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In this work, we study general features of a regime where gauge fields produced during inflation cause a
strong backreaction on the background evolution and its impact on the spectrum and the correlation length
of gauge fields. With this aim, the gradient-expansion formalism previously proposed for the description of
inflationary magnetogenesis in purely kinetic or purely axial coupling models, is extended to the case when
both types of coupling are present. As it is formulated in position space, this method allows us to self-
consistently take into account the backreaction of generated gauge fields on the inflationary background
because it captures the nonlinear evolution of all physically relevant gauge-field modes at once. Using this
extended gradient-expansion formalism, suitable for a wide range of inflationary magnetogenesis models,
we study the gauge-field production in a specific generalization of the Starobinsky R2-model with a
nonminimal coupling of gauge fields to gravity. In the Einstein frame, this model implies, in addition to an
asymptotically flat inflaton potential, also a nontrivial form of kinetic and axial coupling functions which
decrease in time and, thus, are potentially suitable for the generation of gauge fields with a scale-invariant
or even red-tilted power spectrum. The numerical analysis shows, however, that backreaction, which
unavoidably occurs in this model for the interesting range of parameters, strongly alters the behavior of the
spectrum and does not allow us to obtain a sufficiently large correlation length for the magnetic field. The
oscillatory behavior of the generated field, caused by the retarded response of the gauge field to changes of
the inflaton velocity, was revealed.
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I. INTRODUCTION

The paradigm of inflation [1–6] is a very successful idea
which not only solves a large number of cosmological
problems, but also provides a convincing mechanism for
the origin of the primordial fluctuations (the seeds of the
galaxies and of the cosmic microwave background (CMB)
anisotropies) [7–12] and predicts that their spectrum should
be almost scale invariant. At present, some inflationary
models are in good agreement with observations [13–15]
(for a review, see Refs. [16,17]). The majority of the
mechanisms, which provide a period of inflation, can be

regarded as classical. Nevertheless, the quantum nature of
the underlying fundamental physics always leaves its
imprints on cosmological observables. The first imprint
are the temperature anisotropies and polarization of CMB.
The properties of these anisotropies provide a direct link to
inflation. Apart from the CMB, any signal with an extra-
galactic coherence length, of the order of Megaparsec
(Mpc) and larger, also can be treated as a candidate for
an inflationary imprint. Since scales larger than a Mpc were
outside the causal horizon before the epoch of structure
formation, it is very difficult to find causal mechanisms
capable of generating correlations on these scales. A very
important example of such a signal are the observed
extragalactic magnetic fields with very large coherence*oleksandr.sobol@knu.ua
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scales of λB≳1Mpc and with strength 10−16 ≲ B0 ≲ 10−10

Gauss. These magnetic fields in voids were indirectly
detected recently through the gamma-ray observations of
distant blazars [18–25]; their magnitude is also constrained
from observations of the CMB [26–30] and from ultra-
high-energy cosmic rays [31,32]. Large coherence length,
measured in Mpc, suggests that these magnetic fields may
have been generated during the earliest stage of the
Universe evolution, i.e., during inflation (see, e.g.,
Ref. [33]). If magnetic fields observed in voids are really
of primordial origin, they represent a new source of
information whose statistics will contain information about
gauge fields in the very early Universe.
In order to produce gauge fields during inflation, the

conformal invariance of the corresponding Maxwell action
has to be broken, as fluctuations of a massless gauge field
are not generated in a conformally flat inflationary back-
ground [34]. Conformal invariance can be broken, e.g., by
coupling gauge fields to the scalar or pseudoscalar inflaton
field or to spacetime curvature, see the seminal works [35–
38], which were revisited and improved later many times
[39–84]. Two models of magnetogenesis have receiver
most attention, namely the kinetic [39–52] and axial [53–
77] coupling models which are described by terms in the
Lagrangians ∝ I1ðϕÞFμνFμν and ∝ I2ðϕÞFμνF̃μν respec-
tively, where F̃μν is the dual gauge-field tensor. Different
types of gauge-field couplings to the curvature scalar and/
or tensors during slow-roll inflation effectively boil down to
the above-mentioned models (up to corrections suppressed
by the slow-roll parameters) [78,79,81]. This is because the
expansion of the produced is approximately described by
the de Sitter solution which represents a maximally
symmetric spacetime, is fully characterized by the curva-
ture scalar which can be expressed as a function of the
inflaton field. Thus, a general model with both kinetic and
axial couplings, as considered in the present article, covers
almost all possible magnetogenesis models during slow-
roll inflation except maybe some exotic scenarios.
It should be noted that any model of magnetogenesis

typically faces a backreaction problem during inflation,
wherein the produced gauge field impacts the time evolu-
tion of the inflaton field and the Universe expansion rate.
This may lead to a prolongation of the inflation stage, have
a strong impact on the spectra of primordial perturbations,
and, moreover, can strongly modify the reheating stage
[42,46,49,56,67,68,70,72–76]. Therefore, it is very impor-
tant to keep backreaction under control because it may spoil
the predictions of a given inflationary model.
However, this appears to be a very nontrivial task.

Indeed, in the absence of backreaction, it is possible first
to solve equations governing the evolution of the inflaton
field and the scale factor without gauge fields and then
describe the gauge-field production on such a predeter-
mined background. Then, the equations of motion for the
gauge field remain linear and the most straightforward way

to describe magnetogenesis is to track the evolution of
separate Fourier modes in momentum space. However,
this approach is applicable only if the generated fields are
weak enough not to affect the background evolution.
Otherwise, one has to take into account the generated
gauge fields nonperturbatively and solve all equations of
motion simultaneously. Clearly, this makes the problem of
inflationary magnetogenesis much harder because the
joint dynamics of the inflaton and gauge fields now
becomes highly nonlinear.
In order to take into account backreaction one can follow

different strategies. First, it is still possible to work in
momentum space and track the evolution of some finite
number of Fourier modes simultaneously. However, this
may be a nontrivial task since the range of modes crossing
the horizon during inflation spans over many orders of
magnitude. Second, one can separate the gauge-field
dynamics from the background by employing an iterative
approach: the gauge field on the nth iteration is determined
from the background on the (n − 1)th iteration. This
approach has been applied to describe magnetogenesis
from axion inflation in Ref. [68]. Alternatively, one can
switch to position space and consider all interacting fields
on a grid where the Universe expansion is incorporated
[65,69]. In this work we would like to consider yet another
approach which is also working in position space but
operates with quantum average quantities which apparently
are independent of spatial coordinates. This is the gradient
expansion formalism1 which was proposed for the descrip-
tion of inflationarymagnetogenesis in our papers [51] for the
purely kinetic coupling model and in [67,70] for the case of
axial coupling. Thismethod is based on a system of ordinary
differential equations for a set of observables given by
vacuumexpectationvalues of scalar products of electric and/
or magnetic fields with an arbitrary number of spatial curls
acting on them. This system, truncated at a certain order
(maximal number of curls), allows to describe the generated
gauge fieldwith an accuracy typically of order a few percent.
In the present work we generalize this formalism to the case
where both types of coupling are present.
In order to capture only those gauge-field modes which

are enhanced due to kinetic and axial couplings to the
inflaton field, we introduce an ultraviolet cutoff in momen-
tum—the so called horizon-crossing momentum kh—and

1We would like to note that the term “gradient expansion” is
widely used in the literature to denote the approximate method
in which one performs an expansion (of action or EOMs) in
powers of spatial derivatives provided that the field slowly
changes in space. In particular, this technique is often used in
cosmological perturbation theory for the description of modes
well beyond the Hubble horizon, see, e.g., Ref. [85]. However, in
this work, the term gradient expansion does not mean any
approximation or expansion into power series; it is related to
the fact that our method is based on an infinite set of bilinear
gauge-field functions with increasing number of spatial deriva-
tives (gradients).
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include in the bilinear gauge-field functions only contri-
butions of modes with momenta k ≤ kh. The threshold
momentum kh grows in time during inflation which means
that more and more new modes make their contributions to
the bilinear functions as the time passes. This additional
time dependence of the bilinear functions is described by
the boundary terms in their equations of motion which act
like vacuum sources. Another example where short-wave-
length modes play the role of a source for the dynamics of
long-range modes is given in a recent article [77], where the
authors propose a stochastic approach to inflationary
magnetogenesis and work directly with the vectors of
electric and magnetic field. They obtain a system of
equations for the infrared modes with a stochastic noise
originating from the ultraviolet ones and solve it numeri-
cally in order to get a picture of stochastic behavior of the
produced gauge field. Although the idea of the mode
separation is rather similar to ours, there are two key
differences compared to our work: (i) the threshold
momentum in Ref. [77] is much smaller than our value
of kh, because they want both infrared and ultraviolet
modes to behave classically; (ii) they study the stochastic
evolution of gauge fields while we consider only deter-
ministic functions—variances of gauge-field vectors, i.e.,
we perform the statistical averaging at the very beginning
when we define the dynamical variables. In a certain sense,
our boundary terms may be regarded as analogs of the two-
point correlation functions of the stochastic noise. Thus, the
stochastic approach of Ref. [77] allows to look at infla-
tionary magnetogenesis from a different perspective.
Another important question is the choice of a model of

inflationary magnetogenesis. The arbitrariness of the
kinetic and axial coupling functions, on one hand, gives
one the possibility to construct a model explaining poten-
tially any observation, while on the other hand, it reduces
the predictive power of such a theory. In some sense, this
situation is analogous to the problem of fixing the infla-
tionary model. Potentially, there is an infinite number of
different inflaton potentials if they are constructed phe-
nomenologically (a large but not comprehensive list of
inflationary models can be found, e.g., in Ref. [17]). This is
often considered a drawback of the inflationary paradigm.
However, one can think of an economical way to provide
inflation without introducing any extra fields and any
“manual” construction of the potential. For instance, the
Starobinsky R2-model [1] extends a gravity sector by a term
∝ R2 (which would anyway appear in a quantum theory of
gravity due to quantum corrections [86]); remarkably, in the
Einstein frame, this theory reveals an additional scalar
degree of freedom whose potential has an asymptotically
flat form which is favored by CMB observations [15].
Another example is Higgs inflation [87,88] where the
Standard Model Higgs field supplied by a nonminimal
coupling to curvature plays the role of the inflaton, again
with a perfectly suitable potential. A combination of two

previous models—the Higgs-Starobinsky model [89–91]—
is also in accordance with the CMB observations and
provides a ultraviolet completion for Higgs inflation.
A similar economical way of magnetogenesis model

building also looks more convincing. For example, one can
nonminimally couple the gauge field to a spacetime
curvature which fixes the coupling functions up to a finite
set of constant parameters. This idea was realized in the
context of Starobinsky inflation [78], general fðRÞ-
inflation [82], Higgs inflation [79], and recently in the
Higgs-Starobinsky model [81]. A typical problem which
arises in all three cases is that, in the Einstein frame, the
corresponding action potentially contains higher powers of
the gauge field which make the theory nonlinear and
ultraviolet-incomplete. Therefore, only a perturbative treat-
ment of magnetogenesis is possible.
For this reason, in this work, we propose an extension of

the Starobinsky model by promoting the coefficient in front
of the R2-term to a function of the gauge field. The
corresponding term in the Lagrangian reads as

ΔL ¼ ξs
4

�
1þ κ1

M4
P
FμνFμν þ κ2

M4
P
FμνF̃μν

�
−1
R2;

where ξs, κ1, and κ2 are the constant dimensionless
parameters. The explicit form of this function is chosen
such that in the Einstein frame the following conditions are
fulfilled: (i) the inflaton potential remains unchanged,
(ii) the problem avoids strong coupling in the gauge sector.
(iii) the action remains quadratic in the gauge field. The
latter condition implies that the gauge-field generation may
be studied nonperturbatively, including backreaction, by
means of the gradient-expansion formalism.
The work presented in this paper is organized as follows.

In Sec. II, we present a general model of inflationary
magnetogenesis with kinetic and axial couplings between
an Abelian gauge field and the inflaton. Section III is
devoted to the derivation of the gradient-expansion for-
malism in the case when both kinetic and axial couplings
are present. Here we introduce the set of observables, derive
equations of motion for them, discuss the origin of
boundary terms and find their explicit expressions, and
describe how to truncate the series of equations at some
finite order. In Sec. IV, we propose an extension of the
Starobinsky inflationary model which includes interaction
with the gauge field and we rewrite its action in the Einstein
frame. It takes precisely the form of the gauge-field action
with kinetic and axial coupling to the inflaton, where the
corresponding coupling functions are fixed up to constant
parameters. In Sec. V, we then study the gauge-field
production in this model numerically using the gradient-
expansion formalism. We explore different cases of kinetic-
dominated, axial-dominated, and mixed coupling, and we
investigate the general features of backreaction. Section VI
is devoted to conclusions. In Appendix A, we discuss the
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Whittaker equation and properties of its solutions which
describe the time evolution of gauge-field mode functions.
In Appendix B, we provide more details on our numerical
procedure used to solve the system of equations of the
gradient-expansion formalism.
Throughout the work we use the natural units and set

ℏ ¼ c ¼ 1; we use the notation MP ¼ ð8πGÞ−1=2 ≈ 2.43 ×
1018 GeV for the reduced Planck mass.

II. MAGNETOGENESIS FROM GENERAL
KINETIC AND AXIAL COUPLINGS

Let us consider an Abelian gauge field Aμ which
interacts with the inflaton field ϕ via kinetic and axial
couplings. The corresponding action reads as

SKA½gμν;ϕ; Aμ� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
gμν∂μϕ∂νϕ − VðϕÞ

−
1

4
I1ðϕÞFμνFμν −

1

4
I2ðϕÞFμνF̃μν

�
; ð1Þ

where gμν is the spacetime metric, g ¼ det gμν, VðϕÞ is the
inflaton potential, Fμν ¼ ∂μAν − ∂νAμ is the gauge-field

tensor, F̃μν ¼ εμναβ

2
ffiffiffiffi−gp Fαβ is its dual, where εμναβ is the

absolutely antisymmetric Levi-Civita symbol with
ε0123 ¼ þ1. The function I1ðϕÞ [I2ðϕÞ] describes the
kinetic [axial] coupling of the gauge field to the inflaton.
For the sake of generality, we will not specify explicit
forms of the inflaton potential and the coupling functions
I1;2 (we shall do that in Sec. IV). The kinetic coupling
function I1ðϕÞ must be (i) positive in order to ensure the
positive-definiteness of the gauge-field energy density and
(ii) always greater than unity during inflation in order to
avoid the strong coupling problem. On the other hand, the
axial coupling function I2ðϕÞ may be completely arbitrary
because it does not enter the energy-momentum tensor [see
Eq. (12) below] and does not have any impact of the
coupling of other matter to the gauge field.
Varying action (1) with respect to the gauge field, we get

the Maxwell equations of the following form:

1ffiffiffiffiffiffi−gp ∂μ½
ffiffiffiffiffiffi
−g

p
I1ðϕÞFμν� ¼ −F̃μν

∂μI2ðϕÞ ð2Þ

They are supplemented by the Bianchi identities for the
dual tensor

1ffiffiffiffiffiffi−gp ∂μ½
ffiffiffiffiffiffi
−g

p
F̃μν� ¼ 0: ð3Þ

The equation of motion for the inflaton field can be
found by varying the action in Eq. (1) with respect to ϕ:

1ffiffiffiffiffiffi−gp ∂μ½
ffiffiffiffiffiffi
−g

p
gμν∂νϕ� þ

dV
dϕ

¼ −
1

4

dI1
dϕ

hFμνFμνi − 1

4

dI2
dϕ

hFμνF̃μνi; ð4Þ

where we take into account that the inflaton is a classical
field while the gauge field is considered as a quantum field;
therefore, the vacuum expectation value h…i is taken on the
right-hand side.
We now assume that during inflation spacetime

is a spatially-flat Friedmann-Lemaître-Robertson-Walker
(FLRW) universe. In terms of cosmic time t it reads as

gμν ¼ diagð1;−a2;−a2;−a2Þ; ð5Þ

and thus
ffiffiffiffiffiffi−gp ¼ a3. Here aðtÞ is the scale factor which

describes the expansion of the Universe. Moreover, we
assume that the inflaton field is spatially homogeneous and
only depends on time ϕ ¼ ϕðtÞ. As for the gauge field, we
introduce the three-vectors of the electric E and the
magneticB fields2 which parametrize the gauge-field tensor
and its dual as follows:

F0i ¼ 1

a
Ei; Fij ¼ a2εijkBk;

F̃0i ¼ 1

a
Bi; F̃ij ¼ −a2εijkEk; ð6Þ

where εijk is the three-dimensional Levi-Civita symbol and
indices i, j, k on the right-hand side denote the components
of three-vectors; i.e., they are raised and lowered by the
Euclidean metric. The powers of the scale factor aðtÞ are
chosen such that the quantities E and B represent the
physical fields measured by a comoving observer.
Then, the Maxwell equations expressed in terms of the

electric and magnetic fields take the form:

Ėþ 2HE −
1

a
rotB ¼ −

İ1
I1
E −

İ2
I1
B; ð7Þ

Ḃþ 2HBþ 1

a
rotE ¼ 0; ð8Þ

divE ¼ 0; divB ¼ 0; ð9Þ

where the overdot denotes a derivative with respect to the
cosmic time t and H ¼ ȧ

a is the Hubble parameter.
The Klein-Gordon equation for the inflaton field

becomes

2Throughout this work we use the terms “electric” and
“magnetic” to denote the gauge-field quantities which correspond
to the usual electric and magnetic fields in electrodynamics. This,
however, does not restrict our analysis to the case of electro-
magnetic field; Aμ is an arbitrary Abelian gauge field.
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ϕ̈þ 3Hϕ̇þ dV
dϕ

¼ 1

2

dI1
dϕ

hE2 − B2i þ dI2
dϕ

hE · Bi: ð10Þ

It is important to note that Eqs. (7)–(10) form a coupled
system of differential equations. On one hand, the inflaton
field enters the Maxwell equation through the kinetic and
axial coupling functions I1;2 triggering the gauge-field
production (remember that in the absence of kinetic and
axial couplings the conformal invariance prevents the
gauge field from amplification [34]). On the other hand,
the gauge field appears in the Klein-Gordon equation
causing backreaction on the slow-roll evolution of the
inflaton. If the generated gauge field is strong enough to
make the terms on the right-hand side of Eq. (10) com-
parable to those on the left-hand side, then both inflaton and
gauge fields must be treated self-consistently, i.e., on the
same footing.
According to the Friedmann equation, the expansion rate

of the Universe is determined by the total energy density ρ
of all matter fields:

H2 ¼
�
ȧ
a

�
2

¼ 1

3M2
P
ρ; ð11Þ

The latter can be calculated as the 00-component of the
energy-momentum tensor which is found by varying action
(1) with respect to metric:

Tμν ¼
2ffiffiffiffiffiffi−gp δSKA

δgμν
¼ ∂μϕ∂νϕ− I1ðϕÞgαβhFμαFνβi

−gμν

�
1

2
gαβ∂αϕ∂βϕ−VðϕÞ−1

4
I1ðϕÞhFαβFαβi

�
: ð12Þ

Here again, we take the vacuum expectation value of the
gauge-field contribution since it is considered as a quantum
field while the energy-momentum tensor is a classical
object. Then, the energy density reads

ρ ¼ T00 ¼
�
1

2
ϕ̇2 þ VðϕÞ

�
þ 1

2
I1ðϕÞhE2 þ B2i

¼ ρinf þ ρGF: ð13Þ

Note that only the kinetic coupling I1 appears in the energy
density. Another important comment is that the backreac-
tion of the produced gauge field arises also in the
Friedmann equation if ρGF becomes comparable to ρinf .
This may lead to a big deviation of the equation of state
from the vacuumlike behavior w ≈ −1 and, thus, terminate
inflation.
Therefore, it is important to keep track of backreaction of

the generated fields on the background evolution since it
may significantly modify the dynamics of the expansion
and change the predictions for observables such as, e.g., the
power spectra of primordial perturbations. In order to do

this, one needs a tool which can take into account these
nonlinear effects fully self-consistently. One such tool—the
gradient expansion formalism—already exists in the cases
of purely kinetic [49,51], or purely axial [67,70] couplings.
In the next section we generalize this approach to the case
when both types of coupling are present.

III. GRADIENT EXPANSION FORMALISM

A. System of equations for bilinear
gauge-field correlators

The gauge field, as any other matter field, exists during
inflation in the form of vacuum fluctuations. The kinetic
and axial couplings to the inflaton field break the conformal
invariance of the gauge-field action and thus enable the
amplification of its Fourier modes when they cross the
horizon, in a similar manner to the generation of primordial
perturbations. Modes with wavelengths largely exceeding
the radius of observable region behave as classical mean
fields; however, their quantum origin implies that they are
stochastic quantities; i.e., they are chaotically oriented in
different regions of the Universe. This means that vector
quantities as E or B average to zero and are not suitable for
the description of the generated fields. It is much more
convenient to use a set of scalar quantities which are the
vacuum expectation values of different scalar products
of E, B and their spatial derivatives (curls). Thus, we
introduce the following bilinear gauge-field quantities:

EðnÞ ≡ I1ðϕÞ
an

hE · rotnEi; ð14Þ

GðnÞ ≡ −
I1ðϕÞ
2an

hE · rotnBþ rotnB · Ei; ð15Þ

BðnÞ ≡ I1ðϕÞ
an

hB · rotnBi; ð16Þ

where h…i denote the vacuum expectation value. Using
Maxwell’s equations (7), (8), we derive a system of coupled
equations for these quantities:

ĖðnÞ þ ðnþ 4ÞHEðnÞ þ İ1
I1
EðnÞ − 2

İ2
I1
GðnÞ þ 2Gðnþ1Þ

¼ ½ĖðnÞ�b; ð17Þ

ĠðnÞ þðnþ4ÞHGðnÞ−
İ2
I1
BðnÞ þBðnþ1Þ−Eðnþ1Þ ¼ ½ĠðnÞ�b:

ð18Þ

ḂðnÞ þ ðnþ 4ÞHBðnÞ −
İ1
I1
BðnÞ − 2Gðnþ1Þ ¼ ½ḂðnÞ�b: ð19Þ

First, we note that direct application of Maxwell’s equa-
tions (7)–(8) to the gauge-field correlators (14)–(16) gives

BACKREACTION FROM GAUGE FIELDS PRODUCED DURING … PHYS. REV. D 108, 043540 (2023)

043540-5



equations (17)–(19) above with vanishing right-hand sides.
This would indeed be correct if the functions (14)–(16)
would include the contributions of all Fourier modes of the
gauge field. However, this would mix the finite and
physically meaningful contributions of the amplified
gauge-field modes due to kinetic and axial coupling and
the (infinite) contributions of vacuum fluctuations which
are present also in the absence of any coupling to the
inflaton. In order to exclude the latter contribution (a simple
way or “renormalization”), in the next subsection we will
specify the range of Fourier modes which are physically
relevant and we show that the number of these modes
typically grows during inflation. Therefore, we must take
into account the change of bilinear functions also due to the
fact that the number of modes is changing. This is precisely
the reason of introducing the extra terms on the right-hand
sides of Eqs. (17)–(19), the boundary terms.
Another important comment is that any equation of

motion for the nth-order functions always contains at least
one function with the (nþ 1)th power of the curl. As a
result, all equations in the system (17)–(19) are coupled
into an infinite hierarchy. For practical purposes, one must
truncate this chain at some finite order. In the end of this
section we suggest a possible way for this truncation.

B. Origin of boundary terms

Our goal is to describe the gauge field generation during
inflation by kinetic and axial coupling to the inflaton field.
First, it is important to choose the observables which
quantify this process. As we discussed in the previous
subsection, these can be the bilinear gauge-field correlators
defined in Eqs. (14)–(16). It is convenient to compute the
vacuum expectation values using the decomposition of
gauge-field operators over the set of annihilation and
creation operators in Fourier space. In Coulomb gauge,
Aμ ¼ ð0;AÞ and divA ¼ 0, the gauge field operator has the
form

Aðt; xÞ ¼
Z

d3k

ð2πÞ3=2 ffiffiffiffi
I1

p
X
λ¼�

½ϵλðkÞâk;λAλðt; kÞeik·x

þ ϵ�λðkÞâ†k;λA�
λðt; kÞe−ik·x�; ð20Þ

where Aλðt; kÞ is the mode function, ϵλðkÞ is the polariza-
tion three-vector, âk;λ (â†k;λ) is the annihilation (creation)
operator of the electromagnetic mode with momentum k
and circular polarization λ ¼ �, and k ¼ jkj. Note that for
further convenience we included a factor 1=

ffiffiffiffi
I1

p
in decom-

position (20). Polarization vectors are transverse
k · ϵλðkÞ ¼ 0 and have the following properties:

ϵ�λðkÞ ¼ ϵ−λðkÞ; ½ik × ϵλðkÞ� ¼ λkϵλðkÞ;
ϵ�λðkÞ · ϵλ0 ðkÞ ¼ δλλ

0
: ð21Þ

The creation and annihilation operators satisfy the canoni-
cal commutation relations

½âk;λ; â†k0;λ0 � ¼ δλλ0δ
ð3Þðk − k0Þ: ð22Þ

The electric and magnetic field operators are given by

E ¼ −
1

a
Ȧ; B ¼ 1

a2
rotA: ð23Þ

Using decomposition (20) it is straightforward to find the
corresponding results for E and B. Substituting them into
expressions for bilinear functions (14)–(16), we obtain the
following spectral representations:

EðnÞ ¼
X
λ¼�1

Z
kh

0

dk
k
λn

knþ3I1
2π2anþ2

���� ddt
�
Aλðt; kÞffiffiffiffi

I1
p

�����2; ð24Þ

GðnÞ ¼
X
λ¼�1

Z
kh

0

dk
k
λnþ1

knþ4I1
4π2anþ3

d
dt

����Aλðt; kÞffiffiffiffi
I1

p
����2; ð25Þ

BðnÞ ¼
X
λ¼�1

Z
kh

0

dk
k
λn

knþ5

2π2anþ4
jAλðt; kÞj2: ð26Þ

In general, the vacuum expectation value implies that all
Fourier modes (with wave numbers from zero to infinity)
must be taken into account in decompositions (24)–(26).
However, as we will see below, not all gauge-field modes
are enhanced during inflation and, thus, not all of them
should be included if we want to consider only the gauge
field generated due to kinetic and axial couplings. On
general grounds, it is clear that the modes with arbitrarily
large momentum, k → ∞ should not be affected by the
coupling to the inflaton field, because the energy required
to generate them is unbounded from above. Therefore,
there always exists some threshold momentum,3 kh, above
which the modes can be considered as pure vacuum
fluctuations. Naturally, we should take into account only
the modes with momenta k < kh. This explains the upper
boundary in the integrals (24)–(26).
If this threshold momentum depends on time, kh ¼ khðtÞ,

the quantities EðnÞ, GðnÞ, BðnÞ obtain additional time
dependence: they change not only because the correspond-
ing spectral densities are time-dependent, but also due to
the time-varying upper integration boundary. The latter
time dependence is not captured by Maxwell’s equations
since this mode separation was introduced manually. In

3By analogy with the theory of primordial perturbations,
we will associate this momentum with horizon crossing (explains
the index “h” in kh). However, now this is not the standard
Hubble horizon, but some effective horizon for the gauge field.
We will see below that this horizon separates the modes which
undergo a tachyonic instability from the ones which always
oscillate in time.
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order to compensate this additional time dependence, we
have to introduce extra terms in the corresponding equa-
tions of motion which are the boundary terms.
If a general bilinear function X∈ fEðnÞ;GðnÞ;BðnÞg is

represented by its spectral decomposition

X ¼
X
λ¼�1

Z
khðtÞ

0

dk
k
dXðλ; kÞ
d ln k

; ð27Þ

the boundary term in its equation of motion has the form:

½Ẋ�b ¼
X
λ¼�1

dXðλ; kÞ
d ln k

����
k¼kh

×
d ln kh
dt

: ð28Þ

Thus, in order to compute the boundary terms in
Eqs. (17)–(19), we need to know the spectral densities
of all quantities EðnÞ, GðnÞ, BðnÞ at the threshold momentum
and the time dependence of the threshold momentum itself.
All this will be determined in the next subsection.

C. Time evolution of mode functions

Now let us study the time evolution of the gauge-field
modes during inflation. Substituting Eq. (20) into Eq. (7),
we get the following equation for the mode function
Aλðt; kÞ:

Äλðt; kÞ þHȦλðt; kÞ þ Aλðt; kÞ

×

�
k2

a2
−H

İ1
2I1

−
Ï1
2I1

þ İ21
4I21

− λ
k
a
İ2
I1

�
¼ 0: ð29Þ

We now switch to the new variable z ¼ kη, where η ¼R
t dt0=aðt0Þ is conformal time. Also, for the sake of brevity,

we introduce the following functions:

ξðtÞ ¼ İ2
2HI1

; sðtÞ ¼ İ1
2HI1

þ Ï1
2H2I1

−
İ21

4H2I21
; ð30Þ

which both are functions of time (or, equivalently, z) during
inflation. The mode equation (29) then becomes

d2Aλðz;kÞ
dz2

þ
�
1−2λ

aH
k

ξðzÞ−
�
aH
k

�
2

sðzÞ
�
Aλðz;kÞ¼ 0:

ð31Þ

Finally, we note that during inflation the conformal time
can be approximately expressed as

η ≃ −1=ðaHÞ; ð32Þ

which corresponds to the pure de Sitter solution.
Although this is not an exact relation in realistic infla-
tionary models, the deviations from it are suppressed by the
slow-roll parameters and for a relatively short time interval

Eq. (32) may be used. We this, we finally arrive at the mode
equation

d2Aλðz; kÞ
dz2

þ
�
1þ λ

2ξðzÞ
z

−
sðzÞ
z2

�
Aλðz; kÞ ¼ 0: ð33Þ

During inflation, the conformal time (and variable z)
grows from large negative values to zero; i.e., its absolute
value always decreases. Therefore, at very early times, i.e.,
for sufficiently large jzj ≫ j2ξj and jzj ≫ ffiffiffiffiffijsjp

, first term in
the bracket—the unity—dominates over the other two. In
this case, we obtain the equation of motion of a harmonic
oscillator with unit frequency. Thus, the mode function
oscillates in conformal time in the same way as it would
behave in Minkowski spacetime and corresponds to vac-
uum fluctuations of the gauge field. Therefore, it is possible
to impose the boundary condition for the mode function in
the form of Bunch-Davies vacuum solution [92]:

Aλðz; kÞ ¼
1ffiffiffiffiffi
2k

p e−iz; −z ≫ 1: ð34Þ

In this regime (which we call “subhorizon”) the effect of
kinetic and axial couplings is negligible because they
appear only in the second and third terms in the bracket
of Eq. (33) which are suppressed at large z. Therefore,
subhorizon modes are not relevant for the description of
magnetogenesis.
In the opposite case, jzj ≪ j2ξj and/or jzj ≪ ffiffiffiffiffijsjp

, the
first term is negligible and the time evolution of the mode
function is fully determined by its coupling to the inflaton
field. Depending on the sign of s, ξ, and λ, the expression in
brackets in Eq. (33) may become negative and a tachyonic
instability may occur for the corresponding Fourier mode.
In this case, the mode function is exponentially amplified.
However, even if the mode is not tachyonically unstable, its
time evolution in this regime (called superhorizon) strongly
differs from that of vacuum fluctuations. Therefore, such
superhorizon modes must be taken into account in the
generated gauge field.
An important practical question is how to determine the

threshold momentum kh which separates sub- and super-
horizon modes. In the literature it is usually chosen as the
condition that the first term in brackets in Eq. (33) becomes
comparable to the absolute value of at least one of the other
terms. Namely, if the absolute value of the second term in
brackets is greater then the one of the third term (as, e.g., in
the case of pure axial coupling), the natural choice for the
threshold momentum is

kh ¼ 2jξjaH; ð35Þ

while in the opposite situation when the third term is
dominant,
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kh ¼
ffiffiffiffiffi
jsj

p
aH: ð36Þ

In the most general case, when both terms are important,
one can take a smooth interpolation between expressions in
Eqs. (35) and (36). One possible option is to take the greater
solution of quadratic equation�

k
aH

�
2

− 2jξj k
aH

− jsj ¼ 0 ð37Þ

that is

kh ¼ aH

�
jξj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ jsj

q �
: ð38Þ

Finally, if the expression for kh in Eq. (38) is not growing
monotonically during inflation, we can take the upper
monotonic envelope of this function, i.e., at any moment of
time twe use its maximal value over all preceding moments
of time. The final expression for the threshold momentum
that will be used in the rest of the article, then is of the form

khðtÞ ¼ max
t0≤t

n
aðt0ÞHðt0Þ½jξðt0Þj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2ðt0Þ þ jsðt0Þj

q
�
o
:

ð39Þ

If k ¼ khðtÞ, we say that the gauge-field mode with
momentum k crosses the horizon at the moment of time t.
It is easy to see that during inflation khðtÞ typically

grows. Indeed, the Hubble parameter HðtÞ is a slowly
varying function (ϵH ¼ −Ḣ=H2 ≪ 1 during inflation).
Although it is impossible to predict the behavior of
functions ξðtÞ and sðtÞ for arbitrary coupling functions
I1;2, we note that they are proportional to ϕ̇ and ϕ̈;
therefore, their time evolution is not expected to be fast.
Taking into account that the scale factor aðtÞ grows nearly
exponentially during inflation, we conclude that the thresh-
old momentum khðtÞ rapidly increases in time (maybe
except for some short intervals of time when functions ξ
and s quickly decrease or cross zero).
Thus, we see that the number of physically relevant

gauge-field modes grows during inflation which is pre-
cisely the reason for appearance of boundary terms in
Eqs. (17)–(19). In order to find their explicit form, we need
to know the mode function in a small vicinity of time
around the moment of horizon crossing. For a given
momentum k, this moment of time thðkÞ can be found
by inverting Eq. (39). For a short time interval around th,
we may assume that functions ξ and s in Eq. (31) are
constant: ξ ≈ ξðthÞ ¼ const, s ≈ sðthÞ ¼ const. In this case,
Eq. (33) admits a solution in terms of Whittaker functions
Wϰ;μð2izÞ (for details, see Appendix A). Taking into
account the Bunch-Davies boundary condition (34), we
obtain the positive-frequency solution of the mode equation
in the following form:

Aλðz; kÞ ¼
1ffiffiffiffiffi
2k

p e
πλξðthÞ

2 Wϰ;μð2izÞ;

ϰ ¼ −iλξðthÞ; μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
þ sðthÞ

r
: ð40Þ

The derivative of this expression with respect to z can be
computed by using Eqs. (A1)–(A3) in Appendix A.

D. Exact expressions for the boundary terms

Having determined the approximate expression for the
mode function close to the moment of horizon crossing in
the previous subsection, we are now ready to compute the
boundary terms in Eqs. (17)–(19). Using the general form
of the boundary term in Eq. (28) and spectral densities of
EðnÞ, GðnÞ, BðnÞ in Eqs. (24)–(26), we obtain the following
expressions:

½ĖðnÞ�b ¼
d ln khðtÞ

dt
1

4π2

�
khðtÞ
aðtÞ

�
nþ4

×
X
λ¼�1

λnEλðξðtÞ; sðtÞ; σðtÞÞ; ð41Þ

½ĠðnÞ�b ¼
d ln khðtÞ

dt
1

4π2

�
khðtÞ
aðtÞ

�
nþ4

×
X
λ¼�1

λnþ1GλðξðtÞ; sðtÞ; σðtÞÞ; ð42Þ

½ḂðnÞ�b ¼
d ln khðtÞ

dt
1

4π2

�
khðtÞ
aðtÞ

�
nþ4

×
X
λ¼�1

λnBλðξðtÞ; sðtÞÞ; ð43Þ

where the threshold momentum khðtÞ is given by Eq. (39)
and

Eλðξ; s; σÞ ¼
eπλξ

r2

����ðir − iλξ − σÞW−iλξ;
ffiffiffiffiffiffi
sþ1

4

p ð−2irÞ

þW
1−iλξ;

ffiffiffiffiffiffi
sþ1

4

p ð−2irÞ
����2; ð44Þ

Gλðξ;s;σÞ¼
eπλξ

r

n
−σjW−iλξ;

ffiffiffiffiffiffi
sþ1

4

p ð−2irÞj2

þℜe
h
W

iλξ;
ffiffiffiffiffiffi
sþ1

4

p ð2irÞW
1−iλξ;

ffiffiffiffiffiffi
sþ1

4

p ð−2irÞ
io

;

ð45Þ

Bλðξ; sÞ ¼ eπλξjW−iλξ;
ffiffiffiffiffiffi
sþ1

4

p ð−2irÞj2: ð46Þ

Here r ¼ rðξ; sÞ ¼ jξj þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ jsj

p
and a new function

σðtÞ has been introduced:
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σðtÞ ¼ İ1
2HI1

: ð47Þ

Note that everywhere in the functions Eλ, Gλ, and Bλ we
use Eq. (38) for the horizon-crossing time instead of
Eq. (39); i.e., we set zh ¼ khη ≈ −kh=ðaHÞ ¼ −rðξ; sÞ.
This can be justified by the following observation. If
khðtÞ is growing in time (d ln kh=dt > 0) both expressions,
(38) and (39) coincide. On the other hand, when khðtÞ is
constant, Eq. (38) gives a smaller value than Eq. (39);
however, total expression for the boundary term vanishes
because d ln kh=dt ¼ 0 and it makes no difference which
expression for kh is used inside the functions Eλ, Gλ,
and Bλ.

E. Full system of equations

Finally, we find the following closed system of equa-
tions, which determines the time evolution of the bilinear
gauge-field functions, scale factor and the inflation field:

H2 ¼ 1

3M2
P

�
1

2
ϕ̇2 þ VðϕÞ þ 1

2
ðEð0Þ þ Bð0ÞÞ

�
; ð48Þ

ϕ̈þ 3Hϕ̇þ dV
dϕ

¼ 1

2I1

dI1
dϕ

ðEð0Þ − Bð0ÞÞ − 1

I1

dI2
dϕ

Gð0Þ: ð49Þ

ĖðnÞ þ ðnþ 4ÞHEðnÞ þ İ1
I1
EðnÞ − 2

İ2
I1
GðnÞ þ 2Gðnþ1Þ

¼ d ln kh
dt

1

4π2

�
kh
a

�
nþ4X

λ¼�1

λnEλðξ; s; σÞ; ð50Þ

ĠðnÞ þ ðnþ 4ÞHGðnÞ −
İ2
I1
BðnÞ þ Bðnþ1Þ − Eðnþ1Þ

¼ d ln kh
dt

1

4π2

�
kh
a

�
nþ4X

λ¼�1

λnþ1Gλðξ; s; σÞ; ð51Þ

ḂðnÞ þ ðnþ 4ÞHBðnÞ −
İ1
I1
BðnÞ − 2Gðnþ1Þ

¼ d ln kh
dt

1

4π2

�
kh
a

�
nþ4X

λ¼�1

λnBλðξ; sÞ; ð52Þ

where khðtÞ is given by Eq. (39) and Eλðξ; s; σÞ,Gλðξ; s; σÞ,
and Bλðξ; sÞ are given in Eqs. (44)–(46).
In order to get more insight in the physical processes at

work in this system of equations, let us consider the time
evolution of the inflaton energy density ρinf ¼ ϕ̇2=2þVðϕÞ
and the gauge-field energy density ρGF ¼ ðEð0Þ þ Bð0ÞÞ=2.
For the former quantity, we multiply the Klein-Gordon
equation (49) by ϕ̇ and rewrite it in the following form:

ρ̇inf þ3Hðρinf þpinfÞ¼−
İ1
2I1

ðBð0Þ−Eð0ÞÞ− İ2
I1
Gð0Þ; ð53Þ

where pinf ¼ ϕ̇2=2 − VðϕÞ is the pressure of the inflaton
field. Note that this equation has the form of a covariant
energy conservation for the inflaton field with a source on
the right-hand side. The physical meaning of this source
term becomes clear when we write down the corresponding
equation for the gauge-field energy density. Taking half of
the sum of Eqs. (50) and (52) for n ¼ 0, we get

ρ̇GFþ3HðρGFþpGFÞ¼
İ1
2I1

ðBð0Þ−Eð0ÞÞþ İ2
I1
Gð0Þ þ ½ρ̇GF�b:

ð54Þ

Here pGF ¼ ð1=3ÞρGF is the gauge field pressure as for the
radiation. Again, this has the form of an equation of
covariant energy conservation where the first two terms
on the right-hand side exactly coincide with the source in
Eq. (53) with a flipped sign. Thus, we conclude that these
terms describe the energy transfer between the inflaton and
gauge fields due to the kinetic and axial couplings (note
that the coupling functions I1;2 are explicitly present in
those terms and, as expected, the terms vanish if I1 and I2
are constant).
There is, however, an additional term on the right-hand

side of Eq. (54), namely, the boundary term

½ρ̇GF�b ¼
1

2
ð½Ėð0Þ�b þ ½Ḃð0Þ�bÞ: ð55Þ

It also acts as a source in the energy-conservation equation
and describes the energy increase due to contributions of
new modes crossing the horizon during inflation. The
energy of subhorizon Fourier modes is not included in
Eð0Þ and Bð0Þ as these modes are considered as vacuum
gauge-field fluctuations. After crossing the horizon, these
modes must be taken into account and since their energy is
nonzero at the moment of horizon crossing, the total energy
increases. Thus, the last term in Eq. (54) can be considered
as a vacuum source term. There is no analogous term
coming from the inflaton field because we consider it as a
spatially homogeneous classical field. If we would take into
account vacuum fluctuations of the inflaton above its mean
value, a similar term would appear also in Eq. (53).
For practical applications, one has to truncate the infinite

system of Eqs. (48)–(52) at some finite order. Like it was
shown previously in the cases of purely kinetic coupling
[51] or purely axion coupling [70], the simplest assumption
that one may adopt is the following:

Eðnþ1Þ ≃
�
kh
a

�
2

Eðn−1Þ; Bðnþ1Þ ≃
�
kh
a

�
2

Bðn−1Þ;

Gðnþ1Þ ≃
�
kh
a

�
2

Gðn−1Þ: ð56Þ

These relations are very natural, especially for large orders
n ≫ 1. First, the symmetry properties under parity
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transformation of quantities on both sides are the same; i.e.,
the scalar is related to a scalar, a pseudoscalar—to
pseudoscalar. Second, for any smooth momentum depend-
ence of the mode function, at sufficiently large order n the
integral over the spectrum will be dominated by the region
close to k ¼ kh. Then, the truncation rule (56) follows from
the fact that the (nþ 1)th- and (n − 1)th-order quantities
differ by a factor ðk=aÞ2 under the integral. Thus, the last
three equations for the bilinear functions of order nmax
differ from all preceding orders and have the form:

ĖðnmaxÞ þ ðnmax þ 4ÞHEðnmaxÞ þ İ1
I1
EðnmaxÞ

− 2
İ2
I1
GðnmaxÞ þ 2

�
kh
a

�
2

Gðnmax−1Þ ¼ ½ĖðnmaxÞ�b; ð57Þ

ĠðnmaxÞ þ ðnmax þ 4ÞHGðnmaxÞ −
İ2
I1
BðnmaxÞ

þ
�
kh
a

�
2

½Bðnmax−1Þ − Eðnmax−1Þ� ¼ ½ĠðnmaxÞ�b; ð58Þ

ḂðnmaxÞ þ ðnmax þ 4ÞHBðnmaxÞ −
İ1
I1
BðnmaxÞ

− 2

�
kh
a

�
2

Gðnmax−1Þ ¼ ½ḂðnmaxÞ�b: ð59Þ

In the Sec. V we will see that one can choose the truncation
order nmax in such a way that the solution of the system of
equations becomes independent on nmax itself.

IV. EXTENDED STAROBINSKY MODEL WITH
NONMINIMALLY COUPLED GAUGE FIELD

In this section we apply the gradient expansion formal-
ism developed above to a specific magnetogenesis model
with nonminimally coupled gauge field. As we discussed in
the introduction, we are interested in an “economical”
model which (i) does not contain any additional scalar
fields playing the role of the inflaton and (ii) has the gauge-
field coupling in a simple form with a finite number of free
parameters. Both criteria are satisfied for the extended
Starobinsky model described below.

A. Nonminimal coupling in Jordan frame

Let us consider the action, which represents an extension
of the Starobinsky inflationary model [1]. Like the
Starobinsky model, this action contains a term quadratic
in the spacetime curvature R; however, the coefficient in
front of this term now depends on the gauge field Aμ (only
through the gauge-invariant quantities Fμν and F̃μν):

S½gμν;Aμ�

¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
M2

P

2
Rþ ξs

4ΔðFμνÞ
R2−

1

4
FμνFμν

�
; ð60Þ

where

ΔðFμνÞ ¼ 1þ κ1
M4

P
FμνFμν þ κ2

M4
P
FμνF̃μν: ð61Þ

In this action, ξs is a free parameter which can be
constrained from the requirement that it leads to the correct
amplitude of the scalar power spectrum measured by
Planck Collaboration [15], and the dimensionless coupling
constanta κ1 and κ2 characterize the nonminimal coupling
of the gauge field to curvature which preserves (κ1) and
which violates (κ2) parity symmetry (FμνFμν is the standard
Maxwell term which is a scalar quantity, therefore, it
preserves parity, while FμνF̃μν is odd under parity trans-
formation, therefore, it is a pseudoscalar quantity).
This model belongs to the class of modified gravity

theories and is inspired by the fðR; LmÞ [93] and Born-
Infeld type [94] theories (however, it certainly does not
belong to any of them). Although ΔðFμνÞ in Eq. (60) does
not seem to be positive definite and may vanish at some
point causing a singularity in the Lagrangian, we show
below that this never happens during inflation because
backreaction of the generated gauge fields never allows the
second and third terms to be sufficiently large to cancel the
first term (unity).
The specific form of the gauge-field dependence of the

R2-term in the Jordan frame was constructed in such a way
that in the Einstein frame the gauge-field Lagrangian is
quadratic in Aμ and no higher powers appear (we show this
explicitly in the next subsection). This fact allows us to use
the gradient expansion formalism which was derived
specifically for this type of gauge-field Lagrangian.
Moreover, since no higher order terms have been neglected,
it is possible to treat the case of a strong gauge field and
take into account backreaction on the background evolu-
tion. This was impossible to do in our previous work [81]
where the form of nonminimal coupling in the Jordan frame
∝ RnFμνFμν and ∝ RnFμνF̃μν leads to the presence of terms
in the Lagrangian with higher power of the gauge field (in
addition to usual quadratic terms). As a result, we could
only to study the perturbative regime where the gauge field
does not cause backreaction.
Therefore, the proposed model is constructed in such a

way that it allows to solve simultaneously several issues.
First, similarly to the usual Starobinsky model, its gravity
sector contains an additional scalar degree of freedom
which plays the role of the inflaton and has an asymptoti-
cally flat potential favored by CMB observations [15].
Second, it can be rewritten in the Einstein frame with a
Lagrangian which is quadratic in the gauge field and has
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kinetic and axial couplings to the inflaton. Finally, due to
the absence of higher order terms in the gauge fields, it
allows us to study the gauge field nonperturbatively and
take into account its backreaction. We will see all these
features below.

B. Action in the Einstein frame

In order to bring action (60) to the canonical Einstein-
Hilbert form, we perform a two-step procedure. First, we
get rid of the R2 term by performing a Legendre transform
and introducing an additional scalar degree of freedom.
Second, we perform a conformal transformation of the
metric.
Let us rewrite the action in the following form:

S½gμν;Aμ� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
M2

P

2
fðR;FμνÞ−

1

4
FμνFμν

�
; ð62Þ

where

fðR;FμνÞ ¼ R −
ξs

2M2
PΔðFμνÞ

R2: ð63Þ

We now introduce the new auxiliary field

Ψ ¼ ∂f
∂R

¼ 1 −
ξs

M2
PΔðFμνÞ

R ð64Þ

and express the spacetime curvature as

R ¼ M2
P

ξs
ΔðFμνÞð1 −ΨÞ: ð65Þ

Then, the Legendre transform of the function f reads

FðΨ; FμνÞ ¼ ΨR − fðR;FμνÞ ¼ −
M2

P

2ξs
ΔðFμνÞð1 −ΨÞ2:

ð66Þ

Finally, representing f as an inverse Legendre transform
fðR;FμνÞ ¼ ΨR − FðΨ; FμνÞ, we obtain the action in the
form

S½gμν;Ψ; Aμ� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
M2

P

2
ΨR

−
M4

P

4ξs
ΔðFμνÞð1 −ΨÞ2 − 1

4
FμνFμν

�
; ð67Þ

which is linear in R and contains an additional scalar degree
of freedom, Ψ (as the action does not contain a kinetic term
for it, Ψ is nondynamical). Note, that already now the
function ΔðFμνÞ appears only in the numerator and the
overall action is quadratic in the gauge field.

In order to remove the extra multiplier Ψ in front of R,
we perform the Weyl transformation gμν ¼ Ψ−1gμν, under
which the Ricci curvature scalar transforms as

R ¼ Ψ
�
R̄ −

3

2Ψ2
ḡμν∂μΨ∂νΨþ 3∇μ∇μ ln Ψ

�
: ð68Þ

This brings us to the Einstein frame where the action takes
the form

S½ḡμν;Ψ; Aμ� ¼
Z

d4x
ffiffiffiffiffiffi
−ḡ

p �
−
M2

P

2
R̄þ 3M2

P

4Ψ2
∂μΨ∂μΨ

−
M4

P

4ξs

ð1 − ΨÞ2
Ψ2

ΔðFμνÞ −
1

4
FμνFμν

�
: ð69Þ

Here the function Δ reads as

ΔðFμνÞ ¼ 1þ κ1
M4

P
Ψ2FμνFμν þ κ2

M4
P
Ψ2FμνF̃μν ð70Þ

and all contractions of indices are now performed by
means of the new metric ḡμν. In action (69) the field Ψ is
dynamical, however, it is not canonically normalized. In
order to fix this, we perform the following field redefinition

Ψ ¼ exp

� ffiffiffi
2

3

r
ϕ

MP

�
; ð71Þ

which finally leads us to

S½ḡμν;ϕ; Aμ� ¼ SEH½ḡμν� þ SKA½ḡμν;ϕ; Aμ�; ð72Þ

where the first term is the Einstein-Hilbert action for gravity
and the second term is the exactly as given in Eq. (1) and
describes the inflaton and gauge fields with kinetic and
axial couplings. The potential of the inflaton field VðϕÞ
coincides with corresponding expression for the
Starobinsky model

VðϕÞ ¼ M4
P

4ξs
ð1 − e−

ffiffi
2
3

p
ϕ
MPÞ2 ð73Þ

while the kinetic and axial coupling functions have the
form

Ij ¼ δj1 þ
κj
ξs

�
exp

� ffiffiffi
2

3

r
ϕ

MP

�
− 1

�2
: ð74Þ

Note that the dependence of these coupling functions on the
inflaton field is not postulated or constructed by hand, but is
deduced from a simple action (60) by rewriting it in the
Einstein frame. The only freedom, which is left, is con-
tained in the two dimensionless parameters κ1 and κ2. The
general requirements for the kinetic coupling function
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[listed in a paragraph below Eq. (1)] are automatically
satisfied by I1 in Eq. (74) if κ1 > 0. We will consider
different values of these parameters in the next section
devoted to a numerical analysis.
A few additional comments are in order. First of all, we

want to emphasize that the action in the Jordan frame,
Eq. (60), was intentionally chosen such that we obtain the
flat Starobinsky potential for the inflaton and a quadratic
Lagrangian for the gauge field in Einstein frame. The
former fact is important as we want an inflationary model
which is in agreement with recent CMB observations [15],
while the latter condition allows us to study also a non-
perturbative strong-field regime when backreaction of the
produced field significantly changes the background
evolution.
Another interesting observation is that the coupling

function in Eq. (74) has exactly the same form as in the
model of Higgs or Higgs-Starobinsky inflation (in the
metric formulation) with nonminimally coupled gauge field
through the terms ∝ R2FμνFμν and ∝ R2FμνF̃μν considered
by us in Ref. [81]. In that work we studied only the
perturbative regimewhere backreaction does not occur. The
study of the backreaction regime in that framework would
be not self-consistent because the higher-order terms were
omitted in the derivation of the gauge-field action in
Einstein frame. The model we chose in the present article
does not have such a restriction and, thus, our present
results may qualitatively describe the onset of the back-
reaction regime also in the model in Ref. [81].
Finally, before performing a numerical analysis, we

would like to make sure that the function ΔðFμνÞ in the
denominator in Eq. (60) is always positive during inflation.
Indeed, let us consider the vacuum expectation value
of Eq. (70) and express it in terms of bilinear quantities
(14)–(16):

hΔðFμνÞi ¼ 1þ 2Ψ2

M4
PI1

½κ1ðBð0Þ − Eð0ÞÞ þ 2κ2Gð0Þ�: ð75Þ

Using the explicit form of the coupling functions (74), the
potential (73) and Eq. (71), it is straightforward to check
that

hΔðFμνÞi¼ 1−e−
ffiffi
2
3

p
ϕ
MP

I0
1
ðϕÞ
2I1

ðEð0Þ−Bð0ÞÞ− I0
2
ðϕÞ
I1

Gð0Þ

V 0ðϕÞ ; ð76Þ

where the expression in the numerator of the long fraction
is the right-hand side of the Klein-Gordon equation (49),
while the denominator is the “drag force” term on the left-
hand side of the same equation. Note that a prime denotes a
derivative with respect to the inflaton. It is convenient to
introduce a dimensionless parameter which quantifies the
relevance of the backreaction term in the Klein-Gordon
equation, δBR, see Eq. (85) below. Then, we may estimate
the value of hΔi as follows:

hΔðFμνÞi ≥ 1 − e−
ffiffi
2
3

p
ϕ
MPδBR > 0: ð77Þ

Indeed, as we will show in the next section, in the strong
backreaction regime δBR ≃ 1.4 However, in Eq. (77), it is

multiplied by a factor e−
ffiffi
2
3

p
ϕ
MP which is exponentially small

far from the end of inflation. On the contrary, close to the

end of inflation e−
ffiffi
2
3

p
ϕ
MP ≲ 1 while δBR ≪ 1, because the

produced gauge field typically decreases toward the end of
inflation. Therefore, the product in the second term is
always smaller than unity and there is no danger that
hΔðFμνÞi would vanish during inflation.

V. NUMERICAL RESULTS

A. General remarks

In this section we perform a numerical analysis of
gauge-field production in the extended Starobinsky model
introduced in the previous section. First, we specify the
numerical values of our model parameters. As we discussed
earlier, the parameter ξs which determines the magnitude
of the R2 term in action (60) in Jordan frame and the
amplitude of the Starobinsky potential (73) can be fixed
from CMB observations because it also determines the
amplitude of the scalar power spectrum, As. For the
Starobinsky potential, we have

As ¼
H2

8π2M2
Pϵ

����
N�

≃
N2�

72π2ξs
; ð78Þ

where ϵ ¼ M2
P
2

�
V 0ðϕÞ
VðϕÞ

	
2
is the first slow-roll parameter and

N� is the number of e-foldings before the end of inflation
when the scalar perturbation mode of the CMB pivot scale
k�=a0 ¼ 0.05 Mpc−1 exits the horizon. Depending on the
details of reheating stage after inflation, N� typically lies in
the range 50–60. Taking for definiteness N� ¼ 50, and
using the best-fit value of the parameter As from the Planck
2018 data [15], As ¼ 2.10 × 10−9, we obtain

ξs ¼ 1.68 × 109 ð79Þ

and the amplitude of the potential V0 ¼ M4
P=ð4ξsÞ≃

1.5 × 10−10M4
P. Even though the backreaction of the

produced gauge field may extend the inflation stage, for
definiteness, we will still use this normalization of the
potential in all our numerical computations.
In order to describe the gauge field production we

employ the gradient-expansion formalism introduced in

4In the case of purely axial coupling the corresponding
solution for the inflaton field in the backreaction regime is often
referred to as the Anber-Sorbo attractor since it was studied for
the first time in Ref. [55]; see the recent article [95] for the
analysis of (in)stability of this attractor.
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Sec. III. For this we need to choose the optimal truncation
order nmax. This is done by increasing the value of nmax
until the numerical result for the generated energy densities
becomes independent of nmax (further increase of nmax
does not change the result). Initial conditions for the
inflaton are taken at the slow-roll attractor: the initial value
for the inflaton ϕð0Þ ¼ ϕ0 is chosen to provide at least
60 − 70e-foldings of inflation while the derivative ϕ̇ð0Þ is
determined as

ϕ̇ð0Þ ¼ −
V 0ðϕ0Þ
3H

≃ −
M2

P

3

ffiffiffiffi
2

ξs

s
e−

ffiffi
2
3

p
ϕ0
MP : ð80Þ

Concerning initial conditions for the bilinear functions
EðnÞ, GðnÞ, and BðnÞ, they may be chosen to be zero or some
nonzero values following from the contributions of vacuum
fluctuations outside the horizon at the initial moment of
time. The system quickly “forgets” these initial conditions
and the final result does not depend on them. More details
on the numerical procedure that we apply, additional
approximations that we do in the gradient-expansion
formalism, and the analysis of the accuracy of the gra-
dient-expansion result are discussed in Appendix B.
The parameters κ1 and κ2, which determine the kinetic and

axion coupling of the gauge field to the inflaton, respec-
tively, always enter the coupling functions in the combina-
tion κ1;2=ξs. Thus, this combinations play the role of
coupling constants and therefore we will specify the
numerical values of these combinations rather than the
values of κ1;2. However, one can easily infer the lκ1;2 using
(79) for ξs. In the three subsections below we study different
cases of interplay between the kinetic and axial couplings.
Therefore,we specify thevalues of κ1;2=ξs, which are used in
the computations, directly in the corresponding subsections.
As we already discussed above, κ1 can only be positive

in order to avoid the strong coupling problem during
inflation, while the sign of κ2 is not fixed. However, for
definiteness, we will also take it positive. In this case the
parameter ξðtÞ defined in Eq. (30) is negative and the mode
with left circular polarization (λ ¼ −1) undergoes
tachyonic instability and becomes enhanced. Changing
the sign of κ2 would lead to the enhancement of the
right-handed circular polarization and, thus, switch the sign
of all bilinear functions Eð2nþ1Þ, Gð2nÞ, and Bð2nþ1Þ. This
situation can be obtained from the case with positive κ2 by
means of a parity transformation; therefore, it suffices to
study only one sign of κ2.
We have already noted that the backreaction may affect

both the Friedmann equation (48) through the energy
density of produced gauge fields and the inflaton equa-
tion (49) of motion due to a nontrivial source term on the
right-hand side. The first effect can be characterized by the
following dimensionless parameter

δED ¼ ρGF
ρinf

¼
1
2
ðEð0Þ þ Bð0ÞÞ
1
2
ϕ̇2 þ VðϕÞ : ð81Þ

Since in the inflationary regime (accelerated expansion of
the Universe), the effective equation of state p ¼ wρ must
satisfy w ≤ −1=3, this puts a constraint on the gauge-field
energy density which can be achieved during inflation,
namely,

w ¼ p
ρ
¼

1
2
ϕ̇2 − VðϕÞ þ 1

3
ρGF

1
2
ϕ̇2 þ VðϕÞ þ ρGF

≤ −
1

3

⇒ ρGF ≤ VðϕÞ − ϕ̇2: ð82Þ

Taking this into account, we conclude that during inflation
δED ≤ −2þ ð3V=ρinfÞ < 1. Nevertheless, its values of
order unity would mean that the gauge-field energy density
has already a tangible effect on the background expansion.
In order to characterize the importance of different terms

in the Klein-Gordon equation (49), we introduce the
following parameters:

δacc ¼
���� ϕ̈

V 0ðϕÞ
����; ð83Þ

δSR ¼
���� 3Hϕ̇

V 0ðϕÞ
����; ð84Þ

δBR ¼
���� I01ðϕÞðEð0Þ − Bð0ÞÞ − 2I02ðϕÞGð0Þ

2I1ðϕÞV 0ðϕÞ
����: ð85Þ

The first of them, δacc, quantifies the contribution of the
inflaton acceleration, the second one, δSR, allows us to
conclude whether the slow-roll attractor is realized (if
δSR ≃ 1), while the third one, δBR, tells about the impor-
tance of the backreaction of generated gauge fields on the
inflaton evolution. In the following subsections we use all
four parameters to analyze different stages of evolution of
the coupled system “inflaton+gauge field.”

B. Axial-dominated limit κ2 ≫ κ1
We start with the axial-dominated case when κ2 ≫ κ1.

In our previous work [81] where a similar type of coupling
between the inflaton and gauge field was treated perturba-
tively, we showed that for the coupling function (74) the
generated gauge field typically decreases in time in the
axially-dominated limit κ2 ≫ κ1. Therefore, the backreac-
tion may occur only before a certain moment during
inflation and after that the usual slow-roll regime is
restored.
For definiteness, we choose the gauge-field coupling

parameters as κ1=ξs ¼ 10−5, κ2=ξs ¼ 0.15. In this case,
backreaction occurs at about 20e-foldings before the end of
inflation. In order to study this regime numerically, we
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employ the gradient expansion formalism with truncation
order in a range nmax ¼ 150–200.
There are a few features in the backreaction regime that

should be noted. First, the inflaton field rolls more slowly
than in the absence of backreaction of generated gauge
fields; e.g., in a particular case shown in Fig. 1(a), in the
presence of backreaction, the inflaton field at any number
of e-foldings before the end of inflation is always smaller
than in the absence of backreaction. In other words, in order
to roll down from the same initial value of the inflaton field,
it takes 10−15e-foldings more in the presence of back-
reaction. The same conclusion follows from the analysis of
the inflaton phase portrait which is shown in the inset in
Fig. 1(a). Indeed, in the backreaction regime (blue solid

line), the inflaton velocity is always smaller in absolute
value than in the absence of gauge fields (red dashed line).
Second, Figs. 1(b) and 2 clearly demonstrate that the

energy density condition ρGF ≪ ρinf is always satisfied
even in the backreaction regime, meaning that δED ∼ 1 is
not a necessary condition for the occurrence of back-
reaction. The presence of the gauge field in the equation of
motion for the inflaton field, Eq. (49), appears to be more
important. Indeed, the parameter δBR [shown by the red
dashed line in Fig. 1(b)] is of order unity all the time up to
20 e-foldings before the end of inflation. After that the
inflaton enters the usual slow-roll regime, see the blue solid
curve for δSR which tends to unity and the green dashed-
dotted line for δacc which becomes much less than unity.

FIG. 1. (a) The dependence of the inflaton field ϕ on the number of e-foldings counted from the end of inflation in the absence of
gauge fields (red dashed line) and for the case κ1=ξs ¼ 10−5, κ2=ξs ¼ 0.15 where the backreaction occurs (blue solid line). The inset
shows a part of the phase portrait of the inflaton field in dimensionless coordinates [ϕ=MPl; ϕ̇=ðHMPlÞ]. (b) The δ-parameters defined in
Eq. (81), (83)–(85) as functions of the number of e-foldings: the slow-roll parameter δSR is shown by the blue solid line, the backreaction
parameter δBR—by the red dashed line, the inflaton acceleration parameter δacc—by the green dashed-dotted line, and the energy-density
parameter δED—by the purple dotted line.

FIG. 2. The dependence of the energy densities on the number of e-foldings counted from the end of inflation in the case
κ1=ξs ¼ 10−5, κ2=ξs ¼ 0.15: magnetic energy density (red line), electric energy density (blue line), Chern-Pontryagin density Gð0Þ
(green line), and the energy density of the inflaton (black line). Dots marked by symbols show the corresponding quantities computed in
the mode-by-mode approach: (a) when the backreaction is not taken into account, (b) when the backreaction modifies the inflaton
evolution (based on the inflaton time dependence taken from the result of the gradient-expansion formalism).
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Thus, in order to track backreaction effects, one needs first
to consider the parameter δBR.
Third, the behavior of the generated energy densities as

well as the inflaton field in the backreaction regime are not
monotonic, but an oscillatory behavior is observed. This
can be explained by the retardation of the gauge-field
response to the changes of the inflaton field [68]: gauge-
field modes which are being enhanced at a certain moment
of time will become dominant in the energy density and
Gð0Þ only after some retardation time of a few e-foldings.
We discuss these oscillations in more details in Sec. V E.
Finally, we want to point out that the widely used

assumption that in the backreaction regime the inflaton
experiences a different form of a slow-roll behavior where
the drag force from the inflaton potential is almost exactly
compensated by the backreaction term on the right-hand
side of Eq. (49) [55] is not well justified. Indeed, the two
other terms, the inflaton acceleration and the Hubble
friction, appear to be of the same order of magnitude as
the potential term, see the red dashed line for δSR and the
green dashed-dotted line for δacc in Fig. 1(b). They both are
oscillating and acquire the values of order unity. Moreover,
they show the opposite behavior of the backreaction
parameter δBR: when it is maximal, they both are minimal
and vice versa; however, all three of them on average are of
order unity.
In order to do a consistency check of the numerical

results obtained in the gradient expansion formalism, we
apply the standard approach in momentum space and solve
the mode equation (29) for all physically relevant modes.
Then, integrating the spectral densities over the momenta of
all modes which have been amplified, we obtain the
generated gauge-field energy densities. First, the mode
equation is solved using the unperturbed time dependence
of the inflaton field (i.e., neglecting the backreaction of the
generated fields on the background evolution). The results
are shown by dotted lines in Fig. 2(a). As we see in this
figure, these results are in good accordance with the results
obtained using the gradient expansion formalism during the
last 10e-foldings of inflation, where the generated fields are
weak and backreaction is irrelevant. However, large devia-
tions occur at earlier times. In a second approach, we take
time dependence of the inflaton field and scale factor
from the numerical solution of the gradient-expansion
formalism and use it to solve the mode equation (29).
The numerical results of this mode-by-mode treatment are
shown in Fig. 2(b) by dotted lines. We see a very good
agreement between the two results although there is a small
residual error (typically less than 1% in the backreaction
regime reaching a few percent level during the last
3e-foldings of inflation). This analysis confirms that the
gradient-expansion formalism gives adequate results for the
generated gauge field in the strong backreaction regime.
The mode-by-mode treatment in momentum space also

allows to find the spectrum of the generated gauge fields.

We show the magnetic and electric power spectra in Fig. 3
by the red and blue lines, respectively. The dashed lines
show the spectra of the mode equation (29) neglecting
backreaction while the solid lines correspond to the case
when backreaction is taken into account.
We would like to mention that in the case of the gauge-

field production without backreaction in this model of
kinetic and axial coupling with the coupling function (74)
was studied by us in Ref. [81]. Therefore, in order to
analyze the spectra without backreaction, we can use some
of the results obtained there. In particular, the magnetic
spectral index in the axial-dominated regime reads as

nB ¼ 4 −
32π

9

κ2
ξs
: ð86Þ

Thus, choosing a sufficiently large value of the coupling
parameter κ2=ξs > 9=ð8πÞ ≈ 0.36, we may get a red-tilted
spectrum. In Fig. 3, we show the spectra for κ2=ξs ¼ 0.15
[panel (a)] and for κ2=ξs ¼ 0.4 [panel (b)]. In full accor-
dance with our analytical estimates, in the former case the

FIG. 3. The spectra of the generated magnetic (red) and electric
(blue) energy densities at the end of inflation for κ1=ξs ¼ 10−5

and (a) κ2=ξs ¼ 0.15 or (b) κ2=ξs ¼ 0.4. The solid lines show the
spectra in the case when the backreaction is taken into account
while the dashed lines correspond to the case when backreaction
is absent. The thin green solid lines correspond to a constant
spectral index computed according to Eq. (86).
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spectrum is always blue-tilted while for the latter value it
becomes red-tilted [the thin green lines sketch the tilt of
spectrum with nB given by Eq. (86)]. However, back-
reaction leads to drastic changes of the spectral shape in
both cases. First, for all modes which cross the horizon
in the backreaction regime the spectrum becomes blue-
tilted (on average) and the average spectral tilt is nB ≃ 4
independent of the value of the coupling parameter κ2=ξs.
Second, the spectrum also shows oscillatory behavior
which reflects the inflaton oscillations in the backreaction
regime. Peaks in the power spectrum occur for the modes
which cross the horizon at the moment when the inflaton
velocity is maximal.
The final part of the spectrum, for modes which cross the

horizon during the last few e-foldings of inflation (when
there is no backreaction), has a spectral tilt which is close to
the value (86). This means, that for sufficiently large κ2=ξs
we can still get a red-tilted spectrum, although for a limited
range of modes which correspond to very small scales, see
Fig. 3(b). This may help to get a larger correlation length of
the produced gauge, however, only 2–3 orders of magni-
tude larger than the horizon size at the end of inflation.
Thus, we conclude that in the axial-dominated case,

due to the fact that the coupling function I2 in Eq. (74)
always grows with the increase of ϕ, we unavoidably
face a backreaction problem which is more severe further
from the end of inflation. This raises an important issuewith
the spectra of primordial scalar perturbations. The modes of
scalar perturbations which cross the horizon 50–60 e-
foldings before the end of inflation make an imprint in
the CMB anisotropy spectrum. Therefore, backreaction
occurring at this time will definitely modify the predictions
of inflationary theory and may even contradict CMB
observations. If the coupling parameter is so small that
the backreaction is absent at 50–60 e-foldings before the end
of inflation, then the resulting gauge field are negligibly
small. Consequently, we need another effect whichmay turn
off backreaction in the time intervalwhen themodes relevant
for CMB cross the horizon. Fortunately, this can be easily
done by including a relevant kinetic coupling. We study this
possibility in the following subsections.

C. Kinetic-dominated limit κ1 ≫ κ2
Another limiting case is the domination of the kinetic

coupling when κ1 ≫ κ2. However, this regime is less
interesting as far as magnetogenesis is concerned. Let us
discuss its features in more details. First, we note that for a
meaningful value of κ1=ξs ∼ 10−2 − 1, most of the time
during inflation the second term in the coupling function
(74) dominates; only during the last few e-foldings of
inflation, the unity in Eq. (74) also becomes relevant.
Therefore, most of the time κ1 cancels everywhere in
equations of motion except in the terms with axial coupling
function I2 where it remains in the combination κ2=κ1. This
is because the coupling function I1 enters equations of
motion either in the form of I01ðϕÞ=I1 or I02ðϕÞ=I1. This fact
has different consequences for parity-odd and parity-even
bilinear gauge-filed functions. If the function is parity-odd,
namely Eð2nþ1Þ, Bð2nþ1Þ, or Gð2nÞ, it is significantly sup-
pressed compared to the parity-even functions of the same
order, Gð2nþ1Þ, Eð2nÞ, and Bð2nÞ. Indeed, in the spectral
representation of parity-odd functions, contributions of
modes with left- and right-handed circular polarization
enter with opposite signs, see Eqs. (24)–(26). The two
polarizations evolve differently only because of nonzero
axial coupling which is controlled by the ratio κ2=κ1 ≪ 1.
Therefore, for small values of κ2=κ1 the two polarizations
evolve similar and parity-odd functions are suppressed.
At the same time, parity-even functions remain almost
insensitive to the value of κ2=κ1 and, thus, to any of them.
These features are clearly seen in Fig. 4, where panel
(a) shows the parity-odd function Gð0Þ while panels (b)
and (c) show the parity-even functions ρE¼Eð0Þ=2 and
ρB¼Bð0Þ=2, respectively.
Even if we consider parity-even functions, e.g., the

electric and magnetic energy densities, the produced values
of these quantities appear to be very small. This can be
explained by the fact that the logarithm of the coupling
function I1—the only thing which is important for parity-
even quantities—is a slowly varying function during slow-
roll inflation, ln ðI1ðϕÞÞ ≃ 2

ffiffiffiffiffiffiffiffi
2=3

p ðϕ=MPÞ þ const. This
problem cannot be resolved by increasing the coupling

FIG. 4. The dependence of (a) the Chern-Pontryagin density Gð0Þ, (b) the electric energy density, and (c) the magnetic energy density
on the number of e-foldings counted from the end of inflation in the case κ2=ξs ¼ 10−2 for three values of the parameter κ1: κ1=ξs ¼
0.01 (red solid lines), κ1=ξs ¼ 0.1 (blue dashed lines), and κ1=ξs ¼ 1 (green dashed-dotted lines).
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constant κ1, because, as we discussed above, it disappears
from equations of motion.
In the last few e-foldings of inflation, when the second

term in the coupling function (74) becomes subdominant
compared to unity, i.e., forϕ<MP

ffiffiffiffiffiffiffiffi
3=2

p
ln½1þðκ1=ξsÞ−1=2�,

the dependence on κ1 recovers. However, the functions

I0j ∼ ðκj=ξsÞe
ffiffi
2
3

p
ϕ
MPðe

ffiffi
2
3

p
ϕ
MP − 1Þ are decreasing in time (since

ϕ decreases) and this leads to the decrease of all bilinear
functions (see the final part of the curves in Fig. 4). Thus, we
conclude that in kinetic-dominated case, generated gauge
fields are always very weak.

D. Mixed case

Finally, let us consider the case where both types of
coupling, kinetic and axial, have an important impact on the
resulting gauge field. Naively, one would expect that this
happens when κ2 ∼ κ1. However, in this case we still find a
strong domination of the kinetic coupling; this situation
was discussed in the previous subsection. Therefore, we
must consider κ2 > κ1, although by only 1 or 2 orders of
magnitude. As previously, we can separate two stages:
(i) ϕ ≫ MP

ffiffiffiffiffiffiffiffi
3=2

p
ln½1þ ðκ1=ξsÞ−1=2� when the second

term in the kinetic coupling function (74) dominates and
(ii) the opposite, ϕ ≪ MP

ffiffiffiffiffiffiffiffi
3=2

p
ln½1þ ðκ1=ξsÞ−1=2�, when

I1 ≃ 1. The former regime shows the same features as in the
kinetic-dominated case considered in Sec. V C, while the
latter stage is very similar to the axial-dominated case
discussed in Sec. V B. Taking into account the drawbacks
of both previously considered cases, it is easy to conclude
that we should take such values of κ1 and κ2 for which
the transition between stages (i) and (ii) happens
well before the end of inflation (to allow for a significant

gauge-field amplification) and at the same time at less than
50–60 e-foldings from the end of inflation (so that back-
reaction does not spoil the perturbation modes relevant for
CMB observations).
For the Starobinsky potential (73), employing the slow-

roll approximation and neglecting backreaction from the
produced gauge fields, we find the following dependence
of the inflaton field on the number of e-foldings before the
end of inflation (here N ¼ ln a

aend
< 0):

dϕ
dN

¼ −M2
P
V 0ðϕÞ
VðϕÞ ≈ −2

ffiffiffi
2

3

r
MPe

−
ffiffi
2
3

p
ϕ
MP

⇒ e
ffiffi
2
3

p
ϕ
MP ≃

4

3
jNj: ð87Þ

Using this result, we can estimate the range of the
coupling parameter κ1 for which the transition occurs at
0 ≪ jNj ≪ 50. Taking the relevant range to be 15≲
jNj ≲ 35, we get the following result:

κ1
ξs

≃
9

16N2
∼ ð0.5–2.5Þ × 10−3: ð88Þ

At the same time, κ2 must bemuch greater than κ1 in order to
achieve the strong gauge-field amplification in the second
stage. For definiteness, in our numerical computations we
take κ1=ξs ¼ 1.5 × 10−3 which lies in the desired range and
κ2=ξs ¼ 0.4. For these values of coupling parameters, it
suffices to truncate the system of equations of the gradient-
expansion formalism at the order nmax ¼ 150.
Figure 5(a) shows the evolution of the inflaton field in

the presence of gauge fields (blue solid line) compared
to the case without gauge fields (red dashed and green

0.1

0.2

FIG. 5. (a) The dependence of the inflaton field ϕ on the number of e-foldings counted from the end of inflation in the absence of
gauge fields (red dashed line) and for the case κ1=ξs ¼ 1.5 × 10−3, κ2=ξs ¼ 0.4 where the backreaction occurs (blue solid line). The
green dashed-dotted line shows the inflaton evolution without backreaction shifted by approximately 14 e-foldings so that it matches the
blue curve far from the end of inflation. The inset shows a part of the phase portrait of the inflaton field in dimensionless coordinates
[ϕ=MPl; ϕ̇=ðHMPlÞ]. (b) The δ-parameters defined in Eqs. (81), (83)–(85) as functions of the number of e-foldings: the slow-roll
parameter δSR is shown by the blue solid line, the backreaction parameter δBR—by the red dashed line, the inflaton acceleration
parameter δacc—by the green dashed-dotted line, and the energy-density parameter δED—by the purple dotted line.
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dashed-dotted lines). Here we observe that the inflaton field
tends to match the free solution at more than 40 e-foldings
from the end of inflation and during the last 10 e-foldings of
inflation. This is also clearly seen from Fig. 5(b), where the
parameter δSR (shown by the blue solid line) tends to unity
in these two limiting cases thus manifesting the slow-roll
regime. In the intermediate stage, however, backreaction
strongly affects the inflaton evolution, see, e.g., the strong
modification of the inflaton phase portrait shown in the
inset in Fig. 5(a) or the red dashed curve for the parameter
δBR in Fig. 5(b).
The evolution of electric and magnetic energy densities

as well as the quantity Gð0Þ (often called the Chern-
Pontryagin density) of the generated gauge field are shown
in Fig. 6 by the solid lines. As in the axial-dominated case,
here we also present the results obtained by considering
separate Fourier modes of the gauge field in momentum
space. The dotted lines in Fig. 6(a) correspond to the gauge
field generated on the free inflaton background without
backreaction while the similar lines in Fig. 6(b) are
computed on the inflaton background affected by the
backreaction (the time dependence of the inflaton and
scale factor are obtained with the gradient-expansion
formalism). Thus, Fig. 6(b) compares the values of the
gauge field directly computed by the gradient-expansion
formalism with the corresponding values obtained in the
mode-by-mode treatment on the inflationary background
taken from the gradient-expansion formalism. Although the
latter value cannot be considered as a true reference
solution since it is based on the partial results of the
gradient-expansion formalism, nevertheless, it can be used
to perform a consistency check of our method. As we see
from Fig. 6(b), the dots match the solid lines with a good
accuracy which numerically appears to be less than 1%

during the whole time interval under consideration (for
more details, see Appendix B).
Finally, let us say a few words about the spectra of

generated fields. The magnetic and electric spectral
energy densities are shown by the blue and red lines
in Fig. 7. The dashed lines show the spectra generated
on the free inflaton background while the solid lines
show the spectra in the case when the backreaction is
taken into account. In full accordance with the inflaton
evolution, one can distinguish three regions with differ-
ent properties. For a better understanding, let us con-
sider the behavior of the parameter ξ introduced in
Eq. (30), which determines the gauge-field production if
κ2 ≫ κ1. Using the slow-roll approximation for ϕ̇ and
H, it can be expressed as

FIG. 6. The dependence of the energy densities on the number of e-foldings counted from the end of inflation in the case
κ1=ξs ¼ 1.5 × 10−3, κ2=ξs ¼ 0.4: magnetic energy density (red line), electric energy density (blue line), Chern-Pontryagin density
(green line), and the energy density of the inflaton (black line). Dots marked by symbols show the corresponding quantities computed in
the mode-by-mode approach: (a) when the backreaction is not taken into account, (b) when the backreaction modifies the inflaton
evolution (based on the inflaton time dependence taken from the result of the gradient-expansion formalism).

FIG. 7. The spectra of generated magnetic (red) and electric
(blue) energy densities at the end of inflation in the case
κ1=ξs ¼ 1.5 × 10−3, κ2=ξs ¼ 0.4. The solid lines show the
spectra in the case when the backreaction is taken into account
while the dashed lines correspond to the gauge field generated on
the free inflaton background.
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ξðϕÞ ¼ I02ðϕÞϕ̇
2HI1

≃ −
4

3

κ2
ξs
e

ffiffi
2
3

p
ϕ
MP

�
1þ κ1

ξs
ðe

ffiffi
2
3

p
ϕ
MP − 1Þ2

�
−1
:

ð89Þ

For modes crossing the horizon at more than 30 e-
foldings before the end of inflation (when the inflaton
field decreases monotonically) the spectral curves are
monotonic and approach the unperturbed spectra in the
limit of long-wavelength modes k → 0. In this regime, the
second term in the coupling function I1 dominates; there-
fore, the parameter ξ takes the form:

jξj ≈ κ2
κ1

1

3 sinh2½ϕ=ð ffiffiffi
6

p
MPÞ�

; ð90Þ

which is an increasing function of time (since ϕ always
decreases). As a result, the spectrum is blue-tilted with the
spectral tilt close to nB ¼ 4.
For modes which cross the horizon between 30 and

10 e-foldings prior to the end of inflation, when strong
backreaction occurs, the spectrum shows an oscillatory
pattern which corresponds to the inflaton oscillations in the
backreaction regime. On average, the spectrum is also blue-
tilted with nB ≈ 4.
Finally, the modes which cross the horizon during the

second slow-roll phase (during the last 10e-foldings of
inflation) have a red-tilted spectrum. This follows from the
fact that the kinetic coupling function I1 ≃ 1 at this stage
and the parameter ξ has the form

jξj ≃ 4

3

κ2
ξs
e

ffiffi
2
3

p
ϕ
MP ; ð91Þ

which is a decreasing function of time. Therefore, the
earlier mode crosses the horizon, the stronger it is ampli-
fied. Although, the red-tilted spectrum leads to a larger
value of the coherence length of the produced gauge field,
the range of such modes is very limited and spans over 2–3
orders of magnitude at maximum. Therefore, one may
expect the coherence length just 2–3 orders of magnitude
larger than the horizon size at the end of inflation.

E. Oscillatory behavior in the backreaction regime

In this subsection we comment on oscillations of the
inflaton and generated gauge fields in the backreaction
regime. In Fig. 8 we show the oscillations in the gauge-field
energy density (upper panel) and in the parameter jξj (lower
panel) which occur in the axial-dominated case with
κ1=ξs ¼ 10−4 and κ2=ξs ¼ 0.15.
Note, that similar oscillations have already been reported

in Ref. [68], where it was shown that axial coupling of the
inflaton field to gauge fields through the Chern-Simons
term leads to a resonant enhancement of the gauge field
production, resulting in oscillatory features in the inflaton

velocity as well as in the gauge field spectrum. Since, the
backreaction is relevant only in the axial-dominated case
κ2 ≫ κ1, the similar arguments should be applicable also in
our model.
Remember that the backreaction first becomes important

due to the term ðI02=I1ÞGð0Þ in the Klein-Gordon equa-
tion (49) which creates additional friction and slows down
the inflaton motion. Naively, one would expect that this
immediately suppresses the gauge-field production and the
system finds another stable state (different from the slow-roll
attractor) which smoothly evolves in time. However, the
total generated gauge field value is retarded with respect to
the changes in the inflaton. Indeed, themode function with a
given momentum k gets enhanced only in a narrow time
interval around its horizon crossing k ∼ kh. For an axial-
dominated coupling, this happens when k≲ kh ≃ 2jξjaH
and the maximal growth rate is achieved at the moment of
time tk for which k ≃ ð1=2ÞkhðtkÞ ≃ jξðtkÞjaðtkÞHðtkÞ. The
growth rate and final amplitude of the mode k is thus
determined by the inflatonvelocity (or the parameter ξ) at the
moment of time tk. However, the total generated gauge field
is a superposition of all modes with k < 2jξjaH and the
leading contribution to it is made by modes which were
enhanced at a slightly earlier time. In fact, in Ref. [68] it is
shown that the leading contribution to the integral in Gð0Þ is
made by modes around klead ≃ ð2=jξjÞaH. These modes
were enhanced ΔN ≃ ln½kh=ð2kleadÞ� ≃ lnðξ2=2Þ e-foldings
before the actualmoment of time. This causes the retardation
in response of the gauge field to the variations of the inflaton
velocity and leads to the oscillatory behavior. One may use
this result to estimate the period of oscillations. It is easy to
understand that the maximal amplitude would occur if the
cause (the change in the inflaton velocity or in ξ parameter)
and a consequence (the corresponding change in the
generated field) are opposite, i.e., they delay by π in phase

FIG. 8. The dependence of energy densities (upper panel) and
the gauge-field production parameter jξj (lower panel) on the
number of e-foldings from the end of inflation for κ1=ξs ¼ 10−4

and κ2=ξs ¼ 0.15. A clear anticorrelation is observed (i.e., the
oscillations of the two are shifted by a phaseΔφ ≃ π). A period of
oscillations in e-foldings, TN ≃ 4 is roughly in accordance with
the prediction TN ≃ 2 lnðξ2=2Þ ≈ 4.15 (for jξj ≃ 4) of Ref. [68].
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with respect to each other. Then, the period of oscillations in
the e-foldings scale is just twice the retardation time

TN ¼ 2ΔN ≃ 2 lnðξ2=2Þ: ð92Þ

These features can indeed be seen if we simultaneously plot
the ξ parameter and the generated fields, see Fig. 8. Their
variations have opposite phase and the period of oscillations
is in a good accordance with an estimate (92).
We also note that in a recent paper [95], another attempt

to analyze this behavior was made. The authors study the
deviations from the “would-be” equilibrium solution in the
absence of retardation and conclude that this solution is
unstable. Moreover, the corresponding exponent is com-
plex which corresponds to oscillations with an increasing
amplitude around the equilibrium solution.

VI. CONCLUSION

In this work, we study general features of inflationary
magnetogenesis with strong backreaction from the
produced gauge fields. For this purpose, the gradient-
expansion formalism previously proposed for the descrip-
tion of inflationary magnetogenesis in purely kinetic or
purely axial coupling models, was extended to the case
when both types of couplings are present. This formalism
operates with a set of scalar bilinear functions (14)–(16)
which are quantum expectation values of scalar products of
electric and/or magnetic field three-vectors with an arbitrary
number of spatial derivatives. Since these quantities are
defined in position space, they include all physically relevant
Fourier modes of the gauge field at once and, thus, allow to
self-consistently take into account backreaction of the
generated fields on the background evolution. The latter
phenomenon makes the gauge-filed dynamics strongly
nonlinear and couples all Fourier modes to each other;
consequently, the standard mode-by-mode approach oper-
ating in momentum space becomes extremely complicated
as it requires to evolve simultaneously a huge number of
coupled Fourier modes.
In general, the vacuum expectation value involves

contributions from all Fourier modes with momenta from
zero to infinity. However, modes with large momenta
(subhorizon modes) are almost unaffected by the coupling
to the inflaton and quickly oscillate in time—they corre-
spond to vacuum fluctuations of the gauge field. Thus, to
capture the effect of gauge-field production due to kinetic
and axial coupling it is important to separate it from the
contributions of vacuum fluctuations. This was performed
by taking into account only modes with momenta k ≤ kh,
where the threshold value kh is defined in Eq. (38). This
threshold is chosen such that a term in the mode equa-
tion (33) describing the free evolution of the mode is equal
in absolute value to terms originating from the kinetic and
axial couplings. The introduction of this momentum cutoff
allowed us to extract from an infinite vacuum expectation

value a finite part containing information about the pro-
duced gauge field.
Since the threshold momentum is an increasing function

of time during inflation, the equations of motion for the
quantities EðnÞ, GðnÞ, BðnÞ must take into account the
additional time variation due to new modes which cross
the horizon and start contributing to these quantities. This is
done by introducing boundary terms on the right-hand side
of Eqs. (17)–(19). Analyzing the evolution of the mode
function around the moment of horizon crossing, we
derived explicit expressions for the boundary terms in
terms of Whittaker functions.
Using this newly introduced gradient-expansion formal-

ism we studied the gauge-field production in extended
Starobinsky model which includes the gauge field non-
minimally coupled to gravity. This model is constructed in
such a way that, rewritten in Einstein frame, it possesses a
number of important features: (i) it acquires a scalar degree
of freedom (similarly to the usual Starobinsky model)
which plays the role of the inflaton and has an asymptoti-
cally flat potential as favored by CMB observations [15];
(ii) its Lagrangian is quadratic in the gauge fields and has
the form of kinetic and axial couplings to the inflaton;
(iii) for positive values of the coupling parameter κ1 it
avoids the strong coupling problem during inflation; (iv) the
absence of higher order terms in the gauge fields allows us
to study the gauge field nonperturbatively and take into
account its backreaction on the evolution of the inflaton.
Thus, this model is perfectly suitable for analysis by the
gradient-expansion formalism.
In this model, significant gauge-field production

occurs only if the axial coupling is much stronger than
the kinetic one; i.e., κ2 ≫ κ1. However, this inequality
does not imply that the kinetic coupling plays no role and
can be neglected. In the mode equation (33), parameter

s ¼ İ1
2HI1

þ Ï1
2H2I1

− İ2
1

4H2I2
1

, is indeed much smaller than the

parameter ξ ¼ İ2
2HI1

. Nevertheless, the kinetic coupling
function I1 enters the expression for ξ in the denominator.
Therefore, it modulates the magnitude of the axial coupling
and makes an impact on the resulting gauge field. This
property is extremely important as it helps to suppress
gauge-field production (and its backreaction on the back-
ground evolution) at 50–60 e-foldings before the end of
inflationin order not to spoil the behavior of perturbation
modes relevant for the CMB.
Since the coupling functions I1;2 given by Eq. (74) are

decreasing in time, the generated field is also decreasing
toward the end of inflation. Therefore, if the produced
gauge field at the end of inflation is not extremely small,
backreaction is typically occurring when we go back into
the past. We would like to point out a few general features
of the backreaction regime which were observed. First,
backreaction always occurs due to terms on the right-hand
side of the Klein-Gordon equation (49) for the inflaton

R. DURRER, O. SOBOL, and S. VILCHINSKII PHYS. REV. D 108, 043540 (2023)

043540-20



field. Moreover, contrary to a rather common lore in the
literature, it is completely irrelevant in the Friedmann
equation, because the energy density of the produced
gauge field remains suppressed by 3–4 orders compared
to the energy density of inflaton. Therefore, the back-
reaction criterion based on the gauge-field contribution to
the total energy density is incorrect. Here we have shown
that even when the gauge field energy density is much
smaller than the one of the inflaton, backreaction is
relevant.
Second, the time behavior of the inflaton velocity and

generated gauge-field energy density in the backreaction
regime shows regular oscillations in their absolute values
(although the sign of ϕ̇ does not change in course of these
oscillations meaning that the inflaton remains a monoton-
ically decreasing function of time). These oscillations
originate from the retardation between the changes in
the inflaton field and the corresponding response in the
gauge field. This feature was known in the literature before
[68,95], however, to the best of our knowledge, such a
regular oscillatory pattern in a realistic inflationary model is
reported for the first time.
Third, despite the oscillatory behavior in backreaction

regime, for any given value of the inflaton field its velocity
is always smaller in absolute value than the corresponding
velocity in the absence of backreaction. Therefore, it takes
more time for the inflaton field to roll down to the minimum
of its potential and finish the inflation stage. As a result,
rather than spoiling it, backreaction increases the duration
of inflation by several e-foldings, depending on the model
parameters. This behavior, in some sense similar to the
ultra-slow-roll regime in potentials with an inflection point,
may be important for generation of strong small-scale
scalar perturbations and for primordial black hole
production.
Forth, backreaction has a strong impact on the spectra of

the generated gauge fields. As it was shown in Ref. [81], in
the absence of backreaction, by choosing a sufficiently
large value of parameter κ2, it is possible to achieve a scale-
invariant or red-tilted magnetic power spectrum and, thus,
obtain a large correlation scale for the produced gauge field.
Backreaction drastically changes this behavior. For gauge-
field modes which cross the horizon in the backreaction
regime, the spectrum also reveals oscillatory behavior and
the average spectral index appears to be close to nB ¼ 4.
Since backreaction turns off a few e-foldings before the end
of inflation, one can still get a part of the spectrum which is
red-tilted, although for a limited range of modes spanning
over 2–3 orders of magnitude. Therefore, the resulting
coherence length of the produced gauge fields may be at
most 2–3 orders of magnitude larger than the horizon size at
the end of inflation.
All particular features mentioned above lead us to the

conclusion that theories with decreasing coupling func-
tions, although they seemingly imply a potentially larger

coherence length of the generated gauge fields, unavoid-
ably run into a backreaction regime which has two major
consequences: (i) It limits the resulting magnitude of the
produced gauge field because in the backreaction regime,
the gauge-field energy density is smaller than that of the
inflaton by several orders of magnitude, while once back-
reaction switches off the field can only decrease.
(ii) Backreaction does not allow for a significant increase
in the magnetic correlation length as it turns a red-tilted
spectrum into a blue-tilted one. In our previous work [81],
where the same type of coupling functions arose in the
Higgs-Starobinsky inflationary model, but the self-
consistent description of the backreaction was not possible
(because of higher powers of gauge fields present in the
action in that model), we have concluded that it is possible
to obtain a scale-invariant or even red-tilted spectrum that
implies very large correlation length of the generated fields.
A nonperturbative analysis of the backreaction performed
in the present work, unfortunately, made the constraints on
the magnetic correlation length much more severe than
in Ref. [81].
Let us finally emphasize that the gradient-expansion

formalism developed in this work is not restricted to this
type of models with decreasing coupling functions. It can
be used for the description of gauge-field production in a
wide range of models of inflationary magnetogenesis
described by the action (1). Since the generated fields
are extremely strong during inflation, it would be inter-
esting to take into account also the Schwinger pair
production. This may be interesting also for the model
considered in the present study because the Schwinger
effect in some cases helps to avoid backreaction [70].
Another important problem is to study the impact of
produced gauge fields on the spectra of primordial scalar
and tensor perturbations. Requiring these spectra to be in
accordance with CMB and BBN observations, one can
strongly constrain the parameter space of magnetogenesis
models (see, e.g., Refs. [46,56,72–74]). We plan to
address these issues elsewhere.
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APPENDIX A: PROPERTIES OF THE
WHITTAKER FUNCTIONS

The differential equation

d2w
dy2

þ
�
−
1

4
þ ϰ

y
þ 1=4 − μ2

y2

�
w ¼ 0 ðA1Þ

is known as the Whittaker equation and has two linearly
independent solutionsMκ;μ andWκ;μ. For the our purposes,
however, only the function Wκ;μ is relevant. It can be
expressed in terms of the Tricomi confluent hypergeometric
function U as follows:

Wϰ;μðyÞ ¼ e−y=2yμþ1=2Uðμ − ϰ þ 1=2; 1þ 2μ; yÞ: ðA2Þ

Using Eq. (13.5.2) in Ref. [96], one can derive the
following asymptotical expression of the Whittaker func-
tion at jyj → ∞:

Wϰ;μðyÞ ¼ e−y=2yϰ½1þOðy−1Þ�: ðA3Þ

The mode equation (33) has the form of the Whittaker
equation (A1) with κ ¼ −iλξ, μ ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=4þ s
p

, and
y ¼ 2iz. Its solution must satisfy the Bunch-Davies vac-
uum boundary condition (34). Comparing it with Eq. (A3),
we conclude that the W function indeed has the correct
asymptotic. Therefore, the solution to the mode equation
has the form (40).
In the derivation of boundary terms we used the

expression for the derivative of the Whittaker W function
which is given by (see Eq. (13.4.33) in Ref. [96])

y
d
dy

Wϰ;μðyÞ ¼ ðy=2 − κÞWϰ;μðyÞ −Wϰþ1;μðyÞ: ðA4Þ

APPENDIX B: DETAILS OF NUMERICAL
COMPUTATIONS

In this Appendix, we give more details on the numerical
analysis of the model discussed in the main text. In
particular, we discuss two approximations which can be
used in order to simplify the numerical implementation of
the boundary terms.
Equations (41)–(46) give full expressions for the boun-

dary terms. There are two ingredients in these expressions
which may strongly complicate the numerical analysis: the
presence of Whittaker functions and the factor d ln kh=dt.
Let us consider them separately.
The Whittaker W function belongs to the class of

confluent hypergeometric functions (see Appendix A),
i.e., is a special function. Therefore, its presence in the
numerical program requires using some additional pack-
ages which include this function (e.g., in Cþþ or Python)
and/or in some cases requires computations with a

precision exceeding the standard machine precision
(e.g., this happens in Wolfram Mathematica for large
values of parameter ξ; see Ref. [70]). In such a case, it
could be useful to have approximate expressions for the
boundary terms only involving elementary functions. For
the case of a pure axial coupling such expressions
have been derived in Ref. [70] both in the absence and
presence of the Schwinger effect. In the present work,
expressions in Eqs. (44)–(46) are more complicated than
the pure axial coupling case; however, if we assume that
İ1=I1 is a slowly varying function and neglect its time
derivative, the expression for the horizon-crossing momen-
tum in Eq. (39) takes the form

khðtÞ ≈max
t0≤t



aðt0ÞHðt0Þ

�
jξðt0Þj

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2ðt0Þ þ jσ2ðt0Þ þ σðt0Þj

q ��
; ðB1Þ

where σðtÞ is the parameter introduced in Eq. (47). This
expression now coincides (up to an additional modulus
sign) with the corresponding expression for the horizon-
crossing momentum in the case of purely axial coupling in
the presence of Schwinger effect; see Eq. (51) in Ref. [70].
The correspondence between these two cases can be
revealed replacing the Schwinger conductivity by the
quantity İ1=I1. The only difference between these cases
is that the conductivity is always positive while İ1=I1 is
typically negative when gauge-field amplification occurs
[this explains the presence of additional modulus sign
under the square root in Eq. (B1)]. The above mentioned
correspondence allowed us to use in the present work
approximate expressions for the functions Eλ, Gλ, Bλ

derived in Ref. [70], namely Eqs. (B15)–(B20), with a
replacement s2 þ s → jσ2 þ σj. These expressions have an
error less than 0.5% (compared to corresponding expres-
sions in terms of Whittaker functions) for jξj > 4. For lower
values of jξj we used the boundary terms expressed through
the Whittaker functions.
Another issue that may cause numerical complications is

the derivative d ln kh=dt. Indeed, the momentum of hori-
zon-crossing mode, khðtÞ, given by Eq. (39) is a maximal
value of a certain expression over the whole time interval
from t0 ¼ 0 until time t. A possible way to compute the
time derivative of such an expression is the following [51].
Let us denote

kh ¼ max
t0≤t

½yðt0Þ�: ðB2Þ

Then,

dkh
dt

¼ dyðtÞ
dt

· θ

�
dyðtÞ
dt

�
· θ½yðtÞ − khðtÞ�; ðB3Þ
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where θ½x� is the Heaviside unit step function. Since the
function yðtÞ is already rather complicated, Eq. (B3)
appears to be very cumbersome and, since it appears in
all equations for the bilinear functions, it requires a lot of
computational resources. In axial-dominated and mixed
cases, we used an approximation yðtÞ ¼ 2aHjξj which is
well-justified since jσj ≪ jξj in these cases. The consis-
tency check performed by comparison with the result of the
mode-by-mode approach shows that the relative discrep-
ancy is typically less than 1%; see Fig. 9(a).
Moreover, one can simplify dkh=dt even further and take

into account only the time derivative of the scale factor a
because it has the fastest (quasiexponential) change in time.
In this approximation,

dkh
dt

≈Hkh: ðB4Þ

This approximation ignores the fact that in the backreaction
regime ξ may also change very fast and the function yðtÞ
may be even nonmonotonic. However, it allows to accel-
erate computations by several times. The consistency check
with the mode-by-mode solution shows a discrepancy of up
to 20%–25%. Such an accuracy should be enough for a
qualitative analysis and order-of-magnitude estimates;
however, in order to obtain a more precise result one must
use Eq. (B3).
We compare the consistency of numerical results

obtained by the gradient-expansion formalism in the mixed
case κ1=ξs ¼ 1.5 × 10−3, κ2=ξs ¼ 0.4 in Fig. 9, where
panel (a) corresponds to the time derivative dkh=dt

computed according to Eq. (B3) and panel (b) shows the
result of approximation (B4).
Finally, let us mention that in some cases the program

which solves the system of equations of the gradient-expan-
sion formalism fails to proceed toward the end of inflation
because the number of equations is very large (it reaches 500
in the case of strongbackreaction) and the computational error
accumulates rapidly. In this case, the following algorithm has
to be used to reach the end of inflation:
(1) Using the gradient-expansion formalism with a

certain truncation order nmax;1 (chosen in such a
way that the result does not change when nmax;1 is
increased) obtain the numerical solution on the time
interval from t ¼ 0 to a certain t ¼ t1 < te which is
still well before the time when the program
breaks down.

(2) Generate a table of values of all bilinear functions
and background quantities at t ¼ t1 and use it as an
initial condition for a new run of the gradient-
expansion formalism with lower truncation or-
der nmax;2 < nmax;1.

(3) Repeat this procedure a few times if needed. The full
solution is then obtained as a piecewise function. Its
consistency with the mode-by-mode solution has to
be checked in the same way as for a single
continuous function.

This procedure was used in our computations in the axial-
dominated and mixed cases where the derivative dkh=dtwas
calculated according to Eq. (B3). For the simplified case
employing Eq. (B4) such a problem never occurred and it was
possible to reach the endof inflation in a single runof the code.

FIG. 9. Upper panels: The dependence of the energy densities on the number of e-foldings counted from the end of inflation in the case
κ1=ξs ¼ 1.5 × 10−3, κ2=ξs ¼ 0.4: magnetic energy density (red line), electric energy density (blue line), and the Chern-Pontryagin
density (green line). Lower panels show the relative discrepancy between the result obtained using the gradient expansion formalism and
the corresponding mode-by-mode solution (based on the inflaton time dependence taken from the result of the gradient-expansion
formalism). Panel (a) corresponds to the case where dkh=dt is computed as in Eq. (B3) while panel (b) shows the result when an
approximation (B4) was used.
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