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This paper investigates the effects of nonvanishing spatial curvature on the propagation of primordial
gravitational waves produced during inflation. In particular, we consider tensor perturbations over a
homogeneous and isotropic background and describe the propagation of gravitational waves in the de Sitter
phase with spatially curved geometries. We thus derive the expression of the primordial power spectrum at
the horizon crossing in the case of open and closed universes. Then, we analyze how tensor modes
propagate in the postinflationary era, showing the evolution of transfer functions in the radiation and matter
epochs, as well as the matching conditions in the intermediate regime. To account for the intrinsic nature of
different relativistic species, we also explore the corrections to the standard behavior of the radiation energy
density. For this purpose, we introduce the effective number of degrees of freedom of relativistic particles
contributing to the primordial energy and entropy densities. Under the subhorizon approximation, we
obtain the spectral energy density of relic gravitational waves in terms of the curvature density parameter.
Finally, we discuss the capability of present and future experiments to detect the primordial gravitational
wave signal at different frequency regimes.
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I. INTRODUCTION

The success of the standard cosmological model has
been pushed to unprecedented precision by the most recent
measurements of the cosmic microwave background
(CMB) anisotropies obtained by the Planck collaboration
[1]. The emerging picture based on the theory of general
relativity indicates that the cosmic fluid is mainly com-
posed of cold dark matter (CDM) and dark energy,
under the simplest form of the cosmological constant
(Λ), which accounts for the accelerated expansion of the
Universe observed at late times [2–6].1 Within such a
framework, spacetime is well approximated by the
Friedmann-Lemaître-Robertson-Walker (FLRW) metric
with vanishing spatial curvature. The nearly homogeneous
and flat universe observed today can be explained by
invoking the theory of cosmic inflation [20–23], which

provides the generation mechanism for density perturba-
tions in the primordial Universe. According to this sce-
nario, the tiny fluctuations in the CMB temperature
represent the relic of quantum fluctuations in the earliest
stages of the Universe’s evolution [24]. The exponential
expansion of spacetime characterizing the inflationary
epoch leads to a spatially (almost) flat FLRW geometry,
regardless of the initial conditions. However, albeit negli-
gibly small at the present time, the spatial curvature effects
may have played an important role before the onset of
inflation.
Despite the predictive power of the flat ΛCDM model,

recent findings do not exclude the possibility to deviate
from zero spatial curvature. Indeed, the latest CMB Planck
results show that there might be a small tension with other
measurements, such as baryon acoustic oscillations (BAOs)
or Supernovae Ia [25,26]. This discordance could be due to
unknown systematic effects that may propagate when
combinations of different datasets are attempted [27], or
to the assumption of a flat fiducial cosmology in the BAO
measurements [28]. In fact, relaxing the flat assumption,
BAO data alone seem to favor a closed Universe at the 2σ
confidence level, even when they are combined with CMB
data [29].
The effect of nonzero spatial curvature on observations

is twofold. On the one hand, it affects the background
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reviews, see, e.g., Refs. [18,19] and references therein.

PHYSICAL REVIEW D 108, 043538 (2023)

2470-0010=2023=108(4)=043538(15) 043538-1 © 2023 American Physical Society

https://orcid.org/0000-0003-2342-1134
https://orcid.org/0000-0003-4379-2549
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.043538&domain=pdf&date_stamp=2023-08-28
https://doi.org/10.1103/PhysRevD.108.043538
https://doi.org/10.1103/PhysRevD.108.043538
https://doi.org/10.1103/PhysRevD.108.043538
https://doi.org/10.1103/PhysRevD.108.043538


evolution and the CMB power spectrum after inflation,
through the radiation, matter and dark energy epochs. In
particular, the presence of spatial curvature modifies the
transfer function governing the evolution of linear pertur-
bations from early epochs until today [30,31]. The second
consequence is related to the corrections to the primordial
spectrum of tensor and scalar perturbations that are
produced in the inflationary phase. Specifically, possible
detection of nonzero curvature would significantly affect
the duration of inflation [32], thus providing an explanation
to some unknown features such as the reduced amplitudes
on large scales of the CMB spectrum [33].
A smoking gun signature for inflation is provided by the

generation of a stochastic backgroundof gravitationalwaves
(GWs). In fact, primordial GWs are a key prediction of
inflationary models and are not expected in cosmological
scenarios that do not consider an inflation mechanism
occurring in the early Universe. In simple slow-roll models,
primordial GWs are tensor metric fluctuations with a nearly
scale-invariant power spectrum at superhorizon scales [34].
Besides being a way to probe inflation, the observational
signatures of primordial GWs allow us to distinguish among
different inflationary models predicting different values of
the amplitude of the GW signal. Also, the importance of
primordial GW lies in the fact that the energy scales of the
inflationary GW background are much higher than those
typically achievable by particle accelerators. Hence, meas-
uring the value of the tensor-to-scalar ratio would probe the
energy regime of physics beyond the standard model.
Therefore, the observation of primordial GWs represents

a major challenge for cosmology in the next years, as
testified by a number of future CMB experiments recently
proposed with the aim of detecting the B-mode polarization
pattern [35–37]. Furthermore, evidence for primordial
GWs could be inferred from tensor modes [38,39], or
modifications of the cosmic expansion history [40], which
may be directly detected through future GW experiments,
such as the Einstein Telescope (ET) [41,42], the Laser
Interferometer Space Antenna (LISA) [43], and the Deci-
hertz Interferometer Gravitational Wave Observatory
(DECIGO) [44]. These are expected to play a central role
in investigating the nature of gravity, dark energy, and many
other fundamental questions [45–56]. Additionally, evi-
dence of GW background could be inferred by observing
the GW influence on the arrival time of pulsar signals
on Earth. Nowadays, there are different pulsar timing
array (PTA) groups operating worldwide, including the
European pulsar timing array (EPTA) [57,58], the North
American Nanohertz Observatory for Gravitational Waves
(NANOGrav) [59], and the Parkes PTA [60]. These indi-
vidual groups are also the constituents of the International
PTA collaboration [61].
The aim of the present paper is to investigate the role

of spatial curvature in the propagation of GWs in the
primordial universe. We are specifically interested in

describing the evolution of tensor perturbations at early
times and studying the possible implications of nonflat
cosmological scenarios on the power spectrum of GWs
generated during inflation. This allows us to analyze
the energy density and frequency of GWs that can be
directly compared with the typical sensitivities of the next-
generation GW detectors.
This work is structured as follows. In Sec. II, we briefly

overview the cosmological background evolution of FLRW
universes with nonvanishing spatial curvature. In particular,
we show the solutions to the Friedmann equations for
radiation, matter and de Sitter eras. In Sec. III, we discuss
linear perturbations on the FLRW metric and obtain
analytical solutions of the tensor wave equation for differ-
ent spatial geometries. In Sec. IV, we analyze the effects of
spatial curvature on the primordial power spectrum of GWs
generated during the inflation epoch. We thus investigate
the evolution of transfer functions in the radiation and
matter epochs, discussing the matching conditions between
the two stages. Furthermore, in Sec. V, we study the impact
of the effective relativistic degrees of freedom on the
spectral density and frequency of GWs. In Sec. VI, we
discuss the observational consequences of our results in
view of potential detections by present and future experi-
ments. Finally, in Sec. VII, we summarize our findings and
outline the future perspectives of this work.
Throughout the paper, we set units c ¼ ℏ ¼ 8πG ¼ 1.

II. BACKGROUND FLRW COSMOLOGY

The standard cosmological model is based on the
Einstein-Hilbert gravitational action with the cosmological
constant contribution:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
ðR − 2ΛÞ þ Lm

�
: ð1Þ

Here, g is the determinant of the metric tensor gμν, R is the
Ricci scalar and Lm is the Lagrangian density of matter
fields. By varying the above action with respect to gμν, one
obtains the Einstein field equations

Rμν −
1

2
gμνRþ Λgμν ¼ Tμν; ð2Þ

where Rμν is the Ricci tensor and Tμν is the matter energy-
momentum tensor:

Tμν ¼
−2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LmÞ
δgμν

: ð3Þ

Assuming the Universe to be filled with a perfect fluid of
energy density ρ and pressure p, one has

Tμν ¼ ðρþ pÞuμuν þ pgμν; ð4Þ

where uμ is the four velocity of the cosmic fluid.
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Under the cosmological principle, spacetime is described
by the homogeneous and isotropic FLRW metric:

ds2 ≡ gμνdxμdxν ¼ aðτÞ2½−dτ2 þ γijdxidxj�; ð5Þ

where γij is the maximally symmetric metric of spatial
hypersurfaces, such that

γijdxidxj ¼
dr2

1 − Kr2
þ r2dΩ2; ð6Þ

being dΩ2 ≡ dθ2 þ sin2 θdϕ2 the infinitesimal solid angle,
and a the dimensionless scale factor as a function of the
conformal time.2 Here, we consider the parameter K to
have units of length−2, with its sign identifying the
curvature of the three-dimensional space: flat (K ¼ 0),
closed (K > 0), and open (K < 0) universes.
Solving Eq. (2) for the metric (5) provides us with the

Friedmann equations describing the background evolution
of the Universe:

H2 ¼ 1

3
ðρþ ΛÞa2 − K; ð7Þ

H0 þH2 ¼ 1

6
ðρ − 3pÞa2 þ 2Λ

3
a2 − K; ð8Þ

where H≡ a0=a is the conformal Hubble parameter, and
the symbol 0 denotes the derivative with respect to τ.
For each species of the cosmic fluid, i, we can assume a

linear barotropic equation of state pi ¼ wiρi, so that the
conservation of the energy-momentum tensor, ∇νTμν ¼ 0,
provides us with the continuity equation

ρ0i þ 3Hð1þ wiÞρi ¼ 0; ð9Þ

whose solution is

ρi ¼ ρ0;ia−3ð1þwiÞ; ð10Þ

being ρ0;i the present-day energy density of each species.
The Friedmann equations can be thus solved by means of

Eq. (10), together with the initial condition að0Þ ¼ 0.
Specifically, in the radiation epoch, setting w ¼ 1=3 and
Λ ¼ 0, one finds

aradðτÞ ∝ sinhðτ
ffiffiffiffiffiffiffi
jKj

p
Þ; K < 0 ð11Þ

aradðτÞ ∝ τ; K ¼ 0 ð12Þ

aradðτÞ ∝ sinðτ
ffiffiffiffi
K

p
Þ; K > 0: ð13Þ

In the epoch dominated by nonrelativistic matter, the
Friedmann equations for w ¼ 0 and Λ ¼ 0 are solved for

amatðτÞ ∝ coshðτ
ffiffiffiffiffiffiffi
jKj

p
Þ − 1; K < 0 ð14Þ

amatðτÞ ∝ τ2; K ¼ 0 ð15Þ

amatðτÞ ∝ 1 − cosðτ
ffiffiffiffi
K

p
Þ; K > 0: ð16Þ

Regarding the inflationary dynamics, we consider a de
Sitter universe driven by the cosmological constant
ðw ¼ −1Þ, with nonvanishing spatial curvature. In this
case, the solution to the scale factor is

ainfðτÞ ¼
ffiffiffiffiffiffiffijKjp

HΛ sinhðτ
ffiffiffiffiffiffiffijKjp Þ ; K < 0 ð17Þ

ainfðτÞ ¼ − 1

HΛτ
; K ¼ 0 ð18Þ

ainfðτÞ ¼
ffiffiffiffi
K

p

HΛ sinðτ
ffiffiffiffi
K

p Þ ; K > 0; ð19Þ

whereHΛ ¼ ffiffiffiffiffiffiffiffiffi
Λ=3

p
. It is worth noticing that, in both open

and flat universes, the conformal time domain is
τ ¼ ð−∞; 0Þ, and the scale factor is defined over the
interval a ¼ ð0;∞Þ. In the closed case, instead, the
conformal time spans the range τ ¼ ð−π=ð2 ffiffiffiffi

K
p Þ; 0Þ, while

the scale factor domain is a ¼ ð ffiffiffiffi
K

p
=HΛ;∞).

In the next section, we discuss linear perturbations over
the FLRW background. In particular, we shall study the
influence of spatial curvature on the power spectrum of
tensor perturbations generated by inflation.

III. TENSOR PERTURBATIONS

In order to describe the propagation of GWs during
inflation, we consider linear perturbations around the
spatial part of the line element (5):

ds2 ¼ aðτÞ2½−dτ2 þ ðγij þ hijÞdxidxj�; ð20Þ

where hij is a symmetric three tensor satisfying
hii ¼ Dihij ¼ 0, with Di denoting the covariant derivative
compatible with γij.

3 For the gravitational theory (1), the
second-order action for tensor perturbations is given as [24]

2The conformal time is defined as dτ≡ dt=a, being t the
cosmic (physical) time. In our treatment, we take the scale factor
normalized at the present time, namely aðτÞ≡ a=a0, with a0 ¼ 1.

3The indices of the tensor perturbation hij are lowered and
raised through the background metric γij. They are invariant
under gauge and conformal transformations.
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Sð2Þ ¼ 1

8

Z
d4x

ffiffiffi
γ

p
a2ðhij0hij −DlhijDlhij − 2KhijhijÞ;

ð21Þ

where γ ≡ detðγijÞ. Thus, the equation of motion is
obtained by varying action (21) with respect to hij:

h00ij þ 2Hh0ij þ 2Khij ¼ D2hij; ð22Þ

where D2 ≡ γijDiDj. It is worth to stress that the above
equation describes the evolution of GWs along all phases of
the Universe’s history.
For a spatially flat geometry, tensor perturbations can be

expanded in eigenfunctions of the flat-space Laplacian
operator. Analogously, in a spatially curved universe, it
is convenient to expand the hij perturbations in terms

of tensor harmonics QnlmðsÞ
ij ðyÞ, with y≡ ðr; θ;ϕÞ, such

that [62]

D2QnlmðsÞ
ij ¼ −ðn2 − 3KÞQnlmðsÞ

ij ; ð23Þ

satisfying the conditions γijQnlmðsÞ
ij ¼ DiQnlmðsÞ

ij ¼ 0. Here,
n represents the wave number generalized to a spatially
curved geometry4:

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 3K

p
: ð24Þ

The latter reduces to the flat eigenmode k as K → 0.
It can be shown that the spectrum of the tensor harmonics

is complete for n ≥ 0, with l ≥ 2 and −l ≤ m ≤ l, in the
case K ≤ 0, whereas for n=

ffiffiffiffi
K

p ¼ 3; 4; 5;…, with 2 ≤ l ≤
n − 1 and −l ≤ m ≤ l, in the case K > 0 (see Refs. [62–64]
for the details). Moreover, the index s accounts for the
harmonics parity, and the normalization condition for the
tensor harmonics readsZ

r2drdΩ
ð1þ K

4
r2Þ3Q

nlm
ij ðyÞ�Qn0l0m0

ij ðyÞ ¼ π

2
δðn; n0Þδll0δmm0 ;

ð25Þ
where the function δðn; n0Þ is defined with respect to the
measure μðnÞ: Z

dμfðnÞδðn; n0Þ ¼ fðn0Þ; ð26Þ

being fðnÞ a generic function of the index n. Both the
function δðn; n0Þ and the measure μðnÞ are defined depend-
ing on the spatial curvature:

δðn; n0Þ ¼
�
δðn − n0Þ; K ≤ 0

δnn0 ; K > 0
; ð27Þ

and

Z
dμ ¼

(R
0
∞dn; K ≤ 0P∞
n=

ffiffiffi
K

p ¼3
; K > 0

: ð28Þ

The tensor perturbations can be thus expanded as

hijðτ; yÞ ¼
X
s

X
nlm

hðsÞnlmðτÞQnlmðsÞ
ij ðyÞ; ð29Þ

where the sum over n should be understood as the right-

hand sides of Eq. (28). It is worth noticing that hðsÞnlmðτÞ
encodes all the dynamical information of GW evolution.
Taking into account Eqs. (23) and (29), we can write
Eq. (22) in the form

hðsÞ00nlm þ 2HhðsÞ0nlm þ ðn2 − KÞhðsÞnlm ¼ 0: ð30Þ

Then, it is convenient to define the quantity

σðsÞnlmðτÞ≡ aðτÞhðsÞnlmðτÞ; ð31Þ

which can be promoted to the quantum operator

σ̂ðsÞnlmðτÞ ¼ σðsÞnlmðτÞâðsÞnlm þ σðsÞ�nlmðτÞâðsÞ†nlm; ð32Þ

where âðsÞ†nlm and âðsÞnlm are the creation and annihilation
operators, respectively, satisfying the following commuta-
tion rules:

½âðsÞnlm; â
ðs0Þ†
n0l0m0 � ¼ δðn; n0Þδss0δll0δmm0 ; ð33Þ

½âðsÞnlm; â
ðs0Þ
n0l0m0 � ¼ ½âðsÞ†nlm; â

ðs0Þ†
n0l0m0 � ¼ 0: ð34Þ

The vacuum state in the Hilbert space is defined through the
standard condition

âðsÞnlmj0i ¼ 0; ð35Þ

and the quantum excited states are produced by multiple

applications of the operator âðsÞ†nlm. Hence, using Eqs. (22)
and (24), we obtain

σðsÞ00nlm þ
�
n2 − K −

a00

a

�
σðsÞnlm ¼ 0; ð36Þ

where the eigenmodes σðsÞnlmðτÞ satisfy the normalization
condition

4More generally, the curved-space wave number can be written
in terms of the rank of the perturbation type, β, as
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ðβ þ 1ÞK

p
, where β ¼ 0, 1, 2 for scalars, vectors,

and tensors, respectively.
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σðsÞnlmσ
ðsÞ�0
nlm − σðsÞ0nlmσ

ðsÞ�
nlm ¼ i: ð37Þ

In the next paragraphs, we shall search for the solutions
of Eq. (36) for different spatial curvatures. As the dynamics
of the GW equation is influenced only by the generalized
wave number n, in what follows we will drop the super-
script (s) as well as the indices l and m to simplify the
notation.

A. Flat universe

Before addressing the open and closed universe cases,
we first review the evolution of tensor perturbations in a flat
de Sitter universe [34,65,66]. In this case, inserting the
solution (18) into Eq. (36) provides

σ00nðτÞ þ
�
n2 −

2

τ2

�
σnðτÞ ¼ 0; ð38Þ

which admits the general solution

σnðτÞ ¼ c1einτ
�
1þ i

nτ

�
þ c2e−inτ

�
1 −

i
nτ

�
: ð39Þ

Here, c1 and c2 are complex integration constants to be
fixed through suitable initial conditions. In particular,
imposing Eq. (37) leads to

jc2j2 − jc1j2 ¼
1

2n
: ð40Þ

This, however, is not sufficient to uniquely determine the
eigenmode σnðτÞ, as a variation of the latter would imply a
variation of ân such that σ̂nðτÞ remains unchanged. In turn,
each of these solutions corresponds to a different vacuum.
Nevertheless, requiring the vacuum to coincide with the
lowest-energy eigenstate of the Hamiltonian at some
particular time τ ¼ τ̃, it is possible to select a specific
solution of σnðτÞ. A standard choice is the Bunch-Davies
vacuum [67,68], for which the ground state of the
Hamiltonian is defined in the infinite past, i.e., τ̃ → −∞.
In this limit, one finds the asymptotic behavior σn ∼ e−inτ.
Comparing the latter to Eq. (39), and making use of
Eq. (40), we obtain the conditions

c1 ¼ 0; jc2j2 ¼
1

2n
; ð41Þ

which finally leads to

σnðτÞ ¼
e−inτffiffiffiffiffiffi
2n

p
�
1 −

i
nτ

�
: ð42Þ

B. Open universes

In the case of open universes (K < 0), the inflationary
behavior of tensor perturbations is given by inserting the
background solution (17) into Eq. (36), so to obtain

σ00nðτÞ þ
�
n2 −

2jKj
sinh2ðτ ffiffiffiffiffiffiffijKjp Þ

�
σnðτÞ ¼ 0: ð43Þ

The general solution to the latter is

σnðτÞ ¼ c1einτ½nþ i
ffiffiffiffiffiffiffi
jKj

p
coth ðτ

ffiffiffiffiffiffiffi
jKj

p
Þ�

þ c2e−inτ½n − i
ffiffiffiffiffiffiffi
jKj

p
coth ðτ

ffiffiffiffiffiffiffi
jKj

p
Þ�; ð44Þ

where the constants of integration c1 and c2 may be
fixed by imposing the Bunch-Davies vacuum state in the
infinite past limit, τ̃ → −∞, along with normalization (37).
These imply

c1 ¼ 0; jc2j2 ¼
1

2nðn2 þ jKjÞ ; ð45Þ

which provide

σnðτÞ ¼
e−inτffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nðn2 þ jKjÞ
p ½n − i

ffiffiffiffiffiffiffi
jKj

p
coth ðτ

ffiffiffiffiffiffiffi
jKj

p
Þ�: ð46Þ

As a consistency check, one can easily verify that the above
expression recovers the flat case solution (42) in the
limit K → 0.

C. Closed universes

A simple way to obtain solutions of the tensor perturba-
tion equation for closed universes (K > 0) is through the
transformations τ → iτ and n → in to be applied to the
equations governing the dynamics of open universes.
Indeed, using this mapping into Eq. (43), we find

σ00nðτÞ þ
�
n2 −

2K

sin2ðτ ffiffiffiffi
K

p Þ

�
σnðτÞ ¼ 0; ð47Þ

which is consistent with the result one would obtain from
Eqs. (16) and (36). Then, applying the same transforma-
tions to Eq. (44) immediately provides us with the general
solution

σnðτÞ ¼ c1einτ½nþ i
ffiffiffiffi
K

p
cot ðτ

ffiffiffiffi
K

p
Þ�

þ c2e−inτ½n − i
ffiffiffiffi
K

p
cot ðτ

ffiffiffiffi
K

p
Þ�: ð48Þ

However, differently from the flat and open cases, the
Bunch-Davies vacuum condition is here realized in the
limit τ̃ → − π

2
ffiffiffi
K

p , which represents the remote past of closed

inflationary models. Hence, the integration constants
appearing in Eq. (48) may be fixed to

ROLE OF SPATIAL CURVATURE IN THE PRIMORDIAL … PHYS. REV. D 108, 043538 (2023)

043538-5



c1 ¼ 0; jc2j2 ¼
1

2nðn2 − KÞ ; ð49Þ

which leads to the final expression

σnðτÞ ¼
e−inτffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nðn2 − KÞ
p ½n − i

ffiffiffiffi
K

p
cot ðτ

ffiffiffiffi
K

p
Þ�: ð50Þ

We notice that the above expression reduces to Eq. (42) in
the limit K → 0.

IV. POWER SPECTRUM OF PRIMORDIAL
GRAVITATIONAL WAVES

In this section, we analyze the physical consequences of
the results obtained for different spatial FLRW geometries.
In particular, we are interested in studying the primordial
power spectrum of GWs and the evolution of transfer
functions [34,65,69].
The comoving wave number n is associated with its

corresponding physical wavelength, λ, through λ ∼ a=n.
The latter can be further related to the conformal Hubble
radius, aH−1, defining the size of causally connected
regions at a given epoch. The behavior of perturbations
can be therefore characterized by two particular regimes:
the subhorizon regime (λ ≪ aH−1), describing perturba-
tions inside the horizon that are damped by the expansion
of the Universe; the superhorizon regime (λ ≫ aH−1),
where perturbations have exited the horizon and get
stretched by the inflation mechanism. In terms of the
comoving wave number, the subhorizon limit can be
expressed by the condition n ≫ H, whereas the super-
horizon limit as n ≪ H, with the horizon crossing
occurring as n ¼ H. In this context, the presence of
nonvanishing spatial curvature plays an important role,
as it can anticipate or delay the horizon crossing of a given
mode with respect to the flat case.
As previously discussed, Eq. (22) describes the evolution

of tensor modes in the absence of sources. Labeling as hinfn
the amplitude of primordial GWs that left the horizon
during the inflationary phase, the general solution of
tensor perturbations, valid at any time, may be written in
the form [65]

hnðτÞ≡ hinfn T ðτ; nÞ; ð51Þ

where T ðτ; nÞ is the transfer function characterizing the
GW modes evolution after entering the horizon in the
postinflationary universe. The transfer function is normal-
ized such that T ðτ; nÞ → 1 as n → 0, and its evolution is
described by

T 00ðτ; nÞ þ 2HT 0ðτ; nÞ þ ðn2 − KÞT ðτ; nÞ ¼ 0; ð52Þ

which is subjected to the boundary conditions [70]

T ð0; nÞ ¼ 1; T 0ð0; nÞ ¼ 0: ð53Þ

Two different epochs are taken into account by Eq. (52): the
radiation era, for τ < τeq (n > neq), and the matter era, for
τ > τeq (n < neq), with τeq being the equivalence time
between the two epochs [71].
Then, one may define the tensor power spectrum of

primordial GWs as

PTðnÞ≡ n3

π2
½jhinfn j2�τ¼τ⋆

; ð54Þ

where τ⋆ denotes the time of the horizon crossing, i.e.,
when n ¼ H. Furthermore, if we consider the time-time
component of the GW energy-momentum tensor,

ρhðτÞ ¼
hh0ijðτ; yÞhij0ðτ; yÞi

4aðτÞ2 ; ð55Þ

we can express the relative spectral energy density of
GWs as

ΩGWðτ; nÞ≡ ρ̃hðτ; nÞ
ρcrðτÞ

¼ PTðnÞ
12HðτÞ2 jT

0ðτ; nÞj2; ð56Þ

where ρ̃hðτ; nÞ ¼ dρh
d ln n, and ρcrðτÞ≡ 3HðτÞ2aðτÞ−2 is the

critical density of the Universe. We refer the reader to
Ref. [65] for the details.
In the following, we shall distinguish among different

spatial curvatures to derive the GW power spectrum and
analyze the evolution of the transfer functions in the
radiation and matter eras.

A. Flat universe

Let us start to calculate the primordial power spectrum
for a flat universe. Inverting Eq. (8) for n ¼ H, we find the
scale factor at the horizon crossing:

a⋆ ¼ n
HΛ

: ð57Þ

This can be used with Eq. (18) to obtain the conformal time
at the horizon crossing:

τ⋆ ¼ −
1

n
: ð58Þ

Hence, combining the above expressions with Eqs. (31)
and (42), the power spectrum (54) reads

PT ¼
�
HΛ

π

�
2

; ð59Þ

which is clearly a scale-invariant quantity.
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The evolution of transfer functions after inflation in a flat
universe is obtained by solving Eq. (52) with K ¼ 0. In
particular, we consider the background solutions given by
Eqs. (12) and (15), and introduce the new variable u≡ nτ.
Hence, Eq. (52) reads

T 00ðuÞ þ 2α

u
T 0ðuÞ þ T ðuÞ ¼ 0; ð60Þ

where α ¼ 1, 2 for radiation and matter epochs, respec-
tively, and the prime denotes the derivative with respect to
u. The initial conditions associated to Eq. (60) are

T ð0Þ ¼ 1; T 0ð0Þ ¼ 0: ð61Þ

The general solution in the radiation era is

T radðuÞ ¼ A
e−iu

u
þ B

eiu

u
; ð62Þ

where A and B are complex coefficients to be determined.
The transfer functions are real quantities, so we require the
condition T ðuÞ ¼ T ðuÞ�. As Eq. (62) may be formally
written as T ¼ Af þ Bf�, the above condition translates
into ðA − B�Þf ¼ ðA� − BÞf�, which holds true only if
A ¼ B� and A� ¼ B. If we write A ¼ a1 þ ia2 and
B ¼ b1 þ ib2, then b1 ¼ a1 and b2 ¼ −a2. Thus, after a
convenient redefinition of the constants, we obtain

T radðuÞ ¼ c1
sin u
u

þ c2
cos u
u

; ð63Þ

where c1 and c2 are now real constants, which can be found
by requiring the initial conditions (61). In particular, we
find c1 ¼ 1 and c2 ¼ 0, so we finally have

T radðuÞ ¼
sin u
u

: ð64Þ

In the matter era, the general solution of Eq. (60) can be
written as

T mat ¼ c1

�
sin u
u3

−
cos u
u2

�
þ c2

�
sin u
u2

þ cos u
u3

�
; ð65Þ

where c1 and c2 are real coefficients. In this case, the
initial conditions (61) are satisfied for c1 ¼ 3 and c2 ¼ 0,
leading to

T matðuÞ ¼
3

u3
ðsin u − u cos uÞ: ð66Þ

In order to find a smooth matching between the two
epochs, we need to consider the propagation of radiation
modes into the matter era. This can be achieved by taking
into account the general solution in the intermediate regime
ðτ > τeq; n > neqÞ:

T int ¼
ueq
u

�
Aeq

�
sin u
u2

−
cos u
u

�
þ Beq

�
sin u
u

þ cos u
u2

��
:

ð67Þ

Here, the constants Aeq and Beq can be determined by
requiring the matching between Eqs. (64) and (67),
together with their respective first derivatives, evaluated
at the time of equivalence. In so doing, one finds

Aeq ¼ 1 −
1

u2eq
þ sinð2ueqÞ

2ueq
þ cosð2ueqÞ

u2eq
; ð68Þ

Beq ¼
3

2ueq
þ sinð2ueqÞ

u2eq
−
cosð2ueqÞ

2ueq
: ð69Þ

It is worth noting that the solutions (64), (66), and (67) may
be also written in terms of spherical Bessel functions of the
first kind [65].

B. Open universes

Considering the case of open universes, the scale factor
at the horizon crossing is given from Eq. (7) as

a⋆ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 − jKj

p
HΛ

: ð70Þ

To obtain the expression of the primordial power spectrum
for open models, we invert Eq. (17) with the help of
Eq. (70). In so doing, one finds the conformal time at the
horizon crossing:

τ⋆ ¼ −
1ffiffiffiffiffiffiffijKjp arctanh

� ffiffiffiffiffiffiffijKjp
n

�
: ð71Þ

Plugging the above expressions into Eqs. (31) and (46),
from Eq. (54) we obtain

PTðnÞ ¼
�
HΛ

π

�
2 n4

n4 − K2
: ð72Þ

The latter suggests that, in a universe with spatial hyper-
bolic geometry, the primordial power spectrum of tensor
perturbations produced during the inflation results to be
enhanced with respect to the spatially flat case, especially
for the smallest modes (namely, for the longest physical
wavelengths). As soon as n ≫

ffiffiffiffiffiffiffijKjp
, Eq. (72) smoothly

approaches the scale-invariant power spectrum (59).
In order to derive the transfer functions in the postinfla-

tionary universe, it is convenient to perform the rescaling

Sðτ; nÞ≡ aðτÞT ðτ; nÞ: ð73Þ

Then, Eq. (52) becomes
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S00ðτ; nÞ þ
�
n2 − K −

a00ðτÞ
aðτÞ

�
Sðτ; nÞ ¼ 0; ð74Þ

obeying the initial conditions

Sð0; nÞ ¼ 0; S0ð0; nÞ ¼ 1: ð75Þ

In the radiation era, by inserting the scale factor (11) into
Eq. (74), we find

S00
radðτ; nÞ þ n2Sradðτ; nÞ ¼ 0; ð76Þ

which can be solved by means of the initial conditions (75),
so as to obtain

Sradðτ; nÞ ¼
sinðnτÞ

n
: ð77Þ

Therefore, we finally have

T radðτ; nÞ ¼
ffiffiffiffiffiffiffijKjp

sinðnτÞ
n sinh ðτ ffiffiffiffiffiffiffijKjp Þ : ð78Þ

It is straightforward to show that the above equation
recovers the flat-case limit (64) as K → 0.
In the matter era, the dynamics of tensor perturbations is

described by inserting the background solution (14) into
Eq. (74), leading to

S00
matðτ; nÞ þ

�
n2 þ jKj

1 − cosh ðτ ffiffiffiffiffiffiffijKjp Þ

�
Smatðτ; nÞ ¼ 0:

ð79Þ

The latter admits the general solution

Smatðτ; nÞ ¼ Aeinτ
�
nþ i

ffiffiffiffiffiffiffijKjp
2

coth

�
τ

ffiffiffiffiffiffiffijKjp
2

��

þ Be−inτ
�
n − i

ffiffiffiffiffiffiffijKjp
2

coth
�
τ

ffiffiffiffiffiffiffijKjp
2

��
; ð80Þ

where A and B are complex coefficients. Following the
same prescription adopted in the context of the flat case,
one can show that the condition of reality for Sðτ; nÞ
implies writing Eq. (80) in the form

Smat ¼ c1

�
n sinðnτÞ þ

ffiffiffiffiffiffiffijKjp
2

cosðnτÞ coth
�
τ

ffiffiffiffiffiffiffijKjp
2

��

þ c2

�
n cosðnτÞ −

ffiffiffiffiffiffiffijKjp
2

sinðnτÞ coth
�
τ

ffiffiffiffiffiffiffijKjp
2

��
;

ð81Þ

where c1 and c2 are real constants.

Therefore, in view of Eq. (73), we obtain

T mat ¼
c1
h
2njKj sinðnτÞ þ jKj3=2 cosðnτÞ coth

�
τ

ffiffiffiffiffi
jKj

p
2

	i
2n½cosh ðτ ffiffiffiffiffiffiffijKjp Þ− 1�

þ
c2
h
2njKj cosðnτÞ− jKj3=2 sinðnτÞ coth

�
τ

ffiffiffiffiffi
jKj

p
2

	i
2n½cosh ðτ ffiffiffiffiffiffiffijKjp Þ− 1� :

ð82Þ

To determine c1 and c2, we require the initial conditions
(53) to be satisfied. For this purpose, we must impose

c1 ¼ 0; c2 ¼ −
6

4n2 þ jKj ; ð83Þ

so that the final expression reads

T mat ¼
3jKj3=2 sinðnτÞcoth

�
τ

ffiffiffiffiffi
jKj

p
2

	
−6njKjcosðnτÞ

nð4n2þjKjÞ½coshðτ ffiffiffiffiffiffiffijKjp Þ−1� : ð84Þ

One can show that the latter reduces to Eq. (66) in the
limit K → 0.
Then, to study the behavior of the radiation modes

approaching the matter era, we consider the general
solution in the intermediate regime:

T int ¼ Aeq
P1ðτÞ
QðτÞ þ Beq

P2ðτÞ
QðτÞ ; ð85Þ

where

P1ðτÞ≡ 2njKj sinðnτÞ þ jKj3=2 cosðnτÞ coth ðτ
ffiffiffiffiffiffiffi
jKj

p
=2Þ;
ð86aÞ

P2ðτÞ≡ 2njKj cosðnτÞ − jKj3=2 sinðnτÞ coth ðτ
ffiffiffiffiffiffiffi
jKj

p
=2Þ;
ð86bÞ

QðτÞ≡ cosh ðτ
ffiffiffiffiffiffiffi
jKj

p
Þ − 1: ð86cÞ

We thus require a smooth matching between the radiation
and matter solutions by equating Eq. (78) to Eq. (85), and
their respective derivatives, evaluated at the equivalence
epoch. This allows us to find

Aeq ¼
4n2 tanh

�
τeq

ffiffiffiffiffi
jKj

p
2

	
− 4jKj sin2ðnτeqÞ

sinh ðτ
ffiffiffiffiffi
jKj

p
Þ þ

n
ffiffiffiffiffi
jKj

p
sinð2nτeqÞ

cosh2 ðτeq
ffiffiffiffiffi
jKj

p
=2Þ

2n2
ffiffiffiffiffiffiffijKjp ð4n2 þ jKjÞ ;

ð87Þ
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Beq ¼
n½cosð2nτeqÞ−cosh ðτeq

ffiffiffiffiffi
jKj

p
Þ−2�

cosh2 ðτeq
ffiffiffiffiffi
jKj

p
=2Þ − 2

ffiffiffiffiffi
jKj

p
sinð2nτeqÞ

sinhðτeq
ffiffiffiffiffi
jKj

p
Þ

2n2ð4n2 þ jKjÞ : ð88Þ

C. Closed universes

In the case of closed universes, the scale factor at the
horizon crossing obtained from Eq. (7) reads

a⋆ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ K

p

HΛ
: ð89Þ

Using the latter to invert Eq. (19), we find the conformal
time at the horizon crossing:

τ⋆ ¼ −
1ffiffiffiffi
K

p arctan

� ffiffiffiffi
K

p

n

�
: ð90Þ

Thus, in view of Eqs. (31) and (48), from Eq. (54) we
obtain the primordial power spectrum as

PTðnÞ ¼
�
HΛ

π

�
2 n4

n4 − K2
: ð91Þ

This result is formally equivalent to Eq. (72). Indeed, as
for negative spatial curvatures, the effect of positive
curvatures produces an enhancement of the primordial
power spectrum compared to the flat universe. As
n ≫ K, the curvature effects become vanishingly small
and one recovers the scale-invariant feature of the flat
spectrum [cf. Eq. (59)].
We move now to study the evolution of the transfer

functions in different epochs. As already discussed, we may
start from the results obtained in the case of open universes
and apply to them the transformations τ → iτ and n → in.
For the radiation era, from Eq. (78) we find

T rad ¼
ffiffiffiffi
K

p
sinðnτÞ

n sin ðτ ffiffiffiffi
K

p Þ : ð92Þ

Moreover, applying the same transformations to Eq. (84)
provides us with the transfer function in the matter era:

T mat ¼
6Kn cosðnτÞ − 3K3=2 sinðnτÞ cotðτ

ffiffiffi
K

p
2
Þ

nð4n2 − KÞ½cos ðτ ffiffiffiffi
K

p Þ − 1� : ð93Þ

In order to match the transfer functions in the radiation
and matter epochs, we consider the evolution of the
radiation modes in the matter era. For this purpose, we
consider the general solution in the intermediate regime
obtained from Eq. (82):

T int ¼
Aeq½K3=2 cosðnτÞ cotðτ

ffiffiffi
K

p
2
Þ þ 2Kn sinðnτÞ�

cos ðτ ffiffiffiffi
K

p Þ − 1

þ Beq½2Kn cosðnτÞ − K3=2 sinðnτÞ cotðτ
ffiffiffi
K

p
2
Þ�

cos ðτ ffiffiffiffi
K

p Þ − 1
: ð94Þ

Here, the coefficients Aeq and Beq are to be fixed by
matching Eq. (92) with Eq. (93), and their respective
derivatives, at the time of equivalence. Specifically, we find

Aeq ¼
2n2 cot ðτeq

ffiffiffiffi
K

p Þ þ 2K sin2ðnτeqÞ−2n2
sin ðτeq

ffiffiffi
K

p Þ −
ffiffiffi
K

p
n sinð2nτeqÞ

cos ðτeq
ffiffiffi
K

p Þþ1ffiffiffiffi
K

p
n2ð4n2 − KÞ

ð95Þ

Beq ¼
nþ

ffiffiffi
K

p
sinð2nτeqÞ

sinðτeq
ffiffiffi
K

p Þ þ n sin2ðnτeqÞ
cos2ðτeq

ffiffiffi
K

p
=2Þ

n2ð4n2 − KÞ : ð96Þ

V. THE IMPACT OF EFFECTIVE DEGREES
OF FREEDOM

Although, in the standard cosmological picture, the
evolution of the energy density in the radiation era is
described by ρrad ∝ a−4, such a behavior is not overall valid
if one takes into account the intrinsic nature of particles that
become nonrelativistic in different moments. Assuming the
Universe to be an adiabatic system, as the temperature
drops in view of the cosmic expansion, certain particles
stop contributing to the radiation density before others.
To analyze the effects of this phenomenon on the

primordial power spectrum, we consider the Universe as
a plasma composed of relativistic particles and photons in
thermal equilibrium. Then, the radiation energy density and
pressure can be expressed in terms of the plasma temper-
ature T as, respectively,

ρradðTÞ ¼
π2

30
geff;ρðTÞT4; pradðTÞ ¼

ρradðTÞ
3

; ð97Þ

where geff;ρ is the effective number of relativistic degrees of
freedom for species with massmi ≪ Ti, contributing to the
radiation energy density:

geff;ρðTÞ ¼
X

i¼bosons

gi

�
Ti

T

�
4

þ 7

8

X
i¼fermions

gi

�
Ti

T

�
4

: ð98Þ

Moreover, the laws of thermodynamics applied to an
adiabatic system imply the conservation of the entropy per
comoving volume, S ¼ ðρþ pÞa3=T. Thus, one has

SðTÞ ¼ sðTÞa3 ¼ const; ð99Þ
where s is the entropy energy density that, to a very good
approximation, is given by [72]
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sðTÞ ¼ 2π2

45
geff;sT3: ð100Þ

Here, geff;s is the effective number of relativistic degrees of
freedom contributing to the entropy:

geff;sðTÞ ¼
X

i¼bosons

gi

�
Ti

T

�
3

þ 7

8

X
i¼fermions

gi

�
Ti

T

�
3

: ð101Þ

In Fig. 1, we show the behaviors of geff;ρðTÞ and geff;sðTÞ,
based on the data provided in Ref. [73]. The temperature
evolution of the effective degrees of freedom depends
on some peculiar transitions in cosmic history. For instance,
T ∼ 1MeV marks the electron-positron annihilation, which
occurs when the temperature of the Universe becomes of
the order of the electron mass. Then, the most drastic
change takes place at the quantum chromodynamics
(QCD) phase transition, including the hadronic phase
(T < 100 MeV), the nonperturbative phase (T∼100MeV),
and the perturbative phase (T ≫ 100 MeV). Finally,
another significant change is due to the electroweak
crossover, when the temperature of the Universe transited
from a high value of the symmetric phase to a low value of
the broken phase regime characterized by a nonvanishing
expectation value of the Higgs field [74]. It is worth noting
that geff;s can be identified with geff;ρ for most of the
Universe’s history, when all particle species shared the
same temperature. However, in general, the two quantities
cannot always be used interchangeably.
Therefore, combining Eqs. (97) and (99) provides

the correct evolution of the energy density during the
radiation era:

ρrad ∝ geff;ρg
−4=3
eff;s a

−4: ð102Þ

The latter suggests that deviations from the standard
behavior occur unless geff;ρ and geff;s are time independent.

In order to estimate the amplitude of GWs at the present
time, we focus on the modes that entered the horizon while
the Universe was still in the radiation era. An appropriate
description of the evolution of the transfer function after the
modes reenter the horizon may be given by the Wentzel-
Kramers-Brillouin (WKB) approximation, which is valid
for wavelengths that are much shorter than the cosmic
transition through the matter era. Thus, T ∝ a−1e�inτ,
implying [73]

T 0ðτ; nÞ2 ≈ n2

2

�
a⋆
aðτÞ

�
2

¼ H2
⋆a

2
⋆

2aðτÞ2 ; ð103Þ

where H⋆ ≡Hðτ⋆Þ ¼ n. Hence, from Eq. (56), we find

ΩGWðτ; nÞ ¼
PTðnÞ
24

�
H⋆a⋆

HðτÞaðτÞ
�
2

: ð104Þ

If the horizon crossing occurs in the radiation era, then
we have �

H⋆

H0

�
2

¼ π2

30

geff;ρ⋆T4
⋆a

2
⋆

ρcr;0
−

K
H2

0

; ð105Þ

where geff;ρ⋆ ≡ geff;ρðT⋆Þ, with T⋆ being the temperature of
the Universe at the horizon crossing. The above equation
can be manipulated by introducing the curvature density
fraction ΩK;0 ≡ −K=H2

0 and the photon density fraction
Ωγ;0 ≡ ργ;0=ρcr;0, where ργ;0 ¼ π2

15
T4
γ;0 is the present-day

value of the photon energy density and Tγ;0 the corre-
sponding temperature. In addition, from Eqs. (99) and
(100), it follows that

geff;s⋆a3⋆T
3
⋆ ¼ geff;s0T3

γ;0; ð106Þ

where geff;s0 ≡ geff;sðTγ;0Þ. Therefore, Eq. (105) becomes

�
H⋆

H0

�
2

¼ Ωγ;0

2a2⋆
geff;ρ⋆

�
geff;s0
geff;s⋆

�
4=3

þΩK;0: ð107Þ

In view of Eqs. (106) and (107), Eq. (104) evaluated at the
present time yields

ΩGWðτ0;nÞ ¼
PTðnÞ
48

�
geff;s0
geff;s⋆

�
2=3

×

�
Ωγ;0geff;ρ⋆

�
geff;s0
geff;s⋆

�
2=3

þ 2ΩK;0

�
Tγ;0

T⋆

�
2
�
:

ð108Þ

The last term in the square bracket shows the influence of
nonvanishing spatial curvature on the current value of the
spectral energy density of GWs. We note that, forΩK;0 ¼ 0,
we recover the expression for a flat Universe provided
in Ref. [73].

FIG. 1. Evolution of the effective relativistic degrees of freedom
as a function of the temperature of the Universe. Logarithmic
scales are used on both axes.
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Finally, one could relate the frequency of GWs to the
horizon crossing of the corresponding mode:

f ¼ n
2π

¼ H⋆

2π

¼ H0

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωγ;0

2

�
geff;s0
geff;s⋆

�
2=3

geff;ρ⋆

�
T⋆

Tγ;0

�
2

þΩK;0

s
: ð109Þ

VI. OBSERVATIONAL CONSEQUENCES

We here investigate the observational consequences of
the results obtained in the previous section. In particular, to
estimate the impact of the spatial curvature on the primor-
dial power spectrum, we consider the quantity

ΔGW ≡ jPðcurvedÞ
T − PðflatÞ

T j
PðflatÞ

T

; ð110Þ

accounting for the relative differences with respect to
the flat case. We show the results in terms of different
ΩK;0 values in Fig. 2, where we fixed the Hubble constant
to the latest estimate by the Planck collaboration, H0 ¼
67.4 km=s=Mpc [1]. We note that significant differences
occur at low wave numbers. Although the symmetric form
of the spectrum for open and closed universes, it is
important to bear in mind the different domains of the
generalized wavenumber in the two cases (see Sec. III).
Moreover, one could relate the stochastic background of
GWs to the sensitivity response of detectors [75–78]. The
observed signal, sIðfÞ, may be written as the sum of the
strain induced by the GW signal, hIðfÞ, and the Ith detector
noise, nIðfÞ:

sIðfÞ ¼ hIðfÞ þ nIðfÞ: ð111Þ
Assuming both GW background and noise to be Gaussian
and stationary, we define the strain power spectral density

of a GW background (Sh) and the detector power spectral
density due to the noise (PI) as, respectively,

hhIðfÞh�Jðf0Þi ¼
1

2
δðf − f0ÞΓIJSh; ð112Þ

hnIðfÞn�Jðf0Þi ¼
1

2
δðf − f0ÞδIJPI; ð113Þ

where ΓIJ is the overlap reduction function for the
correlated response between the detectors I and J to a
GW background [76]. Such a function takes into account
the different locations and orientations of the detectors.
Furthermore, the signal-to-noise ratio (SNR) for a cross-

correlation search for an unpolarized and isotropic stochas-
tic background is given by

SNR ¼
ffiffiffiffiffiffiffi
2T

p �Z
fmax

fmin

df
XM
I¼1

XM
J>I

Γ2
IJS

2
hðfÞ

PIðfÞPJðfÞ
�1

2

; ð114Þ

where M labels the number of detectors and T is the
observational time. Starting from Eq. (114), we write the
effective strain noise as

SeffðfÞ ¼
�XM
I¼1

XM
J>I

Γ2
IJS

2
hðfÞ

PIðfÞPJðfÞ
�−1

2

; ð115Þ

which could be expressed as a function of the energy
density units ΩeffðfÞ:

ΩeffðfÞ ¼
2π2

3H2
0

f3SeffðfÞ: ð116Þ

Then, one can calculate the amplitude Ωξ such for the
integrated SNR to have a fixed value. This is given by

Ωξ ¼
SNRffiffiffiffiffiffiffi
2T

p
�Z

fmax

fmin

df
ðf=frefÞ2ξ
Ω2

effðfÞ
�−1

2

; ð117Þ

where fref is a reference frequency, and ξ is the so-
called spectral index. It is worth stressing that the choice
of fref is arbitrary and will not affect the final result.
Finally, the power-law integrated (PLI) sensitivity curve is
defined as

ΩPLIðfÞ ¼ max
ξ

�
Ωξ

�
f
fref

�
ξ
�
: ð118Þ

In Fig. 3, we display the average over oscillations of the
spectral energy density of GWs for different ΩK;0 values,
where we neglect the corrections due to the effective
number of relativistic degrees of freedom. For reference,
we also show the PLI detector curves for SNR ¼ 1 and the
following observation times: T ¼ 1 yr for ET, CE, LISA,

FIG. 2. Relative change of the primordial power spectrum of
GWs for different spatial curvatures with respect to the flat
universe case.
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and DECIGO; T ¼ 11 yrs for PPTA; T ¼ 12 yrs for
NANOGrav; T ¼ 18 yrs for EPTA; T ¼ 20 yrs for
SKA and IPTA [75]. Moreover, we include the sensitivity
curve expected for the LiteBIRD experiment, aiming at the
detection of the CMB B modes [79]. We notice that the

most promising detector for observing the GW signal at
high frequencies is the DECIGO experiment. On the other
hand, the LiteBIRD experiment will be the most sensitive
probe to detect the low-frequency signal of GWs through
the measurement of the CMB polarization patterns.

FIG. 3. Average spectral energy density of GWs, at the present time, for different spatial curvatures, together with the PLI sensitivity
curves of present and future GWexperiments (see Ref. [75] and references therein). The corrections of the effective degrees of freedom
of relativistic species are here neglected. Logarithmic scales are used on both axes.

FIG. 4. Present-time spectral energy density of GWs for different spatial curvatures, taking into account the evolution of the effective
number of relativistic degrees of freedom. The different phase transitions across cosmic history are specified in correspondence to the
largest suppressions of the spectrum. Logarithmic scales are used on both axes.
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Moreover, in Fig. 4, we highlight the effects due to the
evolving degrees of freedom of relativistic species on the
spectral energy density of GWs for 20% deviations from
the flat case. We can see that the amplitude of GWs is
suppressed at the frequencies of particular phase transitions
occurring in the early Universe, such that the electron-
positron annihilation, the QCD phase transition and the
electroweak crossover.

VII. CONCLUSIONS

In this work, we analyzed the role of non-vanishing spatial
curvature on the primordial power spectrum of GWs. In the
framework of standard FLRW cosmology, we solved the
Friedmann equations in the de Sitter inflationary stage, as
well as in the radiation andmatter epochs, in the presence of a
nonzero curvature parameter. Afterward, we introduced
linear perturbations over the spatial part of the background
metric, in order to study the propagation of GWs during
inflation. We thus characterized the spectrum of tensor
harmonics and derived the normalization conditions for
the GW amplitude by means of creation and annihilation
quantum operators. Hence, we analytically solved the
dynamics of tensor perturbations for flat, open and closed
universes under the Bunch-Davies vacuum, which allowed
us to fix the arbitrary constants of integration resulting from
the general solutions of the GW propagation equation.
Then, we framed the evolution of tensor modes in terms of

the amplitude of GWs that left the horizon during inflation,
and the transfer functions accounting for the GW modes
evolution in the postinflationary era. By distinguishing the
cases of zero, negative, and positive spatial curvatures, we
used the background cosmological solutions to obtain the
power spectrum of primordial GWs at the time of the horizon
crossing. Also, we found the expressions of the transfer
functions in the radiation and matter eras, and analyzed the
propagation of radiation modes into the matter era to
smoothly match the solutions between the two epochs.
Furthermore, we investigated the corrections to the

standard cosmic behavior of the radiation energy density
due to the effective degrees of freedom of relativistic
species. In particular, assuming the Universe to be an
adiabatic system and the cosmic fluid as a hot plasma made

of relativistic particles in thermal equilibrium with photons,
we studied the temperature evolution of the effective
number of relativistic degrees of freedom contributing to
the radiation and entropy energy densities. Consequently,
we showed the impact of these on the relic energy density
of GWs. Specifically, we found that the primordial power
spectrum presents major suppressions at frequencies that
correspond to three phase transitions through cosmic
history, namely the electron-positron annihilation, the
QCD crossover and the electroweak crossover. These
features appear to be common to all FLRW models,
regardless of the value of spatial curvature, whose variation
produces an overall shift in the amplitude of the GW
spectrum.
Finally, we discussed the observational consequences of

our theoretical predictions. In particular, we described how
to relate the stochastic background of GWs to the sensi-
tivity response of a given detector. We thus introduced the
SNR in terms of the strain power spectral density of a GW
background and the detector noise. Then, we computed the
average spectral energy density of GWs for different values
of the curvature parameter, and compared them with the
PLI sensitivity curves of present and upcoming GW
experiments. In particular, we found that the future mea-
surements of the LiteBIRD satellite represent the most
sensitive probe to distinguish among different spatial
curvatures in the low-frequency regime of the primordial
GW signal.
The spatial curvature effects on tensor perturbations may

be further explored by including a scalar field in the
gravitational action [80] or, also, by considering different
formulations of the gravitational interaction in the context
of modified theories of gravity [54]. Future investigations
will be dedicated to this scope.
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