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Using wave kinetics, we estimate the emergence timescale of gravitating Bose-Einstein condensates/
Bose stars in the kinetic regime for a general multicomponent Schrödinger-Poisson (SP) system. We
identify some effects of the diffusion and friction pieces in the wave-kinetic Boltzmann equation (at leading
order in perturbation theory) and provide estimates for the kinetic nucleation rate of condensates. We test
our analysis using full (3þ 1)-dimensional simulations of a multicomponent SP system. With an eye
toward applications to multicomponent dark matter, we investigate two general cases in detail. First is a
massive spin-s field with N ¼ 2sþ 1 components (scalar s ¼ 0, vector s ¼ 1, and tensor s ¼ 2). We find
that for a democratic population of different components, the condensation timescale is τðsÞ ≈ τ0 × N,
where τ0 is the condensation timescale for the scalar case. Second is the case of two scalars with different
boson masses. In this case, we map out how the condensation time depends on the ratios of their average
mass densities and boson masses, revealing competition and assistance between components, and a guide
toward which component condenses first. For instance, withm1 < m2 and not too disparate mass densities,
we verify that the timescale of condensation of the first species quickly becomes independent of m2=m1,
whereas for equal average number densities, the emergence timescale decreases with increasing m2=m1.
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I. INTRODUCTION

Sufficiently light bosonic dark matter leads to a plethora
of wave phenomenon (see Refs. [1,2] for recent reviews),
including the condensation of Bose stars in the kinetic
regime via gravitational interactions. In an elegant paper [3],
Levkov, Panin, and Tkachev provide numerical simulations
and an analytic estimate of the condensation timescale in the
case of a single scalar field. (Also, see Refs. [4–7] for related
recent analyses and some applications to astrophysical
settings.) These analyses were carried out using a single-
component, nonrelativistic Schrödinger-Poisson system.
In this paper, we investigate kinetic condensation in a

multicomponent Schrödinger-Poisson system, where each
component can have equal or different boson mass and
mass density, and we explore the nature of nucleated boson
stars. Such multicomponent SP systems naturally describe
(2sþ 1)-component spin-s bosonic dark matter (s ¼ 1 for
vector and s ¼ 2 for tensor dark matter), or the case when
dark matter consists of a collection of scalar fields.
Nonrelativistic Bose stars/solitons in spin-s fields, where

s > 0, have been recently studied in the literature [8–10].
Such solitons can carry macroscopic intrinsic spin angular
momentum [10] (unlike “hedgehog”-like Proca stars [11]),

which can in turn lead to novel observational effects [12,13].
The s ¼ 0 case has, of course, been explored for several
decades [14] (see Ref. [15] for a review). For s ¼ 1, the
solitons have been seen to form due to gravitational
interactions from cosmological initial conditions [16],
and also from mergers of halos/solitons [17]. However,
their emergence via condensation in the kinetic regime has
not been explored before. Similarly, solitons in dark matter
made up of multiple scalar fields (with different, but
comparable, boson masses), have been investigated in the
literature, especially in the context of core profiles [18–21].
However, their formation via kinetic relaxation has not been
investigated. We hope that our work sheds light on this
subject, and that it will be useful for exploring their
observational implications.
Starting with the multicomponent SP system, we derive

the wave-kinetic/Boltzmann equation valid in the kinetic
regime. Under an eikonal approximation (small-scattering-
angle limit), the system simplifies considerably, which,
upon rewriting in the Fokker-Planck form, reveals the
diffusion and friction terms. For the purpose of condensate
nucleation, we focus on the behavior of the distribution
function at vanishing momenta. We provide a set of coupled
ordinary differential equations for their evolution, and also
estimate an initial-condition-based condensation rate.
As a consequence, we find that for a spin-s system with

N ¼ 2sþ 1 components (necessarily with equal boson
masses for each component), and with statistically equiv-
alent initial conditions, the timescale of condensation scales
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with the number of components. On the other hand, for a
two-component system, with potentially different mass
densities and boson masses, we map out the landscape of
condensation times, revealing, for example, the regime in
which condensation time becomes independent of the ratio
of boson masses, and that in which condensation times are
determined by the heavier or lighter component.
We carry out a suite (∼100) of three-dimensional

numerical simulations of the multicomponent SP system
to explore the domain of validity of our estimates. We find
that the results are in general agreement with the analytic
estimates.
The rest of the paper is organized as follows: In Sec. II,

we describe the general model of multicomponent dark
matter with only gravitational self-interactions. Leaving
details of the derivation of multicomponent wave kinetic
equation for Appendix A, and its subsequent reduction in
the eikonal approximation for Appendix B, in Sec. III, we
discuss the general structure of the Boltzmann/Fokker-
Planck equation for our multicomponent SP system. We
provide estimates of the rate of change of distribution
functions at vanishing momenta, which are relevant for the
nucleation timescales of gravitating condensates. In the
subsequent Secs. III A and III B, we specialize to the two
cases of interest mentioned above, discuss the simulation
results, and provide comparisons with analytical estimates.
Finally, in Sec. IV, we summarize our work. Details of
numerical simulations are provided in Appendix C.
Conventions: Unless stated otherwise, we will work in

units where ℏ ¼ c ¼ 1.

II. MODEL

We are interested in sufficiently subhorizon dynamics,
and hence ignore Hubble expansion. In this case, the
dynamics of the multicomponent dark matter field is
described by the following nonrelativistic Schrödinger-
Poisson (SP) system of equations:

i
∂

∂t
ψa ¼ −

1

2ma
∇2ψa þmaΦψa;

where ∇2Φ ¼ 4πG
X
b

mbψ
�
bψb: ð1Þ

If ma ¼ m for all “a,” then ψa can be thought of as
components of a spin-s field. Here, “a” ranges from 1 to
N ¼ 2sþ 1. In this case, the above system has aUð2sþ 1Þ
symmetry, leading to conservation of extra charges (apart
from mass conservation within each component) such as
isospin and/or spin [10].
More generally, each component ψa can have a different

mass, in which case each component represents a collection
of scalar particles (distinct from other components).
Correspondingly, owing to a separate Uð1Þ symmetry in
each scalar sector, the total number of particles within each
sector is conserved.
We are interested in kinetic relaxation/condensation. In

the kinetic regime, the timescales of interactions are much
longer than the oscillation time of the free waves. In
addition, the wavelengths are much smaller than the size
of the system under consideration. Physically, this trans-
lates to having the dark matter halo size much larger than
the de Broglie scale for the dark matter field.

III. KINETIC RELAXATION

A formal estimate for the timescale of Bose-Einstein
condensation in the kinetic regime may be obtained by
means of the wave kinetic equation, which can be obtained
from Eq. (1). While we derive a general multicomponent
wave kinetic equation (with arbitrary two-body interaction)
using a random phase approximation in Appendix A, for our
purposes in the present paper, we are only interested in
gravitational interactions. In this case, the wave kinetic
equation for the occupation number function fak=ma

¼
jΨa

k=ma
j2 for species “a” takes the following form:

∂fak=ma

∂t
¼

X
b

Z
dp

ð2πÞ3 dσkaþpb→qbþla
jva − ṽbj

h
ðfak=ma

þ fbp=mb
Þfal=ma

fbq=mb
− ðfal=ma

þ fbq=mb
Þfak=ma

fbp=mb

i
;

where dσkaþpb→qbþla
¼ dq

ð2πÞ3
dl

ð2πÞ3
1

jva − ṽbj
ð4πGmambÞ2

jk − lj2
�

1

jk − lj2 þ
δab

jk − qj2
�

× ð2πÞ4δð3Þðkþ p − q − lÞδðEa
k þ Eb

p − Eb
q − Ea

lÞ: ð2Þ

Here, va and ṽb are incoming “velocities” for the species
“a” and “b” carrying momentum k ¼ mava and p ¼ mbṽb,
respectively, and ρ̄c ¼ mcð2πÞ−3

R
dk fck is the average

mass density for any cth species. Also, Ek
a ¼ k2=2ma is

the free wave dispersion relation, and the quantity
dσkaþpb→qbþla

is the differential cross section for the

process ka þ pb → qb þ la. The summation over “b”
simply reflects the fact that any species “a” gravitationally
interacts with all the other species (including species “a”
itself) and can be readily contrasted with a single species/
scalar case. Also note the term ∝ δab in the differential
cross section, which can be readily interpreted as an
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interference between the u and t interaction channels.1

Furthermore, the above wave-kinetic equation can be
contrasted with its “non-wave-like” counterpart (i.e., the
usual kinetic equation for point-like particles): The bracket
terms carrying the sums of occupation number functions
are simply unity in the latter case.
In general, on account of interactions, waves exchange

energy, and the occupation number function evolves with the
characteristic time of this evolution being ∼ð∂ log f=∂tÞ−1
(for every species). As a result, an important phenomenon of
“condensation” can occur. As we shall see explicitly for the
case of gravity, the occupation number function for the
condensing species develops an increasing support over
smaller k values. Once enough support is developed, the
gravitational potential energy of such waves becomes
capable of balancing their own gradient pressure within a
region, hence the emergence/nucleation of a soliton-like
object.2 In order to make analytical progress for the
estimation of this condensation rate, we work with an
eikonal approximation, where the change in relative veloc-
ities of the outgoing waves is assumed to be small (as
compared to the relative velocities of the incoming waves).
Leaving a detailed calculation for Appendix B, the wave-
kinetic Boltzmann equation reduces to the following Fokker-
Planck form at leading-order perturbation theory:

∂fava
∂t

¼
X
b

m3
b
Λ
4π

ð4πmambGÞ2
ma

×∇via

�
Dab

ij

2ma
∇vja

fava þ
F ab

i

mb
fava

�
;

where Dab
ij ¼

Z
dṽb
ð2πÞ3 f

b
ṽb

δij − ûiûj
u

fbṽb

and F ab
i ¼ fava

Z
dṽb
ð2πÞ3

ûi
u2

fbṽb ;

with u ¼ va − ṽb: ð3Þ

Here, we have relabeled the occupation number func-
tions using “velocity” vectors, with va ¼ ka=ma being the
incoming velocity vector for the a species, and ṽb being the
velocity vector for the incoming b species, giving u ¼
va − ṽb as the relative velocity between the two. Also, Λ is
the Coulomb logarithm (whose appearance in cross section
for long-range 1=r2 force is expected; see Appendix B for
details). Equation (3) is our master Boltzmann equation

(under the small-angle approximation), which dictates the
evolution of the occupation number functions.3

The two terms on the right-hand side of the Fokker-
Planck equation (3) are conveniently understood by means
of the (velocity-dependent) diffusion and friction coeffi-
cients Dab

ij and F ab
i , respectively. For an interaction of

wave type “a” with wave type “b,” a physical effect of the
diffusion term is to decrease the occupation number
function fava at places where it is convex, while increasing
it at places where it is concave (in the plane perpendicular
to u, with “sheer stress” of the form ∼1=u). On the other
hand, an effect of the friction term is to enhance fava due to
the “friction force” ∼1=u2 being directed toward va.
Specifically, ∇viaF

ab
i includes 4πfavaf

b
va=ð2πÞ3, which,

together with the factor of fava=mb, may be regarded as
a positive definite source term for the evolution of fava . This
heuristic understanding is similar to the non-wave-like/
particle-like case, albeit with the crucial difference of there
being extra factors of fbṽb and fava in the diffusion and
friction terms, respectively, due to wave dynamics. These
extra terms, sometimes referred to as Bose enhancement
factors, have an important role to play in the nucleation of
condensates.
We note that the above understanding of these effects of

the diffusion and friction terms, and a subsequent nucleation
of a condensate, is reflected in a preliminary calculation of
moments of the distribution function fava . For instance, even
for a single-species case, assuming a Gaussian initial ansatz
for the distribution function [cf. Eq. (7) ahead], we calculate
the rate of change of different moments at the initial instant.
We find that while dhvai=dtjt¼0 < 0, dhvnai=dtjt¼0 > 0 for
n ≥ 3, with dhv2ai=dtjt¼0 ¼ 0 being the boundary case. This
indicates that the evolution of fv is such that it tries to break
into a condensate part where the friction dominates over
diffusion (developing increasing support toward smaller
velocities), and a remaining part where this may not be true.
For the purposes of condensate/soliton nucleation within

any species “a,” we may therefore focus on the behavior of
its occupation number function at small velocities—i.e., the

quantity limva→0
∂fava
∂t —due to all the other species (including

itself) in the bath. (We, of course, do not make the same
assumption about the species being integrated over.) We
assume homogeneity and isotropy (until the nucleation of
the condensate) along with an assumption of quadratic
functional dependence of occupation number functions at
small velocities. Under these assumptions, the diffusion
piece ∇via∇vja

fava jva→0 → −β̃aδijfa0=σ2a, leading the sub-

sequent velocity integral to be Dab
ij δij → 2 × 2πσ2bðρ̄2b=

m8
bσ

6
bÞβ0b. Here, σb characterizes the initial Gaussian width

1This interference term gives negligible contribution in the
eikonal/small-angle approximation (relevant for long-range inter-
actions), but it could become important for other (e.g., short-
range) interactions. See Appendix B for details.

2Note that in general, the existence of a spatially localized
condensate relies on there being an attractive interaction that can
counterbalance the gradient pressure (and/or repulsive self-
interaction). See, for example, Ref. [22] for an analysis.

3The wave-kinetic equation differs from the usual (nonwave-
like/particle) counterpart: the extra factors of fbṽb and fava in the
diffusion and friction coefficients are absent in the latter.

KINETIC RELAXATION AND BOSE-STAR FORMATION IN … PHYS. REV. D 108, 043535 (2023)

043535-3



of the distributions, and ρ̄b is the spatially averaged mass
density of species b. Also, β̃b parametrizes deviations from
Gaussianity of the ratio of the curvature of fb0 versus fb0
(measured in units of σa), while β0b characterizes deviations
from Gaussianity of the full integral4 in Dab

ij . For the
relevant piece in the friction term, we simply have
ð∇viaF

ab
i Þfava → 4πð2πÞ−3fb0ðfa0Þ2. Furthermore, to extract

overall scalings of the distribution function fb0 , we define a
function gbðtÞ such that

fb0ðtÞ≡ ð2πÞ3=2 ρ̄b
m4

bσ
3
b

× gbðtÞ; ð4Þ

where gbðtÞ carries all the time dependence of the distri-
bution function near small velocities, with gbðt ¼ 0Þ ¼ 1.
With these replacements, we finally arrive at the following:

ġa ¼
X
b

Λbð4πGÞ2ρ̄
2σ3aσ

3
b

�
2
ρ̄a
m3

a
gagb − βab

ρ̄bσa
m3

bσb

�
ga; ð5Þ

where we have combined β̃a and β0b into a single βab. As a
quick exercise for a single species, we can solve this
differential equation and take the time when g changes
significantly as an estimate for the nucleation time of the
condensate. Denoting τgr ≡ 2m3σ6=ðΛð4πGÞ2ρ̄2Þ, we get
ġ¼ τ−1gr ð2g3−βgÞ, which gives τ0∼τgr logð2=ð2−βÞÞ=ð2βÞ
under the assumption of β ¼ const (and where τ0 is the
time when g → ∞).
For concreteness, we also evaluate the above rate of

change at the initial instant, Γa ≡ d log ga=dtjt¼0:

Γa ¼
X
b

Λð4πGÞ2ρ̄b
2σ3aσ

3
b

�
2
ρ̄a
m3

a
− βab

ρ̄bσa
m3

bσb

�
; ð6Þ

where the β parameters are simply informed by the initial
condition, and we take this as an estimate for the rate of
condensate nucleation5—the corresponding time, of course,
being τa ∼ Γ−1

a . Once again, for a single-component case
with the initial condition given below in Eq. (7), we
get τ0 ∼ τgr.
From the above estimates for the single-component case,

the condensation time scales with relevant parameters
similar to those in Ref. [3], but the numerical factors are
not identical. Our estimate is based on using Gaussian
initial conditions to calculate the right-hand side of Eq. (3)
explicitly, near vanishing momenta. To the best of our

understanding, authors in Ref. [3] replace derivatives,
integration measures, relative velocities and occupation
number functions with respective scalings in Eq. (3)
(specialized to a single component). They then fit an
order-unity coefficient which depends on initial conditions
from simulations. We thus expect the scalings to match, but
not the explicit numerical factors. With multiple species,
however, the scaling with densities, boson masses, and
initial velocity dispersions becomes nontrivial, and one
needs to keep track of differences arising from the friction
and diffusion terms.
Before moving on, we would like to caution the reader

that Eqs. (5) and (6) are not the most general equations that
capture the behavior of any distribution function f at
vanishing momenta, at all times and at the initial instant,
respectively. They only apply in so far as the leading
dependence of f on momenta is quadratic (at small
momenta). On the contrary, the Boltzmann equation (3),
of course, contains all the necessary details (in the leading-
order perturbation theory).
For simulations, in this paper we shall focus on two

different scenarios: First, we will consider a spin-s field
with N ¼ 2sþ 1 components, with the boson mass for
each component being equal. The other case would be the
opposite scenario, where the different components are
simply scalar fields and therefore have naturally different
masses. For example, this could be the case of dark matter
comprising axiverse axions [23]. For this multiscalar case,
we shall only consider the two-component case in detail.
Next, owing to violent relaxation in the physical case of
dark matter physics, we shall assume that all the compo-
nents have the same characteristic velocity. For simulation
purposes, we numerically evolve the SP system [Eq. (1)],
with the following initial distribution/occupation number
function for every ath species6:

fava jt¼0 ¼ jΨa
k=ma

j2jt¼0 ¼
ð2πÞ3=2ρ̄a
maðmaσaÞ3

e
− v2a
2σ2a ; ð7Þ

with σa ¼ σ for every species, and random phases for every
wave number (for each species). The details of the initial
conditions are provided in Appendix C.

A. Equal-mass, spin-s case

First, we consider the case of a spin-s field with N ¼
2sþ 1 components, for which all the components have the
same massm. Assuming equipartition of mass density—i.e.,
that ρ̄a ¼ ρ̄=ð2sþ 1Þ for all components, where ρ̄ is the total

4While it is in general time dependent, we expect the time
variation of both β0b and β̃b to not be too significant throughout
most of the evolution of the occupation number functions before
the nucleation of condensates.

5Note that for a Gaussian initial ansatz (7), βab ¼ 1 at the
initial instant.

6Note that the initial conditions used by Ref. [3], for the scalar
s ¼ 0 case, differ by σ → σ=

ffiffiffi
2

p
. Also note that while we do not

discuss initial conditions that are Dirac-Delta functions in
velocity space at finite σ (as investigated by Ref. [3]), we briefly
mention what we see in some sample simulations in Appendix C,
and how it relates to the discussion in this section.
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average mass density—along with equal velocity dispersion
σ for all components, the evolution equation [cf. Eq. (5)] for
any component becomes7 ġ ¼ τ−1gr ð2g3 − βgÞ=ð2sþ 1Þ.
Notice that the only difference as compared to the scalar
(s ¼ 0) case is that we have democratically populated all the
components, giving rise to an overall ρ̄2=ð2sþ 1Þ2 factor,
and a 2sþ 1 factor owing to the summation over the 2sþ 1
components (due to universality of gravity). The net result is
a 1=ð2sþ 1Þ factor in the rate of kinetic relaxation.
Equivalently, the rate defined in Eq. (6) evaluates to
ΓðsÞ ¼ Γ0=ð2sþ 1Þ. The time of condensate nucleation
(within any component) is therefore estimated as

τðsÞ ∼ τ0ð2sþ 1Þ: ð8Þ

To verify the above prediction, we have performed ∼50
simulations for s ¼ 0, 1, and 2 (corresponding to scalar,
vector and tensor wave-like dark matter).8 We provide
necessary details of the actual simulations in Appendix C.
Figure 1 shows our simulation results along with compar-
isons with analytics. The densities are normalized by
ðσ2m=

ffiffiffiffi
G

p Þ2, and length scales by 1=ðmσÞ.
For simulations, we take the condensation time to be the

time when there is a characteristic change in slope (on a
log-log scale) of the maximum density in the simulation
volume vs time. Note that the τ0 used to normalize the time
axis in the top panel of Fig. 1 is extracted from simulations
for the scalar case, chosen to highlight the scaling of the
condensation time with the number of components.
The density in the box at initial times and after the soliton

is reasonably well formed (we decided this based on a fixed-
density threshold ρ̃max ¼ 1) are also shown in the lower
panels. The soliton profile in total density shows good
agreement with theoretical expectations [10]. We also keep
track of densities in individual components of the fields. For
the multicomponent cases (in particular, the tensor one), not
all components have the same shape of the density profile at
the final snapshot shown. We see an increasing approach to
similar profile shapes as time progresses, and the agreement
of the soliton profile with the theoretically expected one
improves. Note the reduced interference effects (seen as less
contrast in the colors, but the length scale of the patterns
remains the same) in the initial conditions or in the patterns
away from the soliton, as expected from Ref. [17]. The same
phenomenon was also seen in Ref. [25]. The amplitude and
length scale of interference patterns have been used to
constrain the mass of ultralight dark matter [26–28].
Furthermore, we calculate the spin densities (see

Refs. [10,17]) of the condensates at final times in the

respective simulation sets. We show spin density plots for
the two cases in Fig. 2. Note that the solitons that form have
significant spin/boson at the end of the simulation.

B. Unequal masses: Multiple scalars

Here, the different components are scalars with different
masses. Focusing on the case of a two-component scalar
dark matter but with the same characteristic velocity across
each species [cf. Eq (7) with σa ¼ σ for both a ¼ 1 and 2],
we have from Eq. (5)

FIG. 1. Top panel: Maximum density in the simulation volume
as a function of time for scalar (s ¼ 0), vector (s ¼ 1), and tensor
fields (s ¼ 2). The condensation time scales with the number of
components of the field as τðsÞ ∼ τ0 × N, where N ¼ 2sþ 1. The
simulated data include 14 simulations for s ¼ 0, 1, 2 each. For
visual clarity, the outputs shown are significantly undersampled
compared to what is available from our simulations. Lower panels:
In each row (corresponding to scalar, vector, and tensor fields,
respectively), the first two panels show a projection of the mass
density of the spin-s field at initial and final times, while the third
panel provides the radial profile of the mass density (the solid line
is the expected soliton profile) at the final time. Some simulation
animations are available in the Supplemental Material [24].

7Here, we have assumed that all the β factors are same, owing
to democratic initial conditions.

8To verify the robustness of our scaling result τ ∼ τ0N, we also
performed ∼10 simulations for N ¼ 2 and N ¼ 4 cases.
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ġ1 ¼
1

τgr

�
2g1ðg1 þ yg2Þ − β11 − β12

y2

x3

�
g1;

ġ2 ¼
1

τgr

�
2yg2ðg1 þ yg2Þ

x3
− β21 − β22

y2

x3

�
g2; ð9Þ

where we have defined m1 ¼ m, m2 ¼ xm, and ρ̄1 ¼ ρ̄,
ρ̄2 ¼ yρ̄, and also recall that τgr ≡ 2m3σ6=ðΛð4πGÞ2ρ̄2Þ.
While in principle it is possible to estimate the β parameters
with the aid of a suite of simulations (under the assumption
of them being more or less time-independent), we do not
perform this exercise in this paper. To get reasonable
analytical insights, we rather work with the initial rate
given by Eq. (6). With Gaussian initial conditions (i.e.,
β ¼ 1), we get

Γ1 ¼
Γ1;1

2

�
2ð1þ yÞ − 1 −

y2

x3

�
;

Γ2 ¼
Γ1;1

2

�
2y
x3

ð1þ yÞ − 1 −
y2

x3

�
; ð10Þ

where Γ1;1 ¼ Γx¼1;y¼1, with the corresponding times for
each component being τa=τ1;1 ∼ Γ1;1=Γa. Note that in the
above, we have ignored Coulomb log factors which would
appear when masses are unequal. We use this estimate
(plotted in the left panel in Fig. 5) to compare with a suite of
simulations (right panel). In what is discussed below, we
always keep the mass of the first component (m1 ¼ m) and

its density (ρ̄1 ¼ ρ̄) fixed, while the same for the second
component are varied using x, y ≥ 1.
Based on our simulations, we provide the behavior of

maximum density vs time, and the density snapshots and
profiles of the nucleated solitons for equal-mass-density
and equal-number-density cases are given in Figs. 3 and 4,
respectively. We provide a more statistical viewpoint of the
condensation times in the table in Fig. 5. In that table, we
summarize our numerical findings for various values of x
and y. We carried out 5 sets of 9 (in total 45) simulations to
explore the dependence on mass densities and masses. We
have provided both the average and the standard deviation
resulting from different initial “seeds” (different random
phases) for each x and y value.
Some of the results are as follows:
(1) For equal mass densities, y ¼ ρ̄2=ρ̄1 ¼ 1, our esti-

mate indicates that a condensate nucleates in the
lighter field, with its time of condensation eventually
becoming independent of x ¼ m2=m1 > 1, and ap-
proximately equal to τ1;1. This behavior is seen in

FIG. 3. Two-component simulations with equal mass density in
each component, but different boson masses. The boson mass and
mass density of the first component are held fixed. Top panel:
Maximum density of each component of the field as a function of
time in the simulation volume. Three simulations are shown, each
with a different ratio of boson masses between the two compo-
nents. The transparent version of each color corresponds to the
heavier component. Note that there is no significant dependence
of the condensation time on the mass ratios considered here. Also
note the slower accumulation rate at late times for the heavier
component. Bottom panel: The first two panels show the final
projected densities in the lighter and heavier components,
whereas the third panel shows their radial profiles. The heavier
component is accumulating around the condensed lighter one.
Some simulation animations are available in the Supplemental
Material [24].

FIG. 2. The simulation snapshots in the top and bottom rows
show the initial and final projections of the magnitude of the spin
density for vector and tensor cases, respectively. The rightmost
column shows the radial profile of the magnitude of the spin
density at the final time. Note that spin accumulates with the
density (compare with the bottom two rows of Fig. 1). Restoring
factors of ℏ, the spin per boson in the simulation volume is
Oð10−2Þℏ, whereas in the core it concentrates to Oð1Þℏ. Unlike
the magnitude of the radial spin density profile, spin in the core
and in the simulation volume is obtained by vector summation of
spin density at each location.
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the top panel of Fig. 3, as well as the bottom row of
the right panel in Fig. 5.

(2) For equal number densities between the two species—
i.e., along the y ¼ x line—it is still the first species
that forms a condensate, but the timescale of its
nucleation decreases as ∼τ1;1=x. This is again seen
in the top panel of Fig. 4 and the diagonal of the table
in Fig. 5.

(3) For equal masses (x ¼ 1) but unequal mass densities
(y > 1), we can see that now it is the second species
within which a condensate nucleates first, with its
time of emergence eventually scaling as ∼τ1;1=y2.
We verify this trend in the first column of the table
in Fig. 5.

(4) Finally, Eq. (10) reveals a dividing curve y ¼ x3. To
the left of this curve, the second component con-
denses faster, and to the right, the first component
condenses first (see left panel of Fig. 5). For a
constant y, to the left of y ¼ x3 the time of
condensation of the heavier species increases with
x, whereas that of the lighter one decreases,
eventually crossing at y ¼ x3. To the right of this
line, the condensation time of the lighter species
decreases but approaches a constant rapidly. We see
this qualitatively in some of our simulations, with

y ∼ x3 providing a rough guide for this change in
behavior.

In the above analysis of the simulations, we kept the
mass and density of the lighter component fixed, and we
varied the mass and density of the heavier component. One
can, of course, also keep the total density fixed (as we did in
the spin-s case). In this case, we can parametrize ρ1 ¼ Yρ̄
and ρ2 ¼ ð1 − YÞρ̄, modifying the dividing line between
which a component condenses as Y ¼ 1=ð1þ x3Þ. The rest
of the analysis is straightforward to carry out based on the
initial rate equation.

IV. SUMMARY

In this paper, we investigated kinetic relaxation in a
multicomponent Schrödinger-Poisson (SP) system and the
nucleation of solitons. Starting with an N-component SP
system, with each component potentially having a different
boson mass, we derived a Boltzmann equation in Fourier
space for the occupation number function for each com-
ponent (valid in the kinetic regime). Writing the Boltzmann
equation in the Fokker-Planck form where the contributions
from diffusion and friction terms become apparent, we
discussed how the occupation number function for the
condensing species evolves with time, with specific focus
on its growth at vanishing momenta, which is relevant for
the nucleation of condensates.
While we do not pursue numerical evolution of the

coupled set of the Boltzmann equation, we analyze its
basic structure at small momenta (assuming quadratic
functional dependence on the momenta), and we provide
a coupled set of ODEs for the evolution of the occupation

FIG. 5. Left panel: Analytical estimate for the timescale of
emergence in two component systems with different boson masses
and average mass densities, based on the initial kinetic relaxation
rate Eq. (10). To the right of the dotted line, the component with
boson mass m1 condenses first, whereas to the left of the dotted
line, the component with boson mass m2 condenses first. Times
are normalized by the equal-density, equal-boson-mass case. We
vary m2 and ρ̄2, keeping m1 and ρ̄1 fixed. Right table/panel:
Condensation times (normalized by τ1;1 for each simulation set)
extracted from numerical simulations. For each fρ̄2=ρ̄1; m2=m1g
point, we have averaged over five simulation runs with two
different values of ρ̄1. The qualitative trends with density and mass
ratios match the theoretical expectations.

FIG. 4. Two-component simulations with equal number density
in each component, but different boson masses. The boson mass
and mass density of the first component are held fixed. Top panel:
Two simulations are shown, each with a different ratio of boson
masses between the two components. The transparent version of
each color corresponds to the heavier component. In contrast with
the equal mass density case, the condensation time decreases with
increasing m2=m1. Bottom panel: The first two panels show final
projected densities in the lighter and heavier components,
whereas the third panel shows their radial profiles. Note that
the difference in initial mass densities between the two compo-
nents is still visible at large radii from the soliton’s center.
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number functions. This gives us a way to estimate the
timescales of soliton nucleation. To analyze our estimates,
we also performed full (3þ 1)-dimensional simulations of
the multicomponent SP system. For the purposes of
simulations, we considered initial conditions where the
initial field amplitudes (in Fourier space) had a Maxwell-
Boltzmann-like distribution with random phases. This was
meant to mimic conditions inside halos.
We have focused on two broad scenarios, for which we

analyze the results and comparisons with analytic esti-
mates below:
(1) For the case of a massive spin-s field, where the

number of components N ¼ 2sþ 1, each compo-
nent naturally has the same boson mass. Starting
with democratic initial conditions—i.e., the same
average mass density in each component and equal
velocity dispersion—we analytically estimate and
numerically verify that the timescale of condensa-
tion goes as τs ∼ Nτ0, where τ0 is the time of
condensation for the single-component case. Thus,
under these initial conditions, solitons emerge later
in higher-spin fields. Moreover, and as expected, we
found that the spin density accumulates in the cores
with spin magnitude per boson ∼Oð1Þ even when
starting with negligible initial spin magnitude/bo-
sons in the system.

(2) The second case we considered was a two-
component system with different (but comparable)
boson masses and average mass densities, and equal
velocity dispersion. In general, the mass density of
each component, and the corresponding boson mass,
can impact the condensation timescale. Our analysis
of the condensation rate based on initial conditions
allowed us to estimate the timescale for condensa-
tion in this general scenario and delineate regions in
parameter space where one component condenses
before the other. For a list of our results in this case,
see the summary of results in Sec. III B.

We expect that our analysis of condensation rates and
soliton formation in multicomponent SP systems in the
kinetic regime should be useful for understanding the
implications of such processes in cosmological and astro-
physical settings. The formation rates depend mainly on
“local” conditions such as the density and velocity
dispersion; however, these in turn can be affected by the
dark matter formation mechanism, including features in the
density power spectrum at small scales (see, for example,
Refs. [29–38]). Such features in the power spectrum are
generic in most postinflationary production scenarios of
light dark matter [39], and they are present in many
inflationary ones as well (see, for example, Ref. [30]).
We have focused on condensation via gravitational

interactions alone in this paper. A natural generalization
is to include nongravitational self-interactions, especially
in the case of a single spin-1 field which admits attractive

self-interactions in the Higgs phase, or a non-Abelian
spin-1 set of fields which also admit repulsive self-
interactions apart from the Higgs-induced attractive
ones [40,41]. Related work on kinetic Bose condensation
in a single scalar field was performed in Refs. [42–44].
In an upcoming publication, we will investigate the impact
of such self-interactions on kinetic condensation time-
scales in the multicomponent case.
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Note added.—We note that another paper [45] appeared on
the arXiv concurrently with this one, exploring the kinetic
condensation in nonrelativistic vector DM. Their numerical
results agree with our general results where there is overlap.
(For their uncorrelated case, see our Sec. III A.) For their
“correlated” case (which is equivalent to a lesser number of
uncorrelated/statistically independent components with
different average number densities), see the end of our
Sec. III B.

APPENDIX A: WAVE KINETIC EQUATION
FOR ARBITRARY 2 → 2 MULTICOMPONENT

WAVE INTERACTIONS

In this appendix, we derive the wave kinetic
equation for multicomponent Schrödinger (nonrelativis-
tic) systems with arbitrary two-body scattering inter-
actions. See Ref. [46] for a discussion for a single
species of waves. In our derivation, we work with a finite
box of volume V and hence a discrete set of k values, and
only toward the end of the calculation shall we take the
continuous limit. Using the Fourier decomposition
ψaðx; tÞ ¼ V−1=2 P

k e
−ik·xΨa

kðtÞ, the Schrödinger equa-
tion takes the following general form in k space:

iΨ̇a
k ¼ Ea

kΨa
k þ

1

V

X
p;q;l

δkþp−q−l

X
b;c;d

n
T a;b;c;d

k;p;q;lΨ
b�
p Ψc

qΨd
l

o
;

ðA1Þ

where Ea
k ¼ k2=2ma is the free wave dispersion relation

(for every species “a”). The quantity T a;b;c;d
k;p;q;l is the form

factor (of mass dimension −2) that governs the structure of
self-interactions, and has the following two properties:
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T a;b;c;d�
k;p;q;l ¼ T d;c;b;a

l;q;p;k;

T a;b;c;d
k;p;q;l ¼ T b;a;d;c

p;k;l;q: ðA2Þ

Both of these can be obtained by noting that the inter-
action Hamiltonian has the structure

Hint ¼
1

2V

X
a;b;c;d

X
k;p;q;l

δkþp−q−lT
a;b;c;d
k;p;q;lΨ

a�
k Ψb�

p Ψc
qΨd

l: ðA3Þ

The realness of the Hamiltonian enforces the first prop-
erty, whereas the symmetry under the interchange of both
incoming (a, b) and outgoing (c, d) species, carrying
momenta (k, p) and (q, l), respectively, enforces the
second property.
Breaking up the Fourier field Ψ into an occupation

number function f and a phase function θ—i.e., Ψa
k ¼ffiffiffiffiffi

fak
p

e−iθ
a
k—Eq. (A1) gives

ḟak ¼
2

V

X
p;q;l

δkþp−q−l

X
b;c;d

ℑ
h
T a;b;c;d

k;p;q;lA
a;b;c;d
k;p;q;l

i
;

fak θ̇
a
k ¼

1

V

X
p;q;l

δkþp−q−l

X
b;c;d

ℜ
h
T a;b;c;d

k;p;q;lA
a;b;c;d
k;p;q;l

i
þ fakE

a
k;

ðA4Þ

where

Aa;b;c;d
k;p;q;l ¼ Ψa�

k Ψb�
p Ψc

qΨd
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fakf

b
pfcqfdl

q
eiðθ

a
kþθbp−θcq−θdlÞ:

ðA5Þ

Note that fakðtÞ is nothing but the Fourier transform of the
two-point correlation function

R
dyψaðx; tÞ�ψaðxþ y; tÞ.

Now, we wish to obtain an equation for the occupation
number function alone. We will work in the small-
interaction regime, where the typical timescale of oscillation
of a single free “a”-type wave, τafree ¼ 2ma=k2, is very small
as compared to the timescales associated with self-
interactions. More formally, we impose jτafreedffa; θagnþ1=
dtnþ1j ≪ jdffa; θagn=dtnj consistently for all n ≥ 0, for all
species. Here, n would dictate the order in our perturbation
scheme.
Small interactions further dictate that since the free wave

dispersion relation holds at leading order, phases θak
randomize over time irrespectively of whether they were
initially correlated or not. Hence, for timescales much
longer than τfree, it is sufficient to work within the random
phase approximation regime, where phases are taken to be
uncorrelated. Representing integration over phases by bra-
kets, at leading (n ¼ 0) order we require heiðθakþθbp−θcq−θdlÞi ¼
δacδk;qδ

bdδp;l þ δadδk;lδ
bcδp;q to obtain hAa;b;c;d

k;p;q;li in

Eq. (A5), which ultimately fetches ḟa ¼ 0. Therefore, we
need to go to the next order (n ¼ 1) to capture effects due to
interactions. This requires setting the time derivative ofA in
Eq. (A5), after using the equations of motion [Eq. (A4)] and
then integrating out the phases, to zero. This exercise yields

hAa;b;c;d
k;p;q;li ¼

−1
ΔEþ iϵ

�
1

fak

1

V

X
k1;k2;k3

δkþk1−k2−k3

X
a1;a2;a3

n
T a;a1;a2;a3�

k;k1;k2;k3
hAa;a1;a2;a3�

k;k1;k2;k3
Aa;b;c;d

k;p;q;li
o

þ 1

fbp

1

V

X
k1;k2;k3

δpþk1−k2−k3

X
a1;a2;a3

n
T b;a1;a2;a3�

p;k1;k2;k3
hAb;a1;a2;a3�

p;k1;k2;k3
Aa;b;c;d

k;p;q;li
o

−
1

fcq

1

V

X
k1;k2;k3

δqþk1−k2−k3

X
a1;a2;a3

n
T c;a1;a2;a3

q;k1;k2;k3
hAc;a1;a2;a3

q;k1;k2;k3
Aa;b;c;d

k;p;q;li
o

−
1

fdl

1

V

X
k1;k2;k3

δlþk1−k2−k3

X
a1;a2;a3

n
T d;a1;a2;a3

l;k1;k2;k3
hAd;a1;a2;a3

l;k1;k2;k3
Aa;b;c;d

k;p;q;li
o�

; ðA6Þ

where ΔE ¼ Ea
k þ Eb

p − Ec
q − Ed

l, and we have added a
þiϵ to regulate the divergence when ΔE ¼ 0. The sign
can be obtained by requiring that free waves die out in
the infinite past. Another equivalent way is to consider
adiabatic turning on of the interactions as time goes
on. Using the definition in Eq. (A5) and the identity
(due to uncorrelated statistics owing to random phase
approximation)

heiðθbp−θcq−θdl−θ
a1
k1
þθ

a2
k2
þθ

a3
k3
Þi

¼ δb;cδp;qðδd;a3δl;k3δa1;a2δk1;k2 þ δl;k2δ
d;a2δk1;k3δ

a1;a3Þ
þ δb;dδp;lðδc;a2δq;k2δa1;a3δk1;k3 þ δq;k3δ

c;a3δk1;k2δ
a1;a2Þ

þ δb;a1δp;k1ðδc;a2δq;k2δd;a3δl;k3 þ δq;k3δ
c;a3δl;k2δ

d;a2Þ;
ðA7Þ

KINETIC RELAXATION AND BOSE-STAR FORMATION IN … PHYS. REV. D 108, 043535 (2023)

043535-9



we get

hAa;b;c;d
k;p;q;li ¼

−δkþp−q−l

VðΔEþ iϵÞ
h�

T a;b;c;d�
k;p;q;l þ T a;b;d;c�

k;p;l;q

�
fbpfcqfdl

þ
�
T b;a;c;d�

p;k;q;l þ T b;a;d;c�
p;k;l;q

�
fakf

c
qfdl

−
�
T c;d;b;a

q;l;p;k þ T c;d;a;b
q;l;k;p

�
fakf

b
pfdl

−
�
T d;c;b;a

l;q;p;k þ T d;c;a;b
l;q;k;p

�
fakf

b
pfcq

i
: ðA8Þ

We note that only the last line in the identity [Eq. (A7)] ends
up contributing [on account of the general properties in
Eq. (A2) of the form factor T ]. Extraction of the imaginary
part of the above expression [needed for ḟ as in Eq. (A4)]
may be most easily done by going to the continuous regime.
With

P
k → Vð2πÞ−3 R dk and δk;p → V−1ð2πÞ3δ3ðk − pÞ,

along with using ℑðxþ iϵÞ−1 ¼ −πδðxÞ to regulate the
divergence, we get9

ḟak ¼
X
b;c;d

Z
dp

ð2πÞ3 dσkaþpb→qcþld jva − ṽbj
h
ðfak þ fbpÞfcqfdl − ðfcq þ fdlÞfakfbp

i
; where

dσkaþpb→qcþld ¼
dq

ð2πÞ3
dl

ð2πÞ3
1

jva − ṽbj
T a;b;c;d

k;p;q;lðT a;b;c;d
k;p;q;l þ T a;b;d;c

k;p;l;qÞ�ð2πÞ4δð3Þðkþ p− q−lÞδðEa
k þEb

p −Ec
q −Ed

lÞ: ðA9Þ

Here, we have defined incoming “velocities” va ¼ k=ma
and ṽb ¼ p=mb, and also used Eq. (A2) to rewrite form
factors to give a compact structure in terms of the differ-
ential cross section. Equation (A9) is the master wave
kinetic equation for any multicomponent Schrödinger
system with two-body self-interactions dictated by the
form factor T [cf. Eq. (A3)]. For our purposes in this
paper, we only focus on gravitational interactions, for
which

T a;b;c;d
k;p;q;l ¼ −ð4πGÞmambδbcδdajk − lj−2: ðA10Þ

Using this in Eq. (A9) gives Eq. (2) presented in the
main text.

APPENDIX B: COLLISION INTEGRAL
IN THE EIKONAL APPROXIMATION

In order to get analytical insights, we approximate the
collision term in the Boltzmann equation, in an eikonal
approximation. Starting from the wave kinetic equation (2),
we first massage it into a more digestible form by working
with relative velocities. For this purpose, let us redefine
p
mb

¼ k
ma

− u and q
mb

¼ l
ma

− u0, where u and u0 are the
relative velocity vectors before and after the interaction
process ka þ pb → la þ qb. It also becomes apparent that
the magnitude of the relative velocity does not change
during the process (a general property of two-body elastic
collisions), in practice enforced by energy conservation.
Integration over l and ju0j yields

∂fava
∂t

¼
X
b

m3
b

Z
dΩn

4π

duu2

2π2
dσu

h
ðfava þ fbṽbÞfavaþw=ma

fbṽb−w=mb
− ðfavaþw=ma

þ fbṽb−w=mb
Þfavafbṽb

i
;

where dσ ¼ dΩn0

4π2
ð4πmambGÞ2
μ2u4jn̂0 − n̂j2

�
1

jn̂0 − n̂j2 þ
δab

jn̂0 þ n̂j2
�
: ðB1Þ

Here, va ¼ k=ma is the velocity vector for incoming wave
type a, ṽb ¼ va − un̂ is the velocity vector for incoming
wave type b, and n̂, n̂0 are unit vectors in the directions of u
and u0, respectively (with Ωn, Ωn0 being the associated
angular integral measures). Furthermore, with μ ¼
mamb=ðma þmbÞ as the reduced mass, w ¼ μuðn̂0 − n̂Þ
is the change in the momentum of species a on account of
interaction (before and after). Finally, for convenience, we
have rescaled the occupation number functions by the
respective masses (rendering them functions of velocities).

The above simplification is a reflection of the fact
that in any elastic collision, only the direction of the
relative velocity changes. To progress further, since the
differential cross section is dominated by small values of
jn̂0 − n̂j, we can expand the occupation number functions
containing w around 0. Physically, this means that the
change in relative velocities of two interacting waves is

9Here we also discard the redundant momentum conservation
Kronecker delta, δkþp−q−l.
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expected to be small for most of the interactions. The
expansion is

favaþw=ma
¼ fava þ

1

ma
w ·∇vaf

a
va

þ 1

2m2
a
wiwj∇via∇vja

fava þ � � � ;

fbṽb−w=mb
¼ fbṽb −

1

mb
w ·∇ṽbf

b
ṽb

þ 1

2m2
b

wiwj∇ṽib
∇ṽjb

fbṽb þ � � � : ðB2Þ

After some algebra, we get the following result [up to
quadratic order in w ¼ μuðn̂0 − n̂Þ]:

∂fava
∂t

¼
X
b

m3
b

Z
dΩn

4π

duu2

2π2
dσ u

×

�
1

ma
fbṽbf

b
ṽb
w ·∇vaf

a
va −

1

mb
favaf

a
vaw · ∇ṽbf

b
ṽb

−
1

mamb
ðfava þ fbṽbÞðw ·∇vaf

a
vaÞðw · ∇ṽbf

b
ṽb
Þ

þ 1

2m2
a
fbṽbf

b
ṽb
wiwj∇via∇vja

fava

þ 1

2m2
b

favaf
a
vaw

iwj∇ṽib
∇ṽjb

fbṽb

�
: ðB3Þ

Now, to evaluate the Ωn0 integral, we can easily
set n̂0− n̂¼ðsinθcosϕ;sinθsinϕ;cosθ−1Þ with dΩn0 ¼
dϕdðcos θÞ, and the θ integral is restricted to small values
(on account of our approximation jn̂0 − n̂j ≪ 1). Then,
with jn̂0 − n̂j ¼ 2 sinðθ=2Þ, the two integrals that are
relevant, are

1

2π2

Z
dðcos θÞ

Z
2π

0

dϕ
ðn̂0 − n̂Þi

16 sin4ðθ=2Þ

¼ −
n̂i
2π

log

�
sinðθmax=2Þ
sinðθmin=2Þ

�
;

1

2π2

Z
dðcos θÞ

Z
2π

0

dϕ
ðn̂0 − n̂Þiðn̂0 − n̂Þj

16sin4ðθ=2Þ

¼ ðδij − n̂in̂jÞ
2π

log

�
sinðθmax=2Þ
sinðθmin=2Þ

�
: ðB4Þ

Here in the second integral, we have discarded the terms
∼ cosðθmaxÞ − cosðθminÞ on account of our small-angle
approximation. The other two integrals, associated with
the interference term between the t and u channels
(∝ δabjn̂0 − n̂j−2jn̂0 þ n̂j−2), end up giving contributions
that go like ∼cosðθmaxÞ−cosðθminÞ and ∼ logðcosðθmin=2Þ=
cosðθmax=2ÞÞ. Under small angle approximation and large

log, these become negligible and hence we discard them
as well.
Informed by the target simulation system, we shall set

the above Coulomb logarithm to be equal to
logðmσLÞ≡ Λ, where L is the size of the system/
simulation box size, m is the lightest boson mass in the
problem, and σ is the velocity dispersion. With the above
integrals, we get the following wave-kinetic equation in the
eikonal approximation:

∂fava
∂t

¼
X
b

m3
b

Z
dΩn

4π

du
2π2

�ð4πmambGÞ2
μ

�
Λ
4π

×

�
−

1

ma
fbṽbf

b
ṽb
n̂ · ∇vaf

a
va þ

1

mb
favaf

a
va n̂ · ∇ṽbf

b
ṽb

−
μu

mamb
ðfava þ fbṽbÞðδij − n̂in̂jÞð∇viaf

a
vaÞð∇ṽjb

fbṽbÞ

þ μu
2m2

a
fbṽbf

b
ṽb
ðδij − n̂in̂jÞ∇via∇vja

fava

þ μu
2m2

b

favaf
a
vaðδij − n̂in̂jÞ∇ṽib

∇ṽjb
fbṽb

�
: ðB5Þ

Now, redefining the relative velocity back to u ¼ va − ṽb so
that the integration variable is ṽb, together with integration
by parts (along with dropping boundary terms), and finally
using the identities ∇xi ½ðjðx−yÞj2δij−ðxi−yiÞðxj−yjÞÞ=
jðx−yÞj3�¼−2ðxj−yjÞ=jðx−yÞj3 and ∇x · ½ðx − yÞ=
jðx − yÞj3� ¼ 4πδð3Þðx − yÞ, we get Eq. (3) presented in
the main text. Terms with two factors of fa and one factor of
fb combine to give the friction term in Eq. (3), while terms
with two factors of fb and one factor of fa combine to give
the diffusion term.
In summary, starting with the general Schrödinger equa-

tion for two-body interactions, we first derived the full wave-
kinetic Boltzmann equation (A9) under the random phase
approximation, which takes the form of Eq. (2) for gravi-
tational (or, in general, long-range) interaction. For such
long-range interactions, the dominant contribution to the
differential cross section comes from small-angle wave
scatterings. Suitably, then, under the eikonal/small-angle
approximation, we derived the Fokker-Planck equation (3).
In the process, we have highlighted the presence of an
interference term in the differential cross section, readily
interpreted as an interference between the t and u channels.
Although its contribution is negligible under the eikonal
approximation suited for long-range interactions, it may be
important for other (e.g., short-range) interactions—for
example, Ta;b;c;d

k;p;q;l ∝ λabmambδbcδda in Eq. (A9), for point-
like interactions.
Also note that the Fokker-Planck equation (3) is identical

to f ≫ 1 limit of the quantum Boltzmann/Landau equation
for bosons with long-range interactions (under the
small-angle approximation). For instance, see Ref. [47]
for the relevant Landau equation. However, for a general
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wave-mechanical system, this f ≫ 1 route via the quantum
version is not needed. In arriving at Eq. (2), we did not
assume f ≫ 1. This equation, therefore, applies generally
for wave systems that satisfy the Schrödinger-like equation,
and it entails the phenomenon of condensation. For in-
stance, even in our simulations, and well before the onset
of condensate formation, f is at most order unity (near
vanishing momenta). In this sense, Bose condensation is a
wave-mechanical effect.

APPENDIX C: NUMERICAL SIMULATIONS

For our numerical studies, we have performed more than
∼100 simulations in total of the multicomponent SP system
[Eq. (1)], both for spin s (scalar, vector, and tensor cases)
with equal boson mass and density for each component, as
well as the two-component scalar case with different
masses and densities.
To perform our simulations, we used two different codes,

one being the Python-based i-SPin integrator [48] and
another Matlab-based code developed by Philip Mocz
(modified to include multicomponent Schrödinger fields).
The data presented for the spin-s case in this paper were
generated using the Matlab code. However, we have per-
formed equivalent simulations using i-SPin and confirmed
the validity of our results. On the other hand, the data for
the two-component different mass case were mostly pro-
duced using i-SPin. We have confirmed that the spin and
particle number are conserved to machine precision in
these codes.
For initial conditions, we have worked with Gaussian

initial profiles for jΨa
kj for each species (with random

phases for each k mode). For the spin-s cases, there are
2sþ 1 complex numbers, ϵa, with

P
a ϵ

�
aϵa ¼ 1. Assuming

equipartition, we choose them using a radially symmetric
distribution function in R4sþ2 and normalize such that the
sum of their squares adds up to unity. That is, they lie on the
S4sþ1 hypersurface. On the other hand, for the two-scalar
case, we choose each of the respective phases for the two
components (for every k mode) separately.
To perform trustworthy simulations of the kinetic emer-

gence of gravitating condensates, we choose the parameters
dx (discretization length scale), dt (discretization time-
scale), L (total box size), and ρ̄ (average mass density)
appropriately such that the kinetic regime condition
τgr ≫ 1=mσ2, where τgr ¼ 2m3σ6=ðρ̄2ð4πGÞ2ΛÞ is the
condensation timescale, is satisfied, and the dynamics of
the different waves in the simulation box are captured
appropriately. Working with the Gaussian initial ansatz
[Eq. (7)], dictating typical velocities to be σ, we measure
length in units of 1=ðmσÞ, time in units of 1=ðmσ2Þ, and
mass density in units of ðm2σ4Þ=ð4πGÞ ffiffiffiffi

Λ
p

, where Λ ¼
logðmσLÞ is the Coulomb logarithm. For the spin-s case,
when all the components have the same mass, we set

dx¼ ϵ=ðmσÞ with ϵ¼ 0.24;

L¼ γ=ðmσÞ with γ ¼ 31;

dt¼ ð2π=3Þdx2m=η with η¼ 1.5;

ρ̄¼
ffiffiffi
δ

p
m2σ4=ð4πGΛ1=2Þ with δ¼ 3.6× 10−3: ðC1Þ

With the above parameters, we have performed ∼15
simulations each for all of the scalar, vector, and tensor
cases with statistically similar initial conditions. Every
simulation was run up until the threshold ρ̃ ∼ 1 was
reached. These simulations were typically carried out at
N3 ¼ 1283, but we also checked individual cases with
N3 ¼ 2563 and found no discernable change in the con-
densation time. Contrary to changing the resolution, we
also increased the box size to infer any IR effects. Upon
doubling the box, we saw faster emergence of a halo-like
region, due to the Jeans instability scale associated with
typical mass lumps in the box being smaller than the size of
the box. Upon further evolution, we observed the emer-
gence of solitons within such halos. This was also seen
in Ref. [3].
As mentioned in the main body of the text, we have

defined the condensation time as the time when the
maximum density vs time data points show a distinct
change in slope on a log-log plot. We also tried different
methods including the use of density thresholds, changes in
running averages, linear regression of the slopes, etc. These
all yield qualitatively similar results.
For the unequal-mass case, we have the same con-

ditions as above, appropriately modified to accommodate
shorter-length scales and faster timescales associated with
the heavier mass. Calling the smaller and heavier masses
m1 and m2, respectively, with m2 ¼ f1; 1.5; 2g ×m1, we
set

dx¼ ϵ=ðm2σÞ with ϵ¼ f0.12;0.19;0.25g;
L¼ γ=ðm1σÞ with γ ¼ 24;

dt¼ ð2π=3Þdx2m1=η with η¼ 2;

ρ̄¼
ffiffiffi
δ

p
m2

1σ
4=ð4πGΛ1=2Þ with δ ≤ 5.1× 10−3: ðC2Þ

Here, ρ̄ ¼ ρ̄1 is the average mass density of the first
component. We carried out a total of ∼50 simulations with
different mass and density ratios, different initial seeds,
and three different ρ̄1’s. Most of the simulations were
carried out at N3 ¼ 1923, with some smaller simulations at
1283. Again, no significant difference in condensation time
was seen.
In some of our simulations (especially the two-

component scalar case), we also kept track of the occu-
pation number functions fava of both components. For most
of the simulations, we worked with Gaussian initial
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conditions [cf. Eq. (7)], for which we find that for the
component within which a condensate nucleates, its
occupation number function develops increasing support
toward smaller “velocities” before eventually dropping at
the onset of condensation nucleation. This conforms
with our analytical understanding of the Boltzmann/
Fokker-Planck equation (3), as discussed in the main
text. To test the validity of our understanding that the

nucleation of condensate is characterized by small veloc-
ities, we also analyzed what happens with Dirac delta
initial distribution—i.e., fava ∝ δðjvaj − σÞ. Indeed, we find
that fa, for the species that forms the condensate, broadens
out from the initial delta distribution and starts to develop
increasing support over small velocities as time pro-
gresses. Eventually, the support drops, marking the
nucleation of a condensate.
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