢(r) = o+ \/n)_3U(V)- (B21)
Also we have
1/(n=3)
\% 1/ n— 3 <] + > (n—3)>
(r) 4p2(n=3
72(n=3) + (n 3)2R2) /(n=3)
- G( y G (B22)
and
((n = 3)2(7 + R?))"=idP?
s d(n —3)2R?
=((n=3)*R*+r 2(n— 3)) 47(’1 Mz) r2(n=4)q,2
dr?
=V(r)/n=3) ——. B23
(G (823)
The metric is now written as
dSZ — _e—Zf)’U(r)de + e2/3U(r)/(n—3)V(r)l/(n—3)
dr? 5
74242, B24
(v o) (624
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