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In this work, we study the previously unexplored resonant region of neutrino self-interactions. Current
disagreement on late and early time observations of the Universe expansion could be solved with new
physics acting before the recombination era. Nonstandard neutrino self-interactions are among the most
appealing candidates to solve this issue since they could be testable in the near (or midterm) future. We
use linear cosmological datasets to test neutrino self-interactions for a sample of fixed scalar mediator
masses in the range 10−2 eV ≤ mφ ≤ 102 eV. The resonant behavior produces observable effects at
lower couplings than those reported in the literature for heavy and light mediators. We observe that in the
best case scenario, using the Planckþ BAO dataset, the tension with local measurements of H0 eases
from 4.9σ (for ΛCDM) down to 2.8σ. Albeit, this is driven mainly by the addition of extra radiation, with
ΔNeff ∼ 0.5. The joint dataset which includes Planck, BAO, and H0 prefers a nonzero interaction from
2.3σ to 3.9σ significance in the range 0.5 eV ≤ mφ ≤ 10 eV. Although, this last result is obtained
with data that are still in tension. These results add the last piece in the parameter space of neutrino
self-interactions at the linear perturbation regime.
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I. INTRODUCTION

Decades of observational advances have led to an
estimate of the expansion rate of the Universe, H0, to
within one percent of accuracy. The local measurements
with supernovae calibrated with Cepheids lead to a value
of H0 ¼ 73.04� 1.04 km s−1Mpc−1 [1,2], while early
Universe measurements of the cosmic microwave back-
ground (CMB) radiation and the baryonic acoustic oscil-
lations (BAO) consistently lead to a smaller value [3–5],
leading to a discrepancy of around 5σ (see for instance
[1,2,6–10]). The origin of this tension is still unknown and
observational systematic errors have not been completely
ruled out, although, there is no clear evidence that sys-
tematics could erase the tension [11–14]. Thus, if this
tension stands it will require new physics to explain it.

While there are models that have tried to solve the
tension at late epochs (see for example [15–21]), CMB
measurements of H0 certainly depend on the cosmological
model, thus, it seems more natural to rather introduce
new physics beyond the base ΛCDM model at early
epochs. Early Universe models may include modifications
on the dark components, such as early dark energy (EDE)
[22–24], or dark radiation [25], among others [26,27].
Here, one of those possible models is the one considering
neutrino nonstandard self-interactions (NSIs). The main
advantage of neutrinos, compared to other models, is that
the framework contains a small number of unknown
parameters that are being, or will be, explored in terrestrial,
solar, astrophysical, and other cosmological environments
and there is no need for fine-tuning. That is, it is easier to
test neutrino NSI models compared with the same task for
dark sector ones [28–48].
The dynamics of the neutrino NSIs heavily depends on

the nature of the mediator particle, particularly on its mass.
On the one hand, an interaction mediated by a very light
particle (compared with the temperature of the Universe)
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becomes more important at late times, the information
about the mediator mass is erased by the interaction’s
nature, and strong bounds are obtained for the interaction
coupling [49–51]. On the other hand, a heavy mediator
implies a tight coupling at early times that fades away
faster than the expansion of the Universe. In the latter
case, observables depend on the effective coupling
ðgν=mφÞ2 which in some works a bimodal posterior
distribution has been observed. One of its peaks prefers
a large positive coupling, that deviates from the standard
neutrino behavior [52–55]. Although, other independent
analyses have not observed this peak with a good
statistical significance [56,57]. Because the required
effective coupling is large, compared to the Fermi con-
stant, the cosmological and astrophysical relics may
constrain this scenario [52–67].
So far, the cosmological literature lacks the study of

intermediate-mass range mediator particles. In this case,
neutrino scattering peaks at the epoch when acoustic
oscillations were shaped, between redshifts 106 and 103,
or at neutrino temperatures of about 100 eV well down to
0.1 eV. This translates to a resonant region of interest
corresponding to a mediator mass that can be located within
that same range. Because of the resonance, the interaction
rate gets enhanced and similar phenomenological implica-
tions as those observed in the light and heavy mediator
cases could be reached with a much smaller coupling gν.
Resonant neutrino self-interaction implications have been
previously studied in other astrophysical environments
[48,68,69]. In this paper, we study the previously unex-
plored cosmological implications of the resonant region.
For our purpose, we shall model neutrino self-

interactions with a Breit-Wigner cross section and compute
its thermal average over all available energies at any given
neutrino temperature. Then, we will compute the inter-
action rate as a numerical function of the redshift for a fixed
mediator mass. Additionally, we shall employ a modified
version of the linear perturbation solver CLASS [70,71] and
MONTEPYTHON [72,73] among the latest public available
cosmological datasets to constrain the parameters of the
model for a sample of fixed mediator masses in the range
10−2 eV ≤ mφ ≤ 102 eV. We then discuss the implications
on the cosmological parameters of the resonant neutrino
self-interactions. Finally, we compare our results with the
latest parameter constraints and use Bayesian model
comparison tests.
The rest of this manuscript is organized as follows. Along

Sec. II, we numerically compute the resonant interaction rate
of the neutrino self-interactions. In Sec. III we present the
perturbation spectra for linear cosmology for different
mediator masses. Model parameter constraints and their
implications are discussed within Sec. IV. Our conclusions
are highlighted along Sec. V. Finally, an appendix providing
further details regarding cosmological constraints to the
model has been added to the end.

II. NEUTRINO RESONANT SCATTERING RATE

We start our discussion by addressing the computation of
the scattering rate for a neutrino self-interacting in the early
Universe. Neutrino nonstandard self-interactions (NSIs)
mediated by a hypothetical particle affect their free-
streaming. In this paper, we only consider νν → νν elastic
scattering and its effects, assuming that the interaction is
mediated by a scalar particle. Yet, we should stress that the
analysis could be extended to interactions mediated by
higher spin particles with a proper rescaling.
We model the interaction with a Breit-Wigner cross

section

σðsÞ ¼ g4ν
4π

s
½s −m2

φ�2 þ Γ2
φm2

φ
; ð1Þ

in which we are assuming massless neutrinos. This
approach is model-independent. In above, gν stands for
the self-interacting coupling, s ¼ E2

CM ¼ 4E2
ν is the center

of mass Mandelstam variable, mφ is the scalar mediator
mass, and Γφ ¼ g2νmφ=4π corresponds to the decay width.
This cross-section peaks at Eν ≈mφ=2, which would be
later translated to a peak at Tν ∼mφ. Notice that above
Eq. (1) reduces to the high and low energy expected limits,
σðs ≫ m2

φÞ ≈ g4ν=ð4πsÞ and σðs ≪ m2
φÞ ≈ ðg4νsÞ=ð4πm4

φÞ.
In the zero neutrino width limit the cross section reduces
to a Dirac delta function

lim
Γφ→0

σðsÞ ¼ g2νπ
m2

φ
sδðs −m2

φÞ: ð2Þ

This is a very good approximation for the relevant range
of parameters where mφ ≤ 100 eV and gν < 10−10. Also,
notice that around the resonance the cross section becomes
proportional to g2ν, thus getting substantially enhanced.
In cosmology, since the neutrino bath energy is not

monochromatic, all available energies need to be taken
into account through the thermally averaged cross section.
Thus, in order to compute the interaction rate of the
νν → νν scattering, we use

Γscatt ¼ hσvMOLinν; ð3Þ

where vMOL is the Møller velocity and nν stands for the
neutrino number density. As the resonant peak occurs much
later than the standard neutrino decoupling, it is safe to
assume that the neutrino number density evolves as in the
standard case, thus, nν ¼ 3ζð3ÞT3

ν=ð2π2Þ. Here, we follow
the framework developed in Refs. [74,75]. Therefore, the
thermally averaged cross section can be written as

hσvMOLi¼
1

n2ν

Z
d3p1

ð2πÞ3
Z

d3p2

ð2πÞ3fðp1Þfðp2ÞσðsÞvMOL; ð4Þ
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where fðpÞ ¼ ðep=T þ 1Þ−1 is the equilibrium neutrino
distribution, which we assume is preserved even when
the resonant NSI is near its peak. After some redefinitions,
Eq. (4) can be reduced to

hσvMOLi ¼
T2

16π4n2ν

Z
∞

0

σðsÞFðs;TÞds; ð5Þ

where F is a numerical function defined as

Fðs;TÞ ¼
Z

∞

ffiffi
s

p
=T

dxe−x

1 − e−x
Gðx;TÞ: ð6Þ

Here, the function G is respectively given as

Gðx;TÞ ¼ Aþ ln

�
1þ e−ðx=2þAÞ

1þ e−ðx=2−AÞ

�
; ð7Þ

where A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − s=T2

p
=2. Plugging Eqs. (2) and (6) into

Eq. (3) results in the final expression

Γscatt ¼
g2νπ5m2

φ

24ζð3ÞTν
Fðm2

φ;TνÞ: ð8Þ

Furthermore, it is worth mentioning that we have
compared the above scattering rate with the one obtained
by using the nonapproximated expression (1), where, to
have a good numerical result, it is necessary to numerically
sample it with very high precision around the resonance.
We found that both expressions (1) and (2) are indistin-
guishable as long as the temperature is close to the
resonance peak. In this work, we will use the numerical
solution given by Eq. (8) in the cosmological linear
perturbation regime analysis.
The resonant scattering rate is a smooth function that

peaks around temperatures ∼mφ or at a redshift

zpeak ∼ 4 × 103
�
mφ

eV

�
: ð9Þ

For our analysis, we shall choose a sample of different fixed
masses that lie between 10−2 eV and 102 eV, or equiv-
alently, consider scattering rate peaks that span from the
redshift 105 to 10. Figure 1 shows that, indeed, we have a
smooth interaction rate with a maximum around the
resonance, which only depends on mφ. Varying gν has
the overall effect of globally scaling the interaction. Also,
the peak on the resonance appears at the redshift dictated by
Eq. (9), as a consequence, the temporal behavior of the
interaction would only depend on the mediator mass.
As the physics of neutrino self-interactions has stronger

effects in cosmology if it occurs before recombination, we
can check when the interaction rate surpasses the Hubble
function for a fixed coupling value. In Fig. 1 we plot the

ratio Γ=H for a relatively small coupling. There, we can
observe that lighter mediator’s self-interactions enter into
equilibrium too late, while heavier mediator’s ratio is
suppressed by the mass value. In contrast, intermediate
masses promote the entrance into equilibrium for the
interaction well above the recombination era. Notice that
for a mediator mass of about 1 eV, the peak of the rate-to-
Hubble ratio lays just above recombination redshift zrec.
Thus, we could expect to have stronger effects on the
cosmological observables with medium-range masses.
Empirically, we found that the height of the peak is similar
for different masses when the relation gν=m0.4

φ ∼ c, where c
is a constant, is satisfied.
Finally, as we mentioned earlier, the narrow Breit-

Wigner is not a very good approximation to describe the
low and high energy tails of the interaction rate. However,
as the tails are negligible compared to the resonance since
they go as g4ν, thus, they are not expected to be relevant for
any region of the parameter space. Nonetheless, we must
mention that we have tested the resonant interaction plus
the low and high energy tails versus the resonance alone
and found no differences between both.
During this project, we neglect the contribution of the

scalar field fluid in the cosmological evolution, however,
this is a good approximation due to the smallness of
gν-values that we will be working with hereafter.

A. Self-interaction in cosmological perturbations

In this subsection, wewill discuss the role of the resonant
interaction rate in cosmological perturbations. If Ψ
describes the perturbations to the background distribution
function fðx; q; tÞ ¼ f0ðqðtÞÞð1þΨðx; q; tÞÞ, the neutrino
evolution depends on this perturbation function. At early

FIG. 1. Interaction rate over the Hubble factor as a function of
redshift. Colors denote different values of the mediator mass mφ,
for a fixed gν value. The horizontal line denotes the equality
condition between Γ and H, and the vertical dashed line shows
the redshift at the recombination era. The baseline cosmological
parameters were fixed according to Planck’s 2018 results.
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epochs due to the smallness of the NSIs, the neutrinos
decoupled from the cosmic plasma as in the standard case
around Tν ∼ 1 MeV. Afterward, neutrinos free-stream until
the resonant self-interaction becomes relevant. We employ
the formalism of the Boltzmann hierarchy equations [76]
in conformal Newtonian gauge (with Γ ¼ Γscatt) and the
relaxation time approximation. These considerations result
in the system of equations, for the multipole Legendre
moments of Ψ [49,59,77],

Ψ̇0 ¼ −
qk
ϵ
Ψ1 − ψ̇

d ln f0
d ln q

; ð10Þ

Ψ̇1 ¼
qk
3ϵ

ðΨ0 − 2Ψ2Þ −
ϵk
3q

ψ
d ln f0
d ln q

; ð11Þ

Ψ̇2 ¼
qk
5ϵ

ð2Ψ1 − 3Ψ3Þ − aΓΨ2; ð12Þ

Ψ̇l≥3 ¼
qk

ð2lþ 1Þϵ ðlΨl−1 − ðlþ 1ÞΨlþ1Þ − aΓΨl; ð13Þ

where ϕ and ψ stand for the corresponding gravitational
scalar potentials, f0 is the unperturbed Fermi-Dirac dis-
tribution, ϵ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ a2m2

ν

p
is the comoving energy and q

is the magnitude of the comoving momentum. Notice that
l ¼ 0 and l ¼ 1 are free from the collision term due to
energy and momentum conservation of the elastic νν → νν
process.
Although, while computing the interaction rate we have

ignored the neutrino mass, given its relevance to cosmo-
logical neutrino dynamics, we are going to consider
massive neutrinos when analyzing the data. Accordingly,
we shall be using the cosmological parameter

P
mν

hereafter.
The system of Boltzmann linear equations for all the

matter components must be simultaneously solved, jointly
to the perturbed Einstein equations, whose right–hand
side is concomitantly determined by the perturbed matter
variables, which are calculated from the integration of the
multipole moments Ψl. In particular, the anisotropic stress
is defined through the integration of the second moment,
l ¼ 2, over momenta. As the modification of the
Boltzmann hierarchy takes place just for l ≥ 2, Eq. (12)
creates a change in the neutrinos anisotropic stress, which
in turn modifies the Einstein shear equation:

k2ðϕ − ψÞ ¼ 12πGa2ðρþ PÞΣ: ð14Þ

Here ρ, P, and Σ are the total density, pressure, and
anisotropic stress coming from all the different matter
sources. This equation couples together all the matter
components as their evolution sources the scalar potentials
ϕ and ψ which, in turn, influence the evolution of
each matter component. In the case of neutrinos, their

free-streaming originates anisotropic stresses Σν, but the
NSIs can delay or suppress the said free-stream. This
modification alters Eq. (14), that in turn, changes the
evolution of all the matter perturbations, including CMB
photons and baryons. These effects are the reason why
cosmology data becomes sensitive to the neutrino NSI.

III. PERTURBATION SPECTRA AND
PARAMETER EXPLORATION

In this section, we discuss the cosmological spectra in
the presence of a resonant NSI. CMB power spectra are
sensitive to the resonant NSI, specifically, neutrino free-
streaming suppresses photon fluctuations and shifts
their phase. Therefore, when NSIs reduce neutrino free-
streaming, they naively enhance the spectrum. This
interaction is redshift dependent and carries two extra
parameters gν and mφ that regulate the free-streaming scale
and its local effects. Here we vary both parameters while
fixing all others, in particular, baseline ΛCDM parameters
are fixed to Planck 2018 results [3], and Σmν ¼ 0.06 eV
and Neff ¼ 3.046. To compute the perturbation spectra we
employ a modified version of the code CLASS [70,71].
We first explore the order of magnitude in which the

coupling shows observable and reasonable effects. As we
mentioned in the previous section, the resonance naturally
enhances the interaction in a window estimated by Eq. (9).
The first interesting feature of the resonant NSIs is that we
can observe a strong enhancement of matter and temper-
ature spectra for much lower gν-values than the ones
revisited on the heavy and light mediator approximations.
To address the effects induced by the mediator mass, in

Fig. 2 we plot, for a fixed gν value, the spectra in two mass
regions; below and above 1 eV. There, we see that the
highest amplification of the CMB TT spectrum corre-
sponds to the mass of 1 eV. This agrees with the previously
observed fact that for such a mass the peak of the
interaction rate to Hubble ratio happens just right above
recombination. This reduces the free-streaming just in the
relevant epoch to the CMB spectrum, which prevents
photon fluctuations from being suppressed.
Figure 2 exhibits the behavior of the CMB fluctuations

for gν ¼ 10−11, this value generates a visible and moderate
contribution of the interaction. For other gν-values the
global effects presented in Fig. 2 will be the same and only
will be enhanced or diminished. From Fig. 1 we see that
masses above 1 eV mainly affect the high l multipoles of
the CMB, because the window where the interaction rate
grows with respect to the Hubble factor takes place before
recombination. Also for the same reason, in this mass
regime, the spectra have a less noticeable impact at low
multipoles. On the contrary, the smaller masses will
contribute more at low l multipoles because its interaction
rate is negligible compared to Hubble at early times and,
as a consequence, we obtain deviations that decay at
high multipoles.
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Dark matter perturbations are also modified by the NSIs.
For instance, the interaction prevents free streaming and
therefore reduces the neutrino contribution to the aniso-
tropic stress. This, according to Eq. (14), modifies the
metric potentials, ϕ, ψ , which observationally can be
translated to modifications in the matter power spectrum
(MPS). In Fig. 3 we present the MPS for masses in different
regimens. For all of them, we find that the large scales
(small k) behave like ΛCDM. This happens because these
modes enter the horizon after the resonance peak. The exact
k at which this happens do depend on the specific mediator
mass. Bigger masses peak earlier, allowing the modes to
mimic ΛCDM at larger k’s.
The behavior of the larger k modes depends on the mass

of the mediator; for the heaviest explored masses we found
that the carried effects on the MPS at those scales are
similar to the results of [52]. Thus, we focus here on the
MPS produced by masses below or equal to 1 eV, for which
the global behavior is the same. The largest k modes enter
the horizon before the interaction becomes relevant so we

don’t have differences with respect to ΛCDM. Recalling
that, as the k-mode increases in size, it enters the horizon
earlier. Consequently, intermediate scales are particularly
susceptible to the interaction rate since their horizon entry
may coincide with a time when the interaction is relevant.
In fact, as we go to smaller k values we have a small
suppression of power (as a consequence of a smaller metric
potential ψ compared to ΛCDM) that once we move to
smaller k grows until it exceeds the MPS of ΛCDM and
reaches a maximum (associated now with a boost of ψ).
Finally, for the smaller k’s, the MPS behaves again like in
ΛCDM. In the next section, we are going to discuss the
constraints of these effects with cosmological data.

IV. COSMOLOGICAL RESULTS

In this section, we use different sets of cosmological
observations to constrain the parameters of the resonant
neutrino self-interactions model. The observations include
CMB power spectra from Planck 2018, which consist of
the combined TT, TE, EE, low E, and lensing likelihoods
[78,79]. Baryonic acoustic oscillations (BAO) measure-
ments from BOSS DR12 galaxies [80] and low-z BAO data
from 6DF [81] and MGS [82]. Additionally, we also
incorporate the most recent local measurement of H0 by
the SH0ES collaboration1 [1]. Throughout this paper, we
only use two data combinations that we call Planckþ BAO
and Planckþ BAOþH0, respectively.
In order to test the resonant model with observations we

run multiple Markov chain Monte Carlo (MCMC) with the
publicly available code MONTEPYTHON [72,73]. We vary all

FIG. 3. The ratio of the resonant NSI matter power spectra
compared to ΛCDM, evaluated at redshift z ¼ 0. The gν value is
the same for the different masses of the mediator particle.

FIG. 2. Effects of the particle mass mediator mφ on the CMB
TT power spectra for a fixed gν value. The colors correspond to
five different masses as specified by the labels. In the upper panel
the spectra are multiplied by l2 just for visualization purposes, in
the middle panel ΔDl ¼ Dres

l −DΛCDM
l is for the difference with

respect ΛCDM, since the bottom panel shows the residual plot.

1Note that models that incorporate late-time solutions of H0

are inconsistent with the approach of incorporating a prior for H0

into the analysis [19–21]. However, that is no the case for our
model.
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six ΛCDM base parameters. Additionally, we include the
two neutrino parameters

P
mν and Neff plus the neutrino-

scalar coupling gν. We are assuming a diagonal and
universal coupling. As we mentioned in Sec. II, we fix
the mediator mass to find the numerical solution of the
interaction rate, which we supply precomputed to CLASS.
For this reason, we cannot use mφ as a free parameter.
Our main sample consists of the following set of masses:
f10−2; 10−1; 1; 10; 100g eV. This sample covers the entire
resonant parameter space.
Additionally, we ran MCMCs using the ΛCDM model

with Planckþ BAO dataset for reference of the standard
case. Finally, we used both linear and logarithmic priors
for gν, in both cases we found the same results that we
discuss below. Hereafter, we will only present the results
when using the linear prior.
In Table I, we show the parameter constraints obtained

from the MCMC analysis for H0 and the relevant neutrino
parameters. First, let us focus on the H0 results, as we can
see in the table for the different masses and when using
the Planckþ BAO dataset the measurement of H0 presents
a larger uncertainty compared to the ΛCDM model
(H0 ¼ 67.56� 0.44 km s−1Mpc−1). This happens due to
the wider parameter space. Furthermore, the best-fit esti-
mation of H0 is larger than that of ΛCDM for all masses,
except for mφ ¼ 100 eV. Taken together, these results lead
to a reduction in the H0 tension from 4.9σ (ΛCDM)
to 2.83σ (mφ ¼ 10−2 eV), 2.83σ (mφ ¼ 10−1 eV), 3.09σ
(mφ ¼ 1 eV), 3.21σ (mφ ¼ 101 eV), and 3.33σ (mφ ¼
102 eV). Thus, the lightest masses reduce better the tension
(see Fig. 4). As reference cases, we also run chains varying
Neff without the interaction and another where Neff ¼ 3.04
is fixed while the interaction is switched on. In the former
case, the tension is reduced to 3.7σ, which alone accounts
for ∼57% of the tension reduction. While in the latter, the
tension only reduces to 4.6σ (for mφ ¼ 1 eV), which is

FIG. 4. H0 for the main sample of fixed mediator masses. Green
points were obtained using the Planckþ BAO dataset, while the
blue points also include the local measurement of H0. The gray
band is the 1 sigma local measurement [1], and red band
corresponds our estimation using ΛCDM and Planckþ BAO.TA
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consistent with our overall results. These results show that
the RNSIs do indeed help to reduce the Hubble tension,
however, the model requires extra radiation for this task,
this is similar to what it was previously observed in the
heavy mediator approximation [52–54,56,57].
When we add the H0 measurements into the batch, the

model takes high H0 values (see Fig. 4). We observe that
the preference for larger H0 correlates with a larger Neff
(see Table I and Figs. 7–11 in Appendix). We introduced
the extra radiation via the parameter Nur which corresponds
to noninteracting radiation and Neff ¼ 3.046þ Nur. As we
can see in Table I, the amount of extra radiation compen-
sating for the lack of free-streaming is roughly Nur ∼ 0.5.
Studies in both the heavy a light mediator approximations
[50–54,56,57] also show a strong positive correlation
between H0 and Neff .
Now, let us discuss the results of the interaction coupling

gν. In Fig. 5we show theposterior distribution for gνwithboth
datasets. The two datasets indicate that the coupling is more
constrained for the intermediatemasses of 1 and 10 eV,which
is consistent with our analysis in Sec. III where we showed
that these masses led to the strongest effects on the CMB.
However, the other masses also present strong upper limits
on gν. The weakest bounds were found for the heaviest and
lightest masses. For instance, for mφ ¼ 10−2 eV, we found
gν < 8.61 × 10−12 at 95% confidence level (CL) Still this
bound is much stricter than the bounds found in the literature
for light or heavy mediators, which are around 10−7 at best.
When using the whole data pool the results on gν become

more intriguing. For the intermediate masses of 1 and
10 eV, the data prefer a nonzero interaction with a
significance larger than 2σ. Considering this, we explored
more masses in the neighborhood given by mφ ¼ f0.5 eV;
5 eV; 50 eVg (for a full discussion on these points see
Appendix and Table therein). In Fig. 6, we show the

estimations of gν, the range where we have at least a 2.3σ
preference for nonzero values is 0.5 eV ≤ mφ ≤ 10 eV.
Specifically, the statistical preference for non-null values
are 3.90σ (mφ ¼ 0.5 eV), 3.54σ (mφ ¼ 1 eV), 2.31σ
(mφ ¼ 5 eV), and 2.70σ (mφ ¼ 10 eV) respectively.
Here, it is important to state that this result is obtained
with cosmological data that are still in tension, although
the χ2min is almost identical for RNSI (with H0 included)
and ΛCDM (Planckþ BAO only). These measurements
expand around 7.6 × 10−14 ≲ gν ≲ 37 × 10−14, and would
be difficult to test with experimental neutrino probes.
However, we argue that in astrophysical and cosmological
setups the task becomes easier, as in recent years, many
phenomenological ideas have led to new bounds. For
instance, a strong bound close to ours was found for a
Majoron-like model2 where the smallness of the coupling is
naturally achieved [44]. New neutrino UV complete models
should consider our results [45,85,86].
Moreover, we discuss our constraints on the sum of

neutrino masses. Overall the neutrino mass bounds are
similar to the standard neutrino model. Except in one case,
withmφ ¼ 100 eV, using the complete dataset the neutrino
mass bound becomes more restrictive

P
mν < 0.09 eV,

which slightly overlaps with the minimum sum expected in
the inverted hierarchy

P
mIH

ν > 0.0986� 0.00085 eV [87]
(For more details and constraints on other cosmological
parameters, see Appendix).
Finally, to evaluate the goodness of fit of the model, we

employ the Akaike information criterion (AIC) [88,89],
which is defined as

AIC ¼ −2 lnLmax þ 2nfree; ð15Þ

FIG. 6. Coupling vs mediator mass parameter space. The cyan
region reflects the excluded region for gν at 95% CL using the
Planckþ BAO dataset. The black points represent either the
upper bounds at 95% CL (arrows pointing down) or the 1 sigma
measurements of gν (error bars) for Planckþ BAOþH0. The
dashed brown line indicates the bound from scalar decaying into
neutrinos in a Majoron model [44].

FIG. 5. Posterior probability for the parameter gν at different
masses of the fieldϕ. The dotted lines correspond to Planckþ BAO
constraints and the continuous lines to Planckþ BAOþH0.

2In these kind of models, the neutrino mass typically comes
from a seesaw mechanism (see for example [83,84]).
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where Lmax is the maximum likelihood for a model, and
nfree the number of free parameters. The AIC penalizes
overfitting caused by extra free parameters. Thus, we define
ΔAIC ¼ AICRNSI − AICΛCDM. Here, a positive ΔAIC
favors the standard model and a negative value the
RNSI model. Furthermore, if the value of Δ lies in the
interval ½−4; 4� the AIC is not favoring any of the models
(or the preference is slight), and if it lies outside of ½−7; 7�
then the model is strongly favored (opposed) by the AIC.
Notice that in the RNSI model, we have three extra
parameters, because in the ΛCDM model we fixed the
standard neutrino parameters to

P
mν ¼ 0.06 eV and

Neff ¼ 3.046. In Table I, we show the ΔAIC values for
the different masses and datasets. We observe when
using Planckþ BAO, ΛCDM is slightly preferred.
However, when H0 is included, RNSI is favored over
the cosmological standard model, particularly, for the cases
mφ ¼ 0.1 eV and mφ ¼ 1 eV.
The results discussed in this section show that the RNSI

model offers interesting features that are worth continuing
to study. This model emerges as a good candidate to ease
the Hubble tension, with a strong overall fit, while also
requiring physics beyond the standard model of particles.

V. CONCLUSIONS AND PERSPECTIVES

Along this paper, we have explored the cosmological
implications of the existence of scalar-mediated resonant
neutrino self-interactions contributing to a neutrino-
neutrino elastic scattering. This corresponds to a previously
unexplored range of mediator masses, where the resonance
enhances substantially the cross section. The cosmological
observables become sensitive to very small couplings,
especially when the associated peak occurs close to
recombination. This provides strong bounds for inter-
actions with scalar masses in the regime between sub-eV
to hundreds of eV.
For our study, we employed a modified version of

CLASS [70,71] and MONTEPYTHON [72,73] with public data
of the CMB by Planck 2018, BAO and local measurements
of H0. We explored a sample of fixed mediator masses in
the range 10−2 eV ≤ mφ ≤ 102 eV, where we varied the
interacting coupling gν, the neutrino parameters Neff andP

mν, and the base ΛCDM parameters.
When using the Planckþ BAO data batch, the tension

with local measurements of H0 is reduced significantly
from 4.9σ in the standard cosmological model down
to values between 3.3σ and 2.8σ. Nevertheless, to reach
those values the model requires extra radiation, which by
itself requires a RNSI consistent model with extra radiation
and a mechanism to avoid other constraints (see for
example [66]). Consequently, we argue the that resonant
NSI model could be a good candidate to solve the H0

tension. Furthermore, when adding local H0 data, the
model accepts large H0 values with extra radiation and
non-null interaction couplings. Actually models with

masses in the range 0.5 eV ≤ mφ ≤ 10 eV prefer nonzero
interactions with 2.3σ to 3.9σ levels of significance.
However this last result was observed combining data that
are in tension at high statistical significance yet. The search
for such small couplings in neutrino experiments could take
decades to plan, even so, this region of the parameter space
is reachable using cosmological (or astrophysical) data. We
did not observe significant deviations or correlations on
other cosmological parameters.
The AIC favored our model over ΛCDM when we used

Planckþ BAOþH0 data. This means that the model
improved the likelihood enough to justify the additional
parameters. When we used only Planckþ BAO data the
criterion prefers the ΛCDMmodel, which indicates that the
preference in the full dataset comes from the ability of our
model to reduce the H0 tension.
We argue that future projects can improve our current

analysis in several ways. First, we ignored the neutrino
mass in the computation of the interaction rate, a more
precise computation should include it. This will add
uncertainty to the analysis, especially for the cases where
the mediator mass is below the atmospheric neutrino mass
scale ∼0.05 eV. Second, we ignored the resonant produc-
tion of scalars and the neutrino decay (inverse decays) into
lighter neutrinos and scalars. These processes would be
important because they may change the neutrino back-
ground, perturbation evolution, and even compromise the
validity of the relaxation time approximation [61,62].
Future studies in RNSIs should pursue a joint analysis
that includes both inelastic and elastic processes. From the
data analysis point of view, it would be interesting to test
the model with new datasets. For this matter, future
cosmological surveys will help to untangle the parameter
constraints (see for instance [90,91]). Additionally, we
should track the model comparison using Bayesian meth-
ods to discriminate against other cosmological models.
The physics of neutrino nonstandard interactions may

change our understanding of the Universe. Exploring all
the available parameter space could open new windows to
solve current cosmological problems such as the H0

tension. The previously unexplored region studied in this
work now brings interesting links to physics beyond the
standard model of particle physics. In particular, the
preference in certain masses for a nonzero interaction is
intriguing and should be studied further.
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APPENDIX: FURTHER DETAILS ON
COSMOLOGICAL CONSTRAINTS

This appendix provides a discussion of some details
about the cosmological results. First, we focus on the
constraints of the base parameters. We varied the usual six
ΛCDM parameters Ωb, Ωcdm, θs, As, ns, and τreio, and
found that the results are consistent with the cosmological
standard model constraints across all mediator masses. As
an example, when usingmφ ¼ 1 eV for Planckþ BAO, we
obtained: Ωbh2 ¼ ð2.2428� 0.0188Þ × 10−2, Ωcdmh2 ¼
0.1194� 0.0034, 100θs ¼ 1.0420� 0.0006, ln 1010As ¼
3.0466� 0.0168, ns ¼ 0.9690� 0.0081, and τreio ¼
ð5.7724� 0.7546Þ × 102. On the other hand, when we
include H0, the constraints (also for mφ ¼ 1 eV) are
Ωbh2 ¼ ð2.2808� 0.0149Þ × 10−2, Ωcdmh2 ¼ 0.1266�
0.0028, 100θs ¼ 1.0410� 0.0005, ln 1010As ¼ 3.0675�
0.0167, ns ¼ 0.9865� 0.0062, and τreio ¼ ð6.1376�
0.8211Þ × 102. Similar bounds were obtained for the other
mediator masses.
Now we focus on the degeneration of the RNSI

parameters. In Figs. 7–11, we show the 2-D posteriors
for the neutrino parameters andH0. In all cases, we observe

similar correlations. For instance, there is a positive
correlation between gν, Neff , and H0. The strongest
correlation is between Neff and H0, this occurs also in
the standard neutrino scenario. The correlation of gν with
these parameters is moderate, however, it is steeper in the
Planckþ BAO dataset. Thus, from these we confirm the
expected RNSI effect, which prevents neutrinos from free
streaming, which the model compensates with a larger Neff,
and due to correlations, resulting in a largerH0 value, this is
sharpest when H0 forms part of the data.

FIG. 7. The plot displays the 68% and 95% confidence regions
for the RNSI model with a fixed mediator mass of mφ ¼ 100 eV,
constraints are for the Planckþ BAO and Planckþ BAO þH0

datasets.

FIG. 8. Posterior probability for different sets of data and for
mφ ¼ 10 eV.

FIG. 9. Posterior probability for different sets of data and for
mφ ¼ 1 eV.
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The correlation of
P

mν with the other parameters is
mild. Except, with Neff , which presents a positive and
moderate correlation. We conclude that the neutrino mass
has a very modest impact on the final constraints of the
other parameters and therefore its bounds are similar to
those obtained in the standard scenario.
Now, we discuss the results of the three extra mediator

masses. In Table II, we show the constraints to the
parameters for the extra values of mφ. Within these masses
(0.5, 5 and 50 eV) we observe an interpolation of the results
when using the main mass set (also see Fig. 6). Specifically,

we run these extra MCMCs to observe the behavior of the
gν bound with all the datasets. We can see that 0.5 and 5 eV
are consistent with a nonzero value, and, for 50 eV, we do
not observe any preference for nonstandard physics.
Regarding the extraΔAIC values [Eq. (15)], our model is

penalized when considering Planckþ BAO. Although, for
the whole batch, our model is favored by this criteria. These
extra points strengthen our confidence in the results we
report on the main text. Furthermore, concerning the results
of H0, we obtain similar results to the main sample, in
which the tension is better reduced for a lighter mediator.

TABLE II. Observational limits for different models with varyingNeff and
P

mν. The upper limits are expressed at 2σ while the rest of
the limits are at 1σ. We obtain a positive value of the interaction coupling for mφ corresponding to 0.5 and 5 eV.

Data: Planck þ BAO BAOþ H0 BAO BAOþ H0 BAO BAOþ H0

mφ ½eV� 0.5 5 50

H0 ½km s−1=Mpc� 68.0� 1.4 71.29� 0.84 67.8þ1.0
−1.3 71.03þ0.82

−0.91 67.5� 1.3 70.93� 0.83

Neff 3.08� 0.23 3.59þ0.16
−0.15 3.05þ0.18

−0.22 3.55� 0.15 2.98� 0.21 3.52� 0.15P
mν ½eV� <0.126 <0.112 <0.104 <0.112 <0.107 <0.123

gν × 1014 <22.9 18.7þ5.4
−4.8 <15.6 13.4þ6.4

−5.8 <65.8 <67.9

ΔAIC 8.04 −9.18 5.52 −7.64 8.9 −2.94

FIG. 10. Posterior probability for different sets of data and for
mφ ¼ 10−1 eV.

FIG. 11. Posterior probability for different sets of data and for
mφ ¼ 10−2 eV.
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