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We present a consistent one-loop calculation for the inflationary tensor power spectrum in the
presence of an excited spectator scalar field using the in-in formalism. We find that the superhorizon
primordial power spectrum of the tensor mode can be scale-invariantly enhanced or reduced by the loop
effects of a subhorizon scalar field. Our calculation also includes the scalar-induced gravitational wave
spectrum classically computed in the previous literature, which is significant only near the scales where
the scalar field is amplified. The superhorizon enhancement is a higher-order effect of the interaction
Hamiltonian, which can be understood as a Bogoliubov transformation introduced by nonlinear
interactions. On the other hand, the scale-invariant reduction of the tensor power spectrum may occur
due to the fourth-order scalar-scalar-tensor-tensor coupling. This phenomenon can be understood as
the evolution of an anisotropic Bianchi type-I background in the separate universe approach. Our result
suggests that large-scale measurements may indirectly test the dramatic effects of small-scale
cosmological perturbations through loop corrections. This possibility opens a new ground in probing
the small-scale physics of the primordial Universe through gravitational wave detectors of cosmo-
logical scales.
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I. INTRODUCTION

The one-loop corrections to the inflationary power
spectra, and their UV and IR divergences, are important
components in cosmological perturbation theory of the
primordial universe [1–7]. Most studies focus on tiny loop
corrections suppressed by the Hubble-to-Planck-mass
ratio H2=M2

pl ∼ 10−10ϵ with the first slow roll parameter

ϵ≡ − _H=H. Thus it seems the motivation of such loop
analyses is to understand what our theories entail, rather
than to obtain experimentally verifiable results.
Recent progress in cosmological observations may

shed new light on the situation. The Laser Interferometer
Gravitational-Wave Observatory (LIGO) and Virgo event
in 2015 reported an unexpectedly massive black hole [8],
which rejuvenated the idea of primordial black holes
(PBHs) [9–11]. PBHs are formed from collapse of
Hubble horizon size regions caused by large curvature

perturbations [12–14]; therefore the existence of PBHs
suggests scale dependence of scalar fluctuations and thus
drastic enhancement of quantum fields at some point during
inflation [15–28]. UV or IR divergences are no longer
expected in loop integrals if one focuses on contributions
from excited states of a quantum field. Instead, an excited
quantum field may introduce sizable and observable loop
corrections. Thus, loop corrections motivated by PBHs may
lead to interesting phenomenology. The purpose of this
paper is to present a consistent one-loop calculation for
such an excited state during inflation.
The inflationary loops arise from nonlinear interactions

of cosmological perturbations. In general, interactions of
scalars are model dependent and thus complicated. In
contrast, the coupling to the tensor fluctuations is limited
to the kinetic term regardless of the interaction among
scalars for minimally coupled scalar fields in general
relativity. Hence, the possible loop corrections to the tensor
power spectrum are easier to deal with than those in the
scalar case. Moreover, ongoing and future gravitational*iasota@ust.hk
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wave (GW) measurements are attracting growing attention
from observational perspectives. Therefore, we focus on the
one-loop corrections to the tensor power spectrum (see,
e.g., Refs. [29,30] for recent works on scalar inflationary
loops from excited scalar fields). The appropriate formal-
ism for the present purpose is a full quantum approach,
known as the “in-in formalism,” as we consider the
quantum regime of inflationary fluctuations.
One often considers a secondary GW production from

cosmological perturbations (see, e.g., Ref. [31] and refer-
ences therein), where the classical equation of motion for
GWs with a source is integrated. The source usually
consists of a bilinear form of stochastic variables that
represent the scalar-type cosmological perturbation. The
induced tensor fluctuations are intensely investigated as
their detection may be a smoking gun for the PBH
formation in the very early Universe. Conventionally the
induced GW production is understood from a viewpoint of
classical nonlinear dynamics. However, the same process
may also be regarded as leading order quantum corrections
to the tensor modes from a viewpoint of quantum field
theory. From this perspective, we point out that the
computation of the induced GWs corresponds to that in
the Born approximation of the leading order interaction
Hamiltonian. Thus it is important to understand effects
beyond the Born approximation, which include in particu-
lar the iterative (or higher-loop) corrections arising from the
leading order interaction Hamiltonian as well as those from
higher-order interaction Hamiltonians.
Our recent paper [32] reported several surprising results

when including the iterative corrections as well as a higher
order Hamiltonian in the in-in formalism. We found that
the superhorizon tensor power spectrum may be scale-
invariantly enhanced or reduced by the loop effect, which
can be understood as a Bogoliubov transformation intro-
duced by the nonlinear interactions. This paper provides
detailed derivations of the result and an analysis of a new
model not discussed in Ref. [32], including new perspec-
tives such as the separate universe approach.
We organize this paper as follows. In Sec. II, we review

the previous approach to GW productions with stochastic
variables and point out two important missing components
in it. In Sec. III, we provide a brief but self-contained
review of the in-in formalism for the one-loop calculation
of the tensor power spectrum. Section IV describes the
cosmological setup in this paper. We apply the in-in
formulas to inflationary calculations. Then in Sec. V, we
derive the loop spectra from an excited scalar field. In
Sec. VI, we discuss physical implications of the results
from a perspective of the Bogoliubov transformation. In
Sec. VII, we discuss the separate universe approach to
obtain a more intuitive understanding of our result for
the scale invariant Born approximation contribution.
Conclusions are given in Sec. IX, and we supplemented
some mathematical details in the Appendixes.

II. WHAT IS NEW?

In cosmology, one often computes gravitational waves
in classical field theory. The classical equation of motion
for the cosmological tensor perturbation hij with source
is obtained by perturbatively expanding the Einstein
equation as

∂
2hij
∂τ2

þ 2H
∂hij
∂τ

−∇2hij ¼ Πij
klSkl; ð1Þ

where τ is the conformal time, and H is the conformal
Hubble parameter, H ¼ d lnðaÞ=dτ. The source Sij is
obtained by expanding the Einstein tensor and the
energy-momentum tensor, and Πij

kl is the projection
operator onto the transverse-traceless subspace. Given
the Green’s function G with an appropriate boundary
condition, Eq. (1) is formally integrated to give

hijðxÞ ¼ hhom;ijðxÞ þ hind;ijðxÞ;

hind;ijðxÞ ¼
Z

d4x0Gðx; x0ÞΣijðx0Þ; ð2Þ

where x and x0 are four-dimensional coordinates and
Σij ≡ Πij

klSkl, where hhom;ij is a homogeneous solution.
With the retarded boundary condition on G, it is the
primordial tensor perturbation from inflation in the stan-
dard scenario of the early universe. The inhomogeneous
part represents gravitational waves produced, e.g., by the
nonlinear evolution of density fluctuations. The inhomo-
geneous part hind;ij in Eq. (2) may be regarded as a classical
field, but the source configuration is random, as the initial
condition of cosmological perturbations may originate
from quantum fluctuations during inflation. Hence, hind;ij
should also be random, whose statistical property is
characterized by correlation functions. In cosmology, we
often consider the two-point correlation function,

hhijðxÞhijðyÞi
¼ hhhom;ijðxÞhijhomðyÞi

þ
Z

d4x0d4y0Gðx; x0ÞGðy; y0ÞhΣijðx0ÞΣijðy0Þi; ð3Þ

where the first term due to the homogeneous part is usually
assumed to be negligible. Previous literature considered
various origins of Σij and the associated secondary GWs.
This is a standard prescription to compute GWs from
stochastic sources.
We mention that there are two additional important

contributions that must be included in the above compu-
tation (see also Ref. [33]). First, the cross term of
homogeneous and inhomogeneous solutions is missing
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in Eq. (3). In addition to the autocorrelation of hhom;ij, the
following cross term may be nonvanishing:

hhijðxÞhijðyÞi ⊃
Z

d4y0Gðy; y0Þhhhom;ijðxÞΣijðy0Þi: ð4Þ

In fact, it is in general nonvanishing if we expand the source
to third order in perturbation. At leading order, the source is
of the second order in perturbation, and so is the induced
part of hij. Therefore, the third-order term is subleading
in hij. However, the order of the cross-correlation between
the first- and third-order terms is equivalent to that of the
autocorrelation of the second-order term. Thus the cross-
correlation may also equally contribute to the correlation
function. In the language of quantum theory, ignoring the
cross term implies an incomplete loop expansion.
The second missing contribution is from the iterative

solution. The formal solution (1) is well defined in the
Born approximation. However, once we take nonlinear
terms into account, the source term will contain the
tensor perturbation that appears on the left-hand side.
Perturbatively, this means we have to solve it iteratively.
In particular, the iterative solution to the next-to-leading
order in the source needs to be included for consistency.
Namely, like the first issue, the first iterative correction is
subleading at the field level but may contribute to the
correlation function at the same order as the conventional
induced GW part.
To summarize, we need to take into account all possible

higher-order interactions and iterative solutions to con-
sistently calculate the nonlinear corrections to cosmologi-
cal correlation functions. In this paper, we perform a
consistent computation up to the one-loop order. We
mention that similar classical stochastic loops are dis-
cussed in the nonlinear matter power spectrum of large-
scale structure [34]. In that context, all effects are included
consistently.
The standard approach based on Eq. (1) applies to

classical stochastic systems. In cosmology, the method
should explain the evolution of random fields after
inflation [33]. We are interested in the quantum phase
during inflation in this paper, so we consider the in-in
formalism instead. As discussed in Sec. VI, the quantum
evolution of the field operator hij in the interaction picture
is expanded into

hij ¼ hI;ij þ iλ
Z

τ

τ0

dτ0½Hint;Iðτ0Þ; hI;ij�

− λ2
Z

τ

τ0

dτ0
Z

τ0

τ0

dτ00½Hint;Iðτ00Þ; ½Hint;Iðτ0Þ; hI;ij��

þOðλ3Þ; ð5Þ

where hI;ij is the interaction picture field, i.e., the linear
tensor fluctuations, andHint;I is the interaction Hamiltonian

in the interaction picture. τ0 is the initial time, and the τ
dependence is suppressed for notational simplicity. Order
in λ implies the number of vertices, and the standard
induced GWs are the leading order correction in the first
line. The power of H2=M2

pl counts the number of infla-
tionary loops. The one-loop correction to the two-point
function contains terms up to Oðλ2Þ, so there is no prior
reason to truncate the expansion at OðλÞ in Eq. (5).
(In)equivalence of the classical stochastic approach and

the quantum in-in formalism during inflation is not
obvious. A classical stochastic theory can also describe a
class of quantum systems, as Nelson discussed in Ref. [35].
In the cosmological context, the equivalence of the two
approaches for linear perturbations was discussed in
Ref. [36]. The comparison of the two approaches at loop
level will be discussed in a separate paper in future work.
In the next section, we start with a lightning review of the
in-in formalism.

III. IN-IN FORMALISM: A REVIEW

We are interested in the time evolution of the vacuum
expectation value (VEV) of a field operator O during
inflation. In the Heisenberg picture, the VEV should be
written as

hOi ¼ hΩjOjΩi; ð6Þ

where O and jΩi are the operator and the vacuum in the
Heisenberg picture. The time evolution of O in a general
case is complicated. In the interaction picture, we recast
Eq. (6) into

hΩjOjΩi ≈ h0jF†OIFj0i; ð7Þ

where j0i is the free vacuum, and F is a unitary operator
constructed from the free field operators. We evaluate the
two-point function up to the one-loop order by expandingF
to third order in the free fields. This section provides a brief
but self-consistent derivation of Eq. (7) and its perturbative
expansions. One can also find reviews of the in-in formal-
ism in Refs. [1,37–39], and readers who are familiar with
the in-in formalism may skip this section.
Quantization of classical fields is given by promoting

Poisson (Dirac) brackets in the (constraint) canonical
formalism to the commutation relations. Then the canonical
equation of motion for a classical field O with respect to a
Hamiltonian H becomes the Heisenberg equation for the
field operator,

_O ¼ i½H½ϕ; π; τ�; O� þ ∂O
∂τ

; ð8Þ

where the overdot is the ordinary derivative with respect to
time, τ. The Hamiltonian operator H is a functional of a
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canonical field variable ϕ and conjugate momentum π.
Using the Hamiltonian density, H, we have

H½ϕ; π; τ� ¼
Z

d3xHðϕ; π; τÞ: ð9Þ

In cosmological perturbation theory, H is explicitly de-
pendent on τ as we consider a time-dependent background.
Extension to the multifield operators is straightforward, but
here we only consider the single variable for notational
simplicity.
If ∂O=∂τ ¼ 0, the time evolution of O is unitary. Using

the time evolution operator U from τ0 to τ, we get

O ¼ U−1O0U; ð10Þ

where the subscript 0 implies the operator evaluated at
τ ¼ τ0. Substituting Eqs. (10) into (8), we find

_O ¼ ½−U−1 _U;O�: ð11Þ

As Eq. (11) is satisfied for any operators with ∂O=∂τ ¼ 0,
Eqs. (8) and (11) yield

_U ¼ −iUH½ϕ; π; τ�; ð12Þ

which is different from the expression used in the literature,
i.e., one often assumes (see, e.g., Ref. [1])

_U ¼ −iH½ϕ; π; τ�U: ð13Þ

If ∂H=∂τ ¼ 0, we have H ¼ U−1HU, so we get Eq. (13)
from Eq. (12). However, this is not the case in cosmological
perturbation theory. Indeed, the correct operator ordering of
Eq. (12) is used in the following derivation.
If the Hamiltonian is written as H ¼ H̄ þHint with the

free-field Hamiltonian H̄ and the interaction part Hint, the
perturbative expansion with respect to the free-field oper-
ators is convenient. We introduce the interaction picture
field that evolves as

_OI ¼ i½H̄½ϕI; πI; τ�; OI�: ð14Þ

The time evolution of OI is similarly written as

OI ¼ U−1
I OI0UI; ð15Þ

_UI ¼ −iUIH̄½ϕI; πI; τ�: ð16Þ

AssumingOI0 ¼ O0, the interaction picture field writes the
Heisenberg operator as

O ¼ F−1OIF; F≡U−1
I U: ð17Þ

We find the equation of motion for F by using
Eqs. (12) and (16):

_F ¼ −iFH½ϕ; π; τ� þ iH̄½ϕI; πI; τ�F: ð18Þ

Then,

FH½ϕ; π; τ�F−1

¼ U−1
I H½ϕ0; π0; τ�UI ¼ H½ϕI; πI; τ� ð19Þ

is the Hamiltonian in the interaction picture, and Eq. (18)
yields

_F ¼ −iðH½ϕI; πI; τ� − H̄½ϕI; πI; τ�ÞF
¼ −iHint½ϕI; πI; τ�F: ð20Þ

Given the initial condition F ¼ 1 for τ ¼ τ0, the solution to
this equation is formally obtained as

F ¼ T exp

�
−i
Z

τ

τ0

dτ0Hint;Iðτ0Þ
�
; ð21Þ

where T is the time ordering operator. Hereafter the
functional dependence is suppressed for notational
simplicity:

Hint;Iðτ0Þ≡
Z

d3xHintðϕIðτ0;xÞ; πIðτ0;xÞ; τ0Þ: ð22Þ

τ dependence is also suppressed when it is obvious from the
context.
We obtained the Heisenberg operator written by the

interaction picture field in Eq. (17). The next step is the
calculation of the expectation value. Following the pre-
scription in the in-out formalism, one often shows

lim
τ0→−∞

hΩjOjΩi ¼ lim
τ0→−∞ð1−iϵÞ

h0jOj0i; ð23Þ

where τ0 is the initial time of inflation. We find the above
equation as follows. For simplicity, let us consider thatH is
time independent for the iϵ prescription and restore the time
dependence of H afterward. Then we find

h0jOj0i ¼ h0jeiðτ−τ�0ÞHO0e−iðτ−τ0ÞHj0i; ð24Þ

where O0 implies the operator at τ ¼ τ0. Inserting the
identity operator expanded by the Hamiltonian eigenstates,
1 ¼Pn jΩnihΩnj with HjΩni ¼ EΩn

jΩni and jΩ0i ¼ jΩi,
one finds

h0jOj0i ¼
X
n;m

e−iðτ−ℜ½τ0�ÞðEΩn−EΩm Þ−ℑ½τ0�ðEΩnþEΩm Þ

× h0jΩmihΩmjO0jΩnihΩnj0i: ð25Þ
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After the iϵ prescription, we get

lim
τ0→−∞ð1−iϵÞ

h0jOj0i ¼ e−2∞ϵEΩ0 jh0jΩij2hΩjO0jΩi: ð26Þ

Thus, EΩn
≠ EΩm

configuration is oscillated away for a −iϵ
rotated large time interval, and the diagonal components
are Boltzmann suppressed by e−2∞ϵEΩn . The normalization
factor is determined by considering O ¼ 1, and one finds
e−2∞ϵEΩ0 jh0jΩij2 ¼ 1. Then hΩjOjΩi is similarly expanded
in the limit, and Eq. (23) is shown. Substituting Eq. (21)
into Eq. (17), and using Eq. (23), one finds

hOi ¼ lim
τ0→−∞ð1−iϵÞ

h0jT̄ exp

�
iλ
Z

τ

τ�
0

dτ0Hint;Iðτ0Þ
�

×OIðτÞT exp

�
−iλ

Z
τ

τ0

dτ00Hint;Iðτ00Þ
�
j0i; ð27Þ

where we introduced an order counting parameter λ,
and T̄ is the anti-time ordering operator. Equation (27) is
expanded into

hOi ¼
X∞
λ¼0

λnhOin; ð28Þ

where we introduced

hOi0 ¼ h0jOIðτÞj0i; ð29Þ

hOi1 ¼ 2ℑ
Z

τ

τ0

dτ0h0jOIðτÞHint;Iðτ0Þj0i; ð30Þ

hOi2a ¼
Z

τ

τ�
0

dτ0
Z

τ

τ0

dτ00

× h0jHint;Iðτ0ÞOIðτÞHint;Iðτ00Þj0i; ð31Þ

hOi2b ¼ −2ℜ
Z

τ

τ0

dτ0
Z

τ0

τ0

dτ00

× h0jOðτÞHint;Iðτ0ÞHint;Iðτ00Þj0i; ð32Þ

with hOi2 ≡ hOi2a þ hOi2b. In the end of calculation, we
set τ ¼ 0. Equations (30) to (32) are the basic equations
we use in this paper. Hereafter we set the order counting
parameter λ ¼ 1. Oðλ2Þ and Oðλ1Þ contributions are dia-
grammatically represented in Fig. 1.

IV. INFLATIONARY ONE-LOOP CALCULATIONS

In the previous section, we reviewed the in-in formalism.
We apply the method to inflationary cosmology in this
section. In cosmological perturbation theory, we expand the
full Hamiltonian around the inflationary background. The
second-order Hamiltonian is the free Hamiltonian in this
setup, and cosmological perturbations are the interaction

picture fields. The interaction Hamiltonian is the rest of the
nonlinear corrections expanded by the linear perturbations.
In this section, we derive the interaction Hamiltonian from
the action and find the loop power spectrum.

A. Cosmological setup

There exists gauge freedom in cosmological perturbation
theory as identifying a background spacetime with the
physical spacetime is not unique. We need to fix the gauge
for quantization to properly count the dynamical degrees of
freedom and thus for the in-in formalism. In this paper, we
consider the uniform curvature gauge for the scalar per-
turbations where the scalar degrees of freedom are those of
matter sectors after solving the constraint equations and the
spatial curvature is zero. As we expand the action to second
order in the tensor perturbations, the gauge condition for
tensor perturbations should also be specified. Following
Maldacena [37], the spatial component of the metric tensor
is written as

gij ¼ a2ehij ; ð33Þ

where a is the background scale factor, and we defined

ehij ≡ δij þ hij þ
1

2
hikhkj þOðh3Þ; ð34Þ

and the transverse-traceless condition is given by

∂
ihij ¼ δijhij ¼ 0: ð35Þ

In this paper, the spatial index is raised and lowered by
the background spatial metric δij and δij. In the previous
literature, one often used

ḡij ¼ a2ðδij þ h̄ijÞ; ð36Þ

instead of Eq. (34), which are equivalent at linear order. At
nonlinear order, the latter tensor gauge condition implies

ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det jδij þ h̄ijj

q �
¼ 1

4
h̄ijh̄ij þOðh3Þ: ð37Þ

Thus, h̄ij perturbs the volume element, which is the
curvature perturbation that should be zero in the uniform
curvature gauge. Gravitational waves or tensor fluctuations

FIG. 1. The one-loop order Feynman diagrams considered
here: (a) and (b) correspond to Ph2 and Ph1, respectively, in
our calculation.
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are distortions in spacetime without changing volume.
Hence, it should be introduced such that the volume
element is not perturbed by hij. Equation (34) is an example
of such a parametrization, i.e., we have

det jehij j ¼ 1: ð38Þ

Therefore, we use Eq. (33) instead of Eq. (36). The lapse and
shift are slow-roll suppressed compared to δχ in this gauge,
so scalar fluctuations are represented only by the matter
action to the leading order in the slow-roll parameter [37].
This paper considers quantum corrections of the tensor
fluctuations due to a minimally coupled spectator scalar field
χ. With Eq. (33), the possible interaction between χ and hij is
model independent and only appears in the kinetic term

Sfull ⊃ −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
gμν∇μχ∇νχ; ð39Þ

where Sfull is the full inflationary action. We denote the
spectator scalar field fluctuation by δχ. Then the relevant part
of Eq. (39) is written as

Z
dτa2

Z
d3x

�
1

2
hij −

1

4
hikhkj

�
∂iδχ∂jδχ: ð40Þ

We read the interaction Lagrangian Lint from Eq. (40) and
Legendre transform gives Hint ¼ −Lint as the interaction
does not involve time derivative couplings. Then we find the
interaction Hamiltonian

Hint ≡ a2
Z

d3x

�
−
1

2
hij þ 1

4
hikhkj

�
∂iδχ∂jδχ: ð41Þ

As far as we consider minimally coupled scalar field,
the interaction Hamiltonian is written as Eq. (41) for a wide
class of theories since potential terms like

ffiffiffiffiffiffi−gp
Vðχ;…Þ do

not contain the tensor fluctuation in the present gauge
condition (33).
Fourier integrals of cosmological perturbations are

written as

δχðτ;xÞ ¼
Z

d3q
ð2πÞ3 e

iq·xδχqðτÞ; ð42Þ

hijðτ;xÞ ¼
Z

d3q
ð2πÞ3 e

iq·x
X
s¼�2

esijðq̂ÞhsqðτÞ; ð43Þ

where q̂≡ q=jqj. The tensor fluctuations are expanded by
the polarization tensor esijðq̂Þ, which satisfies

esijðq̂Þeij;s0 ðq̂Þ� ¼ δss
0
; esijð−q̂Þ ¼ esijðq̂Þ�; ð44Þ

where δss
0
is the Kronecker delta. Using Eqs. (42) and (43),

Eq. (41) is written as

Hint ¼ Hð3Þ
int þHð4Þ

int ; ð45Þ

where Fourier integrals of the interaction Hamiltonians are
written as

Hð3Þ
int ¼

1

2

Y3
A¼1

�Z
d3pA

ð2πÞ3
�
ð2πÞ3δ

�X3
A¼1

pA

�X
s

× a2hsp1
eij;sðp̂1Þp2ip3jδχp2

δχp3
; ð46Þ

Hð4Þ
int ¼ −

1

4

Y4
A¼1

�Z
d3pA

ð2πÞ3
�
ð2πÞ3δ

�X4
A¼1

pA

�X
s1;s2

× a2eik;s1ðp̂1Þekj;s2ðp̂2Þp3ip4jh
s1
p1
hs2p2

δχp3
δχp4

;

ð47Þ

where δ is the three-dimensional delta function. As dis-
cussed in the previous section, the second-order action
describes the free theory in cosmological perturbation
theory, and the linear perturbations are the interaction
picture fields. Following the standard quantization proce-
dures, the Fourier transforms of cosmological perturbations
are expanded into the creation and annihilation operators as

δχqðτÞ ¼ uqðτÞaq þ u�qðτÞa†−q; ð48Þ

hsqðτÞ ¼ vqðτÞbsq þ v�qðτÞbs†−q; ð49Þ

where uq and vq are the corresponding positive frequency
mode functions. For example, the ground state mode
functions for free spectator scalar and tensor fluctuations
in general relativity are given as

uGSq ðτÞ ¼ Hffiffiffiffiffiffiffi
2q3

p ð1þ iqτÞe−iqτ; ð50Þ

vGSq ðτÞ ¼ 2H

Mpl

ffiffiffiffiffiffiffi
2q3

p ð1þ iqτÞe−iqτ: ð51Þ

The annihilation and creation operators of scalar and tensor
fluctuations satisfy

aqj0i ¼ bsqj0i ¼ 0; ð52Þ

and the nonvanishing commutation relations are

h
aq; a

†
−q̄

i
¼ ð2πÞ3δðqþ q̄Þ; ð53Þ

h
bsq; b

s̄;†
−q̄

i
¼ ð2πÞ3δss̄δðqþ q̄Þ: ð54Þ
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B. Loop calculation

Given interaction Hamiltonians (46) and (47), we are
ready to compute the VEV of

OIðτÞ ¼
X
s¼�2

hsqðτÞhsq̄ðτÞ; ð55Þ

using Eq. (27). We compute the power spectrum Ph
defined as

�X
s¼�2

hsqðτÞhsq̄ðτÞ
�����

τ¼0

¼ ð2πÞ3δðqþ q̄ÞPhðqÞ; ð56Þ

order by order in λ by using Eqs. (29) to (32). The total
tensor power spectrum, including one-loop correction, is

Ph ¼ Ph0 þ Ph1 þ Ph2a þ Ph2b; ð57Þ

where the subscript implies the number of vertices in λ;
Phn ¼ OðλnÞ. Below we evaluate each term of Eq. (57).

1. Oðλ0Þ
First, we derive the loop correction without any assump-

tions about the background spacetime or the mode func-
tions. Calculation of Eq. (29) is straightforward. From
Eq. (A2), we find the tree-level power spectrum

Ph0ðqÞ ¼ 2jvqð0Þj2: ð58Þ

This is the power spectrum of the primordial gravitational
waves in the standard linear perturbation theory. For the
ground state (51) at τ ¼ 0, we have

Ph0ðqÞ ¼
4H2

M2
plq

3
¼ 2π2

q3
·
2H2

π2M2
pl

: ð59Þ

2. Oðλ1Þ
Next, we compute the diagram of Oðλ1Þ. Substituting

Eqs. (46) and (47) into Eq. (30), one finds

*X
s¼�2

hsqðτÞhsq̄ðτÞ
+

1

¼ −
1

2
ℑ
Z

τ

τ0

dτ0
Y4
A¼1

�Z
d3pA

ð2πÞ3
�
ð2πÞ3δ

 X4
A¼1

pA

!

×
X
s;s1;s2

aðτ0Þ2eik;s1ðp̂1Þekj;s2ðp̂2Þp3ip4j

× h0jhsqðτÞhsq̄ðτÞhs1p1
ðτ0Þhs2p2

ðτ0Þj0i
× h0jδχp3

ðτ0Þδχp4
ðτ0Þj0i: ð60Þ

Note that the contribution from Hð3Þ
int vanishes since the

linear tensor fluctuation is Gaussian. Using Eqs. (A1)
and (A4), we find*X

s¼�2

hsqðτÞhsq̄ðτÞ
+

1

¼ ð2πÞ3δðqþ q̄Þℑ
Z

τ

τ0

dτ0aðτ0Þ2
Z

d3p3

ð2πÞ3
X
s

× eik;sðq̂Þ�ekj;sðq̂Þp3ip3jvqðτÞ2v�qðτ0Þ2jup3
ðτ0Þj2;

ð61Þ

where we dropped a (two-loop) bubble diagram eliminated
from our consideration after proper normalization. Indeed,
those diagrams result in zero after the polarization sum due
to the angular momentum conservation. UsingZ

dp̂3

4π
p̂3ip̂3j ¼

δij
3
; ð62Þ

and Eq. (44), we findZ
dp̂3

4π

X
s

eik;sðq̂Þ�ekj;sðq̂Þp̂3ip̂3j ¼
2

3
: ð63Þ

Then we get

Ph1 ¼ vqð0Þ2ℑ
Z

0

τ0

dτ0aðτ0Þ2v�qðτ0Þ2
Z

p4
3dp3

3π2
jup3

ðτ0Þj2:

ð64Þ

3. Oðλ2Þ
Lastly, we consider Oðλ2Þ contributions that we named Ph2a and Ph2b. Using Eqs. (31) and (46), one obtains

*X
s¼�2

hsqðτÞhsq̄ðτÞ
+

2a

¼ 1

4

Z
τ

τ�
0

dτ0aðτ0Þ2
Z

τ

τ0

dτ00aðτ00Þ2
Y6
A¼1

�Z
d3pA

ð2πÞ3
�
ð2πÞ3δ

 X3
A¼1

pA

!
ð2πÞ3δ

 X6
A¼4

pA

!

×
X
s;s1;s4

eij;s1ðp̂1Þp2ip3jekl;s4ðp̂4Þp5kp6lh0jhs1p1
ðτ0ÞhsqðτÞhsq̄ðτÞhs4p4

ðτ00Þj0i

× h0jδχp2
ðτ0Þδχp3

ðτ0Þδχp5
ðτ00Þδχp6

ðτ00Þj0i: ð65Þ
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Using Eqs. (A3), (A4), and the index symmetry for p2

and p3, we find

*X
s¼�2

hsqðτÞhsq̄ðτÞ
+

2a

¼ ð2πÞ3δðqþ q̄Þ
Z

τ

τ�
0

dτ0aðτ0Þ2
Z

τ

τ0

dτ00aðτ00Þ2

×
Y3
A¼2

�Z
d3pA

ð2πÞ3
�
ð2πÞ3δ

 X3
A¼2

pA − q

!

×
X
s

eij;sðq̂Þp2ip3jekl;sðq̂Þ�p2kp3lvqðτÞv�qðτÞ

× vqðτ0Þup2
ðτ0Þup3

ðτ0Þv�qðτ00Þu�p2
ðτ00Þu�p3

ðτ00Þ; ð66Þ

where we dropped bubble graphs, and there is no con-
tribution from tadpole graphs. We can simplify the angular
integrals in the above equation by using Appendix B.
Combining Eqs. (B3), (B4), and (B5), one finds

Y3
A¼2

�Z
d3pA

ð2πÞ3
�
ð2πÞ3δ

 X3
A¼2

pA − q

!

×
X
s¼�2

jeij;sðq̂Þp2ip3jj2fðp2; p3Þ

¼
Z

∞

0

dp2

Z
p2þq

jp2−qj
dp3w̄ðq;p2; p3Þfðp2; p3Þ; ð67Þ

where we defined

w̄ðq;p2; p3Þ

≡ p2p3ðp4
2 − 2p2

2ðp2
3 þ q2Þ þ ðp2

3 − q2Þ2Þ2
128π2q5

: ð68Þ

Using Eq. (67), Eq. (66) simplifies to

Ph2a ¼ jvqð0Þj2
Z

∞

0

dp2

Z
p2þq

jp2−qj
dp3w̄ðq;p2; p3Þ

×

����
Z

0

τ�
0

dτ0aðτ0Þ2vqðτ0Þup2
ðτ0Þup3

ðτ0Þ
����2: ð69Þ

Ph2b can be calculated similarly. Using Eqs. (A3) and (A4)
for Eqs. (32) and (46), and dropping the bubble graphs,
we find

Ph2b ¼ −2vqð0Þ2ℜ
Z

∞

0

dp2

Z
p2þq

jp2−qj
dp3w̄ðq;p2; p3Þ

×
Z

0

τ0

dτ0aðτ0Þ2v�qðτ0Þup2
ðτ0Þup3

ðτ0Þ

×
Z

τ0

τ0

dτ00aðτ00Þ2v�qðτ00Þu�p2
ðτ00Þu�p3

ðτ00Þ: ð70Þ

Note that ℜ and ℑ imply that we take the real and
imaginary parts of the whole equations, including the
integral domain. This section derived general one-loop
formulas without specifying mode functions of scalar and
tensor perturbations. Equations (64), (69) and (70) will be
useful for various purposes.

V. ONE-LOOP CORRECTIONS
FROM EXCITED STATES

This section considers the loop corrections from an
excited scalar field at some specific momenta. Such a
setup is interesting mainly for two reasons. First, the
loop integral is simplified. We do not have to consider
the UV or IR divergence issue since the loop integral is
evaluated for specific momenta whose physics is com-
pletely determined by a given model. Second, such a
scale-dependent scalar field is phenomenologically con-
sidered in the context of primordial black hole forma-
tion. The loop corrections from enhanced scalar fields
may be observationally testable. Let us derive the one-
loop formulas for monotonically excited scalar fields in
this section.

A. One-loop formulas for sharp excited states

In the previous section, we saw that Oðλ2Þ contributions
(69) and (70) take the following form:

Ph2 ¼
Z

∞

0

dp2

Z
p2þq

jp2−qj
dp3w̄ðq;p2; p3Þfðp2; p3Þ: ð71Þ

The simplest situation is that we only have the
scalar field excitation for p2 ¼ p3 ¼ p� modes.
In that case, the evaluation of Eq. (64) is straight-
forward, and the integrand in Eq. (71) should be
replaced as

fδðp2; p3Þ ¼ δðlnðp2=p�ÞÞδðlnðp3=p�ÞÞfðp�; p�Þ: ð72Þ

Using Eq. (B6), we obtain

Ph2 ¼
p4�ð4p� − q2Þ2

128π2q
Θ2−q=p�fðp�; p�Þ; ð73Þ

where Θ2−q=p� is the Heaviside step function of 2 − q=p�.
The Heaviside step function implies the momentum con-
servation upon generating tensor fluctuations from the
scalar fluctuations. On the other hand, the loop integral
in Eq. (64) is straightforward. Using Eq. (73) for Eqs. (69)
and (70), we obtain
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Pδ
h1

Ph0
¼ p5�

6π2
ℑ
Z

0

τ0

dτ0aðτ0Þ2v�qðτ0Þ2jup� ðτ0Þj2; ð74Þ

Pδ
h2a

Ph0
¼ p4�ð4p2� − q2Þ2

256π2q
Θ2−q=p�

×

����
Z

0

τ�
0

dτ0aðτ0Þ2vqðτ0Þup� ðτ0Þ2
����2; ð75Þ

Pδ
h2b

Ph0
¼ −

p4�ð4p2� − q2Þ2Θ2−q=p�

128π2q

×ℜ
Z

0

τ0

dτ0aðτ0Þ2v�qðτ0Þup� ðτ0Þ2

×
Z

τ0

τ0

dτ00aðτ00Þ2v�qðτ00Þu�p�ðτ00Þ2: ð76Þ

The delta functions in Eq. (72) are written as the
superposition of plane waves at all scales:

δðln q̃Þ ¼ 1

2π

Z
∞

−∞
eiðln q̃Þydy: ð77Þ

From the causality perspective, a wave packet in real space
should be localized around a finite region. Hence, employ-
ing Eq. (77) implicitly violates causality. To localize the
real space field configuration, we introduce a Gaussian
window for the Fourier integral (77). Then we find

1

2π

Z
∞

−∞
dye−

1
2
Δ2y2eiðln q̃Þy ¼ e−

½ln q̃�2
2Δ2ffiffiffiffiffiffi
2π

p
Δ
: ð78Þ

Thus, a more realistic momentum distribution could be
written by a log-normal distribution with a finite
width Δ around p2 ¼ p3 ¼ p�. In this case, we generalize
Eq. (72) to

fLNðp2; p3Þ ¼
e−

½lnðp2=p�Þ�2þ½lnðp3=p�Þ�2
2Δ2

2πΔ2
fðp�; p�Þ: ð79Þ

In the Δ → 0 limit, the log-normal distribution recovers
the delta function. For the narrow log-normal peak, the
momentum integral is approximated by the peak value
at p2 ¼ p3 ¼ p�. Then Eq. (64) has the same form as
Eq. (74). For Ph2, we can integrate out one of the momenta
trivially, and the remaining integral gives a generalized step
function,

ΘΔ
2−q=p�

≡ e2Δ
2

2

�
erf

�
2Δ2 − ln ðj1 − q=p�jÞffiffiffi

2
p

Δ

�

− erf

�
2Δ2 − ln ð1þ q=p�Þffiffiffi

2
p

Δ

�	
: ð80Þ

Thus, the Heaviside step function in Eq. (73) is generalized
to ΘΔ, as we have

lim
Δ→0

ΘΔ
2−q=p�

¼ Θ2−q=p� : ð81Þ

For a small q=p�, one finds

ΘΔ
2p�−q̃ ¼

ffiffiffi
2

π

r
q

p�Δ
þOðq3=p3�Þ: ð82Þ

Thus ΘΔ introduces an additional q=p� factor for the log-
normal case. Hence, PLN

h2a=h2b are obtained by replacing Θ
with ΘΔ in Pδ

h2a=h2b.

B. A model

We derived the one-loop formulas for the partly enhanced
scalar fields in the previous sections. This section considers a
specific model of excited scalar fields and evaluates the
loop corrections more concretely. First, let us consider an
enhancement of spectator scalar fluctuation modeled by

δχ ¼ eμHðtf−tiÞδχGS; ð83Þ
where superscript “GS” implies the ground state, μ is a
dimensionless time constant, ti and tf are the physical time
of the initial and final time of the scalar enhancement.
Note that the implementation of spectator field enhancement
is not unique. We also discuss the spectator scalar field
amplification via the Bogoliubov transformation in Sec. VI.
In this paper, we do not specify the enhancement process to
amplify the scalar mode but consider the consequences of
Eq. (83). Using the conformal time, the enhancement factor
in Eq. (83) can be recast into

eμHðtf−tiÞ ¼
�
τi
τf

�
μ

; ð84Þ

where τi and τf are the conformal time counterpart of ti and
tf. For simplicity, the scalar fluctuation is in the ground state
before the amplitude enhancement, and the enhancement
factor is constant for τ > τf. All details, including the time
dependence of the enhancement factor, are contained in

ΞðτÞ ¼

8>>><
>>>:

0; ðτ < τiÞ;

τi
τ

�
μ
; ðτi < τ < τfÞ;


τi
τf

�
μ
; ðτf < τÞ;

ð85Þ

where Ξ ¼ 0 for τ < τi implies that we subtracted the
vacuum contribution. We can change the time dependence
of Ξ for different models. Time dependence at τf < τ < 0

relies on a realization of how the scalar amplitude is
enhanced. More realistic enhancement factors could be
oscillating or decaying after τ ¼ τf.
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Let us consider that the enhancement happens only for
p ¼ p� modes. In this case, Eq. (83) for p ¼ p� is realized
by simply multiplying Ξ and the ground state mode
function as

up� ¼ ΞuGSp� ; ð86Þ

and the tensor fluctuation is not changed: vq ¼ vGSq .
Equation (86) could be realized when, e.g., the sound
speed of the spectator field is exponentially suppressed.
We may also consider such an exponential factor in the
parametric resonance.
We can straightforwardly use Eqs. (74) to (76) for

Eq. (86), and we find

Pδ
h1

Ph0
¼ H2

M2
pl

ℑ
Z

0

x0

dxXq̃ðxÞ; ð87Þ

Pδ
h2a

Ph0
¼ 1

2

H2

M2
pl

ΘΔ
2−q̃

����
Z

0

x0

Yq̃ðxÞdx
����2; ð88Þ

Pδ
h2b

Ph0
¼ −

H2

M2
pl

ΘΔ
2−q̃ℜ

Z
0

x0

dx
Z

x

x0

dx0Y�
−q̃ðxÞYq̃ðx0Þ; ð89Þ

where xa ≡ p�τa (a ¼ 0; i; f) and q̃≡ q=p�, a ¼ −1=ðHτÞ
and we introduced

Xq̃ðxÞ≡ ð1þ x2Þð1 − iq̃xÞ2
6π2q̃3x2

e2iq̃xΞðx=p�Þ; ð90Þ

Yq̃ðxÞ≡ð4− q̃2Þð1− iq̃xÞð1− ixÞ2
16πq̃2x2

eiðq̃þ2ÞxΞðx=p�Þ: ð91Þ

The IR behavior of Ph1 can be found analytically.
Expanding Eq. (87) with respect to q̃,

Ph1

Ph0
¼ −

H2

18π2M2
pl

�
x4f

μ − 2
þ x2f
μ − 1

��
xi
xf

�
2μ

þ H2

18π2M2
pl

�
x4i

μ − 2
þ x2i
μ − 1

�
þOðq̃Þ: ð92Þ

For xi < xf < 0 and μ ≥ 0, we find

lim
q=p�→0

Ph1

Ph0
¼ −OðΞ2Þ < 0: ð93Þ

Thus, Ph1 is scale invariant and negative, i.e., the super-
horizon primordial gravitational waves will be reduced by
this effect. The IR contribution of Pδ

h2 is given as

Pδ
h2

Ph0
¼ H2Γ½Ξ�

24π2M2
plq̃

þOðq̃Þ; ð94Þ

where we defined a functional of Ξ as

Γ½Ξ� ¼
Z

0

xi

dx0
Z

x0

xi

dx00
x0

x002
Ξðx0=p�Þ2Ξðx00=p�Þ2

× ½ðx02 þ x002 − 4x0x00 − x02x002 − 1Þ sinð2x0 − 2x00Þ
þ 2ðx02x00 − x0x002 þ x0 − x00Þ cosð2x0 − 2x00Þ�;

ð95Þ

and we used the following relation for Ph2a:Z
x

x0

dx0
Z

x

x0

dx00Aðx0; x00Þ

¼
Z

x

x0

dx0
Z

x0

x0

dx00½Aðx0; x00Þ þ Aðx00; x0Þ�: ð96Þ

The red scale dependence of Eq. (94) comes from the fact
that the monotonic configuration in the Fourier space
violates causality in real space. Properly accounting for
the causality by generalizing the delta-function-like dis-
tribution, one finds an additional q̃ factor from Eq. (82),
which yields

PLN
h2

Ph0
¼

ffiffiffi
2

π

r
H2Γ½Ξ�

24π2M2
plΔ

þOðq̃2Þ: ð97Þ

Thus, we obtain the scale-invariant correction of OðΞ4Þ.
Ph1 ¼ OðΞ2Þ, so the one-loop spectrum is dominated
by Ph2.
Further quantitative details are discussed numerically. Ξ

in Eq. (85) is parametrized by three independent param-
eters: the dimensionless initial time xi ¼ p�τi, and final
time of amplification xf ¼ p�τf, and the dimensionless
time constant μ. Fixing the final enhancement factor as
ðxi=xfÞμ ¼ 103, we may consider the following physically
different situations:
(A) Near horizon contribution, xf ¼ −1, xi ¼ −10,

μ ¼ 3.—The enhancement of δχ happens and stops
just before the horizon exit of p ¼ p� modes.

(B) Subhorizon contribution, xf ¼ −10, xi ¼ −100,
μ ¼ 3.—The enhancement of δχ happens and stops
well in advance of the horizon exit of p ¼ p� modes.

(C) Sub-to-near horizon contribution, xf ¼ −1, xi ¼
−100, μ ¼ 1.5.—The enhancement of δχ happens
well in advance and stops just before the horizon exit
of p ¼ p� modes.

(D) Superhorizon contribution, xf ¼ −0.1, xi ¼ −1,
μ ¼ 3.—The enhancement of δχ happens at super-
horizon scale.

Another unknown parameter is the inflationary Hubble
parameter H, which normalizes the linear tensor spectrum.
We control the parameter by the linear tensor-to-scalar ratio
defined as
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r≡ Ph0

Pζ0
; ð98Þ

where we used Eq. (59) and Pζ0 is the linear power
spectrum of the adiabatic perturbation ζ. From the cosmic
microwave background (CMB) measurements, we have the
almost scale-invariant scalar spectrum. At the pivot scale
qp¼ 0.05 h=Mpc, we have q3pPζ0ðqpÞ=2π2¼2.196×10−9,
which yields

H2

M2
pl

¼ π2

2
· r ·

q3Pζ0

2π2
≈
�

r
0.01

�
× 10−10: ð99Þ

As shown in Eqs. (87) to (89), power ofH2=M2
pl counts the

number of loops.
In Fig. 2, we show the results of numerical calculations

for the above (A) to (D). We present the one-loop
corrections normalized by Ph0 in units of r=0.01. Hence,
the unity in the vertical axis implies that the loop con-
tribution is comparable to the linear tensor fluctuations
for r ¼ 0.01. The subhorizon spectator field enhances the
superhorizon tensor fluctuations from (A) to (C). On the
other hand, the enhancement from the superhorizon scalar
field in (D) is relatively suppressed because of causality.
The figure shows that the enhancement of the scalar
amplitude at a shorter scale introduces larger one-loop

FIG. 2. The one-loop corrections divided by the linear tensor power spectrum in units of r=0.01 with the linear tensor-to-scalar ratio r
are presented. We evaluate the spectra at τ ¼ 0. The horizontal axis is the external Fourier momentum q divided by the scalar field peak
momentum p�, i.e., q̃≡ q=p�. The black dashed lines imply unity, and the spectra above unity suggest that the loop contributions are
dominant over the linear tensor power spectrum. The solid blue, orange, green, red and purple curves represent Ph1, PLN

2 , Pδ
2, P

LN
ind , and

Pδ
ind, respectively. The dotted curves mean the negative part. xi ≡ p�τi and xf ≡ p�τf are the dimensionless time at the initial and final

time of enhancement, μ is the time constant of the exponential amplification, and Δ is the width of the log-normal distribution.
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corrections because δχ continuously enhances the tensor
fluctuation until p ∼ p� modes exit the horizon. We see
that the IR behavior discussed analytically is reproduced
in numerical calculation. The size of Ph1 and Ph2 are
loosely related as Ph2 ≈ Ξ2Ph1 near q̃ ¼ 1 as the former
involves two additional scalar field operators. We also plot
the induced tensor power spectra discussed in the next
section. As discussed later, the induced components are
included in the in-in calculation, which is dominant only
for subhorizon scales. Note that our qualitative prediction
is reliable only when the loop expansion is convergent.

For example, only (A) and (D) in Fig. 2 are perturbatively
well defined for r ¼ 0.01. Thus, the convergence of the
loop depends on r.
Several Fourier modes’ time evolution is presented in

Fig. 3. The figure shows that the nonlinear tensor fluctua-
tions’ growth (decay) rate quickly converges to zero after
the scalar field amplification stops. After the exponential
enhancement, we keep the constant spectator scalar field,
which introduces the loop correction for τ > τf. The late
time evolution could be the dominant component of
the final spectrum. At the same time, the IR scaling is

FIG. 3. Time evolution of the one-loop spectrum in a cosmic time, τ∂P1-loop=∂τ multiplied by ðPtree
h Þ−1 · ðr=0.01Þ−1 with the linear

tensor-to-scalar ratio r. The horizontal axis is the magnitude of time normalized by the wave number of the tensor mode, and the time
arrow is from right to left during inflation. Curves are drawn for the fixed Fourier and modes of q̃≡ q=p� ¼ 1, and 0.1, where q is the
wave number of the selected Fourier modes p� is that of the peak location. The scalar source and the tensor mode exit the horizon
simultaneously for q̃ ¼ 1, whereas the tensor mode exits the horizon prior to the scalar source for q̃ ¼ 0.1. The orange (blue) and red
(green) curves represent τ∂Ph1=∂τ and τ∂Pδ

2=∂τ for q̃ ¼ 1ð0.1Þ, respectively. Each plot indicates that the evolution of the loop correction
lasts until the exponential amplification stops, regardless of the scale of the tensor mode. Dotted curves represent the negative parts.
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irrespective of the time dependence of the enhancement
mechanism of the scalar amplitude. In Fig. 4, we computed
the loop correction when we set Ξ ¼ 0 for τ > τf, that is,
we subtracted the late time contribution. The early time
contribution is at most Oð10Þ% of the total correction
for the present parameters. Thus, the final spectrum is
sensitive to the implementation of the enhancement of
scalar amplitude.

VI. BOGOLIUBOV PERSPECTIVE

In the previous section, we saw the superhorizon reduc-
tion and enhancement of the tensor power spectrum. One
usually believes that the superhorizon tensor fluctuation
variation is prohibited from causality. Therefore, our results
look counterintuitive at first glance. Indeed, the GW

production due to physical processes must respect causality,
and the induced GWs are produced only on the subhorizon
scale. This section explains that the superhorizon correction
is not considered as “induced GWs” because the tensor
fluctuations are not produced from “zero.”

A. Superhorizon evolution as a Bogoliubov
transformation

Wemay understand the physical implication of the effect
more clearly by inspecting the effect at the field level.
We can see the field evolution by directly solving the
Heisenberg equation. The Heisenberg operator is written by
the interaction picture field as

hsq;H ¼ Fðτ; τiÞ†hsqFðτ; τiÞ; ð100Þ

FIG. 4. One-loop spectrum when we switch off the scalar field amplification after the enhancement, that is, Ξ ¼ 0 for τ > τf.
Definitions of symbols are the same as Fig. 2.
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where hsq is the interaction picture tensor fluctuation. The
time evolution operators are given as

Fðτ; τiÞ ¼ 1 − iλ
Z

τ

τi

dτ0Hint;Iðτ0Þ

− λ2
Z

τ

τi

dτ0
Z

τ0

τi

dτ00Hint;Iðτ0ÞHint;Iðτ00Þ þOðλ3Þ;

ð101Þ

where we temporarily restored the order counting param-
eter λ. As jτij ≪ jτ0j, we may consider τi ¼ τ�i . In this case,
substituting Eqs. (101) into (100), we find [1]

hsq;HðτÞ ¼ hsqðτÞ þ iλ
Z

τ

τi

dτ0½Hint;Iðτ0Þ; hsqðτÞ�

− λ2
Z

τ

τi

dτ0
Z

τ0

τi

dτ00½Hint;Iðτ00Þ; ½Hint;Iðτ0Þ; hsq��

þOðλ3Þ: ð102Þ

Equation (102) is regarded as a perturbative solution to
the quantum equation of motion (8). Since we have
F†h2F ¼ ðF†hFÞðF†hFÞ, Eq. (102) should reproduce
the loop spectrum obtained in the in-in formalism. The
one-loop spectrum contributions from Oðλ2Þ in Eq. (102)
can be understood as quantum correction for the first
iterative component. Oðλ1Þ in Eq. (102) are understood
as the Born approximation effect. Equation (100) straight-
forwardly implies

hsq;HðτÞ ¼ vqðτÞBs
qðτÞ þ v�qðτÞBs;†

−qðτÞ; ð103Þ

Bs
qðτÞ≡ F−1ðτÞbsqFðτÞ: ð104Þ

The unitarity of F leads to

½Bs
q; Bs̄

−q̄� ¼ ½F−1bsqF;F−1bs†−qF� ¼ ½bsq; bs†−q�: ð105Þ

Thus, the linear transformation b → B is a generalized
Bogoliubov transformation. For linear quantum fluctuation,
the Bogoliubov coefficients are characterized by the back-
ground quantities. For example, a change in background
equation of state introduces Bogoliubov transformation. In
our case, we considered the perturbative expansion to third
order for the one-loop analysis. Then, the Bogoliubov
coefficients include the second order perturbations. We
may regard the effect as a backreaction to the background
dynamics, which causes the Bogoliubov transformation
like the linear one. In the following, we explicitly compute
the linear transformation by evaluating Eq. (102).

B. The causal induced gravitational waves

Oðλ1Þ corrections are composed of two terms. The first
term comes from the third-order interaction Hamiltonian:

i
Z

τ

τi

dτ0½Hð3Þ
int;Iðτ0Þ;hsqðτÞ�

¼ i
2

Z
τ

τi

dτ0
Y3
A¼1

�Z
d3pA

ð2πÞ3
�
ð2πÞ3δ

�X3
A¼1

pA

�

×
X
s1

aðτ0Þ2½hs1p1
ðτ0Þ;hsqðτÞ�es1ij ðp̂1Þp2ip3jδχp2

ðτ0Þδχp3
ðτ0Þ:

ð106Þ

Simplifying the commutator of the tensor fluctuations as

½hs1p1
ðτ0Þ; hsqðτÞ�
¼ ðvqðτ0Þv�qðτÞ − v�qðτ0ÞvqðτÞÞð2πÞ3δðqþ p1Þδss1 ;

ð107Þ

Eq. (106) yields

i
Z

τ

τi

dτ0½Hð3Þ
int;Iðτ0Þ; hsqðτÞ� ¼

Z
τ

τi

dτ0Gqðτ; τ0ÞSsq½δχðτ0Þ�;

ð108Þ

where we defined

Gqðτ; τ0Þ ¼
vqðτ0Þv�qðτÞ − v�qðτ0ÞvqðτÞ

Wðτ0Þ ; ð109Þ

WðτÞ ¼ i
aðτÞ2 ; ð110Þ

Ssq½δχ� ¼ −
1

2

Y3
A¼2

�Z
d3pA

ð2πÞ3
�
δ

�
q −

X3
A¼2

pA

�

× eij;s;�ðq̂Þp2ip3jδχp2
δχp3

: ð111Þ

Note thatW coincides with the Wronskian defined for the
homogenous solutions. Therefore, G in Eq. (109) is the
Green’s function constructed from the Wronskian method
when we solve the inhomogeneous classical equation of
motion, and S in Eq. (111) corresponds to the second
order source of the scalar field fluctuations in the classical
equation of motion. Therefore, we may regard Eq. (111)
as the induced GWs. Let us consider the IR behavior
of the induced GWs. For q ≪ p2; p3 and jqτj; jqτ0j ≪ 1,
we find

Ssq½δχ� ¼ eij;s;�ðq̂ÞΣij½Ξ�; ð112Þ
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where Σij is a q independent functional of Ξ, and the
Green’s function is expanded as

Gqð0; τ0Þ ¼ −
4H2a02τ03

3M2
pl2

½1þOðτ02q2Þ�: ð113Þ

Let us define the power spectrum of the induced GW as

h0j
X
s

hsq;indðτÞhsq̄;indðτÞj0i
����
τ¼0

≡ ð2πÞ3δðqþ q̄ÞPind:

ð114Þ

The leading order q independence of G and S implies

Pind

Ph0
¼ Oðq̃3Þ; ð115Þ

which is the well-known IR behavior of the causally
generated induced tensor spectrum. Thus, Pind ¼ Oðλ2Þ
so it is included in Ph2, but the induced GWs do not
contribute to the superhorizon enhancement of the one-
loop tensor spectrum as they are causally produced. An
explicit form of the autopower spectrum of the induced
tensor mode at τ ¼ 0 is given as

Pind

Ph0
¼ −

1

4

Z
0

τi

dτ0aðτ0Þ2
Z

τ0

τi

dτ00aðτ00Þ2

× ðvqðτ0Þ − v�qðτ0ÞÞðvqðτ00Þ − v�qðτ00ÞÞ

×
Z

∞

0

dp2

Z
p2þq

jp2−qj
dp3w̄ðq;p2; p3Þ

× ðup2
ðτ0Þu�p2

ðτ00Þup3
ðτ0Þu�p3

ðτ00Þ
þ up2

ðτ00Þu�p2
ðτ0Þup3

ðτ00Þu�p3
ðτ0ÞÞ: ð116Þ

Note that Pind is strictly non-negative as it is a squared
quantity. Then, for the delta-function-like scalar source,
we find

Pδ
ind

Ph0
¼ −

p4�ð4p� − q2Þ2
512π2q

Θ2−q=p�

×
Z

0

τ0

dτ0aðτ0Þ2
Z

τ0

τ0

dτ00aðτ00Þ2

× ðvqðτ0Þ − v�qðτ0ÞÞðvqðτ00Þ − v�qðτ00ÞÞ
× ðu2p�ðτ0Þðu�p�ðτ00ÞÞ2 þ u2p� ðτ00Þðu�p� ðτ0ÞÞ2Þ; ð117Þ

where the log-normal case is given by Θ → ΘΔ. The
induced tensor modes are presented in Figs. 2 and 4.

C. Born approximation from four-point interaction

Another Oðλ1Þ correction originates from the fourth-
order interaction Hamiltonian:

i
Z

τ

τi

dτ0½Hð4Þ
int;Iðτ0Þ; hsqðτÞ�

¼ i
2

Z
τ

τi

dτ0aðτ0Þ2½vqðτÞv�qðτ0Þ− vqðτ0Þv�qðτÞ�

×
Y4
i¼2

�Z
d3pi

ð2πÞ3
�
δ

�X4
i¼2

pi − q
�X

s2

× es�ik ðq̂Þes2kjðp̂2Þp3ip4jδχp3
ðτ0Þδχp4

ðτ0Þhs2p2
ðτ0Þ: ð118Þ

Taking the partial average over the scalar field, we can
extract the component parallel to hsq as

i
Z

τ

τi

dτ0h½Hð4Þ
int;Iðτ0Þ; hsqðτÞ�iδχ

¼ i
6

Z
τ

τi

dτ0aðτ0Þ2ðvqðτÞv�qðτ0Þ − v�qðτÞvqðτ0ÞÞ

×
Z

p4
3dp3

2π2
jup3

ðτ0Þj2hsqðτ0Þ; ð119Þ

where the subscript δχ implies that we integrated out δχ.
The cross-correlation of Eq. (119) and hsq reproduces the
result in the in-in formalism (64).
The variation of the superhorizon tensor fluctuation

can be understood in a quantum language as follows.
Expanding Eq. (119) in terms of the tensor annihilation and
creation operators, we find

hsqðτÞ þ i
Z

τ

τi

dτ0h½Hð4Þ
int;Iðτ0Þ; hsqðτÞ�iδχ

¼ VqðτÞbsq þ V�
qðτÞbs†−q; ð120Þ

where we introduced the new positive frequency mode
function

VqðτÞ ¼ αðτÞvqðτÞ þ βðτÞv�qðτÞ; ð121Þ

with

αqðτÞ≡ 1þ i
6

Z
τ

τi

dτ0aðτ0Þ2
Z

p4
3dp3

2π2
jup3

ðτ0Þj2jvqðτ0Þj2;

ð122Þ

βqðτÞ≡−
i
6

Z
τ

τi

dτ0aðτ0Þ2
Z

p4
3dp3

2π2
jup3

ðτ0Þj2v2qðτ0Þ: ð123Þ

Then α and β satisfy the following relation up to one-loop
order:

jαqj2 − jβqj2 ¼ 1: ð124Þ

Therefore, the linear transformation from ðv; v�Þ to ðV; V�Þ
in Eq. (121) can be understood as a Bogoliubov
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transformation at least up to one-loop order. The power
spectrum is written as

Ph1

Ph0
¼ 2jβqð0Þj: ð125Þ

D. Iterative correction from three-point interaction

A Bogoliubov transformation also appears in Oðλ2Þ
correction. Oðλ2Þ terms include mode mixing of tensor
fluctuations, but we can extract the component proportional
to hsq by taking the average over δχ. After some algebra,
we find

hsqðτÞ −
Z

τ

τi

dτ0
Z

τ0

τi

dτ00h½Hð3Þ
int;Iðτ00Þ; ½Hð3Þ

int;Iðτ0Þ; hsqðτÞ��iδχ

¼ ṼqðτÞbsq þ Ṽ�
qðτÞbs†−q; ð126Þ

where defined

ṼqðτÞ ¼ α̃qðτÞvqðτÞ þ β̃qðτÞv�qðτÞ; ð127Þ

with

α̃q ¼ 1þ β̃�q; ð128Þ

β̃q ¼
1

4

Z
τ

τ0

dτ0aðτ0Þ2
Z

τ0

τ0

dτ00aðτ00Þ2

×
Z

∞

0

dp2

Z
p2þq

jp2−qj
dp3w̄ðq;p2; p3Þv�qðτ00Þvqðτ0Þ

× ðu�p3
ðτ00Þup3

ðτ0Þ − up3
ðτ00Þu�p3

ðτ0ÞÞ
× ðup2

ðτ00Þu�p2
ðτ0Þ þ up2

ðτ0Þu�p2
ðτ00ÞÞ: ð129Þ

Then, we find

jα̃qj2 − jβ̃qj2 ¼ 1þ β̃q þ β̃�q: ð130Þ

The one-loop term in Eq. (130) does not straightforwardly
vanish since, in general, vqðτ00Þ ≠ vqðτ0Þ unlike Eq. (124).
For the IR mode jqτj ≪ 1, when jqτ0j; jqτ00j ≪ 1, the time
dependence of the tensor mode functions is dropped and we
get vqðτ00Þ ∼ vqðτ0Þ. In this case, we can also think of the
linear transformation (127) as the Bogoliubov transforma-
tion up to one-loop order.

E. Some remarks

We concretely showed we have Bogoliubov transforma-
tions for several limited circumstances. The partial trace in
terms of δχ might break the unitarity in general, i.e.,
Eq. (105) is not necessarily established once we take the
average of δχ. At the same time, we confirmed that the
unitarity is kept at the one-loop order for the IR limit.

F−1bsqF is not necessarily written by bq and b†q only as F
contains the mode coupling terms between different
Fourier modes and scalar fluctuations. Generally, the
present Bogoliubov transformation mixes the Fourier
modes and δχ, and the Bogoliubov coefficients are operator
valued in the presence of δχ, which satisfies the generalized
conditions for the multivariable Bogoliubov transforma-
tion. We leave the investigation for future work.
The Bogoliubov perspective also explains why the

superhorizon scalar fluctuations do not contribute to the
loop correction, e.g., (D) in Fig. 2. For superhorizon scalar
fields, i.e., when p�τ0; p�τ00 ≪ 1, we have up� ¼ u�p� . Then
we find α̃q ¼ 1 and β̃q ¼ 0, which is why the superhorizon
enhancement of the spectator scalar field does not contrib-
ute to the loop effect. Reference [40] claimed that inter-
actions with external classical fields generate a coherent
state as the unitary operator is written in a form of the
displacement operator. However, the claim does not apply
to the present case since the interacting scalar field is
neither external nor classical.

F. Bogoliubov transformation
for scalar amplitude enhancement

So far, we have discussed that the loop correction can be
understood as the Bogoliubov transformation for tensor
fluctuations. A Bogoliubov transformation may also model
a class of enhanced spectator scalar fields for δχ rather than
a simple multiplicative enhancement of the scalar field (83).
Enhancement of δχ via a unitary evolution is categorized
into this class.1 In this case, the excited state of the spectator
field can be written as

δχq ¼ Uqaq þ U�
qa

†
−q; ð131Þ

where we consider

Uq ¼
eiϕ1

2

�
Ξþ 1

Ξ

�
uq þ

eiϕ2

2

�
Ξ −

1

Ξ

�
u�q: ð132Þ

With the physical time we have

Ξþ Ξ−1

2
¼ cosh½μHðt − tiÞ�; ð133Þ

Ξ − Ξ−1

2
¼ sinh½μHðt − tiÞ�: ð134Þ

1Recent work [30] considered inflationary scalar one-loop
calculation for the oscillatory features in the inflaton potential.
They numerically obtained the mode function by directly
integrating the linear equation of motion. Then the enhancement
feature looks similar to the enhancement via the Bogoliubov
transformation.
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In this parametrization, the power spectrum of the spectator
scalar field is amplified by Ξ2, i.e., jUqj2=juqj2 ¼ Ξ2 for
ϕ1 ¼ ϕ2. Then, all equations above can be reused after
uq → Uq. Note that Eq. (132) is a most general para-
metrization of the Bogoliubov transformation for a single
field. Ph1 does not change much for the new parametriza-
tion, while Ph2 changes drastically. Large Ξ leads to
Uq ∼ U�

q. We should note that the first iterative component
disappears, i.e., α̃q ¼ 1 and β̃q ¼ 0 in Eqs. (128) and (129)
if Uq ¼ U�

q. Therefore, the violation of Uq ¼ U�
q introdu-

ces nonvanishing scale invariant enhancement of the loop.
Hence, in Eq. (132), the appearance of Ξ−1 terms is crucial.
In the new parametrization, we analytically find Γ in
Eq. (94) is replaced as

Γ̃½Ξ� ¼ 2

Z
0

xi

dx0
Z

x0

xi

dx00
x0

x002

× ðx0 sin x0 þ cos x0Þðx00 sin x00 þ cos x00Þ
× ½Ξ002ðx0 cos x0 − sin x0Þðx00 sin x00 þ cos x00Þ
− Ξ02ðx0 sin x0 þ cos x0Þðx00 cos x00 − sin x00Þ�: ð135Þ

Thus, the leading order contribution OðΞ4Þ of the first
iterative correction is canceled, and the enhancement factor
becomes OðΞ2Þ. This cancellation is also seen from
Eq. (129) as we have

U�
p3
ðτ00ÞUp3

ðτ0Þ − Up3
ðτ00ÞU�

p3
ðτ0Þ

¼ u�p3
ðτ00Þup3

ðτ0Þ − up3
ðτ00Þu�p3

ðτ0Þ: ð136Þ

In the present setup, the magnitudes of Ph1 and Ph2
are comparable in the IR region, and their signs can be
opposite. The exact cancellation should not happen as we
compare the different interactions. Numerical calculation
for (A) to (D) in the new parametrization is presented in
Fig. 5. The superhorizon enhancement is relatively sup-
pressed, as we discussed. (B) implies the secondary
spectrum is dominated by the induced tensor modes for
subhorizon scalar fields, while (A) and (D) suggest near
horizon scalar fluctuation hardly produces the induced
tensor fluctuations in contrast to Figs. 2 and 4.
For multifield inflation, Bogoliubov transformation

for a scalar field is not necessarily written as Eq. (132).
Equation (131) contains different operators, and we cannot
use the above results straightforwardly. We leave the
detailed analysis for the multispectator fields for
future work.

VII. SEPARATE UNIVERSE APPROACH
IN BIANCHI TYPE-I COSMOLOGY

We considered several quantum loops during inflation,
using the in-in formalism. The new contributions change
the superhorizon tensor spectrum, which may sound odd

from causality. We claimed that the time evolution could be
regarded as a Bogoliubov transformation. It just changes
the definition of the vacuum state via the nonlinear
interaction so that the superhorizon tensor fluctuations
are seen differently without violation of causality.
For skeptical readers, we provide another look at our

results in this section, focusing on the classical counterpart
of the effects. We may understand the classical evolution of
superhorizon perturbations from the separate Universe
approach. We can think of different realizations of local
FLRW universes as fluctuations of e-folding numbers, i.e.,
the superhorizon curvature perturbations. Similarly, real-
izations of superhorizon tensor fluctuations may be
regarded as those of different homogenous but anisotropic
universes, i.e., Bianchi type-I spacetimes, whose metric
may be written as

ds2 ¼ a2ð−dτ2 þ e2bdx2 þ e−2bdy2 þ dz2Þ: ð137Þ

When expanding Eq. (137) to linear order in b, one finds
that b coincides with the realization of a plus mode
propagating along the z axis. The transverse condition
holds nonperturbatively as the components are in the plane
perpendicular to the propagating direction. On the other
hand, the traceless condition is not well defined without a
background spacetime metric [41]. The physical implica-
tion of the traceless condition is that the volume element is
not affected by the perturbation. In this sense, b is properly
defined such that the volume element is not perturbed to all
orders in Eq. (137). Hence, we consider Eq. (137) as a
nonperturbative extension of the tensor perturbation in the
separate Universe approach. Equation (137) can also be
obtained by focusing on a single mode of hij in Eq. (33) and
diagonalizing it. In the anisotropic spacetime, we consider a
minimally coupled classical scalar field χ whose action is
written as

Sχ ¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
gμν∂μχ∂νχ þ � � � ; ð138Þ

where � � � implies the model-dependent potential terms,
which determine the details of the scalar dynamics.
Let us consider the effect of the scalar field on the

spacetime anisotropy b. First, the Einstein tensor is written
as (without perturbative expansion for b)

G00 ¼ 3H2 − _b2; ð139Þ

G11 ¼ e2bð−H2 − 2 _Hþ 2H _bþ b̈ − _b2Þ; ð140Þ

G22 ¼ e−2bð−H2 − 2 _H − 2H _b − b̈ − _b2Þ; ð141Þ

G33 ¼ −H2 − 2 _H − _b2; ð142Þ
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where the overdot is the derivative with respect to the
conformal time, and we introduced the conformal Hubble
parameterH≡ _a=a, and then the energy-momentum tensor
is given as

T00 ¼ ∂0χ∂0χ þ
1

2
a2ðX þ � � �Þ; ð143Þ

T11 ¼ ∂1χ∂1χ −
1

2
a2e2bðX þ � � �Þ; ð144Þ

T22 ¼ ∂2χ∂2χ −
1

2
a2e−2bðX þ � � �Þ; ð145Þ

T33 ¼ ∂3χ∂3χ −
1

2
a2ðX þ � � �Þ; ð146Þ

and we defined

X ≡ gρσ∂ρχ∂σχ: ð147Þ

Then, the Einstein equation yields

b̈þ 2H _b ¼ e−2b∂1χ∂1χ − e2b∂2χ∂2χ
2M2

pl

: ð148Þ

Thus, the model-dependent terms do not contribute to the
equation of motion for b. We limit our calculation for
the Born approximation for simplicity; we only consider
the classical counterpart of Ph1-like contribution. When
expanding χ with iterative solutions, additional terms
appear in Eq. (148) for consistent iteration.

FIG. 5. One-loop spectrum for the scalar field excited via the Bogoliubov transformation (131). Definitions of symbols are the same as
Fig. 2. The magnitudes of Ph1 and Ph2 are comparable as suggested by Eq. (135).
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Without the scalar field, we get

b ¼ c1

Z
τ dτ0

aðτ0Þ2 þ c2: ð149Þ

The constant solution c2 corresponds to the superhorizon
conserved tensor mode. c1 is the decaying mode.
For a nonvanishing scalar field, statistical isotropy of

χ implies that we have2

h∂xχ∂xχi ¼ h∂yχ∂yχi ¼
1

3
hð∂iχÞ2i ≥ 0: ð150Þ

The leading order equation of motion (EoM) for b becomes

b00 þ 2Hb0 þm2
effb ¼ Oðb2Þ; ð151Þ

where we defined

m2
eff ¼

2hð∂iχÞ2i
3M2

pl

≥ 0: ð152Þ

Thus, the backreaction of χ behaves like a mass term of the
tensor mode b. This is a harmonic oscillator in a friction
force with an effective mass meff , which results in the
decaying solution whose timescale is given by m−1

eff.
Suppose we have a scalar field enhancement at p ¼ p�
mode during inflation. We have

m2
eff ¼

1

3

H2

M2
pl

ð1þ τ2p2�Þp2�Ξ2: ð153Þ

The effective mass squared is suppressed by a factor of
H2=M2

pl, so the mass is usually negligibly small. b is a
realization of superhorizon tensor fluctuations that exit the
horizon in the early stage of inflation, which is constant at
the initial time. Once we get a large Ξ when the enhanced
scalar mode is inside the horizon jp�τj≳ 1, we get
jmeffτj≳ 1, and b oscillates and decays. Thus, we showed
that the background anisotropy could evolve due to the
scalar field. Then the superhorizon suppression of Ph1 is
explained in the separate Universe approach. A similar
argument will be possible for Ph2, including the first
iterative solution in χ. Solving Eq. (151) is a nonperturba-
tive way to find the superhorizon variation. For example,
we can find the solution for constantmeff , which is given by
a linear combination of the Bessel functions with the time
constant meff . The Bessel functions account for the effects
of m2

eff ∝ H2=M2
pl to all order nonperturbatively.

VIII. OBSERVATIONS

One normally considers that scalar fields during inflation
decay in the end to realize the radiation-dominant Universe.
Hence, δχ should decay at some point, and the one-loop
correction to the tensor fluctuation is fixed. The decay of δχ
is model dependent, which is not considered in this paper.
Once δχ decays, the time evolution of the tensor fluctua-
tions afterward should be the same as the linear tensor
modes. The tensor fluctuations with the loop reenter the
horizon and propagate as gravitational waves. If large
curvature perturbations are produced by the end of inflation
from the large δχ, a similar GW reduction or enhancement
will happen in the Universe after reheating [33].
We can apply the standard CMB polarization analysis for

the corrected gravitational waves since the time evolution
of the GWs is the same as the linear one in the late universe.
However, the tensor-to-scalar-ratio constrained in the
observation should be related to

rNL ¼ Ph0 þ Ph1 þ Ph2 þ � � �
Pζ0 þ Pζ1 þ Pζ2 þ � � � ; ð154Þ

where we also expect the loop correction for the adiabatic
perturbations for the same reason. The loop correction
for ζ is model dependent. Also, the coupling to ζ is more
slow-roll suppressed, so that the correction may be rela-
tively small.
Calculation of ΩGW ≡ ρGW=ρtot with the GW energy

density ρGW and the total energy density ρtot can be done as
if they are linear GWs; the energy density of GWs are
computed as [43,44]

d ln ρGW
d ln q

¼ M2
pl

4a2

�
dThðqτÞ

dτ

�
2 q3ðPh0 þ Ph1 þ Ph2 þ � � �Þ

2π2
;

ð155Þ

where Th is the linear transfer function of the tensor mode.
Given an enhancement model of the scalar amplitude, we
can put some constraints on the parameters from the current
or future measurements of rNL and ΩGW.
A remaining issue is the gauge dependence of the loop

contribution. Tensor fluctuations are gauge independent at
linear order but are not at nonlinear order. The gauge issue
has been discussed in the context of induced GWs in the
literature [41,45–47]. In that case, only the propagating
component of the tensor modes can be regarded as GWs,
which are gauge independent in the subhorizon limit, as far
as we choose a gauge condition where the metric pertur-
bations do not diverge in the short scale. We expect similar
arguments for the nonlinear interaction. We showed that the
superhorizon scalar field hardly contributes to the loop
correction. Therefore, as far as the gauge-dependent com-
ponent of δχ is small before horizon exit, we expect the
gauge independence of the loop corrections.

2The effective mass depends on the definitions of second-order
tensor fluctuation (33) and (36). However, the equivalence
principle may eliminate the 1-vertex loop contribution, and the
ambiguity of field redefinition may be removed. We will further
investigate it in Ref. [42].
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Nevertheless, we mention that there is an issue with the
ambiguity in the field redefinition at second-order tensor
fluctuations. The four-point interaction, as defined in
Eq. (47), is dependent on how hij is defined at second
order. For instance, if the spatial metric is linearly perturbed

as δij þ hij, then Hð4Þ
int is multiplied by 2, while Hð3Þ

int
remains invariant. Therefore, Ph1 is not uniquely deter-
mined, but Ph2 is. Noting also that the one-loop correction
due to the four-point interaction is local in hij, this
ambiguity indicates that the four-point contribution may
not be observable. In practice, however, since the total one-
loop spectrum is mostly dominated by Ph2, fortunately this
field redefinition ambiguity does not crucially affect the
results. This, however, does not mean we may ignore the
issue. We plan to address it in future study.

IX. CONCLUSIONS

This paper presented a full-quantum calculation of the
one-loop inflationary tensor power spectrum in the pres-
ence of an excited spectator scalar field. We found that the
one-loop correction from an excited subhorizon scalar
mode may enhance or reduce the superhorizon primordial
tensor power spectrum scale invariantly. The first impres-
sion of the results is odd, as we believe that the super-
horizon tensor fluctuations should be constant until horizon
reentry from causality. Our setup differs from the previous
literature about induced GWs based on the classical
equation of motion. We employed the in-in formalism,
and the full one-loop effect was considered. Our calculation
includes the causal production of GWs, limited to the
subhorizon scale, as we expected. The superhorizon loop
effects are considered as Bogoliubov transformation.
Nonlinear interaction among the tensor and scalar changes
the definition of the vacuum, and then the initial super-
horizon tensor fluctuations are observed differently. We
examined the separate Universe approach with Bianchi
type-I local universes to explain the superhorizon evolution
of tensor fluctuations. We find that the background
anisotropy reduces when a scalar field exists, a damping
effect introduced by an effective mass. This is the separate
Universe counterpart of Ph1.
We considered several forms of enhanced scalar fields.

For example, a simple multiplication of the mode functions
by Ξ leads to the loop correction of OðΞ4Þ. This ampli-
fication may happen when, e.g., we modify the sound
speed. In contrast, we found a leading order cancellation for
a scalar enhancement via the Bogoliubov transformation,
which results inOðΞ2Þ in the super Hubble region. The size
of the one-loop correction is sensitive to the amplitude and
the initial and final amplification time. We saw several
physically different situations (A) to (D) in Sec. V B;
depending on the situations, the final spectrum varies.

Hence, we need to specify a model and parameters for
quantitative analysis. We found that the loop correction
may exceed the tree level power spectrum, which indicates
the breakdown of the perturbative expansion in the pres-
ence of a highly enhanced scalar field.
Once the scalar peak disappears, the superhorizon

correction is fixed, and we cannot distinguish it from the
original primordial GWs. Time evolution after the horizon
reentry is linear, and observational constraints on the linear
tensor power spectrum straightforwardly apply to the
corrected spectrum.
Before concluding this paper, let us discuss some

interesting extensions of this work. First, our calculation
is based on several toy models of an enhancement, and
the relationship between δχ and the final ζ is unknown.
Considering the loop effect for a concrete model with scalar
amplitude enhancement should be interesting since we can
predict the relationship between the PBH formation history
and the one-loop inflationary spectrum (see, e.g., recent
works [29,30]). Computing a one-loop bispectrum or
trispectrum should also be interesting as the loop correction
suggests large non-Gaussianity for the tensor fluctuations.
This property could be useful to distinguish the linear
tensor power spectrum from the one loop. As we mentioned
in Sec. II, the (in)equivalence of our quantum approach and
classical field theory with the stochastic initial condition
is not obvious. As far as we compute the induced GWs in
the quantum approach, the spectrum looks quite similar.
Solving a consistent iteration in the EoM may tell us the
quantum nature during inflation. The loop correction for
the scalar power spectrum should be technically compli-
cated since it is fully model dependent. However, we
expect the same momentum structure for the one-loop
terms for the scalar power spectrum. Our result suggests
that large-scale measurements may indirectly test the
short-scale enhancement of cosmological perturbations,
so combining gravitational wave detectors at all scales is
crucial for future surveys [48–57].
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APPENDIX A: OPERATOR PRODUCTS

In this paper, we often use the following products of the
scalar and tensor fluctuations:

h0jδχp1
δχp2

j0i ¼ ð2πÞ3δðp1 þ p2Þup1
u�p2

; ðA1Þ

h0jhs1p1
hs2p2

j0i ¼ ð2πÞ3δðp1 þ p2Þδs1s2vp1
v�p2

: ðA2Þ

Also, the products of the four operators are given as

h0jδχp1
δχp2

δχp3
δχp4

j0i
¼ ð2πÞ6δðp1 þ p2Þδðp3 þ p4Þup1

u�p2
up3

u�p4

þ ð2πÞ6δðp1 þ p3Þδðp2 þ p4Þup1
u�p3

up2
u�p4

þ ð2πÞ6δðp1 þ p4Þδðp2 þ p3Þup1
u�p4

up2
u�p3

; ðA3Þ

and

h0jhs1p1
hs2p2

hs3p3
hs4p4

j0i
¼ ð2πÞ6δðp1 þ p2Þδðp3 þ p4Þδs1s2δs3s4vp1

v�p2
vp3

v�p4

þ ð2πÞ6δðp1 þ p3Þδðp2 þ p4Þδs1s3δs2s4vp1
v�p3

vp2
v�p4

þ ð2πÞ6δðp1 þ p4Þδðp2 þ p3Þδs1s4δs2s3vp1
v�p4

vp2
v�p3

:

ðA4Þ

APPENDIX B: ANGULAR INTEGRALS

In this Appendix, we discuss the treatment for the
polarization sum and the angular dependence in the loop
integrals. Equation (66) can be computed in a convenient
coordinate system where q̂ ¼ ð0; 0; 1Þ. In this frame, the
polarization tensor can be written as (up to a phase factor)

e�2
ij ðq̂Þ≡ 1

2

0
B@

1 �i 0

�i −1 0

0 0 0

1
CA; ðB1Þ

and then the rest of the momentum vectors are

pA ¼ pAðsin θA cosϕA sin θA sinϕA cos θAÞ: ðB2Þ

Using these specific representations, we find

X
s¼�2

jeij;sðq̂Þp2ip3jj2 ¼
p2
2p

2
3

2
sin2 θ2 sin2 θ3; ðB3Þ

which can be written by p2 and p3 since we have

sin2 θ2 sin2 θ3 ¼
1

16p2
2p

2
3q

4
ðp2 þ p3 þ qÞ2ðp2 þ p3 − qÞ2

× ðp2 − p3 þ qÞ2ð−p2 þ p3 þ qÞ2:
ðB4Þ

Thus, momentum integrals in Eq. (66) are only a function
of p2 and p3. When the integrand is independent of the
angular coordinates, we have

Z
d3p2d3p3

ð2πÞ6 ð2πÞ3δðq − p2 − p3Þ ¼
1

ð2πÞ2q
Z

∞

0

dp2

Z
p2þq

jp2−qj
dp3p2p3: ðB5Þ

Combining Eqs. (B3)–(B5), we integrate out the angular coordinates. A derivation of Eq. (B5) is given as

Z
d3p2d3p3

ð2πÞ6 ð2πÞ3δðq−p2−p3Þ

¼
Z

d3xeiq·x
Z

d3p2d3p3

ð2πÞ6 eip2·xeip3·x

¼ð4πÞ2
X

ll2l3mm2m3

il2þl3

Z
d3x
Z

d3p2d3p3

ð2πÞ6 Ylmðx̂ÞYl2m2
ðx̂ÞYl3m3

ðx̂ÞY⋆
lmðq̂ÞYl2m2

ðp̂2ÞYl3m3
ðp̂3ÞjlðqxÞjl2

ðp2xÞjl3ðp3xÞ

¼ 4π

Z
p2
2dp2

2π2

Z
p2
3dp3

2π2

Z
x2dxj0ðqxÞj0ðp2xÞj0ðp3xÞ

¼ 4π

Z
p2
2dp2

2π2

Z
p2
3dp3

2π2
π

8p2p3q

�
1

sgnðp2−p3þqÞþ
1

sgnð−p2þp3þqÞþ
1

sgnðp2þp3−qÞ−1

�
; ðB6Þ

where we used the partial wave expansion for the plain waves in the third line. The bracket in the last line reduces to a top
hat filter for jq − p3j ≤ p3 ≤ qþ p3.
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