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We study a semiclassical model of the mixmaster universe. We first derive the quantum model and then
introduce its semiclassical approximation. We employ a general integral quantization method that respects
the symmetries of the model given by the affine and the Weyl-Heisenberg groups, and can produce a
wide class of quantum models. The semiclassical approximation is based on the coherent states. The
semiclassical dynamics is complex and cannot be solved by analytical methods. We focus on a key
qualitative feature of the dynamics, namely, we investigate whether the primordial anisotropic universe can
undergo a spontaneous inflationary phase driven by the anisotropic energy combined with semiclassical
corrections. The answer to this question provides a useful perspective on the inflationary paradigm as well
as on alternative bouncing models.
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I. INTRODUCTION

Cosmic inflation generated by a single scalar field called
inflaton is the current paradigm for the theory of the origin
of primordial structure in the Universe [1]. Nevertheless, it
still faces some problems such as restrictions on the initial
condition, the fine-tuning of the inflationary potential or
the multiverse problem (see, e.g., [2] and also [3,4]).
Alternative models for the primordial universe are bounc-
ing cosmologies in which the generation of primordial
structure occurs during the contraction and the bounce that
stops contraction and initiates the present expansion.
Unfortunately, the simplest bouncing models tend to
generate blue-tilted spectrum [5–9] for primordial pertur-
bations contrary to the observational evidence. We note that
the both types of models share a very restrictive assumption
of a slightly perturbed isotropic and homogenous universe.
However, substantial amounts of inhomogeneities and
anisotropies could play an important role in the primordial
universe: on one hand, they could hinder the cosmic
inflation driven by inflaton while, on the other hand, they
themselves could spontaneously generate an accelerated
expansion phase. The latter possibility was discussed, e.g.,
in [10]. Unfortunately, a nonperturbative investigation into
the inhomogeneous primordial universe remains a very

challenging problem. Nevertheless, a less demanding
question, though still utterly important, of whether a
sufficient amount of anisotropy in the primordial universe
could spontaneously generate a cosmic inflation turns out
to be tractable. To our best knowledge, this question has
never been studied apart from a few related works that we
mention below.
In this work we study the anisotropic Bianchi Type IX

model of the universe, also known as the mixmaster
universe. We quantize the Bianchi IX model and introduce
a semiclassical framework in which its dynamics is more
accessible, though far from trivial. The employed quanti-
zation procedure encompasses many quantization ambi-
guities, which makes our study more general. It respects the
symmetries of the phase space of the Bianchi IX model and
produces a self-adjoint representation of relevant observ-
ables such as the Hamiltonian. The main outcome of the
employed quantization is the resolution of the big-bang
singularity via a bouncing dynamics as well as a modifi-
cation to the anisotropy potential. The semiclassical frame-
work is derived with the use of coherent states that also
respect the existing symmetries. The latter are given by the
product of the Weyl-Heisenberg and the affine group. The
semiclassical phase space is showed to exhibit a generic
bounce replacing the big-bang and big-crunch singularities.
This part of our paper is largely an improved and self-
contained presentation of our previous results that inter-
ested reader can also find in [11–15].
In the main part of the work we deal with the role of

anisotropy in the semiclassical dynamics close to the bounce.
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The classical dynamics of the mixmaster universe is widely
known to be very complex. The employed quantization
combined with our semiclassical framework produce a
model of similar, if not higher, complexity. Therefore, we
address our specific question about the mixmaster dynamics
in qualitative terms, which permits to avoid the mathematical
and numerical difficulties of finding the full solution. Our
previous result [14,15] suggests that as the universe emerges
from the bounce the anisotropy continues to be strongly
excited and forcing the isotropic geometry of the universe to
expand in an accelerated way and for a long period of time.
In other words, the quantum mixmaster universe seems to
spontaneously generate an inflationary phase. The use of the
words “suggests” and “seems” is fair as for deriving that
result we used a crude approximation to the anisotropy
potential, though the analyzed model was fully quantum.
In the present work we resolve this issue in a semiclassical
framework without making any approximation to the
anisotropy potential.
The significance of the investigated issue is clear. The

existence of a robust inflationary phase in a bouncing
anisotropic model could provide a serious challenge to the
hypothesis of inflaton and its paramount role in the
primordial evolution. On the other hand, the nonexistence
of such a phase in our model should in principle strengthen
the existing arguments in favor of inflaton as another
attempt at challenging its exceptional status fails.
The plan of our paper is as follows: In Sec. II we briefly

recall the Hamiltonian formalism for the Bianchi IX model.
In Sec. III we explain in a compact but self-contained
manner the covariant quantization method and the semi-
classical framework with application to the studied model. In
Sec. IV we discuss the main features of the semiclassical
dynamics and illustrate themwith a few numerical examples.
In Sec. V we obtain the answer to the title question. The
discussion of the result and conclusions are found in Sec. VI.

II. CLASSICAL MODEL

We first recall the Hamiltonian formulation of the Bianchi
type IX model. We assume the following line element:

ds2 ¼ −N 2dτ2 þ
X
i

a2i ðωiÞ2; ð1Þ

where dωi ¼ 1
2
nεjki ωj ∧ ωk, N ðτÞ and aiðτÞ are positive-

valued functions of time. The Hamiltonian constraint of this
spacetime model expressed in the Misner variables
ðΩ; pΩ; β;pÞ ∈ R6 reads [16]:

C ¼ N e−3Ω

24

�
V0

2κ

�

×

 �
2κ

V0

�
2

½−p2
Ω þ p2� þ 36n2e4Ω½VðβÞ − 1�

!
; ð2Þ

where β ≔ ðβþ; β−Þ ∈ R2 and p ≔ ðpþ; p−Þ ∈ R2 are
canonically conjugate variables, V0 ¼ 16π2=n3 is the
coordinate volume of the spatial section, κ ¼ 8πG is the
gravitational constant. The lapse functionN plays the role of
Lagrange multiplier. In what follows we set n ¼ 1, which
implies V0 ¼ 16π2. We also set the physical dimensions
in such a way that 2κ ¼ V0, which implies G ¼ π. The
gravitational Hamiltonian C resembles the Hamiltonian of a
particle in the 3D Minkowski spacetime moving in a time-
dependent potential. The Misner variables have the follow-
ing cosmological interpretation:

Ω¼ 1

3
lna1a2a3; βþ ¼ 1

6
ln
a1a2
a23

; β− ¼ 1

2
ffiffiffi
3

p ln
a1
a2

:

ð3Þ

Clearly, the variable Ω describes the isotropic part of
geometry, whereas β� describe the distortions to isotropy
and are called the anisotropic variables. The potential that
drives the motion of the geometry originates from the spatial
curvature, and reads

VðβÞ ¼ e4βþ

3

��
2 coshð2

ffiffiffi
3

p
β−Þ − e−6βþ

�
2
− 4

�
þ 1: ð4Þ

Following our previous papers [12–15,17,18] we
redefine the isotropic variables as follows:

q ¼ e
3
2
Ω; p ¼ 2

3
e−

3
2
ΩpΩ: ð5Þ

Note that q > 0 and thus the range of the isotropic
canonical variables is the open half-plane that admits the
affine group of symmetry transformations (to be introduced
later), an essential property used in our covariant quantiza-
tion of the model. The Hamiltonian constraint (2) is given
by a sum of the isotropic and anisotropic parts,

C ¼ −Ciso þ Cani;

Ciso ¼
N
24

�
9

4
p2 þ 36q

2
3

�
;

Cani ¼
N
24

�
p2

q2
þ 36q

2
3VðβÞ

�
: ð6Þ

The Hamilton equations for N ¼ 24 read:

q̇ ¼ 9

2
p; ṗ ¼ −2

p2

q3
þ 24q−

1
3½VðβÞ − 1�;

β̇� ¼ −2
p�
q2

; ṗ� ¼ 36q
2
3∂�VðβÞ; ð7Þ
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where ∂� ≔ ∂β� . The above system of dynamical equations
admits the following scaling symmetry:

t0 ¼ t

δ1=2
; q0 ¼ q

δ3=4
; p0 ¼ p

δ1=4
;

β0� ¼ β�; p0
� ¼ p�

δ
; ð8Þ

where δ > 0 parametrizes the one-parameter group of
scaling transformations acting on the variables of the
dynamical model. They are symmetry transformations
(labeled by δ) that leave the dynamical equations invariant,
that is, the primed variables defined in Eq. (8) satisfy the
same dynamical equations as the original variables in
Eq. (7). These transformations change some physical scale
associated with the model, which one may expect to be no
longer possible once some extra physical constant such as
the Planck constant is introduced. This is what actually
happens to our model as we later rigorously prove by
applying the same transformations to the system of semi-
classical dynamical equations and showing that in order for
the equations to remain unchanged the semiclassical
correction term must be rescaled as well, which in turn
leads to genuinely different semiclassical model (as differ-
ent size corrections correspond to different semiclassical
models). For more details, see Appendix B that is devoted
to the scaling analysis of the semiclassical system. We note
that these scalings can be viewed as transformations of
large-universe solutions into small-universe solutions (or,
vice versa), even into the ones that are smaller than the
Planck scale at their recollapse. Hence it is natural to expect
this symmetry to be broken at the quantum and semi-
classical levels that must involve a new scale coming from
the nonvanishing Planck constant.
It is useful to express the dynamically most relevant

geometric quantities in terms of the phase space variables:

H¼ p
8q

; Riso¼
3

2q
4
3

; Rani¼−
3VðβÞ
2q

4
3

; σ2¼ p2

48q4
; ð9Þ

whereH, Riso, Rani, and σ2 are respectively the Hubble rate,
the isotropic intrinsic curvature, the anisotropic intrinsic
curvature and the shear (squared). Upon rewriting in terms
of them the constraint equation Ciso þ Cani ¼ 0 we obtain
the generalized Friedmann equation:

H2 ¼ 1

6
ρr −

1

6
Riso þ

1

3
σ2 −

1

6
Rani; ð10Þ

where ρr ¼ Mr=q
8
3 (Mr is a constant) is the energy density

of radiation that is added to the model.1

III. QUANTUM MODEL AND ITS
SEMICLASSICAL PORTRAIT

In the present section we explain the covariant integral
quantization of the model. Our quantization method
encompasses the ambiguities present in the quantization
process and provides for them a convenient parametriza-
tion. This makes our analysis more robust. Moreover, our
quantization method is naturally supplemented with a
semiclassical framework that we shall use for the analysis
of the mixmaster dynamics.
As was stressed in the article [19] and in the review paper

[11], our (integral) quantization offers a wide choice of
possibilities in establishing the map from a classical model to
a quantum one for any physical quantity to be investigated.
Quantizations based on operator valued integrals can be
traced back to Weyl, Wigner, Klauder, Berezin, and many
others. They have been recently developed in quantum
cosmology studies with interesting results, like the regulari-
zation of singularities (see Refs. [11–15,20]). Naturally, from
the physicist’s viewpoint, the unique criterium of validity of
one or a class of choices made among so many possibilities
offered by the formalism is their agreement with measure-
ments or observational data. The advantage of our approach
with regard to other quantization procedures in use, like the
canonical one, lies in the fact that there is a minimal amount
of constraints imposed on the classical models, allowing for
a phase space with singular boundaries, and the method
yields a regularizing effect while keeping a full probabilistic
description in the subsequent semiclassical description,
contrary to the Weyl-Wigner integral quantization.

A. Covariant Weyl-Heisenberg integral quantization
of functions on a plane

We consider a four-dimensional phase space R4 ¼
R2 ×R2 made of two pairs of canonical variables,
ðβþ; pþÞ and ðβ−; p−Þ, and define the integral quantization
of a function fðr�Þ in the phase space r� ¼ ðβ�; p�Þ ∈ R2

(we omit the index � in the sequel) as the following:

fðrÞ ↦ Af ≔
Z
R2

fðrÞQðrÞ d
2r
2π

; ð11Þ

where the QðrÞ ∈ BðHÞ are unit-trace operators on H,
which resolve the identity

Z
R2

QðrÞ d
2r
2π

¼ 1H: ð12Þ

From the arbitrariness of the choice of the origin of the
phase space (in the absence of anisotropy potential), we
make use of this translational symmetry, denoted by
T ∶ðT ðr0ÞfÞðrÞ ¼ fðr − r0Þ, and demand

Uðr0ÞAfUðr0Þ† ¼ AT ðr0Þf; ð13Þ

1The physical dimensions involved read: ½κ� ¼ T2

ML, ½n� ¼ 1
L,

½V0� ¼ L3, ½ωi� ¼ L, ½N � ¼ 1, ½q� ¼ ½β�� ¼ 1, ½p� ¼ ½p�� ¼ ML2

T ,
½Mr� ¼ ML2

T2 , whereMr is the amount of the radiative energy in the
universe when V ¼ V0 (or, q ¼ 1).
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where r ↦ UðrÞ is a projective unitary irreducible
representation (UIR) of the group of translations in R2,
equivalently a nontrivial UIR of the three-dimensional
Weyl-Heisenberg group,

UðrÞ ¼ eiðpQ−βPÞ; ð14Þ

where Q and P are the usual essentially self-adjoint
position and momentum operators on the line with
½Q;P� ¼ iℏ1. It turns out that any admissible family of
operators QðrÞ has the form

QðrÞ ¼ UðrÞQ0UðrÞ†; ð15Þ

where Q0 is a unit-trace operator. Thus, the choice of a
quantization procedure is reduced to the choice of a
single operator, Q0. Equivalently, one may use the weight
function, ΠðrÞ, which is defined via the Weyl-Heisenberg
transform of Q0,

ΠðrÞ ≔ TrðUð−rÞQ0Þ ⇒ Q0 ¼
Z
R2

UðrÞΠðrÞ d
2r
2π

; ð16Þ

to determine the quantization procedure.2 It is easy to see
that TrðQ0Þ ¼ Πð0Þ and hence we must assume Πð0Þ ¼ 1.
The weight Πðr�Þ defines the extent of coarse graining
of the phase space r� ¼ ðβ�; p�Þ ∈ R2. Notice that the
standard canonical quantization (the Weyl quantization) is
obtained for ΠðrÞ ¼ 1, or equivalently forQ0 ¼ 2P, where
P is the parity operator defined as PUðrÞP ¼ Uð−rÞ.

B. Semiclassical portraits

Given a quantum operator Af corresponding to the
observable f, we define the so-called quantum phase space
portrait of the operator Af by making use of the same
family of bounded unit-trace operators that we use for
quantization,

f̌ðrÞ ¼ TrðQðrÞAfÞ ¼
Z
R2

fðr0ÞTrðQðrÞQðr0ÞÞ d
2r0

2π
:

ð17Þ

Actually, nothing save the simplicity prevents us from
using another family of bounded unit-trace operators, say
RðrÞ, so that a more general quantum phase space portrait
of Af can be obtained,

f̌ðrÞ¼TrðRðrÞAfÞ¼
Z
R2

fðr0ÞTrðRðrÞQðr0ÞÞd
2r0

2π
: ð18Þ

More tractable formulas are obtained when the weight
function ΠðrÞ instead of the family of operators QðrÞ (or,
the defining Q0) is used. Let us define the symplectic
Fourier transform of fðrÞ,

F ½f�ðrÞ ¼
Z
R2

e−ir∧r0fðr0Þ d
2r0

2π
; ð19Þ

(where r ∧ r0 ¼ βp0 − pβ0). Now, it can be shown that

Af ¼
Z
R2

UðrÞF ½f�ð−rÞΠðrÞ d
2r
2π

ð20Þ

and

f̌ðrÞ ¼
Z
R2

F ½Π� � F ½Π̃�ðr0 − rÞfðr0Þ d
2r0

4π2
; ð21Þ

where Π̃ðrÞ ¼ Πð−rÞ. We shall study the mixmaster model
at the semiclassical level, for which we need only the last
formula, with the explicit knowledge of the operator Af

becoming in fact unnecessary.

C. Semiclassical portrait of the anisotropy

Let us assume the following Gaussian weight function,

Πðβ; pÞ ¼ e−
β2

σ2e−
p2

ω2 ; ð22Þ

where Πðβ; pÞ ¼ Πð−β;−pÞ and Πð0; 0Þ ¼ 1. The width
parameters σ and ω encode our degree of confidence
in dealing with a given point in the phase space. The
symplectic Fourier transform of the weight reads,

F ðΠÞðβ; pÞ ¼ σω

2
e−

1
4
ðω2β2þσ2p2Þ; ð23Þ

and their convolution reads

F ðΠÞ � F ðΠÞðβ; pÞ ¼ πσω

2
e−

1
8
ðω2β2þσ2p2Þ: ð24Þ

Hence, the lower symbol formula takes the form of
regularizing Gaussian convolutions:

f̌ðβ; pÞ ¼
Z
R2

πσω

2
e−

1
8
ðω2ðβ0−βÞ2þðp0−pÞ2σ2Þfðβ0; p0Þ dβ

0dp0

4π2
:

ð25Þ

With this formula we easily find

ð̌e−αβÞ ¼ e
4α2

ω2 e−αβ; ð̌p2Þ ¼ p2 þ 8

σ2
; ð26Þ2We used the formula TrðUðrÞÞ ¼ 2πδðrÞ.
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and the lower symbol of the anisotropy potential,

V̌ðβ�Þ ¼
1

3

�
Dð4

ffiffiffi
3

p
; 4Þe4

ffiffi
3

p
β−þ4βþ þDð4

ffiffiffi
3

p
; 4Þe−4

ffiffi
3

p
β−þ4βþ þDð0; 8Þe−8βþ

�
−
2

3

�
Dð2

ffiffiffi
3

p
; 2Þe−2

ffiffi
3

p
β−−2βþ þDð2

ffiffiffi
3

p
; 2Þe2

ffiffi
3

p
β−−2βþ þDð0; 4Þe4βþ

�
þ 1; ð27Þ

where the Dðx; yÞ ¼ e
4x2

ω2−e
4y2

ω2þ are regularization factors
issued from our choice of the Gaussian weights.
The classical and semiclassical anisotropy potentials are
plotted in Fig. 1.

D. Quantization of the isotropy

In analogy to the Weyl-Heisenberg group for the
full plane, we adopt the so-called covariant affine group
quantization (see for instance [21] or a pedagogical
presentation [22]) of functions of the isotropic variables
ðq; pÞ belonging to the half-plane R�þ ×R. This quantiza-
tion is consistent with the symmetry of the half-plane
corresponding to the arbitrariness of the choice of the
origin, namely 1 for the scaling variable q and 0 for its
conjugate momentum p. The respective phase space trans-
formations form the affine group AffþðRÞ of the real line,
that is,

ðq; pÞ · ðq0; p0Þ ¼
�
qq0;

p0

q
þ p

�
∈ R�þ ×R: ð28Þ

This group possesses two nonequivalent unitary irreducible
representations (UIR) besides the trivial one. Both are
square-integrable. One of them can be realized in the

Hilbert space H ¼ L2ðR�þ; dxÞ. This UIR of AffþðRÞ acts
on H as

Uðq; pÞψðxÞ ¼ eipx
1ffiffiffi
q

p ψðx=qÞ: ð29Þ

For a normalized vector ψ0 ∈ H, we introduce a continuous
family of unit vectors as follows:

ðq; pÞ ↦ hxjq; pi ≔ eipx
1ffiffiffi
q

p ψ0ðx=qÞ; ð30Þ

where ψ0 is called the fiducial vector and the vectors jq; pi
are called the affine coherent states (ACS). Let us define
the constants cα as

cα ≔
Z

∞

0

jψ0ðxÞj2
dx
xαþ2

: ð31Þ

The resolution of unity by ACS is straightforward:

Z
R�

þ×R

dqdp
2πc−1

jq; pihq; pj ¼ 1H; ð32Þ

FIG. 1. The classical and semiclassical (τ� ¼ 5 ¼ σ�) anisotropy potential. The classical potential comprises three narrowing
channels with their bottoms asymptotically (βþ → ∞ or βþ → −∞) approaching the zero value. In the semiclassical case the three
channels become confined due to the semiclassical corrections as their bottoms raise indefinitely for βþ → ∞ or βþ → −∞.
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provided that c−1 < ∞. Thanks to the above property
of ACS, we define the quantization of the half-plane
functions as:

fðq; pÞ ↦ Af ¼
Z
R�

þ×R

dqdp
2πc−1

fðq; pÞjq; pihq; pj: ð33Þ

By construction, the quantization map is covariant with
respect to the affine transformations:

Uðq0; p0ÞAfU†ðq0; p0Þ ¼ AUðq0;p0Þf; ð34Þ

where ½Uðq0; p0Þf�ðq; pÞ ¼ fððq0; p0Þ−1 · ðq; pÞÞ.

E. Semiclassical portrait of the isotropy

The semiclassical portrait of a quantum operator Af is
given by:

f̌ðq; pÞ ¼ hq; pjAfjq; pi; ð35Þ

where the affine coherent states jq; pi are built with a
fiducial vector that is in general different from the one used
for quantization (33).
Combining the affine coherent state quantization with

the semiclassical portrait of quantum operators yields the
lower symbol of the phase space function f:

f̌ðq; pÞ ¼
Z
R�

þ×R

dq0dp0

2πc−1
jhq; pjq0; p0ij2fðq0; p0Þ; ð36Þ

which is the average of the function fðq; pÞ with respect to
the probability distribution ðq0; p0Þ ↦ 1

2πc−1
jhq; pjq0; p0ij2.

As a fiducial vector we choose a family of unit vectors
depending on the parameters ξ and ν:

ψ0ðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2xK0ðνÞ
p e−

ν
4
ðξxþ 1

ξxÞ; ð37Þ

where K0 is the modified Bessel function of the second
kind. In order to simplify the calculations and ensure the
commutation rule ½Aq; Ap� ¼ 1 we fix ξ ¼ K1ðνÞ=K2ðνÞ
(later for the sake of discussion of the classical limit we
will restore the arbitrary ξ). We find the following lower
symbols:

ð̌p2Þ ¼ p2 þ KðνÞ
q2

; KðνÞ ¼
K1ðνÞ2

�
1þ ν K0ðνÞ

K1ðνÞ
�

4K0ðνÞK2ðνÞ
;

ð̌qαÞ ¼ QαðνÞqα; QαðνÞ ¼
KαðνÞKαþ1ðνÞ
K0ðνÞK1ðνÞ

: ð38Þ

F. Semiclassical portrait of the total constraint

The semiclassical portrait of the Hamiltonian
constraint (6) reads (for N ¼ 24) as

Č ¼ 9

4

�
p2 þ KðνÞ

q2

�
−Q−2ðνÞ

p2 þP�
8
σ2�

q2

− 36Q2
3
ðνÞq2

3½V̌ðβÞ − 1�: ð39Þ

The quantum potential for the isotropic geometry ∝ q−2 is
repulsive if and only if 9

4
KðνÞ > Q−2ðνÞ

P
�

8
σ2�
, which we

assume to hold in sequel. For convenience, we introduce

Keffðν; σ�Þ ≔ KðνÞ − 32

9

X
�

Q−2ðνÞ
σ2�

> 0: ð40Þ

We derive from the semiclassical Hamiltonian constraint (39)
the following Hamilton equations:

q̇ ¼ 9

2
p; ð41Þ

ṗ ¼ 9

2

Keff

q3
− 2Q−2

p2

q3
þ 24Q2

3
q−

1
3½V̌ðβÞ − 1�; ð42Þ

β̇� ¼ −2Q−2
p�
q2

; ð43Þ

ṗ� ¼ 36Q2
3
q

2
3∂�V̌ðβÞ; ð44Þ

where

Q−2 ¼ Q−2ðνÞ ¼
K2ðνÞ
K0ðνÞ

;

Q2
3
¼ Q2

3
ðνÞ ¼

K2
3
ðνÞK5

3
ðνÞ

K0ðνÞK1ðνÞ
: ð45Þ

We have thus obtained a semiclassical dynamical system in
the full phase space R�þ ×R ×R4 to be now examined. It
involves six positive otherwise arbitrary quantization param-
eters: ν; σ�;ω� (degree of confidence…) and defines
dynamical trajectories as a function of five initial conditions.
We find the semiclassical model to be invariant under the
following scalings:

t0 ¼ t

δ1=2
; q0 ¼ q

δ3=4
; p0 ¼ p

δ1=4
;

β0� ¼ β�; p0
� ¼ p�

δ
; K0

eff ¼
Keff

δ2
: ð46Þ

Wenote that unlike the classical scale transformations (8), the
above scalings involve Keff , a nondynamical parameter that
controls the quantum correction. This was to be expected
as the quantization introduces a new scale into the system,
i.e., the Planck scale, and thereby destroying the exact scaling
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symmetry present in the classical model. Nonetheless, if a
solution to the semiclassical model with a fixed value ofKeff
is known, then respective solutions to the model for all the
other values of Keff are also known. For a more detailed
discussion of this scaling symmetry, see Appendix B.
It is straightforward to find the semiclassical versions of

the geometric quantities (9),

Řiso ¼
3Q2

3

2q
4
3

; Řani ¼ −
3Q2

3
V̌ðβÞ
2q

4
3

;

σ̌2 ¼ Q−2p2

48q4
; ŘQ ¼ 3Keff

32q4
; ð47Þ

as well as the semiclassical version of the generalized
Friedmann equation (10):

H2 ¼ 1

6
ρr −

1

6
Řiso þ

1

3
σ̌2 −

1

6
Řani −

1

6
ŘQ; ð48Þ

We interpret the difference between the obtained semi-
classical and the initial classical expressions to be the effect
of quantum dispersion imposed on the geometry of the
universe. The largest discrepancy between the classical and
the semiclassical model is given by the repulsive potential
Keff
q2 (or, equivalently, the quantum curvature ŘQ). Another

strong quantum feature is given by modifications to the
anisotropy potential V̌ðβÞ. The remaining quantum features
are introduced into the Hamilton equations (41)–(44)
through the constants Q−2 and Q2

3
. In particular, in

Eq. (43), the constant Q−2 alters the classical relation
between the time derivative of the intrinsic three-metric β�
and the extrinsic curvature p�, which must hold in any 4-d
spacetime. Therefore, with Q−2 ≠ 1, a 4-d spacetime no
longer exists.3 This comes from the fact that the momenta

ðp; p�Þ do not commute with the three-geometry variables
ðq; β�Þ. The probability distribution smearing the isotropic
4-geometry [introduced in Eq. (36)] reads (after restoring
the arbitrary parameter ξ)

1

2πc−1

									
K0

�
ν qþq0

2
ffiffiffiffiffi
qq0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4iqq0ðp0−pÞ

νξðqþq0Þ
q �
K0ðνÞ

									

2

; ð49Þ

where the parameters ν and ξ control the quantum
dispersion induced by the affine coherent states. For
ξ ¼ 1=ν and ν → ∞, the regularizing probability distribu-
tion converges to the Dirac delta δðq − q0Þδðp − p0Þ (in
distributional sense) and all the physical quantities obtained
from (36) remain classical and satisfying the classical
relations. However, the nonvanishing quantum uncertainty
between q and p requires ν < ∞, which produces a
smeared geometry. In order to visualize the quantization
process the probability distribution for the state ðq0; p0Þ ¼
ð1; 0Þ for three different values of ν is plotted in Fig. 2.
Analogously, the probability distribution associated with

the lower symbol formula for anisotropic geometry (25) is a
Gaussian with the arbitrary parameters σ� and ω�. Taking
σ� → ∞ and ω� → ∞ removes the quantum uncertainty
between β� and p�, the Gaussian probability distribution
converges to the Dirac delta δðβ� − β0�Þδðp� − p0

�Þ and all
the physical quantities obtained from (25) retain their
classical properties.

IV. SEMICLASSICAL DYNAMICS

The anisotropy energy fuels the isotropic contraction and
expansion. Moreover, the expansion and contraction can be
fueled by various matter contributions. For simplicity, we
keep only the radiation term in the Hamiltonian constraint,
− Mr

q2=3
, where Mr is a positive constant.

FIG. 2. The smearing probability distribution producing quantum corrections for ν ¼ 30, 150, 660 (from left to right). For small values
of ν our quantization procedure yields a very quantum system with large quantum uncertainties. On the other hand, for ν → ∞ our
quantization procedure reproduces the exact classical system with vanishing uncertainties.

3However, the requirement for the existence of the classical
limit in this semiclassical model could be satisfied by renorm-
alization of β� by the constant Q−2.
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A. Isotropic dynamics

Let us start by assuming perfectly spherical spatial
sections with β� ¼ 0 ¼ p�. Then, the isotropic part of
the constraint is the only nontrivially vanishing,

Čiso ¼
9

4

�
p2 þ Keff

q2

�
þ 36Q2

3
q

2
3 −

Mr

q2=3
: ð50Þ

In this constraint equation, the first term is the expansion
energy, the second is the repulsive potential, the third
represents the positive intrinsic curvature and the last one is
the (minus) energy of the fluid. With the shrinking volume
(i.e., as q decreases) the curvature term becomes negligible,
while the repulsive potential grows until it perfectly

balances the matter energy leading to the vanishing of
the expansion energy (p ¼ 0). At this point the universe’s
dynamics reverses and its volume starts to reexpand. This is
a quantum bounce. On the other hand, with the growing
volume (i.e., as q increases) the repulsive term becomes
negligible, while the curvature term grows until it perfectly
balances the fluid energy leading to the vanishing of the
expansion energy (p ¼ 0). At this point the universe’s
dynamics reverses again and its volume starts to contract.
This is a classical recollapse. See the right panel of Fig. 3.
For convenience, we introduce L ≔ 36Q2

3
. Making use

of the Eq. (41) and the vanishing of the constraint (50) we
express the conformal time as a function of q,

Z
dη ¼

Z
q−

2
3dt ¼

Z
dq

q
2
3q̇

¼ 1

4
ffiffiffiffi
L

p ln

 
2
ffiffiffiffi
L

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lq

8
3 þMrq

4
3 −

9

4
Keff

r
þ 2Lq

4
3 þMr

!
: ð51Þ

The above relation is easily inverted if we neglect the
intrinsic curvature, L ¼ 0, yielding the approximate solution

qðηÞ ¼
�
4Mrη

2 þ 9

4

Keff

Mr

�3
4

: ð52Þ

where the above approximation breaks down for large
universes with non-negligible isotropic curvature.
The quantum bounce and the classical re-collapse both

occur when p ¼ 0, where the Hamiltonian constraint yields

9

4
Keff þ Lq

8
3 −Mrq

4
3 ¼ 0: ð53Þ

If we assume that at the quantum bounce the intrinsic
curvature is negligible, i.e. L ¼ 0 as before, and at the
classical re-collapse the quantum repulsion is negligible, i.e.
Kiso ¼ 0, then we find the minimal and maximal q to read,

qmin ¼
�
9Keff

4Mr

�3
4

; qmax ¼
�
Mr

L

�3
4

: ð54Þ

Furthermore, the maximum p ¼ pmax occurs for q such that

∂Čiso

∂q
∝
9

2
Keff −

2

3
Mrq

4
3 −

2

3
Lq

8
3 ¼ 0; ð55Þ

FIG. 3. The isotropic classical-singular (on the left) and corresponding quantum-bouncing (on the right) solutions for various values of
Mr (ν ¼ 10, σ� ¼ 5 ¼ ω�).
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which after neglecting L gives q ¼ ð27Þ14qmin, at which

pmax ¼
4

3ð27Þ14 ffiffiffi
2

p M3=4
r

K1=4
eff

: ð56Þ

A few singular and corresponding bouncing trajectories
are plotted in Fig. 3. We note that in the isotropic case the
phase of accelerated expansion is very brief and clearly
insufficient from the point of view of the process of
structure formation at a substantial range of cosmological
scales. Indeed, combing the minimal value qmin (54)
with the value of q at which the acceleration terminates
(defined in Eq. (60) to be discussed later) we find that
ln aend

amin
¼ ln

ffiffiffi
2

p
.

B. Anisotropic dynamics

The anisotropy makes the dynamics of the universe too
complex to be solved analytically. In order to reduce the
complexity of the system it is common to employ the
adiabatic approximation [12,13]. In this approximation
the complicated, oscillatory motions of the anisotropic
variables are replaced with their energy averaged over
many oscillations under the assumption that the value of
the isotropic variable q does not change significantly
during this time. Moreover, the anisotropy potential that
is responsible for the oscillations also requires an approxi-
mation such as the harmonic approximation or the steep-
wall approximation. Unfortunately, these approximations

have a rather restricted regime of applicability. Therefore,
in the present work we choose to combine numerical
computations with some analytical estimates.
In Fig. 4 we present numerically integrated two cycles

of a generic semiclassical mixmaster solution. As in the
isotropic case, the anisotropic universe avoids the singu-
larity through bounces. The quantum potential diminishes
rapidly after the bounces and the anisotropy takes over the
dynamics. Finally, the matter density exceeds the aniso-
tropic energy density, and the standard Friedmann cosmol-
ogy begins. Note that the two cycles (one given by the solid
curve and the other by the dashed curve) are very different.
The first one follows closely the isotropic solution and
the β�’s remian very small, whereas in the next cycle
anisotropy develops as the universe contracts and the β�’s
start oscillating inside one of the channels. It results in an
asymmetric bounce, leading to the destruction of the
cosmic periodicity with each new cosmic cycle being
different from the previous one. One typically observes
a few oscillations in the expansion rate right after the
bounce. Moreover, a high rate of postbounce expansion
can last for an extended period of time as seen from the
behavior of the dynamical variable p. In [15] a similar
behavior was observed and explained by the growth of the
anisotropic energy triggered by the bounce. By the virtue of
the Hamiltonian constraint, this newly produced aniso-
tropic energy has to be balanced by the growth of the
isotropic energy. During the bounces, the entire isotropic
energy takes the form of the repulsive potential. As the
universe starts to reexpand, the entire isotropic energy is

FIG. 4. Two cycles in the evolution of an anisotropic universe plotted in the ðq; pÞ- and ðβ−; βþÞ-planes. The first and the second cycle
are given by solid and dashed curves, respectively. Despite the fact that the first one is very isotropic and resembles the solutions of
Fig. 3, the second one accumulates anisotropy on the approach to the bounce that now happens at a smaller volume. The dynamics
around the second bounce is very asymmetric in the ðq; pÞ-plane. The trajectory in the ðβ−; βþÞ-plane starts around the minimum where
it remains for the first cycle. Then during the second cycle it moves to larger values of β� where it bounces off the potential walls
producing oscillations. We set the following initial data: q ¼ 2.0, p ¼ −52.6579, βþ ¼ −0.01, β− ¼ 0.005, pþ ¼ 0.0, p− ¼ 0.0. We set
the parameters as follows: ω� ¼ 50, σ� ¼ 100, ν ¼ 37.5 (Keff ¼ 9.255), R ¼ 104.
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transferred back to isotropic expansion. The observed
dynamics points to the possibility for a phase of sustained
accelerated postbounce expansion lasting for some e-folds.
We shall investigate this issue in the following section.
Let us show now that a bounce exists in the generic

semiclassical dynamics of the mixmaster universe. We note
that the bounce must occur in the following subset of the
constrained surface:

p ¼ 0; ṗ ¼ 6Keff

q3
−
8Q−2

3

p2

q3
> 0: ð57Þ

The above set of conditions defines a 4-dimensional sub-
space in the 5-dimensional constraint surface. A generic
trajectory must pass through that region or even cross it
infinitely many times. To see that in fact any trajectory
should bounce let us follow the dynamics of p along a
typical trajectory in the constraint surface4:

ṗ ¼
9
2
Keff

q3
−
2Q−2

q3



p2 − 12

Q2
3

Q−2
q

8
3½V̌ðβÞ − 1�

�
: ð58Þ

We note that the first and the third terms are positive while
the second one negative, and their absolute values grow as
the universe contracts with q → 0 and p < 0. As the
anisotropic variables oscillate inside the potential walls
the anisotropy energy (or, its part) is being transferred back
and forth between the second (the kinetic) and the third (the
potential) term. Initially, the sum of these two terms is
negative and the first term is negligible as the universe is
contracting more and more rapidly (ṗ < 0). However,
because of the oscillatory energy transfer, the absolute
value of the two terms must grow slower than q−3. Hence,
down the line at some value of q > 0 their sum must
become dominated by the first term that is positive and
grows as q−3. As a result, for sufficiently small value of q
(provided that the bounce has not occurred before) the
dynamics is sufficiently well approximated by

q̇ ¼ 9

2
p; ṗ ≈

9
2
Keff

q3
; ð59Þ

leading to essentially the isotropic dynamics that we
showed previously to be nonsingular. Hence, the bounce
must eventually happen for any trajectory.

V. ACCELERATED EXPANSION

The quantum dynamics of the mixmaster universe is very
rich and could, for instance, exhibit a prolonged phase of
accelerated expansion during which the local structure
inside the mixmaster universe is amplified in the same

way as it happens for inflationary phase driven by a
scalar field.

A. General remarks

The accelerated expansion takes place when ä > 0, or

d
dη

H > 0; ð60Þ

where H ¼ á=a ¼ ȧ is the conformal Hubble parameter.5

When the conformal Hubble horizon H−1 is shrinking,
perturbation modes of fixed co-moving wavelengths leave
the horizon and become amplified. It is often assumed that
the span of wavelengths that exit the horizon during the
inflationary phase is such that kfin=kini ≳ 108. The growth
in the number of wavelengths that cross the horizon reads:

dk
kini

¼ dH
Hini

¼ 1

Hini

dH
dN

dN; ð61Þ

where we have expressed the growth of the superhorizon
scales as a function of the number of e-folds: N ¼
lnða=ainiÞ. The range of scales that leave the horizon
during a finite number of e-folds ΔN can be estimated
from the initial state of the system via the Taylor expansion:

kfin
kini

¼ 1

H
dH
dN

				
ini
ΔN þ 1

2

d
dN

�
1

H
dH
dN

�				
ini
ðΔNÞ2

þOðΔN2Þ: ð62Þ

If we assume that the second- (and any higher-) order
term is much smaller than the first one, i.e.,

j ðΔNÞ2
2

ðlnHÞ;NN jini ≪ kfin=kini, then for most of the infla-
tionary phase the Hubble horizon remains more or less
constant and the phase lasts for ΔN ¼ kfin

kini
ð 1H dH

dNÞ−1jini of
e-folds.

B. Proper analysis

If an inflationary phase occurs in the semiclassical
mixmaster model it must be driven by either the quantum
curvature 1

6
ŘQ or the anisotropy energy 1

3
σ̌2 − 1

6
Řani, or a

combination of both. We therefore neglect the radiation
and the isotropic curvature and re-write the generalized
Friedmann Eq. (48) as

H2 ¼ 1

6
ρ̌ani −

1

6
ŘQ; ð63Þ

where we introduced the notion of the anisotropy energy
density 1

6
ρ̌ani ¼ 1

3
σ̌2 − 1

6
Řani.

4The difference between ṗ in Eqs. (57) and (58) is vanishing at
the constraint surface.

5Differentiation with respect to cosmic and conformal time are
denoted by “̇ ” and “́ ”, respectively.
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We use the above equation to derive the Raychaudhuri
equation with the expansion parameter replaced by the
conformal Hubble parameter. Let us assume that at
each moment of time the right-hand side terms are well-
approximated by power functions in the scale factor,

1

6
ρ̌ani ¼

λani
ananiþ2

;
1

6
ŘQ ¼ λQ

a6
; ð64Þ

(λani > 0, λQ > 0), i.e., their logarithms are approximately
linear in the number of e-folds, N ∝ ln a. Note that the
anisotropy effectively acts as a barotropic fluid with
p
ρ ¼ wani ¼ ðnani − 1Þ=3. We find

d
dη

H ¼ a
2

d
da

H2 ¼ −
naniλani
2anani

þ 2λQ
a4

: ð65Þ

In order for the accelerated expansion to occur the con-
dition [2] must hold, that is,

0 < λQ −
naniλani
4anani−4

; ð66Þ

which must be consistent with the Friedmann
equation (63),

0 <
λani

anani−4
− λQ: ð67Þ

Let us first assume that λQ ¼ 0, that is, the influence of
the quantum curvature on the expansion is negligible. It is
possible only if nani < 0. This behavior coincides with
the barotropic fluid behavior with wani < − 1

3
. We will see

below that this behavior of the anisotropy energy density is
impossible neither in the classical nor in the semiclass-
ical model.
Since we neglect the radiation it is impossible to neglect

anisotropy by putting λani ¼ 0, i.e., it has to be present in
the expanding universe if the condition (67) is to hold.
The remaining possibility is that both the anisotropy and

the quantum curvature are important in the expanding
universe. In this case the above conditions are combined
into (nani > 0):

naniλQ <
naniλani
anani−4

< 4λQ; ð68Þ

from which we see immediately that 0 < nani < 4.
Upon dividing the above inequality by naniλQ and fixing
λani
λQ

eNið4−naniÞ ¼ 1, λani
λQ

eNfð4−naniÞ ¼ 4
nani

, we obtain

eΔNð4−naniÞ ¼ 4

nani
; ð69Þ

where ΔN ¼ Nf − Ni. One may verify that there are
two solutions to the above equation for nani if ΔN > 1

4
.

Since the accelerated expansion must occur for around
ΔN ¼ 20 e-folds, nani can be very small and close to
nani ¼ 4e−4ΔN . This behavior coincides with the barotropic
fluid behavior for the barotropic parameter wani ≈ − 1

3
,

which, as we show below, cannot last sufficiently long
to yield a robust inflationary phase. Another solution is
nani ¼ 4, which lies in the closure of the admissible values
but does not belong to them. Hence, we exclude this
solution.
Note that we may also interpret Eq. (69) as yielding the

number of e-folds for a given value of nani. Since nani < 4
we conclude that the lower bound for the number of e-folds
readsΔN ¼ 0.25. This lower bound implies that anisotropy
can in fact reduce the duration of the inflationary phase
with respect to the isotropic radiation-filled universe, for
which the number of e-folds ΔN ¼ ln

ffiffiffi
2

p
≈ 0.347 ≪ 20 is

clearly above the found lower bound (see Sec. IVA),
though still much too small for the inflationary scenario
to be relevant in that case.
Let us now inspect the equations of motion for anisotropy.

We use the analogy between scalar fields in isotropic
universe and the anisotropy variables. Upon dividing the
anisotropic part of the semiclassical Hamiltonian (39) by
−36Q2

3
q

2
3 (or, by setting 1=N ≔ −36Q2

3
q

2
3) it acquires the

following form:

Hani ¼
p2

2m
þ V̌ðβÞ; ð70Þ

where the massmðqÞ ¼ 18Q2
3
q

8
3=Q−2 depends on the size of

the universe in such a way that m grows as the universe
expands. The equation of motion for β� reads

β̈� ¼ −
1

m
V̌;β� −

ṁ
m
β̇�: ð71Þ

This dynamics is conservative only when q̇ ¼ 0. However,
q̇ > 0 as the universe expands, and hence the energy Hani
may only decrease. Given that the anisotropy energy density
at each moment of time behaves as a power function of the
scale factor [see Eq. (64)], we have

ρ̌ani ∝
Hani

a2
∝

1

ananiþ2
; ð72Þ

with nani > 0 as was to be shown. Upon inspecting the
Hamiltonian (70) we clearly see that the kinetic energy
scales as a−4, whereas the potential energy is independent of
the scale factor. Hence, we conclude that 0 < nani < 4.
In order to reproduce the inflationary dynamics, we must

have nani ¼ 4e−4ΔN , which is positive and very small for
ΔN ¼ 20 e-folds. This requires the dynamics to be
dominated by the anisotropy potential with a negligible
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kinetic energy β̇� ≈ 0. In other words, the relative change
of the potential during that number of e-folds must be very
small. We find

dV̌ ¼ V̌;�dβ� ¼ V̌;�
β̇�
H

ΔN ¼ −V̌;�p�
Q−2ΔN
12q2H

;

ð73Þ

where H is the Hubble rate. Let us assume dV̌ ¼ − p2

2m jfin
(at the end of inflation) and combine it with the last relation
to obtain

dV̌ ¼
"
V̌;�

ffiffiffiffiffiffiffi
2m

p
Q−2ΔN

12q2H

#
2

: ð74Þ

Thus, the condition dV̌=V̌ ≪ 1 implies

V̌;�
V̌

≪
2H=

ffiffiffiffi
V̌

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

3
=Q−2

q
ΔN

; ð75Þ

FIG. 5. A typical solution to the semiclassical dynamics of the mixmaster universe close to the bounce. In the ðq; pÞ-plane the
accelerated expansion is initially driven by the semiclassical correction as the universe bounces, then it ends and appears again driven by
the anisotropic curvature. In the ðN;HÞ-plane the inflationary dynamics is exhibited in the growth of the conformal Hubble rate H,
which takes place from around N ¼ −1 to N ¼ −0.5. In the ðN; naniÞ-plane the inflationary dynamics is reflected in the small values of
nani ≈ 0, which happens at the bounce and during the anisotropy-driven inflation (recall that nani describes the behavior of the anisotropy
energy, ρ̌ani ∝ 1

a2þnani
). As the bottom-right panel shows, the dynamics is initially driven by the quantum curvature responsible for the

bounce, then it is taken over by the anisotropy: first there is a lot of shear and little of anisotropic curvature so the dynamics is not
inflationary. The inflationary dynamics begins once the energy of shear is transferred to the anisotropy potential which takes place
around N ¼ −1. We set the following initial data: q ¼ 0.1, p ¼ −312.895, βþ ¼ 0.0, β− ¼ −1.71, pþ ¼ 0.0, p− ¼ 15.0. We set the
parameters as follows: ω� ¼ 56.23, σ� ¼ 100, ν ¼ 40008 (Keff ¼ 10001.7), R ¼ 102.
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where the conformal Hubble rate reads roughlyH ≈
Q2

3

2

ffiffiffiffi
V̌

p

(by the virtue of the constraint equation) yielding

V̌;�
V̌

≪

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

3
Q−2

q
ΔN

: ð76Þ

It is easy to see that 2 < jV̌;�j
jV̌j < 8 except close to the point

of origin β ¼ 0, where the potential V̌ has the minimum.
We see that neither classical nor semiclassical potential can
satisfy the above requirement and hence a sustained infla-
tionary phase is excluded from this model. It is the
exponential character of V̌ that disallows anisotropy-driven
inflation. A typical postbounce evolution is plotted
in Fig. 5.
At this point it is interesting to note that the inflationary

phase might occur in the harmonic approximation of the
anisotropy potential as

jV;�j
V

¼ j2βj
β2

¼ 2

jβj ; ð77Þ

can be smaller than any value provided that the particle is
placed sufficiently far away from the point of origin β ¼ 0.
This explains our previous result obtained in a full quantum
framework in [15], where the harmonic approximation to
the anisotropy potential was used.
It is instructive to compare the anisotropy Hamiltonian to

that of a minimally coupled scalar field in a closed universe.
The scalar field Hamiltonian constraint reads:

Cϕ ¼ N
�

1

2q2
π2ϕ þ q2VðϕÞ

�
; ð78Þ

which can be brought to the form of Eq. (70) by setting
N ≔ 1=q2:

Hϕ ¼ 1

2m0 π
2
ϕ þ VðϕÞ; ð79Þ

where m0ðqÞ ¼ q4. Now, we see clearly that the key
difference lies in the respective masses mðqÞ and m0ðqÞ.
The energy density of the scalar field now reads

ρϕ ∝ Hϕ ∝
1

anϕ
; ð80Þ

where 6 > nϕ > 0 following from the same reasoning as
before. We clearly see that because of the minimal coupling
the requirements for the inflationary potential are much
milder than for anisotropy potential. Furthermore, given a
complete (or, almost complete) freedom in proposing the
inflationary potential, one may choose the harmonic one
that easily produces the desired accelerated expansion. The
numerical comparison of inflation- and anisotropy-driven
dynamics is given in Fig. 6.

VI. CONCLUSIONS

In this work we investigated whether a quantum
anisotropic primordial universe can spontaneously induce
a phase of inflationary dynamics. We first derived a
very generic quantum model of mixmaster universe via

FIG. 6. The evolution of the conformal Hubble rate in the anisotropy- and inflaton-dominated universes. On the left we see a robust
exponential growth of the conformal Hubble rate generated by inflaton in a quadratic potential. On the left we see how the anisotropic
curvature (just after the bounce ends) increases the conformal Hubble rate only by little and in an oscillatory manner (due to the
oscillating anisotropic deformations β�). We set the following initial data: q ¼ 0.1, p ¼ −5.139, βþ ¼ 0.579, β− ¼ 0.748, pþ ¼ 0.175,
p− ¼ 0.15, ϕ ¼ 2615121.8, πϕ ¼ 0.01. We set the parameters as follows: ω� ¼ 177.83, σ2� ¼ 0.04738, ν ¼ 350 (Keff ¼ 11.9083),
R ¼ 1.0, the mass of inflaton mϕ ¼ 0.0000578.

CAN A QUANTUM MIXMASTER UNIVERSE UNDERGO A … PHYS. REV. D 108, 043534 (2023)

043534-13



integral covariant quantization and coherent states meth-
ods. Thanks to these methods we were able to cover a
wide range possible quantization ambiguities and semi-
classical frameworks parametrized by a set of constants.
Then using the equations of motion we found the reasons
for why anisotropic universe, neither classical nor quan-
tum, cannot induce a sustained inflationary phase in the
early universe. In order to state these reasons clearly we
compared the anisotropic model to the single-field infla-
tionary model.
Both the anisotropy and the inflaton energy are declining

as the universe expands. However, a minimally coupled
field can produce effective pressure with wϕ ∈ ð−1; 1Þ
while anisotropy produces effective pressure with wani ∈
ð− 1

3
; 1Þ. It is well known that weff < − 1

3
is required in order

for accelerated expansion to take place. Therefore, pure
anisotropy fails to induce inflation. Nevertheless, if one
adds to the system a quantum correction in the form of
repulsive potential, then any contribution, including
anisotropy, can induce inflation for wani ≈ −1=3. Thus,
in principle, anisotropy could induce a sustained infla-
tionary phase if its potential allowed for it. The crucial
property is that in order for its effective pressure to remain
minimal the relative change of the potential in the con-
figuration space of a given model should be very small.
For the anisotropy potential this is however impossible
because the potential is fixed by general relativity to be
exponential. The inflationary potential does not have this
limitation and could be, e.g., quadratic. We note that even
quantization of the anisotropy potential does not change
its exponential character.
Our analysis was semiclassical and perhaps going to a

full quantum description (in particular, of anisotropy) could
change the character of the solution. Furthermore, if we
included the backreaction from quantum perturbations, the
anisotropy potential could perhaps acquire large correc-
tions allowing for sustained inflationary phase. Having that
said we believe that neither of these two options is very
probable. Therefore, we propose another cosmological
scenario in which anisotropy plays a key role in the
generation of primordial structure. It is a bouncing cosmol-
ogy in which the generation starts in the contracting phase
and then is smoothly transferred through a bounce to
the expanding phase. It is well-known that given a single
cosmic fluid with w ¼ p

ρ being its equation of state,
bouncing cosmology yields the spectral index ns − 1 ¼
6ð1þ wÞ=ð1þ 3wÞ or ns − 1 ¼ 12w=ð1þ 3wÞ [9], which
is always blue-tilted (for w > 0) contrary to the observed
one that is slightly red-tilted [23]. The addition of
anisotropy would produce an effective cosmological fluid
which could lead to the primordial perturbations with the
correct spectrum. In this scenario, one could expect, there is
more anisotropy in the contracting phase than in the
expanding. We postpone the investigation of the details
of this proposal to a future paper.

ACKNOWLEDGMENTS

P. M. and J. C. M. acknowledge the support of the
National Science Centre (NCN, Poland) under the research
Grant No. 2018/30/E/ST2/00370.

APPENDIX A: ISOTROPIC DYNAMICS

For negligible L we find that the amount of time needed
for the universe to bounce back to the same volume q2

reads,

Δη¼ 1ffiffiffiffi
R

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q

4
3−

9

4

Kiso

R

r
;

Δt¼ 1

2
ffiffiffiffi
R

p

2
664q2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q

4
3−

9Kiso

4R

r
þ9Kiso

4R
ln

0
B@q

2
3þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q

4
3− 9Kiso

4R

q
ffiffiffiffiffiffiffiffi
9Kiso
4R

q
1
CA
3
775;

which is useful for numerical integrations.

APPENDIX B: SYMMETRY ANALYSIS OF THE
SEMICLASSICAL DYNAMICS

Let us rescale the four variables t, q, p� in the following
way:

t ¼ γt0; q ¼ λq0; p� ¼ δp0
�; ðB1Þ

while keeping β� ¼ β0�. The dynamical system in the
primed variables reads:

q̇0 ¼ 9

2
p0; with p0 ¼ γ

λ
p; ðB2Þ

ṗ0 ¼ 9

2

γ2

λ4
K
q03

− 2
γ2δ2

λ4
Q−2

p02
� þ 8

ðδσ�Þ2

q03

þ 24
γ2

λ4=3
Q2

3
q0−1

3½V̌ðβ0Þ − 1�; ðB3Þ

β̇0� ¼ −2
δγ

λ2
Q−2

p0
�

q02
; ðB4Þ

ṗ0� ¼ 36
γλ2=3

δ
Q2

3
q023∂�V̌ðβ0Þ; ðB5Þ

The original system is almost regained if additionally the
following relations are imposed:

σ0� ¼ δσ�; ðB6Þ

Q0
2
3

¼ γ2

λ4=3
Q2

3
¼ γλ2=3

δ
Q2

3
; ðB7Þ
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Q0
−2 ¼

γ2δ2

λ4
Q−2 ¼

γδ

λ2
Q−2; ðB8Þ

K0
eff ¼

γ2

λ4
Keff : ðB9Þ

From Eq. (B8) we have λ ¼ ffiffiffiffiffi
γδ

p
, and thus Q0

−2 ¼ Q−2.

Then Eqs. (B7) are compatible and yield Q0
2
3

¼ ðγ2δ Þ
2=3Q2

3
.

Hence, Q0
2
3

¼ Q2
3
implies γ ¼ ffiffiffi

δ
p

. We finally obtain the

following primed dynamical system:

q̇0 ¼ 9

2
p0; ðB10Þ

ṗ0 ¼ 9

2

K0

q03
− 2Q−2

p02
� þ 8

ðσ0�Þ2

q03

þ 24Q2
3
q0−1

3½V̌ðβ0Þ − 1�; ðB11Þ

β̇0� ¼ −2Q−2
p0
�

q02
; ðB12Þ

ṗ0� ¼ 36Q2
3
q0

2
3∂�V̌ðβ0Þ; ðB13Þ

where the scaling relations between primed and nonprimed
variables and parameters involve only powers of δ,

t0 ¼ t

δ1=2
; ðB14Þ

q0 ¼ q

δ3=4
; ðB15Þ

p0 ¼ p

δ1=4
; ðB16Þ

β0� ¼ β�; ðB17Þ

p0
� ¼ p�

δ
; ðB18Þ

σ0� ¼ δσ�; ðB19Þ

K0 ¼ K
δ2

: ðB20Þ
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