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The two-point summary statistics is one of the most commonly used tools in the study of
cosmological structure. Starting from the theoretical power spectrum defined in the 3D volume and
obtained via the process of ensemble averaging, we establish the construction of the “observed 3D
power spectrum,” folding the unequal-time information around the average position into the wave
modes along the line of sight. We show how these unequal-time cross-correlation effects give rise to
scale-dependent corrections in the observable 3D power spectrum. We also introduce a new
dimensionless observable, the “frequency-angular power spectrum,” which is a function of dimension-
less and directly observable quantities corresponding to Fourier counterparts of angles and redshifts.
While inheriting many useful characteristics of the canonical observed power spectrum, this newly
introduced statistic does not depend on physical distances and is hence free of so-called Alcock-
Paczyński effects. Such observable thus presents a clear advantage and simplification over the
traditional power spectrum. Moreover, relying on linear theory calculations, we estimate that
unequal-time corrections, while generally small, can amount to a few percent on large scales and
high redshifts. Interestingly, such corrections depend on the bias of the tracers and the growth rate, but
also their time derivatives, opening up the possibility of new tests of cosmological models. These radial
mode effects also introduce anisotropies in the observed power spectrum, in addition to the ones arising
from redshift-space distortions, generating nonvanishing odd multiples and imaginary contributions.
Finally, we investigate the effects of unequal-time corrections in resumming long displacements (IR
resummation) of the observed power spectrum.

DOI: 10.1103/PhysRevD.108.043537

I. INTRODUCTION

The cosmological large-scale structure offers a competi-
tive and promising avenue for extracting physical informa-
tion on our Universe from the distribution of matter.
Next-generation galaxy surveys, like Euclid [1], DESI [2],
Rubin [3], Roman [4], SPHEREx [5], SKAO [6],
MegaMapper [7], ATLAS [8], and others, aim to address
various cosmological questions, ranging from uncovering
the nature of dark energy and tests of general relativity on

large scales [9,10] to constraining the properties of the initial
conditions of the Universe by measuring signals of primor-
dial non-Gaussianity [11,12]. In order to successfully extract
accurate cosmological information, robust measurements
and reliable statistical tools are of paramount importance. For
this purpose, the two-point statistics in Fourier space, be it
in 3D (the power spectrum) or in 2D (the angular power
spectrum), has been the observable of choice for a wide
range of these surveys; alternative statistics are, e.g., the
configuration space two-point function, spherical harmonic
tomography, and the spherical-Fourier Bessel [for a (incom-
plete) list of measurements using different procedures, see,
e.g., [13–38] ]. Similar two-point statistics have also been
employed in the fields of intensity mapping analyses, as well
as in cross-correlations of the cosmicmicrowave background
(CMB) lensing and galaxy clustering (see, e.g., [39–41]).
The primary motivation for choosing Fourier 3D statistics is
the linearity of wave modes on the largest cosmological
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scales, thus ensuring the independence of theoretical errors,
subsequently reflected in the diagonal form of the corre-
sponding covariance matrix.
However, due to the complex nature of relating the actual

observable to theoretical predictions in most of the analyses
(sometimes also called light cone effects), in practice, one
has to resort to a series of simplifications and auxiliary
modeling. One such approximation that we focus on in this
paper is related to the fact that, for a tracer (e.g., galaxies)
observed in a redshift bin, a 3D power spectrum necessarily
needs to incorporate the unequal-time effects related to the
redshift difference of the correlated points. Moreover, even
in the case when we observe angular positions as well as
redshifts of individual tracers, the observables that can be
constructed never correspond to the actual 3D unequal-time
power spectrum. The reason for this is that the wave modes
along the line of sight and unequal-time effects are
inevitably mixed up and projected on top of each other
(see [42] for a illustration). Such projection effects are
ignored in all contemporary practical applications of the 3D
power spectrum, relying on existing approximations and
beliefs that the correction will be small and negligible. At
any rate, this is a notion that ought to be scrutinized,
especially in light of the ever-increasing depth and area
coverage of forthcoming surveys.
In this paper, we focus on the ab initio construction of

the two-point observables, taking into account these pro-
jection effects. On our path to addressing this matter, we
find that the issue at hand naturally fragments into the
following set of questions:

(i) How can we construct the flat-sky approximation to
the angular power spectrum taking into account
unequal-time effects?

(ii) Fixed observer breaks the translation invariance in
the plane parallel approximation. How can we
quantify these effects?

(iii) How can we construct the observed 3D power
spectrum from the given projected angular correla-
tion statistics?

(iv) What are the corrections to the observed 3D power
spectrum induced by these projections and unequal-
time effects?

(v) Is there an alternative statistic to the 3D power
spectrum and angular power spectrum capturing the
same information content?

This paper is organized as follows. In Sec. II we first
rederive the projected angular power spectrum in terms of
the unequal-time theoretical power spectrum in the flat-sky
approximation. From there, we derive the observed 3D
equal-time power spectrum and introduce the new statistics
called frequency-angular power spectrum that is free of so-
called Alcock-Paczyński effects. Once these observable
statistics are defined, we consider the corrections generated
by the unequal-time effects. This is done in Sec. III. In the
same section, we also consider the unequal-time effects
arising due to the long displacement field via the IR
resummation mechanism. We close the discussion with
our concluding remarks in Sec. IV. Details of our analysis
are presented in Appendixes A–D.
We use Planck cosmology [43], where Ωch2 ¼ 0.11933,

Ωbh2 ¼ 0.02242, ΩKh2 ¼ 0, h ¼ 0.6766, ns ¼ 0.9665,
and σ8 ¼ 0.81027941. In Table I we provide a short
summary of the key physical quantities featured in the
paper. The linear 3D power spectrum can be obtained using
the CAMB [44] or CLASS [45] codes.

II. FROM THE THEORETICAL TO THE
OBSERVED POWER SPECTRUM

In this section, we delineate several different statistical,
two-point observables. We start from the usual theoretical
power spectrum (see Table I and [42] for details), PðkÞ
defined as the ensemble average power spectrum. This
power spectrum is not observable as it is properly defined
only in a fully 4D space and could be accessible only by a
metaobserver outside of the system.
However, from there, we can define a procedure such

that by introducing the observer and, therefore, the light
cone for our observations, by taking into account the
projections on the sky, we can compute the observable
angular spectrum Cl (for the derivation of light cone effects
on galaxy clustering, see the pioneering work of [46] and,
e.g., [47–53] for angular, Fourier, configuration space
and spherical-Fourier Bessel). We note that when defining

TABLE I. Notation used for the most important quantities in this paper.

δKij Kronecker symbol

δDðxÞ Dirac delta function
WðχÞ Window function; related to the specific observable and survey

δðxÞ 3D density field of matter or biased tracer
δ̂ðθÞ 2D projected filed in the real-space coordinates on the sky

Pðk; z; z0Þ Unequal-time theoretical power spectrum of the 3D density field (unobservable)
Pðk; zÞ Equal-time observed power spectrum (constructed from observable fields)
Clðz; z0Þ Unequal-time angular power spectrum (in the narrow window function limit)
Cl Projected angular power spectrum (with finite size window functions)
C̃ðω;l; z̄Þ Frequency-angular power spectrum (dimensionless, equivalent to the observed power spectrum)
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observable quantities in this work, we do not include
observational effects such as masking and even more instru-
ment-related issues, which go beyond the scope of our work.
As we show, this step folds the PðkÞ information coming
from the modes along the line of sight into the unequal-time
structure ofCl, thus effectively performing the compression
from 4D into 3D.We construct the observed power spectrum
PobsðkÞ (and we will omit the obs indication from now on),
transforming the unequal-time information of Cl and recon-
structing the modes along the line of sight. Finally, we
introduce the observable dimensionless frequency-angular
power spectrum C̃ðω;lÞ, which carries information analo-
gous to the observed power spectrum PðkÞ, but free of the
assumed fiducial cosmology. We will derive the expression
for such observable and argue that it presents several
advantages over the standard power spectra used in literature.
A summary of the different two-point statistics, both theo-
retical and observable ones, is given in Table I.

A. Angular power spectrum

The simplest and most natural projected observable we
can construct is the angular power spectrum Cl. For a given
3D density field δðrÞ, we can introduce the projected
statistics using a general window function W as

δ̂ðθÞ ¼
Z

dχWðχÞδðχn̂; χθ; z½χ�Þ

¼
Z

dχWðχÞ
Z

d3k
ð2πÞ3 e

−iχk:ðn̂þθÞδðk; z½χ�Þ; ð1Þ

where χ is the comoving distance, χðzÞ ¼ c
R
z
0 dzH

−1ðzÞ,
and we use the flat-sky geometric setup, as depicted in
Fig. 1. Given that the projected field is limited to a single
plane, we can introduce 2D Fourier coordinates

δ̂ðlÞ ¼
Z

d2θeil·θδ̂ðθÞ; ð2Þ

for which we have the corresponding momentum repre-
sentation

δ̂ðlÞ ¼
Z

dχ
χ2

WðχÞ
Z

dkn̂
2π

e−iχkn̂δðkn̂n̂; el; z½χ�Þ; ð3Þ

where we used el ¼ l=χ. If we consider the two-point
correlator, we get

D
δ̂ðlÞδ̂�ðl0Þ

E
¼ ð2πÞ2

Z
dχ
χ2

dχ0

χ02
WðχÞW0ðχ0Þδ2Dðl̃− l̃0Þ

×
Z

dkn̂
2π

eiδχkn̂Pðkn̂n̂;k⊥; z½χ�; z½χ0�Þ; ð4Þ

where we introduced the relative radial distance variable
δχ ¼ χ0 − χ, and where k⊥ is constrained by the relation

k⊥ ¼ el ¼ el0 (as we are in flat sky). Given that we have
introduced the relative distance variable δχ, we should
choose the corresponding mean distance χ̄. We have the
freedom to choose the mean distance, and some natural
options are

χ̄a ≡ 1

2
ðχ þ χ0Þ; χ̄g ≡

ffiffiffiffiffiffi
χχ0

p
; χ̄h ≡ 2χχ0

χ þ χ0
; ð5Þ

which correspond to the arithmetic, geometric, and har-
monic mean, respectively. Without specifying the choice of
the mean distance χ̄, we can transform the coordinates to
obtain

D
δ̂ðlÞδ̂�ðl0Þ

E
¼ ð2πÞ2

Z
dχdχ0

χ̄2

χχ0
WðχÞW0ðχ0Þ

×AðδÞδ2Dðl − l0 þ φðδÞΔÞCðl; χ̄; δχÞ;
ð6Þ

where δ ¼ δχ=ð2χ̄Þ, and φðδÞ is an off-diagonal phase of
the Dirac delta function, and we introduced Δ ¼ l0 þ l
and the “unequal-time angular power spectrum,”

Cðl; χ̄; δχÞ ¼ 1

χχ0

Z
dkn̂
2π

eiδχkn̂Pðkn̂n̂; k⊥; χ̄; δχÞ: ð7Þ

The factor AðδÞ originates from the Dirac delta function
and takes a different form depending on the definition of χ̄.
The detailed derivation and a few explicit choices are
shown in Appendix A.
Since the observer position is fixed, we see that the exact

translation invariance in the observer plane does not hold.
This is reflected in the fact that the two-dimensional Dirac
delta function, besides depending on the wave vectors l
and l0, also depends on the distances χ and χ0. Nonetheless,
since we are interested in geometries where the mean
distance is much larger than the relative distance δχ, it is
natural (and it considerably simplifies calculations) to
expand around the leading solution that preserves the
translation invariance. We can thus express the two-point
flat-sky correlators as a sum,

D
δ̂ðlÞδ̂�ðl0Þ

E
¼ ð2πÞ2δ2Dðl − l0Þ

X∞
n¼0

ð∂⃖l0 · ΔÞn
2nn!

CðnÞðlÞ;

ð8Þ

where the partial derivative in the Taylor expansion acts on
the left, producing the derivatives of the delta function, and
we introduced the contributing angular spectra

CðnÞðlÞ ¼
Z

dχdχ0WW0 χ̄
2

χχ0
AðδÞφðδÞnCðl; χ̄; δχÞ: ð9Þ
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Note that the higher derivatives of the Dirac delta function
introduce off-diagonal contributions to the angular corre-
lations of hδ̂ðlÞδ̂ðl0Þi, i.e., CðnÞðlÞ for n > 0 can be
interpreted as a measure of nondiagonal contributions to
the usual angular power spectrum. What is the source of
these nondiagonal contributions? As we know, in the full-
sky treatment, isotropy guarantees the proportionality of
the angular power spectrum to the Kronecker delta δKll0 ,
while in the flat-sky approximation, we have obtained this
condition from the translational invariance in the plane.
However, for two physical modes k⊥ lying on two different
redshift planes to agree, we have to readjust the corre-
sponding angles, as stated by the Dirac delta δ2Dðl − l0Þ.
This generates the off-diagonal contributions as a conse-
quence of the fixed observer. As expected, the CðnÞðlÞ
contributions for n values higher than the leading n ¼ 0
either vanish due to the geometric considerations (e.g., if
W ¼ W0) or are suppressed by the φðδÞn ∼ ðδχ=χÞn factor.
In the next section, we focus only on the n ¼ 0 and simply
drop the n order label, i.e., we define the flat-sky angular
power spectrum,

CðlÞ≡ Cð0ÞðlÞ: ð10Þ

The contribution of these higher-order CðnÞðlÞ have been
numerically investigated in more detail in Ref. [42], where
we show that they tend to be suppressed by at least an order

of magnitude on all scales. We note that the proper physical
interpretation of these contributions is not as corrections
to be added to the flat-sky CðlÞ that would bring it close to
the full-sky result. Rather, these should be considered as
the error estimates of the flat-sky results, asymptotically
approaching the full sky. For the recent derivation of the
flat-sky CðlÞ expression as the leading asymptotic term of
the full-sky CðlÞ we refer the reader to Ref. [54].
Before continuing our investigation, let us discuss the

options for the choice of k⊥. First, we can constrain our
considerations to the scalar case k⊥, as is given by the
isotropy in the plane perpendicular to the line of sight. This
also holds when redshift-space distortions are included in
the 3D power spectrum. Moreover, from the Dirac delta
function constraint k⊥ ¼ el ¼ el0 we again have the freedom
to construct our choice for k⊥. This choice determines at
which order in δ the corrections in Cðl; χ̄; δχÞ appear.
Choosing k⊥ ¼ l=χ or k⊥ ¼ l=χ0 is thus suboptimal as it
leads to the δ corrections we saw above. What is the
alternative? We can again choose one among the arithmetic,
geometric, and harmonic combinations,

k⊥ ¼ l
2

�
1

χ
þ 1

χ0

�
; k⊥ ¼ lffiffiffiffiffiffi

χχ0
p ; k⊥ ¼ 2l

χ þ χ0
; ð11Þ

which all provide corrections that are of order δ2. These
have to be again evaluated in the chosen χ̄, δχ coordinates.

FIG. 1. Scheme showing the three stages we follow in constructing the observed power spectrum. We start by correlating the 3D
density field δðx; zÞ, which provides us with the theoretical, unobservable, unequal-time 3D power spectrum Pðk; z; z0Þ. From this, we
can construct the observable angular power spectrum Clðz; z0Þ. Using the flat-sky approximation we can translate the Clðz; z0Þ into the
observable equal-time power spectrum Pðk; z̄Þ at the mean redshift z̄.
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For concreteness, if we choose the arithmetic mean χ̄a, this
gives us AðδÞ ¼ χ2að1 − δ2Þ2, and φðδÞ ¼ δÞ. Choosing the
geometric definition gives k⊥ ¼ l=ðχ̄a

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − δ2

p
Þ. However,

if we choose the harmonic k⊥ ¼ l=χ̄a, introducing a
shorthand notation

C̄ðl; χ̄a; δχÞ ¼
χ̄2

χχ0
AðδÞCðl; χ̄a; δχÞ

¼ 1

χ̄2a

Z
dkn̂
2π

eiδχkn̂Pðkn̂;l=χ̄a; χ̄a; δχÞ; ð12Þ

thus eliminating the dependence on the δ parameter,
besides the explicit dependence in the unequal-time power
spectrum. In the rest of the paper, unless otherwise
specified, we will adopt this geometry choice and drop
the index on the χ̄ and overline on C̄.
The full-sky version of the unequal-time angular power

spectrum is well known and given by (neglecting projec-
tions effects and window functions)

Cfull
l ðχ1; χ2Þ≡ 4π

Z
k2dk
2π2

Pðk; χ1; χ2Þjlðkχ1Þjlðkχ2Þ:

ð13Þ

We shall refer back to these full-sky angular power
spectrum results when generalizing the 3D power spectrum
from the flat-sky approximation to the full-sky case.
Detailed comparison of the full- and flat-skyCðlÞ, studying
galaxy clustering, CMB, and galaxy lensing auto- and
cross-correlations, has recently been performed in [55],
utilizing the FFTLog algorithm.

B. Unequal-time power spectrum

The theoretical power spectrum P is an object that we
construct out of the ensemble average of density fields
given in the 3D space hypersurface at given time slices and
positions. We can define the cross-correlation of two such
density fields, not necessarily at the same hypersurface; this
gives us the unequal-time, theoretical power spectrum

hδðk; zÞδðk0; z0Þi ¼ ð2πÞ3δDðkþ k0ÞPðk; z; z0Þ; ð14Þ

where z is the redshift and k is the Fourier wave mode
corresponding to the 3D position vector x. This power
spectrum is obtained by cross-correlating the 3D density
field at two different times of the evolution of the ensemble,
as shown on the left-hand side of Fig. 1. It is accessible,
e.g., by meta-observers and in N-body simulations and
theoretical calculations, but not as a real observable, given
that every realistic observer has access only to a light cone
projected subset of information, thus being limited to
specific observables, constructed from measured quantities.
It shall be enough for us to consider the linear theory

results (except in Sec. III C, where we also consider the IR

resummation). The 3D unequal-time power spectrum of the
two different tracers is given by

PAB
lin ðk; z1; z2Þ ¼ Dðz1ÞDðz2ÞbAðz1ÞbBðz2ÞP0ðkÞ: ð15Þ

We thus have the cross-power spectrum of two source types
fA; Bg, at redshifts fz1; z2g, respectively. Each of the
tracers is characterized by the linear bias function bðzÞ,
which we have defined relative to the linear growth rate
DðzÞ (often just absorbed in the definition of bias). In case
of dark matter, bðzÞ≡ 1 for all redshifts. In Sec. III, we
shall see how the potentially different time evolution of the
bias functions bAðzÞ and bBðzÞ leads to some nontrivial
consequences in the observational power spectrum, gen-
erating also imaginary contributions.

1. Tomography with narrow windows

Let us look now at expressions for specific choices of
narrow window functions. If we introduce infinitely thin
redshift slices as WðχÞ → δDðχ − χ�Þ, integrating over the
windows gives us Cðl; χ�; χ0�Þ ¼ Cðl; χ�; χ0�Þ, i.e., in the
limit of narrow window functions we recover the true
unequal-time angular power spectrum as an observable.
This gives us the relation of the unequal-time angular
spectrum, measured in the infinitely thin redshift slices,
with theoretical power spectrum Pðk; z; z0Þ. Note that we
did not specify if our theoretical power spectrum is in real
or redshift space since none of the above depends on it.
Indeed, we will be able to keep this generality for a while;
let us just mention again that, in either case, P does not
depend on the azimuthal angle, which allowed us to drop
the angular dependence of the k⊥, i.e., Pðkn̂; k⊥; z; z0Þ ¼
Pðkn̂; k⊥; z; z0Þ. The most common approach in literature at
this stage is to resort to the Limber approximation [56,57].
Let us remind ourselves how it can be recovered. We can
assume that P, when integrating over kn̂, predominantly
depends on k⊥, neglecting other scale dependencies, i.e.,
Pðkn̂; k⊥; z; z0Þ ≃ Pðk⊥; z; z0Þ and therefore we have

CLimðl; χ̄; δχÞ ¼
1

χ̄2
δDðδχÞPðl=χ̄; χ̄; χ̄Þ; ð16Þ

and thus only the equal-time correlations are not forced
to vanish, i.e., CðlÞ is nonzero only when z ≈ z0. After
restoring the window WðχÞ dependence, we obtain the
familiar result

CðlÞ ¼
Z

dχ
WðχÞW0ðχÞ

χ2
Pðl=χ; χ; χÞ: ð17Þ

On the other hand, if we can assume that the power
spectrum P has negligible δχ dependence over the relevant
integration volume, i.e., z ≈ z0, we can invert Eq. (12) to
obtain

Pðkn̂;l=χ̄; χ̄Þ ¼ χ̄2
Z

dðδχÞe−iδχkn̂Cðl; χ̄; δχÞ: ð18Þ
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In Sec. II C, we quantify the errors arising due to this
approximation and show the scale-dependent corrections
neglected here.
Finally, let us repeat the statement about the theoretical

3D power spectrum Pðk; z; z0Þ: while it is the quantity that
encapsulates the dynamical and stochastic information
about the system, it is not observable from the point of
view of an observer sitting in some pointO “in the box,” as
shown in Fig. 1 (see also the discussion in [42]). What
observers can measure are unequal-time angular correla-
tions that contain the information imprinted in the ensemble
power spectrum, projected onto an observable. In the next
subsection, we show how the observer can construct the
corresponding 3D power spectrum from measurements of
the unequal-time angular power spectrum.

C. Observed 3D equal-time power spectrum

Our task in this subsection is to construct the 3D equal-
time observed power spectrum, which we call Pðqn̂; q⊥; z̄Þ,
that an observer at some position O could observe. In
addition to constructing the power spectrum, we need to
define the corresponding Fourier modes qn̂ and q⊥ (which
we label with variable q in order to distinguish it from the
ensemble power spectrum variable k), as well as the mean
redshift z (see the setup in Fig. 2). The expectation is that
the constructed spectrum is, of course, related to the 3D
unequal-time ensemble power spectrum Pðk; z; z0Þ; how-
ever, let us proceed step by step in the construction. We use
the information from the unequal-time angular power
spectra Cðl; χ̄; δχÞ in order to construct the Fourier
modes along the line of sight n̂, while at the same time
keep the information on the mean distance between the
observer O and the survey volume V (or, equivalently,
the redshift bin analyzed). Such a fixed volume, depicted in
Fig. 2, is characterized by the maximal and minimal
comoving distances χmin and χmax. The mean distance χ̄
can thus take the value between χmin and χmax, while

ðχmin − χ̄Þ ≤ δχ=2 ≤ ðχmax − χ̄Þ. Sticking to the center of
the box with the mean distance χ̄, to ensure a wide enough
range for δχ, we can define a constructed wave mode along
the line of sight as the Fourier counterpart of δχ. We can
then use the observable unequal-time angular power
spectrum to obtain what we can define as the observed
equal-time 3D power spectrum as

Pðqn̂;l=χ̄; χ̄Þ≡ χ̄2
Z

dðδχÞe−iδχqn̂Cðl; χ̄; δχÞ; ð19Þ

where C is given in Eq. (12). Relying on the setup shown in
Fig. 2, we define the perpendicular and line of sight Fourier
modes, q⊥ and qn̂. With q⊥ we identify modes correspond-
ing to l divided by the mean comoving distance, i.e.,
q⊥ ¼ l=χ̄, while for the line of sight mode we can take the
Fourier counterpart of the δχ variable, i.e., qn̂ ∼ 2π=δχ.
When does the, so constructed, observable 3D power

spectrum Pðqn̂;l=χ̄; χ̄Þ match the theoretical 3D ensemble
power spectrum Pðk; χ; χÞ? As argued in [42], this happens
when the observed system (the survey) is so small in width
and depth compared to the full sky and the distance from
the observer that we can approximate the observer as a
meta-observer. This here can be compared to assuming
negligible dependence of P on δχ; combining Eqs. (19)
and (12) we obtain

χ̄2
Z

δχ>

−δχ<
dðδχÞe−iδχqn̂Cðl; χ̄; δχÞ

¼
Z

dkn̂
2π

Pðkn̂;l=χ̄; z̄Þ
Z

δχ>

−δχ<
dðδχÞe−iðqn̂−kn̂Þδχ

¼
Z

dkn̂
2π

Bðqn̂ − kn̂; δχ<; δχ>ÞPðkn̂;l=χ̄; z̄Þ; ð20Þ

where χ< and χ> are the closest and farthest integration
distances within the survey, and

FIG. 2. Construction of the observed 3D power spectrum using the perpendicular and line of sight Fourier modes, q⊥ and qn̂. q⊥
corresponds to l divided by the mean comoving distance, i.e., q⊥ ¼ l=χ̄, while the along the line of sight mode is the Fourier
counterpart of the δχ variable, i.e., qn̂ ∼ 2π=δχ.
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Bðk; δχ<; δχ>Þ ¼
i
k
ðe−iδχ< − eiδχ>Þ: ð21Þ

Given the dependence of C on δχ (that we discuss in
Sec. III), we argue that, for large enough survey volumes,
the steep decline of C from δχ ¼ 0 values guarantees that
we can extend and symmetrize the integration region of χ<
and χ>. This is indeed the case for a Λ cold dark matter
(ΛCDM) universe (see Sec. III), and thus, as long as χ̄ is not
close to the edge of the survey, we can adapt the limit

Bðk;ΔχÞ ¼ 2
sinðkΔχÞ

k
≈ 2πδDðkÞ; as Δχ → ∞; ð22Þ

where χ< ≈ χ> ≈ Δχ. Using this approximation, the
expression above yields

Pðqn̂;l=χ̄; z̄Þ ≈ Pðqn̂;l=χ̄; z̄Þ; ð23Þ

as expected. The definition given in Eq. (19) thus recovers
the original ensemble power spectrum. More generally, the
proper 3D observed power spectrum, as defined in Eq. (19),
is sensitive to unequal-time contributions from the 3D
theoretical power spectrum Pðk; χ; χ0Þ. Before quantifying
these unequal-time contributions, we introduce an alter-
native 3D observable, one that does not rely on the
construction of dimensional wave modes qn̂ and q⊥, but
still retains the desirable properties of the observed power
spectrum Pðqn̂; q⊥; z̄Þ.
Let us recap. Cosmological and dynamical information

is encapsulated in the 3D unequal-time theoretical power
spectrum Pðk; z; z0Þ, and therefore, it is not directly
accessible to observations. From this, we can compute
observable quantities like unequal-time 2D angular power
spectra Cðl; z; z0Þ. However, the information is spread out
(along the line of sight) over different redshift shells. The
question is thus whether we can use this angular power
spectrum to construct the corresponding equal-time 3D
power spectrum that matches the original one as best as
possible. The constructed perpendicular modes q⊥ are
related to the inverse angular multipoles l and the mean
distance χ̄. The modes along the line of sight qn̂ are
constructed by Fourier transforming along the unequal-
time dependence of CðlÞ. This construction provides us
with the result that (to a very good approximation)
corresponds to the familiar equal-time 3D power spectrum.
Unequal-time contributions give rise to subleading correc-
tions that we quantify in the remainder of the paper.

D. Frequency-angular power spectrum:
The “new observable”

So far, we have managed to connect the theoretical
with the observed power spectrum. As shown, the con-
nection was achieved via the unequal-time angular power
spectrum Cðl; z; z0Þ. Here we revisit the motivation for the

construction of the observed power spectrum.We have seen
that the information content of the unequal-time angular
spectrum is equivalent to the observed power spectrum
Pðqn̂;l=χ̄; χ̄Þ, so why bother with the additional step of
constructing the observed power spectrum? The reason lies
in the compactification of information, i.e., the covariance
matrix of the observed power spectrum is well described
with a diagonal Gaussian approximation. The disadvantage
is in the need to construct the observable wave modes qn̂
and q⊥, using the fiducial cosmology to determine the
comoving distance. This gives rise to the well-known
Alcock-Paczyński effect [58].
The observed power spectrum is obtained by performing

a simple Fourier transform in the δχ variable. However, one
can imagine doing the same procedure, as defined in
Eq. (19), without involving the comoving distance, i.e.,
we can define a frequency-angular power spectrum as

C̃ðω;l; z̄Þ≡
Z

dδz e−iωδzCðl; χðz̄Þ; δzÞ; ð24Þ

where the new Fourier frequency variable ω plays the role
previously done by qn̂. The statistical properties of the
covariance matrix should inherit all the properties of the
3D power spectrum (approximate diagonal structure and
Gaussianity).1 We highlight that this new observable, given
its functional dependence on only observable quantities,
does not exhibit any Alcock-Paczyński effects; i.e., we do
not need a fiducial cosmology to compute physical dis-
tances, typically required in computing the 3D observed
power spectrum. We can generalize this definition even
further by introducing the variable frequency ωðl; z̄Þ,
which can also depend on cosmological parameters. We
thus obtain a generalized frequency-angular power spec-
trum, defined as

C̃ðω;l; z̄Þ≡
Z

dδz e−iωðl;z̄ÞδzCðl; χðz̄Þ; δzÞ: ð25Þ

We shall see how to best utilize this generalized form
further below.
Later on, we investigate the properties of this observable,

assuming some concrete form of the 3D theoretical power
spectrum. However, before that, we can again look at the

1Starting from the fact that the observed 3D power spectrum is
reasonably close to the theoretical one, we expect that, to a good
approximation, the corresponding covariance matrix is also
diagonal and Gaussian on large scales. How about the fre-
quency-angular power spectrum, then? Its definition differs from
the observed 3D power spectrum in the weighting of the phases
of the plane waves along the line of sight, which does not
fundamentally change the structure of the covariance matrix.
Indeed, in Eq. (30), we see that, when neglecting the unequal-
time effects, the result amounts to rescaling the amplitude and
wave modes in the theoretical linear power spectrum, hinting that
a similar rescaling takes place in the covariance matrix.
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simplifying case when we assumed a negligible unequal-
time dependence of the 3D theoretical power spectrum; i.e.,
we assume Pðk; z̄; δzÞ ¼ Pðk; z̄Þ. We have

C̃ðω;l; z̄Þ ¼
Z

dδz e−iωδzCðl; χ̄ðz̄Þ; δzÞ ð26Þ

¼ 1

χ̄2

Z
dkn̂
2π

Ωðω; kn̂ÞPðkn̂;l=χ̄; z̄Þ; ð27Þ

where

Ωðω; kn̂Þ ¼
Z

dδz exp ðiδχkn̂ − iωδzÞ: ð28Þ

Assuming linear dependence of δχ on δz, i.e.,
δχ ≈ dχ

dz δz ¼ δz=H, where H is the Hubble parameter,
evaluated at the mean redshift z̄, we have

Ωðω; kn̂Þ ¼ ð2πÞδDðkn̂=H − ωÞ; ð29Þ

which gives the frequency-angular power spectrum,

C̃ðω;l; z̄Þ ¼ H
χ̄2

PðHω;l=χ̄; z̄Þ; ð30Þ

that is a dimensionless quantity, depending only on
observable variables. Adding the next order correction to
δχ, we have δχ ≈ dχ

dz δz ¼ δz
H ½1 − c3ðδzÞ2�, where the expres-

sion for the c3ðz̄Þ in ΛCDM is obtained by expanding
δχðz̄; δzÞ around the equal-time case, we have

c3ðzÞ ¼
1

8

ΩmðzÞ
h
1 − 9

4
ΩmðzÞ

i
ð1þ z̄Þ2 ; ð31Þ

and the full derivation can be found in Appendix B. This
gives us

C̃ðω;l; z̄Þ ¼ e−c3ω
d3

dω3
H
χ̄2

PðHω;l=χ̄; z̄Þ

≈
H
χ̄2

�
1 − c3ω

d3

dω3

�
PðHω;l=χ̄; z̄Þ: ð32Þ

In Fig. 3, we show the dependence of the δχ variable on δz.
The purpose of this is to establish the approximations
leading to the result in Eq. (30). On the left panel, we show
the relative errors of the linear approximation δχ ≈ δz=H
for several redshifts in ΛCDM cosmology, where we see
that for most low-redshift spectroscopic surveys, the error
caused by neglecting higher-order Oðδz3Þ corrections is
suppressed to a fraction of a percent. Moreover, once the
Oðδz3Þ corrections are added, corrections are suppressed
below the 0.1%.
On the right panel, we show the redshift dependence of

the c3 coefficient describing the Oðδz3Þ to the δχ ↔ δz
relation. The size of the coefficient in a flatΛCDM universe
depends only on one cosmological parameter, Ωm, its value
being bounded jc3j≲ 0.02 for values of Ωm currently
allowed, and it asymptotes to zero as ∼1=z2. These
considerations prompt us to believe that, for all practical
purposes, in ΛCDM cosmology, accounting for the leading
corrections in δz as done in Eq. (32) should suffice for low-
redshift surveys, while future surveys that aim to measure
galaxy clustering at z > 3 might need to account for the
higher-order correction term.
Let us also entertain the fact that the 3D power spectrum

P is typically a function of k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n̂ þ k2⊥

p
, and once

redshift-space distortions are added, also even powers of
the orientation angle μ ¼ kn̂=k. In terms of our observable
quantities ω and l, this means that we have

k2 ¼ 1

χ̄2
½l2 þ ðHχ̄Þ2ω2�: ð33Þ

Motivated by the multipole expansion usually performed in
the observed power spectrum, let us look at how we could

FIG. 3. Errors on the comoving distance differences δχ. Left: we show the relative errors of the linear approximation δχ ≈ δz=H and
next-to-linear approximation δχ ≈ δz=Hð1 − c3ðδzÞ2Þ for several mean redshifts z̄, assuming Ωm0 ¼ 0.3. Right: the size and the redshift
dependence of the c3ðzÞ coefficient for the fiducial value of Ωm0, with the gray band indicating 10% variations. In all cases, we assume
the flat ΛCDM cosmology.
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reproduce this in the case of the frequency-angular power
spectrum C̃. First, let us define the total momentum
L≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 þ ðHχ̄Þ2ω2
p

. We can immediately notice that L
is no longer a cosmology-independent variable as ω and l
are, as it depends on the Hχ̄ product. This is where our
generalization introduced in Eq. (25) becomes useful. We
can use the freedom introduced in the generalized fre-
quency ωðl; z̄Þ to cancel the cosmology dependence
introduced in k2, i.e., we can introduce

ωðl; z̄Þ → 1

ðHχÞðz̄Þω; ð34Þ

which gives us the wave modes

k2 ¼ 1

χ̄2
ðω2 þ l2Þ ¼ L2

χ̄2
; ð35Þ

where the total momentum is simply L≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ l2

p
. This

allows us to rewrite the frequency-angular power spectrum
given in Eq. (30) as

C̃ðL; z̄Þ ¼ H
χ̄2

PðL=χ̄; z̄Þ: ð36Þ

We note that a different choice of ω than the one given in
Eq. (34), or even fixing the fiducial cosmology of the
ðHχÞðz̄Þ weight, would lead to anisotropic dependencies
in l and ω, which is equivalent to the Alcock-Paczyński
effect [58]. These anisotropies can then be used to
constrain cosmological models; this is also possible since
such anisotropies have a different shape dependence

than redshift space distortions (RSD), assuming enough
dynamic range is captured.
We can also look at the frequency-angular power

spectrum in redshift space, assuming for now just the
usual linear Kaiser formula [57]. Neglecting, for now,
unequal-time effects, we have

Plinðk; μ; z̄Þ ¼ D2½1þ fðz̄Þμ2�2P0ðkÞ; ð37Þ

where we assume that the linear growth factor and rate are
evaluated at the mean redshift z̄, i.e., D ¼ Dðz̄Þ and
f ¼ fðz̄Þ. P0 gives the shape dependence of the linear
power spectrum. There is a simple relation between the
wave mode angular variable and a newly introduced
angular variable ν ¼ ω=L, that is,

μ ¼ kn̂
k
¼ ðHχ̄Þωðl; z̄Þ

L
→

ω

L
¼ ν: ð38Þ

Using the expression given in Eq. (30) we obtain the Kaiser
frequency-angular power spectrum in redshift-space,

C̃linðL; ν; z̄Þ ¼
HD2

χ̄2
ð1þ fν2Þ2P0ðL=χ̄Þ: ð39Þ

In this observable, the multipoles, obtained by expanding in
Legendre polynomials in ν, retain the same form as in the
usual 3D observed power spectrum.
In Fig. 4, we show the comparison of the equal-time

linear theory power spectrum and the frequency-angular
power spectrum C̃ðLÞ. We show the results for three
redshifts z ¼ 0.5, 1.0, and 2.0, also showing the ratio with

FIG. 4. Linear theory results for the equal-time theory power spectrum (left) and the frequency-angular power spectrum C̃ (right), for
three different redshifts, z ¼ 0.5, 1.0, and 2.0. The bottom panels show the ratio with the smooth (no BAO wiggles) version of the
respective power spectra. For the equal-time theory power spectrum, the BAO signal is independent of redshift, while for the frequency-
angular power spectrum C̃, the signal shifts proportionally to the comoving distance χ.
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the smooth (no wiggles) version of the spectrum in the
bottom panels. As also indicated in the plots, the usual
observed power spectrum PðkÞ depends on chosen units,
while the new power spectrum C̃ðLÞ is a unit-independent
quantity. We also notice that, while in the linear theory
power spectrum the baryon acoustic oscillations (BAO)
signal does not shift with different redshifts, for our new
observable the BAO signal shifts with the comoving
distance χðzÞ. This happens because of the relation between
the average comoving distance χ and the multipole scale.
From the bottom panels, which show the ratio to the smooth
spectrum, we can see that the features shift from z1 to z2, as
L2=χ2 ¼ L1=χ1. This is, of course, similar to the standard
Alcock-Paczyński effect [58], where the anisotropies in the
BAO are used to calibrate geometric distances. However,
the novelty of the approach taken here is in the relinquish-
ing of the need to use fiducial cosmology and reliance on
isotropy. In our formalism, the comoving distance infor-
mation can be directly established from the position of the
BAO wiggles.
We now estimate the corrections to the power spectrum

C̃ðLÞ arising from the ðδzÞ3 term in the δχ ↔ δz relation.
From Eq. (32), we see that the leading correction to the
power spectrum takes the form

δC̃linðω;l; z̄Þ ≈ −c3
H
χ̄2

ω
d3

dω3
PlinðHω;l=χ̄; z̄Þ;

¼ −c3D2H3
ν2

L2
δP3ðL=χ̄; νÞ; ð40Þ

where we used the linear matter power spectrum
Plinðk; z̄Þ ¼ Dðz̄Þ2P0ðkÞ (neglecting here redshift-space
distortions) and we introduced

δP3ðk; μÞ ¼ μ2k3P000
0 ðkÞþ3ð1 − μ2Þ½k2P00

0ðkÞ − kP0
0ðkÞ�:

ð41Þ

The corrections in Eq. (40) are proportional to ν2, therefore
introducing an anisotropy even when we start with the
isotropic power spectrum P. This originates in the fact that
the introduction of an observer breaks some symmetries in
the system, and it shows how the ensemble average power
spectrum is not accessible as an observed power spectrum.
Moreover, the corrections depend on the derivatives of

the theoretical power spectrum up to the third derivative.
In order for the frequency-angular power spectrum C̃ðLÞ
to be a useful observable, comparative to the observed
power spectrum PðkÞ as defined in Eq. (19), these δC̃
corrections should be negligible in all practical cases. We
are thus interested in estimating the size of the δC̃
corrections. The maximal contribution is expected on large
scales, given the 1=L2 dependence. Approximating the
power spectrum with the power law on large scales, we
have νmax ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=ð2ð4 − nsÞÞ

p
, which turns out to be a good

approximation on all scales. Using this νmax value, we can
provide an estimate for the corrections to the

���� δC̃linðL; ν; z̄Þ
C̃linðL; z̄Þ

���� ≤ jc3j
ðχ̄HÞ2
L2

δP3ðL=χ̄; νmaxÞ
P0ðL=χ̄Þ

: ð42Þ

We can estimate these effects to be of order percent for
L≲ 10 at high redshifts z ∼ 5, while their size drops
quickly for lower redshifts and higher L. Their impact
thus might be relevant only when considering future wide
and deep high redshift surveys.
The conclusion is thus that the frequency-angular power

spectrum C̃, as introduced in Eq. (25), is a well-behaved
observable with small to negligible subleading corrections.
In that respect, it is equivalent to the observed 3D power
spectrum PðkÞ, with the additional advantages already
highlighted above.
In this derivation, we adopted the flat-sky approximation

and used the corresponding angular power spectrum Cl.
However, our newly defined observable, the frequency-
angular power spectrum C̃ as defined in Eq. (25), does not
require a flat-sky approximation. On the contrary, we are
free to extend the relationship and introduce the full-sky
version of the generalized frequency-angular power spec-
trum, defined as

C̃full
l ðω; z̄Þ≡

Z
dδz e−iωðl;z̄ÞδzCfull

l ðz1; z2Þ; ð43Þ

where Cfull
l is the full-sky unequal-time angular power

spectrum, given in Eq. (13). Moreover, the observed equal-
time 3D power spectrum, as introduced in Eq. (19),
can analogously be extended to its full-sky version. We
can simply replace the corresponding angular power
spectrum Cl,

Pfull

�
qn̂;

l
χ̄
; χ̄

�
≡ χ̄2

Z
dðδχÞe−iδχqn̂Cfull

l ðχ̄; δχÞ: ð44Þ

By adopting this definition for the Pfull, we are abandoning
any notion of the construction of the observable 3D power
spectrum in a rectangular box and have a procedure to go
from the theoretical power spectrum to the observed power
spectrum. Besides, this definition naturally incorporates
the so-called wide-angle effects, i.e., effects arising from
deviations from the flat-sky approximation (see, e.g.,
[52,59–63]). Quantifying these deviations basically boils
down to estimating the difference of using flat-sky vs the
full-sky version of unequal-time angular power spectrum
Cl in Eq. (44). We shall address the quantification of this
difference in future work.

III. EFFECTS OF UNEQUAL-TIME
CROSS-CORRELATIONS

In this section, we look at the results of the observed
power spectrum, taking into account unequal-time effects.
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To compute them, we start from the unequal-time 3D
ensemble power spectrum given by linear theory (and the
Kaiser formula when including the redshift-space distor-
tions). These are chosen as representative of two instructive
cases while still being computationally simple. They can
also be straightforwardly generalized to include nonlinear
corrections using canonical perturbation theory approaches
(be it in the effective field theory suit or others, see, e.g.,
[64] for a review). In addition to these two linear theory
results, we also consider the linear power spectrum in
Lagrangian perturbation theory as a prototypical example
of the resummation of the long displacement field con-
tributions [65,66]. Resumming these long displacements,
even in the case of the equal-time power spectrum, is
important since it affects the damping and shape of the
BAO oscillations [66–69]. Moreover, in the case of the
unequal-time correlators, these displacements are the pri-
mary cause of the rapid decorrelation of radial modes and
the suppression of unequal-time power relative to the equal-
time correlators (see, e.g., [70] and also [71,72] for a related
discussion).
Combining Eq. (19), that defines that observed equal-

time 3D power spectrum, with the flat-sky approximation
for the angular power spectrum given in Eq. (12), we arrive
at the following expression:

P

�
qn̂;

l
χ̄
; χ̄

�
¼

Z
dkn̂
2π

dðδχÞe−iδχðqn̂−kn̂ÞP
�
kn̂;

l
χ̄
; χ̄; δχ

�
:

ð45Þ

This expression gives us a direct relationship between the
observed equal-time power spectrum P and the theoretical
3D unequal-time power spectrum P. We note that the
unequal-time effects, encapsulated in the δχ power spec-
trum dependence, are folded in together with the depend-
ence on the modes along the line of sight kn̂. This folding is
finally combined in the cumulative (effective) line of sight
mode qn̂. In the rest of this section, we investigate the
consequences of this folding, investigating Eq. (45).

A. Linear power spectrum

1. Dark matter results

We start our investigation of unequal-time effects by first
considering just dark matter linear theory results, where the
3D unequal-time power spectrum is given by

Plinðk; z1; z2Þ ¼ Dðz1ÞDðz2ÞP0ðkÞ; ð46Þ

and we can separate the time dependence into two linear
growth factors DðziÞ and the time-independent k-dependent
term. In order to proceed, we want to expand around the
equal-time solution; we follow the analogous procedure as
in [42] and expand the product of the two growth factors up
to quadratic order in δχ to obtain

Dðz1ÞDðz2Þ ¼ D2ðz̄Þ þ 1

8
Δð0Þ

2 ðz̄Þ½Hðz̄Þδχ�2; ð47Þ

where we introduced the mean redshift-dependent factor,

Δð0Þ
2 ðz̄Þ ¼ −2D2ðz̄Þ

�
1þ fðz̄Þ − 3

2

Ωmðz̄Þ
fðz̄Þ

�
fðz̄Þ

ð1þ z̄Þ2 ; ð48Þ

obtained using the arithmetic definitions for χ̄ and δχ; for
the extensive calculation we refer to Appendix C. It is worth
noting that the first-order correction vanishes (but as we
will see later on, this does not always happen). Using the
expression given in Eq. (45), we first evaluate the integral
over δχ to obtain

Z
dðδχÞe−iδχðqn̂−kn̂Þ

�
1 −

1

4
γ×ðHδχÞ2

�

¼
�
1þ γ×

4
ðH∂qn̂Þ2

�
ð2πÞδDðqn̂ − kn̂Þ; ð49Þ

where we use the factor γ× ¼ − 1
2
Δð0Þ

2 =D2; this gives us the
observed power spectrum expression,

Plinðkn̂; k⊥; z̄Þ ¼
�
1þ γ×

4
H2ðn̂ · ∇Þ2

�
Plinðk; z̄Þ: ð50Þ

The deviation from the leading result obtained in Eq. (23),
i.e., the canonical linear theory results, is then given by

δPlinðk; μ; z̄Þ ¼ Plinðk; μ; z̄Þ − Plinðk; z̄Þ

¼ γ×
4

�
H
k

�
2

Dðz̄Þ2δP2ðk; μÞ; ð51Þ

with

δP2ðk; μÞ ¼ μ2k2P00
0ðkÞ þ ð1 − μ2ÞkP0

0ðkÞ; ð52Þ

where μ is the usual cosine of the angle between the wave
mode k and the line of sight, μ ¼ kn̂=k, and the derivatives

PðnÞ
0 are to be taken with respect to the wave mode k. The

unequal-time effects can thus give rise to anisotropies in
the observed 3D power spectrum, generating higher multi-
pole contributions. Besides contributing to the monopole,
Eq. (52) also contributes to the quadruple, and we can write

δPð0Þ
lin ¼ γ×

12

�
H
k

�
2

Dðz̄Þ2ðk2P00
0 þ 2kP0

0Þ;

δPð2Þ
lin ¼ γ×

6

�
H
k

�
2

Dðz̄Þ2ðk2P00
0 − kP0

0Þ: ð53Þ

In the left panel of Fig. 5, we show the ratio of these
corrections for the monopole and quadrupole relative to the
linear theory at redshifts z ¼ 0.5 and 2.0. It is interesting to
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notice that, even without considering redshift-space distor-
tions, these corrections introduced quadrupole corrections,
which is expected as a consequence of breaking the statistical
isotropy. In a follow-up work, we intend to compare such
corrections to the ones introduced by the Doppler term and
relativistic corrections (see, e.g., [73–76]).

2. Multitracer analyses

Until now, in this section, we considered correlations in
real space and for the dark matter case. In the case of biased
tracers, the results have to obviously take into account the
fact that sources are biased tracers of the underlying matter
distribution; however, the structure of the corrections is the
same. The result is instead different, as introduced in [42]
when we consider the correlation of two different tracers
in the so-called multitracer analysis (see, e.g., [77]). We
consider the cross-correlation of two different tracers in
linear theory, as given in Eq. (15). Expanding unequal-time
biases (see Appendix C) around the mean redshift gives us
a nonvanishing linear δχ contribution,

bAðz1ÞbBðz2Þ ¼
�
1þ ΔAB

2
Hδχ

�
bAðz̄ÞbBðz̄Þ þ…; ð54Þ

where we have defined

ΔAB ¼ d
dz

ln

�
bA
bB

�
: ð55Þ

We thus note that, in order to generate the linear δχ
contribution, we need to have two distinct tracers (with
different bias evolutions) since, for a single tracer, the linear
contributions vanish, and we are left with the leading δχ2

terms, as was also the case for dark matter in Eq. (47). As
an example computation of the deviation from the leading-
order results in Eq. (45), we can calculate

Z
dðδχÞe−iδχðqn̂−kn̂Þ

�
1þ 1

2
ΔABHδχ

�

¼
�
1þ i

2
ΔABH∂qn̂

�
ð2πÞδDðqn̂ − kn̂Þ; ð56Þ

which gives us the observed 3D power spectrum,

PAB
lin ðkn̂; k⊥; z̄Þ ¼

�
1þ i

2
ΔABHðn̂ · ∇Þ

�
Plinðk; z̄Þ: ð57Þ

This thus gives rise to an imaginary component of the
observable 3D power spectrum. Even though arising from
different origins, similar effects are present when gravita-
tional redshift effects are included in the Kaiser formula
[78]. The presence of odd multipoles was also found and
discussed in configuration space in [75]. However, the
advantage of this formalism lies in the fact that here
multipoles can be calculated using only one Legendre
polynomial (as some of the geometrical dependencies are
folded during the conversions in Fig. 1), with the intro-
duced error being very small, while in configuration space
there are two angles over which we need to integrate.
We can write this first-order deviation from the equal-

time case, in the multitracer power spectrum as

δPAB
lin ðk; μ; z̄Þ ¼ PAB

lin ðk; μ; z̄Þ − PAB
lin ðk; z̄Þ

¼ i
2
ΔABbAbB

H
k
δP1ðk; μÞ; ð58Þ

where

δP1ðk; μÞ ¼ μkP0
0ðkÞ: ð59Þ

The angular dependence in this term arises from the single
derivative along the line of sight and thus gives rise only to

a dipole contribution δPð1Þ
lin . This is an important result, as in

FIG. 5. Linear theory results in a real-space power spectrum for two different redshifts (z ¼ 0.5, dashed lines; z ¼ 2, solid lines). Left:
ratio of the correction δPlin over the equal-time case for the first two even multipoles for real-space dark matter spectra. Right: ratio of the
first-order imaginary part correction, δPlin for l ¼ 1, in a real-space multitracer case with Δη ¼ 0.2. The ratio is over the amplitude of
the (real) monopole, for a comparison of amplitudes.
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the standard calculations, odd multipoles are zero; this
could therefore result in a new observable or even a new
tool to measure galaxy bias and its evolution.
To continue our investigation, let us focus on a concrete

case; we assume that our two tracers have evolution similar
to the dark matter but still deviating slightly from each
other, i.e., we assume a simple model b ¼ b0Dη. We can
then write

ΔAB ¼ b0A
bA

−
b0B
bB

≈
ðηB − ηAÞf
ð1þ z̄Þ : ð60Þ

This result is also a special case of the expressions given in
Appendix C. For concreteness, here we will show results
for some examples, and surveys-motivated cases will be
presented in the upcoming work.
We start with a rather conservative case where we assume

ηB − ηA ¼ 0.2, which would correspond to a ∼10%
deviation of the time evolution of each of the tracers from
the dark matter case. On the right panel of Fig. 5, we show
the amplitude of the first-order imaginary correction to the
equal-time power spectrum. We plot the ratio of δPlin of

Eq. (58), with Δη ¼ 0.2. The ratio is over the amplitude of
the (real) monopole and should not be intended as an
estimate for detection but as a comparison of amplitudes.
We will see below that, in the case of redshift-space
distortions, this generalizes to higher angular contributions,
thus giving rise to higher-order odd multipoles.

B. Redshift-space distortions

In this section, we extend the linear cross-correlation
model used in Eq. (15), by adding redshift-space distor-
tions. In this work, as a first proof of principle and in the
spirit of leaving the theoretical part as simplified as possible
in order to have full control of the procedure, we consider
just the Kaiser factor [57,79], where we can replace

bXðziÞ → DðziÞ½bXðziÞ þ fðziÞμ2�: ð61Þ

Considering the corrections up to second order in δχ, we
can expand the product of two Kaiser factors in the
unequal-time power spectrum as

ðbA þ fDμ2Þz1ðbB þ fDμ2Þz2 ¼ ðbA þ fDμ2ÞðbB þ fDμ2Þ þ 1

2
H
�
Δð0Þ

1 þ Δð1Þ
1 fDμ2

	
δχ

þ 1

8
H2

�
Δð0Þ

2 þ Δð1Þ
2 fDμ2 þ Δð2Þ

2 f2D2μ4
	
ðδχÞ2 þ…; ð62Þ

where we followed the same procedure of Eq. (47) for the
additional terms.2 This expression is derived in more
detail in Appendix C. After performing the integrals over
δχ and kn̂ in Eq. (45), the deviation from the usual Kaiser
observed redshift-space power spectrum can be expressed
as follows:

δPlin ¼
i
2

H
k
Δ1δP1 −

1

8

�
H
k

�
2

Δ2δP2; ð63Þ

where we have the two factors

Δ1 ¼ Δð0Þ
1 þ Δð1Þ

1 fDμ2;

Δ2 ¼ Δð0Þ
2 þ Δð1Þ

2 fDμ2 þ Δð2Þ
2 f2D2μ4; ð64Þ

and the δP1 and δP2 are the k-dependent contribu-
tions given in Eqs. (59) and (52), respectively. The

time-dependent functions ΔðiÞ
1 and ΔðiÞ

2 are derived in
Appendix C.

Collecting together the different contributions, we can
therefore express the deviations from the standard equal-
time power spectrum multipoles as

δPðlÞ
lin ¼ i

H
k
Im

h
τð1Þl

i
ðkP0

0Þ

−
�
H
k

�
2

Re
h
τð2Þl k2P00

0 þ τð1Þl kP0
0

i
; ð65Þ

where τl are the multipole coefficients, and their expres-
sions are presented in Table II. The real part gives rise to
even and the imaginary part to odd multipoles.
In Fig. 6, we show results for the case presented above;

once again, we leave a detailed estimation of the mag-
nitude of these corrections and their detectability (and/or
need to be included in the galaxy clustering modeling)
for a dedicated separated study. These results show that
unequal-time corrections are generally small; however,
there are scenarios in which they could become relevant.
At large scales and high z, they can contribute up to
several percent to the total observed power spectrum,
making it relevant for planned future surveys that aim to
target exactly large cosmological volumes at very high
redshifts.

2Factors ΔðmÞ
l , and subsequent equations containing them,

should also carry AB labels indicating that we are considering the
cross-correlation of different tracers. However, to make equations
look cleaner, we will omit these labels from now on.
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Moreover, such corrections depend on the different ways
galaxies trace the underlying matter distribution, introduc-
ing anisotropies even without considering redshift-space
distortions, and they generate odd multiples. Interestingly,
unequal-time corrections depend on the derivative of the
power spectrum, which enables the study of its slope and
runnings in a novel way. Finally, we note that the presented
results rely on a specific choice of bias values and their
evolution, and we used the Kaiser formula for redshift-
space distortions. We intend to extend this analysis to

include relativistic effects in a hypothetical multitracer
future analysis in a follow-up paper.

C. IR resummation of power spectrum

The unequal-time theoretical power spectrum in
Lagrangian perturbation theory (LPT) can be schematically
written as [65,66]

Pðk; z; z0Þ ¼
Z

d3qeik·q−
1
2
kikjAijðq;z;z0Þξð0Þðq; z̄Þ þ…; ð66Þ

FIG. 6. Linear theory results, as in Fig. 5 in redshift space for biased tracers, for different multipoles and redshifts, for a particular
choice of bias parameters and their time dependence. Two different redshifts are shown: z ¼ 0.5 (dashed lines) and z ¼ 2 (solid lines).
Left: even multipoles (real part). Right: odd multipoles (imaginary part). In the case of odd multiples, lines are divided by the linear
theory, as in Fig. 5.

TABLE II. Real and imaginary parts of the multipole coefficients τðmÞ
l used in the linear redshift-space distortions

given in Eq. (65). Explicit forms of the ΔðiÞ
1 and ΔðiÞ

2 functions are given in Appendix C.

Real part of τðmÞ
l

τð1Þ0 ¼ 1
12
Δð0Þ

2 þ 1
60
fDΔð1Þ

2 þ 1
140

ðfDÞ2Δð2Þ
2 τð2Þ0 ¼ 1

24
Δð0Þ

2 þ 1
40
fDΔð1Þ

2 þ 1
56
ðfDÞ2Δð2Þ

2

τð1Þ2 ¼ − 1
12
Δð0Þ

2 þ 1
84
fDΔð1Þ

2 þ 1
84
ðfDÞ2Δð2Þ

2 τð2Þ2 ¼ 1
12
Δð0Þ

2 þ 1
14
fDΔð1Þ

2 þ 5
84
ðfDÞ2Δð2Þ

2

τð1Þ4 ¼ − 1
35
fDΔð1Þ

2 − 4
385

ðfDÞ2Δð2Þ
2 τð2Þ4 ¼ 1

35
fDΔð1Þ

2 þ 3
77
ðfDÞ2Δð2Þ

2

τð1Þ6 ¼ − 2
231

ðfDÞ2Δð2Þ
2 τð2Þ6 ¼ 2

231
ðfDÞ2Δð2Þ

2

Imaginary part of τðmÞ
l

τð1Þ1 ¼ 1
2
Δð0Þ

1 þ 3
10
fDΔð1Þ

1

τð1Þ3 ¼ 1
5
fDΔð1Þ

1
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where the two-point displacement cumulant is given by

Aijðq; z; z0Þ ¼ hΔiΔjic; ð67Þ

and Δi ¼ ψ iðq2; z0Þ − ψ iðq1; zÞ. We have also written the
leading-order two-point correlator ξð0ÞðqÞ, which can take
the form of the linear correlation function in the case of IR
resummed linear theory or simply unity in the case of the
Zeldovich power spectrum. The dots in Eq. (66) give us the
higher-order perturbative corrections as well as the higher
unequal-time corrections. For a more detailed discussion
and derivation of the unequal-time LPT results, we refer the
reader to Appendix D. Here we just note that the unequal-
time corrections given as the dotted expansion in δχ lead to
(H=k) type of corrections in the observed power spectrum
as given in Secs. III A and III B, and we thus rather focus on
the unequal-time effects of the two-point displacement
cumulant Aij. In Appendix D we show that we can expand
the second displacement cumulant around the mean red-
shift as

Aijðq; z; z0Þ ≈ Aijðq; z̄Þ þ δAijðq; z̄ÞðHδχÞ2: ð68Þ

Consequently, the observed power spectrum, given by the
expression in Eq. (45), is

Pðqn̂;l=χ̄; χ̄Þ ¼
Z

dkn̂
2π

d3q eik·qe−
1
2
kikjAijðq;zÞ

×
Z

dðδχÞe−iδχðqn̂−kn̂Þe−1
2
kikjδAijðq;zÞðHδχÞ2 ;

ð69Þ

where multiplicative terms like ξð0Þ can be easily added into
consideration, as they do not affect the δχ integral;
similarly, the higher δχ terms arising from the unequal-
time part of the ξð0Þ-like operators can be added, as shown
earlier in this section.
Using the quadratic expansion of the displacement

cumulant Aij given in Eq. (68), the δχ integral can be
done analytically. We obtain the Gaussian integral form

Z
dðδχÞe−iδχðqn̂−kn̂Þe−1

2
kikjδAijðq;zÞðHδχÞ2

¼
ffiffiffiffiffiffi
2π

p

H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijkikjδAijj

p exp

�
−

1

H2

ðqn̂ − kn̂Þ2
2kikjδAij

�
: ð70Þ

If we assume that δAijðq; zÞ is approximately scale
independent, as argued in Appendix D, we can write
δAijðq; zÞ ≃ 2δσðz̄Þ2δKij, where δσ2 can be interpreted as
the average long displacement dispersion due to the
unequal-time effects. Estimated lower and upper bounds
of δσ2 values are in Eq. (D10). Using this approximation,
we have

Pðqn̂;l=χ̄; χ̄Þ≃
Z

dkn̂
2π

dðδχÞe−iδχðqn̂−kn̂Þ

× e−k
2δσ2ðHδχÞ2

Z
d3qeik·qe−

1
2
kikjAijðq;zÞ

¼ 1

Hδσ

Z
dkn̂
2

ffiffiffi
π

p
k
e
− ðqn̂−kn̂Þ2
4k2ðHδσÞ2Pðkn̂;l=χ̄; χ̄Þ: ð71Þ

This result tells us that the unequal-time effects of long
displacement modes on the observed power spectrum is
to smear the theoretical 3D power spectrum on scales
corresponding to ∼kHδσ. For parameters of the ΛCDM
cosmology that we are using here, 2Hδσ peaks at z ∼ 0.55,
achieving values of 2Hδσ ∼ 0.001. This provides us with
the smoothing kernel of width smaller than any feature
in the 3D power spectrum of the ΛCDM universe, i.e.,
we can treat P effectively as a constant over the inte-
gration region where the exponential function has sup-
port. Moreover, in the integrand, we can approximate
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n̂ þ k2⊥

p
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2n̂ þ k2⊥

p
, which makes the integral

of a simple Gaussian form. Consequently, these simplifi-
cations give us

Pðqn̂;l=χ̄; χ̄Þ ≈ Pðqn̂;l=χ̄; χ̄Þ; ð72Þ

i.e., we can neglect the unequal-time effects due to the IR
resummation. This picture changes if we want to discuss
the deviation from the ΛCDM model, where the power
spectrum would exhibit some additional features on scales
k� ≲ kHδσ. This has an immediate consequence for cos-
mological models predicting the linear power spectrum
with “features”—either imprinted during inflation or
induced by nonstandard expansion histories (see, e.g.,
[80–82] for recent reviews). Current results suggest that
future surveys will be able to detect or tightly constrain
features in the primordial spectrum below the 1% level
across a wide range of scales [83,84]. This is a far larger
effect than the limit imposed due to the long displacement
smearing we are considering here.

IV. CONCLUSION

In this paper, we develop a framework for observables of
galaxy clustering; in particular, we investigate the role of
unequal-time effects in the observed power spectrum P.
Namely, when constructing the observed power spectrum,
we use different redshift slice information to construct
the modes along the line of sight. However, the 3D
theoretical power spectrum P of different redshift slices
is inevitably described as an unequal-time power spectrum.
This implies that these unequal-time effects and the modes
along the line of sight are folded on top of each other in
the observed power spectrum. We thus first delineate the
connection between the observed equal-time power spec-
trum and the theoretical 3D unequal-time power spectrum.
This connection is accomplished by relying on the
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flat-sky approximation of the unequal-time angular power
spectrum Cl.
In this construction process, we show that one is free to

consider also alternative 3D statistics to the canonically
defined observed power spectrum P. We thus construct an
observable frequency-angular power spectrum C̃ and show
how this newly introduced statistic naturally includes radial
mode contributions and how we can eliminate the need for
a priori distance measure assumptions, usually needed in
the wave mode construction (so-called Alcock-Paczyński
effects.) This enables one to make measurements indepen-
dent of the choice of a cosmological model, by introducing
a dimensionless quantity depending only on observable
variables (Fourier counterparts to the angles and redshifts).
We also investigate the properties of this new statistic
and verify that, in most current practical applications, it
retains all beneficial properties of the canonical observed
power spectrum P and that the residual contributions to
the modes along the line of sight generated by the redshift
dependence can be safely disregarded. Another powerful
aspect of this frequency-angular power spectrum C̃ is that
the BAO features shift with cosmological distance, making
it possible to infer distances directly by using the position
of BAO peaks, which is a robust and well-understood
measurement.
In the latter part of the paper, we focus on a formulation

of the Fourier-space PðkÞ that includes corrections due to
unequal-time when correlating sources (or bins of them) at
different redshifts. Starting from the observable angular
spectrum, we show how to calculate contributions along the
line of sight and quantify them for some example cases.
Starting from the equal-time standard case, we find an
expression for a series expansion to include unequal-time
terms and calculate their amplitude and scale dependencies.
Such corrections generally appear at second order in the
radial separation between sources, δχ. Still, there will be a
contribution from the first order when cross-correlating
sources with a different bias. These first-order terms give
rise to an imaginary part of the power spectrum, which
translates into odd multipoles when performing the classic
Legendre polynomials expansion. Moreover, unequal-time
corrections generate higher-order multipoles, including the
odd ones, even in the RSD case (where typically only even
multipoles appear). This might represent a new cosmo-
logical observable with a yet unexplored potential. We note
that such contributions, originating from observable pro-
jection effects, are expected to appear also in the higher
n-point functions, with the consequence of giving rise to

contributions that might be expected to be zero from purely
theoretical considerations.
We find that unequal-time corrections give rise to terms

typically scaling with H=k. These contributions are gen-
erally small, but they present some interesting features.
First of all, multitracer analyses depend on the difference
between the tracer biases but also on their time derivatives,
introducing the exciting possibility of studying the bias
evolution in a new way. In redshift space, this dependence
extends to derivatives of the growth rate, again opening up a
new possible avenue for studying cosmological models.
As a last part, we consider unequal-time effects arising

due to the long displacement field via the IR resummation
mechanism. We model these contributions at the linear
level of Lagrangian perturbation theory resumming the
linear displacements. We show that unequal-time contri-
butions result in effective smoothing of the original equal-
time power spectrum on scales k� ∼ kHδσ (with δσ of order
few Mpc=h). The cumulative effect is thus far smaller than
what can potentially be probed by current and upcoming
experiments.
In summary, we investigated the effects of the unequal-

time contributions in the observed power spectrum and
some representative case studies based on examples of the
source biases and their redshift evolution. We defined a
new observable in angular-frequency space that naturally
includes transverse and radial modes and promises to
become a more convenient way to analyze galaxy surveys
than the canonical observed power spectrum. In Fourier
space, our calculation of unequal-time effects unveiled a
deeper understanding of the behavior of galaxy clustering
along the line of sight, which opens up the possibility of
adding a new tool for cosmological studies with galaxy
clustering measurements.
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APPENDIX A: ANGULAR POWER SPECTRUM
AND THE CHOICE OF THE MEAN DISTANCE

Keeping in mind the different options for the choice of
the χ̄, starting from Eq. (4) the angular power spectrum can
thus be written as

D
δ̂ðlÞδ̂ðl0Þ

E
¼ ð2πÞ2

Z
dχ
χ2

dχ0

χ02
WðχÞW0ðχ0ÞδDðelþ el0Þ

Z
dkn̂
2π

eiδχkn̂Pðkn̂n̂; k⊥; χ; χ0Þ: ðA1Þ

Using the delta function representation in the new variables, we can write
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δ2Dðelþ el0Þ ¼ δ2D
�
χ0lþ χl0

χχ0

�
¼ χ̄2AðδÞδ2Dðlþ l0 þ φðδÞΔÞ; ðA2Þ

where Δ ¼ l0 − l, χ̄ in the mean distance, δ ¼ 1
2
δχ=χ̄, and φðδÞ is an off-diagonal phase of the Dirac delta function.

Specifically, for arithmetic, geometric, and harmonic coordinates, respectively, this gives us

δ2Dðl̃þ l̃0Þ ¼ δ2D
�
lþ l0 − δΔ
χað1 − δ2Þ

�
¼ χ2að1 − δ2Þ2δ2Dðlþ l0 − ΔδÞ;

δ2Dðl̃þ l̃0Þ ¼ δ2D
�ðlþ l0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ2

p
− δΔ

χg

�
¼ χ2g

ð1þ δ2Þ δ
2D

�
lþ l0 − Δδ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ2

p �
;

δ2Dðl̃þ l̃0Þ ¼ δ2D
�ðlþ l0Þð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4δ2

p
Þ − 2δΔ

χhð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4δ2

p
Þ

�
¼ χ2hδ

2D

�
lþ l0 − 2Δδ=ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4δ2

p
Þ
�
; ðA3Þ

where we can identify the factor A and phase φ in each case. We have

D
δ̂ðlÞδ̂ðl0Þ

E
¼ ð2πÞ2

Z
dχdχ0WðχÞW0ðχ0Þ χ̄

2

χχ0
AðδÞδ2Dðlþ l0 þ φðδÞΔÞClðχ; χ0Þ; ðA4Þ

where we have

Clðχ; χ0Þ ¼
1

χχ0

Z
dkn̂
2π

eiδχkn̂Pðkn̂n̂; k⊥; χ; χ0Þ: ðA5Þ

Since we can write

δ2Dðlþ l0 þ φðδÞΔÞ ¼ δ2Dðlþ l0Þ þ
�
eφðδÞΔ·∂⃗l − 1

	
δ2Dðlþ l0Þ; ðA6Þ

we have

D
δ̂ðlÞδ̂ðl0Þ

E
¼ ð2πÞ2δ2Dðlþ l0Þ

X∞
n¼0

ð∂⃖l0 · ΔÞn
n!

CðnÞðlÞ; ðA7Þ

and where we have introduced

CðnÞðlÞ ¼
Z

dχdχ0WðχÞW0ðχ0Þ χ̄
2

χχ0
AðδÞφðδÞnCðl; χ; χ0Þ: ðA8Þ

APPENDIX B: FROM REDSHIFT TO COMOVING DISTANCE

Let us also expand δχðz̄; δzÞ ¼ χðz̄þ 1=2δzÞ − χðz̄ − 1=2δzÞ as a function of δz, so we have

δχ ¼ dχðz̄Þ
dz̄

δzþ 1

3

d3χðz̄Þ
dz̄3

ðδz=2Þ3 þ… ¼ 1

Hðz̄Þ δzþ
1

24

�
d2

dz̄2
1

Hðz̄Þ
�
δz3 þ…: ðB1Þ

Since we can write

d2

dz2
1

HðzÞ ¼ −3
Ωmð1 − 9

4
ΩmÞ

ð1þ zÞ2HðzÞ ; ðB2Þ

this gives us

OBSERVED POWER SPECTRUM AND FREQUENCY-ANGULAR … PHYS. REV. D 108, 043537 (2023)

043537-17



δχ ¼ 1

Hðz̄Þ δz −
1

8

Ωmð1 − 9
4
ΩmÞ

ð1þ z̄Þ2Hðz̄Þ δz
3 þ… ≃ ½1 − c3ðδzÞ2�

δz
Hðz̄Þ ; ðB3Þ

and thus

Ωðω; kn̂Þ≡
Z

dδz eiδχkn̂−iωδz ¼ e−c3ω
d3

dω3ð2πÞδD
�
kn̂
H

− ω

�
≃
�
1 − c3ω

d3

dω3

�
ð2πÞδD

�
kn̂
H

− ω

�
: ðB4Þ

APPENDIX C: UNEQUAL-TIME CONTRIBUTIONS TO THE KAISER TERMS

Here we derive the expansion up to the second order in the unequal-time variable around a mean. We treat the deviation
δχ around the mean comoving distance as the small contribution. We subsequently check the validity of this expansion on
several examples. A redshift-dependent physical quantity F we can then simply expand as

Fðz½χiðχ; δχÞ�Þ ¼ Fðz½χiðχ; 0Þ�Þ þ
d
dδχ

Fðz½χiðχ; δχÞ�Þjδχ¼0δχ þ
1

2

d2

d2δχ
Fðz½χiðχ; δχÞ�Þjδχ¼0ðδχÞ2 þ…; ðC1Þ

where i∈ f1; 2g labels the two positions we are concerned with when considering two-point correlations. For the first
derivative, we have

d
dδχ

Fðz½χiðχ; δχÞ�Þ ¼
dχi
dδχ

dz
dχi

d
dz

Fðz½χiðχ; δχÞ�Þ ¼ HF0 dχi
dδχ

; ðC2Þ

where we use the label F0 ≡ dF=dz, and we also have dz=dχi ¼ ðdχi=dzÞ−1 ¼ H. For the second derivative, we have

d2

d2δχ
Fðz½χiðχ; δχÞ�Þ ¼

d
dδχ

�
HF0 dχi

dδχ

�
¼ HðHF0Þ0

�
dχi
dδχ

�
2

þHF0 d
2χi

dδχ2
: ðC3Þ

Using the arithmetic coordinate setup, i.e., the coordinates defined relative to the arithmetic mean, we have dχ1=dδχ ¼ 1=2,
dχ2=dδχ ¼ −1=2, and thus

d
dδχ

Fðz½χ1=2ðχ; δχÞ�Þ ¼ � 1

2
HF0; and

d2

d2δχ
Fðz½χiðχ; δχÞ�Þ ¼

1

4
HðHF0Þ0 ¼ 1

4
H2

�
ðlnHÞ0F0 þ F00

	
: ðC4Þ

In the case of redshift-space distortions, we need to evaluate the factor

ðbA þ fDμ2Þz1ðbB þ fDμ2Þz2 ¼ ðbA þ fDμ2ÞðbB þ fDμ2Þ þ 1

2
H
�
Δð0Þ

1 þ Δð1Þ
1 fDμ2

	
δχ

þ 1

8
H2

�
Δð0Þ

2 þ Δð1Þ
2 fDμ2 þ Δð2Þ

2 f2D2μ4
	
ðδχÞ2 þ…; ðC5Þ

where it is convenient to introduce the factors that depend on the mean redshift,

Δð0Þ
1 ¼ b0AbB − b0BbA; Δð1Þ

1 ¼ b0A − b0B þ γ1ðbB − bAÞ; Δð0Þ
2 ¼ bAðγ0b0B þ b00BÞ þ ðγ0b0A þ b00AÞbB − 2b0Ab

0
B;

Δð1Þ
2 ¼ γ2bA þ ðγ0 − 2γ1Þb0A þ b00A þ A ↔ B; Δð2Þ

2 ¼ 2ðγ2 − γ21Þ: ðC6Þ

Above, we introduced factors γ0, γ1, and γ2 that are functions of mean redshift. They are introduced by taking the redshift
derivatives of the Hubble parameter, linear growthD, and its logarithmic growth rate f. Starting from the Hubble parameter,
we introduced γ0 ≡ ðlnHÞ0 ¼ 3

2
Ωm

ð1þzÞ, while the redshift derivative of linear growth is simply D0 ¼ −fD=ð1þ zÞ. The
equation of motion for the growth rate adf=da ¼ −fð2þ fÞ þ ð1þ fÞ 3

2
Ωm gives us

ðln fÞ0 ¼ 1

1þ z

�
2þ f − ð1þ fÞ 3

2

Ωm

f

�
¼ γ1 þ f=ð1þ zÞ; ðC7Þ
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where we introduced the factor γ1 ≡ ð2 − ð1þ fÞ 3
2
Ωm
f Þ=

ð1þ zÞ and thus ðfDÞ0 ¼ γ1fD. We also have

γ2 ≡ 1

fHD
ðHðfDÞ0Þ0 ¼ γ01 þ γ0γ1 þ γ21; ðC8Þ

where, using ðΩmÞ0 ¼ 3ΩmΩΛ=ð1þ zÞ, we can compute
the redshift derivative of γ1, to obtain

γ01¼
��

1þð1þzÞγ1=f−3ð1þfÞΩΛ=f
	
γ0−γ1

	 1

1þz
:

ðC9Þ
For general tracers, their biases and their time evolution
can differ from tracer to tracer, which consequently gives
rise to linear corrections in δχ in Eq. (C5). We see that

Δð0Þ
1 contributions can be generated either by different

bias values or different bias change rates, while in the

case of the redshift-space-related Δð1Þ
1 term, we have the

bias values, and bias change rates contribute additively.
On the other hand, second-order contributions are also
present in the autocorrelations of any tracer.
In the case of dark matter, i.e., bA ¼ bB ¼ D, these

expressions can be significantly simplified, as we shall see
below. However, in the case of dark matter, it is useful to

identify the specific factors of the powers of μ2 in the Kaiser
formula, as it can serve as the cross-check of the validity
of our expansion, i.e., if the expansion up to the second
order in the δχ suffices. In this case, as in the case of
all autocorrelations, the first-order contributions vanish

(Δð0Þ
1 ¼ Δð1Þ

1 ¼ 0), while in the case of the second-order
contributions, we can identify

D1D2

D2
− 1 ≈

Δð0Þ
2

D2

1

8
ðHδχÞ2;

ðf1 þ f2Þ
2f

D1D2

D2
− 1 ≈

Δð1Þ
2

2D
1

8
ðHδχÞ2;

f1f2
f2

D1D2

D2
− 1 ≈ Δð2Þ

2

1

8
ðHδχÞ2: ðC10Þ

To proceed a bit further, let us assume a simple power-law
model for the bias time dependence b ¼ b0Dη. This gives
b0 ¼ ηbðlnDÞ0 and b00 ¼ ηbððlnDÞ00 þ ηððlnDÞ0Þ2Þ, and
thus, besides the first derivative we have stated above, we
also need the second derivative D00 ¼ ð−fD=ð1þ zÞÞ0 ¼
ð1 − ð1þ zÞγ1Þ fD

ð1þzÞ2. Combining and using these in

Eq. (C6), we obtain for the linear terms in δχ,

Δð0Þ
1 ¼ ðηB − ηAÞ

1þ z
fbAbB; Δð1Þ

1 ¼ ðηBbB − ηAbAÞ
f

1þ z
þ γ1ðbB − bAÞ; ðC11Þ

both of which vanish in case bA ¼ bB ¼ D, as we have stated above. For the second-order δχ contributions, we have

Δð0Þ
2 ¼ bAbB

�
−ðηA þ ηBÞ

�
1þ f −

3

2

Ωm

f

�
þ ðηA − ηBÞ2f

�
f

ð1þ zÞ2 ;

Δð1Þ
2 ¼ bA

�
γ2 þ ðγ1 − γ0Þ

ηAf
1þ z

þ ð1þ ðηA − 1ÞfÞ ηAf
ð1þ zÞ2

�
þ A ↔ B;

Δð2Þ
2 ¼ 2ðγ2 − γ21Þ: ðC12Þ

In the case of dark matter, when bA ¼ bB ¼ D, we
have

Δð0Þ
2 ¼ −2D2

�
1þ f −

3

2

Ωm

f

�
f

ð1þ zÞ2 ;

Δð1Þ
2 ¼ 2D

�
γ2 þ ðγ1 − γ0Þ

f
1þ z

þ f
ð1þ zÞ2

�
;

Δð2Þ
2 ¼ 2ðγ01 þ γ0γ1Þ: ðC13Þ

These expressions can be used to check the ones given in
Eq. (C10). In Fig. 7, we compare these relations. The points
are obtained from direct calculations given on the right-
hand side of Eq. (C10), while solid lines represent the
quadratic approximations whose coefficients are given by
Eq. (C13). We see that the agreement between the two is
excellent in all three cases, and thus we can conclude that
the expansion up to the quadratic order suffices for
estimating the unequal-time effects in any current Galaxy
survey.
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APPENDIX D: UNEQUAL-TIME POWER SPECTRUM IN LAGRANGIAN
PERTURBATION THEORY

In the Lagrangian formalism for describing gravitational clustering, the theoretical power spectrum of a general biased
tracer field can be expressed as

Pðk; z; z0Þ ¼
Z

d3q e−ik·q
�X

a;b

cacb
D
Oaðq1; zÞObðq2; z0Þeik·ðψðq2;z0Þ−ψðq1;zÞÞ

E
− 1

�
; ðD1Þ

where ψðqÞ is the displacement field, relating the
Lagrangian particle position q to the Eulerian position
x ¼ qþ ψðqÞ, and Oaðq; τÞ and ca are the set of operators
and corresponding biased coefficients describing specific
biased tracers. Given our interest in the unequal-time
effects in the observable two-point statistics, we are
interested in estimating the corrections around some mean
redshift z̄. The product of the two bias operators OO0 is not

of particular interest, given that it also leads to the ðH=kÞ
type of correction we have investigated in Appendix C, and
the results of which we have estimated in earlier parts of
this section. Here we shall thus focus on the effects of the
long displacement components ψðqÞ.
Without going into the details (see [65,66,85,86] for

some recent work on Lagrangian perturbation theory), we
can represent the theoretical two-point function

Pðk; z; z0Þ ¼
Z

d3qeik·qξð0Þðq; z̄Þe−1
2
kikjAijðq;z;z0Þ þ…; where Aijðq; z; z0Þ ¼ hΔiΔjic; ðD2Þ

Δi ¼ ψ iðq2; z0Þ − ψ iðq1; zÞ is the difference of the linear
displacements, and the … represents the higher-order
perturbative terms, as well as the unequal-time expansion
term in powers of ðHδχÞ, following the procedure given in
Appendix C. If, for example, we consider dark matter
dynamics, ξð0ÞðqÞ can be interpreted as a linear correlation
function, and the first PðkÞ term above is simply the IR
resummed linear power spectrum (in the equal-time limit).
The second displacement cumulant Aij can be decomposed
as follows:

Aijðq; z; z0Þ ¼ δKijXðq; z; z0Þ þ q̂iq̂jYðq; z; z0Þ

¼ 1

3
δKijðD2 þD02ÞΞ0ð0Þ −

2

3
δKijDD0Ξ0ðqÞ

þ 2

�
q̂iq̂j −

1

3
δKij

�
DD0Ξ2ðqÞ; ðD3Þ

where we have introduced Ξ0ðqÞ ¼
R∞
0

dk
2π2

P0ðkÞj0ðkqÞ
and Ξ2ðqÞ ¼

R∞
0

dk
2π2

P0ðkÞj2ðkqÞ, and where the

scale-dependent part of the linear power spectrum P0 is
equivalent to the one introduced in Eq. (37). Equivalently,
we can write

Xðq; z; z0Þ ¼ 1

3
ðD2 þD02ÞΞ0ð0Þ −

2

3
DD0ðΞ0ðqÞ þ Ξ2ðqÞÞ;

Yðq; z; z0Þ ¼ 2DD0Ξ2ðqÞ: ðD4Þ

If we consider only the unequal-time Zeldovich power
spectrum limit, these results are equivalent to the ones
obtained
in [70]. The unequal-time product of two growth rates we
can expand up to the second order in δχ, in a similar way
done in Appendix C, giving us

Dðz1ÞDðz2Þ
Dðz̄Þ2 ≈ 1 −

1

4
γ×ðHδχÞ2; ðD5Þ

FIG. 7. Comparison of the unequal-time Kaiser terms. Three panels show the three unequal-time contributions in the linear Kaiser
power spectrum proportional to μ0, μ2, and μ4. These come as different combinations of the linear growth factor DðzÞ and growth rate
fðzÞ shown as two-point unequal-time factors that appear in the power spectrum, given as a function of comoving distance δχ. Points
represent the direct calculations, while solid lines give the values of the coefficients up to the δχ2 order. We see that, in all cases, the
agreement with the quadratic approximation is excellent.
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where we introduced the factor γ× ¼ fð1þ f − 3
2
Ωm
f Þ=

ð1þ zÞ2. Besides the product, we are also interested in
expanding the sum of the two growth factors. This gives us

Dðz1Þ2 þDðz2Þ2
2Dðz̄Þ2 ≈ 1 −

1

4
γþðHδχÞ2; ðD6Þ

where we introduced the factor γþ ¼ fð1 − f − 3
2
Ωm
f Þ=

ð1þ zÞ2. Using this expansion, we can express

Xðq; z; z0Þ ¼ Xðq; z̄Þ þ δXðq; z̄ÞðHδχÞ2;
Yðq; z; z0Þ ¼ Yðq; z̄Þ þ δYðq; z̄ÞðHδχÞ2; ðD7Þ

where we introduced the quadratic corrections

δXðqÞ ¼ 1

6
D2

�
γ×ðΞ0ðqÞ þ Ξ2ðqÞÞ − γþΞ0ð0Þ

	
;

δYðqÞ ¼ −
1

2
D2γ×Ξ2ðqÞ: ðD8Þ

Accordingly, we can thus write Aijðq; z; z0Þ ¼ Aijðq; z̄Þ þ
δAijðq; z̄ÞðHδχÞ2. In Fig. 8, we show the magnitudes and
scale dependence of the X and Y correlators, as well as their
corresponding unequal-time contributions δX and δY for
two different redshifts, z ¼ 0.5 and 2.0. We are interested in
the relative behavior of the δX and δY compared to the X
and Y. First, we notice that δY contributions are more than
an order of magnitude smaller than Y on all scales at low
redshifts, with this difference further decreasing at higher
redshifts, i.e., δY=Y ≲ 1=10 on all scales and for all

redshifts. We can thus neglect δY contributions from our
further considerations. For δX, similar argumentation is
not valid, as it is the contribution that dominates on small
scales at any redshift. The scale dependence of δX is
actually bounded for at any z so that we can write 0.3≲
ðδXðq → 0Þ − δXðq → ∞ÞÞ=δXðqBAOÞ ≲ 1.3 for all z,
where the lower bound is reached for high z and vice
versa. In other words, the gray bound shown in Fig. 8,
which indicates the deviation of δX from some constant
value, gets narrow at higher redshifts. Combining these
considerations justifies the following approximation for the
unequal-time contribution of the displacement correlator

δAijðq; z̄Þ ≃ δXðq; z̄ÞδKij
≃
1

6
Dðz̄Þ2

�
γ×ðz̄ÞΞ0ðqÞ − γþðz̄ÞΞ0ð0Þ

	
δKij

≃ 2δσðz̄Þ2δKij; ðD9Þ

where δσ2 is the scale-independent displacement dispersion
due to the unequal-time effects. As discussed above, the
magnitude of δσ2 is bounded from above and below, and we
can thus write

−
1

12
γþðz̄Þ ≤

δσðz̄Þ2
Dðz̄Þ2Ξ0ð0Þ

≤
1

12
ðγ×ðz̄Þ − γþðz̄ÞÞ: ðD10Þ

We rely on this approximation in deriving the estimates of
the unequal-time effects due to the IR resummation of long
displacements discussed in Sec. III C.

FIG. 8. Scale dependence of the equal-time displacement correlators X and Y and corresponding unequal-time contributions δX and
δY are shown for two different redshifts, z ¼ 0.5 and 2.0. δY contributions are suppressed relative to the equal-time counterpart Y by at
least an order of magnitude on all scales and for all redshifts. Conversely, δX exhibits approximately constant behavior in q, with the
gray band indicating the range between the two limiting regimes δXðq → 0Þ and δXðq → ∞Þ.
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Large-scale 3D galaxy correlation function and non-
Gaussianity, J. Cosmol. Astropart. Phys. 08 (2014) 022.

[74] A. Raccanelli, D. Bertacca, R. Maartens, C. Clarkson, and
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