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We study the one-loop corrections in the power spectrum of long gravitational waves induced from small
scale modes in the models of single field inflation undergoing a phase of ultra-slow-roll (USR). We show
that the spectrum of long tensor perturbations are largely unaffected by the loop corrections from the short
scalar modes. In particular, the spectrum of long tensor perturbations is insensitive to the sharpness of the
transition from the USR phase to the final slow-roll phase. This is in contrast to the case of scalar power
spectrum in which the loop corrections can be large for a sharp transition while it is slow-roll suppressed in
a mild transition. We study the tensor-scalar-scalar bispectrum in the squeezed limit and demonstrate that
the Maldacena consistency condition does hold.
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I. INTRODUCTION

Recently the question of one-loop corrections in the
power spectrum of large CMB scale scalar perturbations
from the small scale modes in the setup of single field
inflation undergoing a phase of ultra-slow-roll (USR) was
debated extensively [1–10] (for a related earlier work
see [11]). This is particularly an important question since
the models of single field inflation with an intermediate
USR phase have been employed extensively in recent years
as a viable mechanism to generate primordial black
holes (PBHs) which may comprise all or parts of cold
dark matter [12–14] (for a review see [15,16]). More
specifically, to have a successful mechanism of PBH
formation, one requires the amplitude of curvature pertur-
bations to be enhanced by a factor of 107 or so in the
allowed small scales compared to the large CMB scales. It
turns out that an intermediate phase of USR inflation can
provide this enhancement naturally.
The USR setup is a phase of inflation in which the

potential is very flat [17–19]. Consequently, the inflaton
velocity falls off exponentially and the curvature perturba-
tions grow on superhorizon scales [20]. As the curvature
perturbations grow on superhorizon scales, it provides
a nontrivial example for the violation of the celebrated
Maldacena consistency condition [21,22] for the non-
Gaussianity of single field inflation [20,23–30]. More
specifically, it was shown in [20] that the amplitude of
local-type non-Gaussianity in the USR model is fNL ¼ 5

2
.

This question was further investigated in [31] in which it
was demonstrated that the final amplitude of fNL crucially
depends on the sharpness of the transition from the USR

phase to the final slow-roll (SR) phase. In particular, in an
extreme sharp transition from the USR phase to the SR
phase, as assumed in [20], fNL reaches its maximum
value 5

2
. However, if the transition is mild, then the

curvature perturbations evolve after the USR phase until
it reaches its final attractor value. Correspondingly, much of
the amplitude of fNL is washed out, and it ends up at a
value of the order of the slow-roll parameters though
the Maldacena consistency condition is still violated.
The lesson is that the sharpness of the transition from
the USR phase to the final SR phase plays important roles
to read off the amplitude of cosmological observables at the
end of inflation.
Originally, it was argued in [1] (see also [2]) that the one-

loop corrections from small USR modes can significantly
affect the large CMB scale modes. Therefore, it was argued
that to keep these loop corrections under perturbative
control, the model loses its applicability to generate the
desired PBH abundance. This conclusion was criticized
in [3,4] where it was advocated that this conclusion is
model-dependent and the dangerous one-loop corrections
can be harmless in a smooth transition. This question was
further investigated in [8] in a consistent manner where the
effects of both cubic and quartic Hamiltonians were taken
into account. While the analysis in [8] supported the
conclusion of [1] for the setup with a sharp transition, it
was argued that the situation can be very different in a mild
transition. Finally, this question was further studied in [10]
where, using δN formalism, it was shown that for a mild
transition the one-loop corrections are suppressed by the
slow-roll parameters and the setup can still be viable for
PBH formation, in agreement with [3,4]. The conclusion
from these works, as in the old story of fNL alluded to
before, is that the amplitude of one-loop corrections*firouz@ipm.ir

PHYSICAL REVIEW D 108, 043532 (2023)

2470-0010=2023=108(4)=043532(12) 043532-1 © 2023 American Physical Society

https://orcid.org/0000-0002-1850-4392
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.043532&domain=pdf&date_stamp=2023-08-28
https://doi.org/10.1103/PhysRevD.108.043532
https://doi.org/10.1103/PhysRevD.108.043532
https://doi.org/10.1103/PhysRevD.108.043532
https://doi.org/10.1103/PhysRevD.108.043532


crucially depends on the sharpness of the transition from
the USR phase to the final SR phase. For a physical
smooth transition, the dangerous one-loop corrections are
washed out during the subsequent evolutions of the modes
after the USR phase.
With the above discussions in mind, in this work we

extend the motivation of [1] and calculate the one-loop
correction from small USR modes on large CMB scale
gravitational waves (GWs) perturbations.1 On the physical
ground, similar to the reasonings of [3,4], it is expected that
the tensor perturbations will be less sensitive to the USR
phase transition. This is because the amplitude of GWs are
determined by the Hubble scale, H, during inflation. As the
value of H is not much modified during the USR transition,
then the background for GWs propagation is not much
modified either. Add to it the important effect that the tensor
perturbations are frozen on superhorizon scales at the linear
level in perturbation theory [37–40]. However, the lesson of
large loop corrections in a sharp transition for the case of a
scalar power spectrum sets a nontrivial example to examine
more directly the validity of the above physical expectations
for the long GWs. This is the goal of this work.

II. THE SETUP

Here we briefly review our setup and present the formulas
which will be required for our subsequent analysis.
We consider a three-phase model of inflation in which a

USR phase is sandwiched between two phases of SR
inflation (SR → USR → SR). The early SR phase is when
the large CMB scale mode leaves the horizon. The USR
phase is extended in the interval ti ≤ t ≤ te in which the
potential is flat VðϕÞ ¼ V0. The background equations
during the USR phase are

ϕ̈ðtÞ þ 3Hϕ̇ðtÞ ¼ 0; 3M2
PH

2 ≃ V0; ð1Þ
where MP is the reduced Planck mass and H is the Hubble
expansion rate during inflation. During the USR phaseH is
very nearly constant while ϕ̇ ∝ 1

a3.
The two slow-roll parameters related to H are given as

follows:

ϵ≡ −
Ḣ
H2

¼ ϕ̇2

2M2
PH

2
; η≡ ϵ̇

Hϵ
: ð2Þ

Since ϵ falls off like a−6 during the USR setup, we see that
η ≃ −6 which is the hallmark of the USR inflation [17].
Going to conformal time dτ ¼ dt=aðtÞ with aHτ ≃ −1, the
evolution of ϵ is given by

ϵðτÞ ¼ ϵi

�
τ

τi

�
6

; ð3Þ

in which ϵi is the value of ϵ at the start of the USR phase.
Correspondingly, at the end of the USR phase ϵe ¼ ϵiðτeτiÞ6.
Using the number of e-folds, dN ¼ Hdt, the duration of
the USR phase is denoted by ΔN ≡ NðτeÞ − NðτiÞ so
ϵe ¼ e−6ΔNϵi.
As shown in [8], a crucial role is played by the sharpness

of the transition from the USR phase to the final SR phase.
To take this into account, following [31], we define the
parameter associated with the sharpness of the transition, h,
as follows:

h≡ 6
ffiffiffiffiffiffiffiffi
2ϵV

p
ϕ̇ðteÞ

¼ −6
ffiffiffiffiffi
ϵV
ϵe

r
: ð4Þ

Here, ϵV represents the slow-roll parameter at the final SR
phase when the system reaches its attractor regime. Since
we assume (without lack of generality) that ϕ is decreasing
during the USR phase, then ϕ̇ < 0 so h < 0.
As shown in [31] near the transition we can approximate

η as

η ¼ −6 − hθðτ − τeÞ; τ−e < τ < τþe : ð5Þ

In particular, for the derivative of η, we have

dη
dτ

¼ −hδðτ − τeÞ; τ−e < τ < τþe : ð6Þ

In the following analysis we consider two cases of sharp
transition: a “natural” sharp transition in which η drops to
zero immediately after the transition corresponding to
h ¼ −6. In this situation ϵ after the transition is frozen
to its value at the end of USR given by ϵe. This limit was
studied in [1,2]. The other case is an “extreme” sharp
transition where jhj ≫ 1. In this situation, ϵ after the
transition evolves toward the end of inflation (or when
the evolution in the final stage has reached its attractor
phase) so ϵV ¼ ϵeðh6Þ2.
As ϵðτÞ falls off exponentially during the USR phase, the

comoving curvature perturbation RðτÞ grows exponentially
during the USR phase, RðτÞ ∝ aðτÞ3 ∝ τ−3. After the USR
period, the curvature perturbation may evolve during the
final USR phase until it reaches its final attractor value to be
measured at the end of inflation. To read off the final value of
R, we have to track it from the first phase of inflation toward
the USR phase and then eventually into the final SR phase.
This is achieved by requiring that both RðτÞ and R0ðτÞ be
continuous across the transitions SR → USR → SR.
Starting with a Bunch-Davies initial condition in the

first SR phase, the mode function in the Fourier space is
given by

Rð1Þ
k ¼ H

MP

ffiffiffiffiffiffiffiffiffiffiffi
4ϵik3

p ð1þ ikτÞe−ikτ ðτ < τiÞ; ð7Þ1For earlier works concerning the loop corrections in the tensor
power spectrum during inflation see [32–36].
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where ϵi is the value of the slow-roll parameter at the start of inflation when the CMB scale mode leaves the horizon. The
superscript (1) indicates the first SR phase. During the USR phase, the mode function is given formally by the
superposition of the positive and negative frequency modes,

Rð2Þ
k ¼ H

MP

ffiffiffiffiffiffiffiffiffiffiffi
4ϵik3

p �
τi
τ

�
3h
αð2Þk ð1þ ikτÞe−ikτ þ βð2Þk ð1 − ikτÞeikτ

i
; ð8Þ

with the coefficients αð2Þk and βð2Þk , after imposing the matching condition at τ ¼ τi, and they are obtained to be

αð2Þk ¼ 1þ 3i
2k3τ3i

ð1þ k2τ2i Þ; βð2Þk ¼ −
3i

2k3τ3i
ð1þ ikτiÞ2e−2ikτi : ð9Þ

Finally, imposing the matching conditions at τe, the mode function in the final SR phase, denoted by the superscript (3), is
obtained to be

Rð3Þ
k ¼ H

MP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ϵðτÞk3

p h
αð3Þk ð1þ ikτÞe−ikτ þ βð3Þk ð1 − ikτÞeikτ

i
; ð10Þ

with the coefficients αð3Þk and βð3Þk given by

αð3Þk ¼ 1

8k6τ3i τ
3
e

h
3hð1 − ikτeÞ2ð1þ ikτiÞ2e2ikðτe−τiÞ þ ð−2ik3τ3i þ 3k2τ2i þ 3Þð4ik3τ3e − hk2τ2e − hÞ

i
and

βð3Þk ¼ −1
8k6τ3i τ

3
e

h
3ð1þ ikτiÞ2ðhþ hk2τ2e þ 4ik3τ3eÞe−2ikτi − hð1þ ikτeÞ2ð3þ 3k2τ2i − 2ik3τ3i Þe−2ikτe

i
:

Finally, the power spectrum of curvature perturbations at the end of inflation τ ¼ τ0 → 0 for the mode in the interval
ki < k < ke which leaves the horizon during the USR phase given by

PRðτ0; kÞ ¼
�
h − 6

h

�
2 H2

4M2
Pϵek

3
¼

�
h − 6

h

�
2

PRðτe; kÞ ðki < k < keÞ: ð11Þ

Curiously, we see that the power spectrum is scaled with a
factor ðh−6h Þ2 compared to its value at the end of the USR
phase. In the limit of extreme sharp transition, h → −∞, we
see thatPRðτ0; kÞ ≃ PRðτe; kÞ. This is expected, since in this
limit the mode function is frozen immediately after the USR
phase and does not experience evolution after the USR phase.
On the other hand, for the case of a natural sharp transition
with h ¼ −6, we see that PRðτ0; kÞ ≃ 4PRðτe; kÞ so the
power spectrum actually becomes larger toward the end of
inflation. This is because the mode function is still evolving
after theUSRphase until it reaches its final attractor value.We
comment that there are subleading corrections of orderOðk2k2eÞ
in Eq. (11) which we have neglected.
On the other hand, the modes which leave the horizon

during the first SR phase are frozen during the intermediate
USR phase. Correspondingly, for these modes (at the tree
level) we have

PRðτ0; kÞ ¼
H2

4M2
Pϵik

3
ðk < kiÞ: ð12Þ

III. CUBIC AND QUARTIC HAMILTONIANS

Our goal is to calculate the one-loop corrections in
the tensor power spectrum induced by the scalar pertur-
bations which experience a growth during the USR
phase. For this purpose, we need to calculate the cubic
and quartic interaction Hamiltonians. Schematically,
the cubic Hamiltonian represents an interaction of the
type γR2 while the quartic Hamiltonian is in the form
γ2R2. A schematic view of the corresponding one-
loop diagrams associated with these interactions are
presented in Fig. 1. The left panel in Fig. 1 represents
the contribution of the cubic Hamiltonian involving a
nested in-in integral while the right panel represents the
contribution of the quartic Hamiltonian involving a single
in-in integral.
We consider the tensor perturbations of the Friedmann-

Lemaitre-Robertson-Walker (FLRW) background as fol-
lows:

ds2 ¼ −dt2 þ gijdxidxj; gij ≡ aðtÞ2ĥij; ð13Þ
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in which ĥij is expanded in terms of the tensor perturba-
tions γij as follows [21]:

ĥij ¼ δij þ γij þ
1

2
γilγlj þ � � � : ð14Þ

The tensor perturbations are transverse and traceless, γii ¼
∂iγij ¼ 0 in which the indices are raised via δij. With this
construction, there is no contribution of γij in

ffiffiffiffiffiffi−gp
.

The total action is Stotal ¼ Smatter þ SEH in which Smatter
is the matter part of the action while SEH represents the
usual Einstein-Hilbert action. To calculate the leading
interaction Hamiltonian, we use the effective field theory
(EFT) of inflation [41,42]. In a near de Sitter (dS) spacetime
with a background inflaton field ϕðtÞ, the four-dimensional
diffeomorphism invariance is spontaneously broken to a

three-dimensional spatial diffeomorphism invariance.
Starting with the unitary (or comoving) gauge where the
perturbations of inflaton are turned off, one is allowed to
write down all terms in the action which are consistent with
the remaining three-dimensional diffeomorphsim invari-
ance. Upon doing so, the background inflation dynamics is
controlled via the known Hubble expansion rate HðtÞ and
its derivative ḢðtÞ. After writing the full action consistent
with the three-dimensional diffeomorphsim invariance, one
restores the full four-dimensional diffeomorphsim invari-
ance by introducing scalar field fluctuations, πðxμÞ, which
is the Goldstone boson associated with the breaking of the
time diffeomorphsim invariance. One big advantage of the
EFT approach is when one works in the decoupling limit
where the gravitational backreactions are neglected. In this
limit one neglects the slow-roll suppressed interactions in
cubic and quartic actions while keeping only the leading
terms which can yield large non-Gaussianities. In our study
concerning the USR setup, these are the interactions which
induce large corrections in one-loop integrals. For earlier
work employing the EFT approach for the bispectrum
analysis in a general nonattractor setup (including the USR
setup) see [43]. The EFT approach was employed in [8]
to study the one-loop corrections in the scalar power
spectrum.
Assuming we have a canonical scalar field with a sound

speed cs ¼ 1, the matter part of the action consistent with
the FLRW inflationary background is given by [41]

Smatter ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−M2

PḢðtþ πÞ
�

1

N2
ð1þ π̇ − Ni

∂iπÞ2 − gij∂iπ∂jπ

�
−M2

P

�
3H2ðtþ πÞ þ Ḣðtþ πÞ

��
; ð15Þ

in which N and Ni are the lapse and shift function in the
standard Arnowitt-Deser-Misner (ADM) formalism. In the
decoupling limit where the gravitational backreactions are
neglected we set N ¼ 1, Ni ¼ 0, and

ffiffiffiffiffiffi−gp ¼ a3. Our goal
is to read off the interaction between π and γij. Since γij
does not contribute into

ffiffiffiffiffiffi−gp
, the coupling between π and

γij to leading order comes via the interaction gij∂iπ∂jπ. On
the other hand, to quadratic order, we have

gij ¼ a−2
�
δij − γij þ

1

2
γilγlj

�
; ð16Þ

where in the right-hand side above, we raise and lower the
indices via δij. Correspondingly, the interaction between π
and γij to quartic order has the following terms:

gij∂iπ∂jπ → −γij∂iπ∂jπ þ 1

2
γilγlj∂iπ∂jπ: ð17Þ

On the other hand, expanding Ḣðtþ πÞ to first order in π
we have

Ḣðtþ πÞ ¼ Ḣ þ Ḧπ þ � � � ;
≃ −ϵH2 − ϵηH3π: ð18Þ

It is important to note that in the USR setup η ≃ −6, we
cannot discard the last term above.
Plugging Eqs. (17) and (18) into the action (15) the cubic

action is obtained to be [44]

Sγπ2 ¼ M2
PH

2

Z
dτd3xϵa2γij∂iπ∂jπ; ð19Þ

while the quartic action is given by

Sγ2π2 ¼M2
PH

2

Z
dτd3xϵa2

�
−
1

2
γilγlj∂iπ∂jπþηπγij∂iπ∂jπ

�
:

ð20Þ

FIG. 1. The Feynman diagrams for the one-loop correction in
the tensor power spectrum. The dotted line represents the tensor
perturbations while the solid line in the loop represents the scalar
perturbations. The left and right panels represent the contribution
of the cubic and quartic Hamiltonians, respectively.
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Correspondingly, the cubic and quartic interaction
Hamiltonians are

H3 ¼ −M2
PH

2

Z
d3xϵa2γij∂iπ∂jπ ð21Þ

and

H4 ¼ M2
PH

2

Z
d3xϵa2

�
1

2
γilγlj∂iπ∂jπ − ηγijπ∂iπ∂jπ

�
:

ð22Þ

As we see, the quartic Hamiltonian has two terms. One can
easily check that the second term above, containing
γijπ∂iπ∂jπ, does not contribute to the graviton power
spectrum at the one-loop level while it contributes to the
graviton power spectrum at the two-loop level. Therefore,
in the following analysis where we study the one-loop
correction in the graviton power spectrum, we neglect the
effects of the second term in H4.
From the above interaction Hamiltonians we see that

both H3 and H4 contain spatial derivatives of the scalar
perturbations. This is required because the tensor pertur-
bations carry the indices i, j so they should be contracted
with the spatial derivatives of the scalar perturbations.
Consequently, one expects that the induced loop correc-
tions in the tensor power spectrum will be suppressed
compared to the case of the scalar power spectrum.
However, the amplitude of one-loop corrections in the
tensor spectrum has yet to be calculated.
Finally, note that curvature perturbationsR are related to

π via [8]

R ¼ −Hπ þOðπ2Þ; ð23Þ

in which the higher order terms contain the derivatives of π
or H [45,46]. However, we calculate the two-point corre-
lation functions at the end of inflation τ ¼ τ0 → 0 where it
is assumed that the system is in the slow-roll regime and the
perturbations are frozen on superhorizon scales. In this
case, the higher order corrections in Eq. (23) are sup-
pressed, and we can simply use the linear relation between
R and π in the following in-in integrals [8].
Going to Fourier space, the tensor perturbations are

expended as follows:

γijðxÞ ¼
Z

d3k
ð2πÞ3

X
s¼�

ϵsijðkÞγskeik·x; ð24Þ

in which s ¼ � are two polarizations of the tensor
perturbation. The polarization tensor is transverse and
traceless, ϵii ¼ kiϵij ¼ 0, and satisfies

ϵs�ij ðkÞ ¼ ϵsijð−kÞ; ϵsijðkÞϵs0�ij ðkÞ ¼ 2δss0 : ð25Þ

As an example of the polarization tensor, taking k̂ along the
third direction, we choose [37]

ϵ11ðẑ;�2Þ ¼ −ϵ22ðẑ;�2Þ ¼∓ iϵ12ðẑ;�2Þ

¼∓ iϵ21ðẑ;�2Þ ¼ 1ffiffiffi
2

p ; ϵi3 ¼ ϵ3i ¼ 0: ð26Þ

To quantize the free tensor perturbation, as usual we
expand the Einstein-Hilbert action to quadratic order in γij
obtaining [38]

Sγ2 ¼
M2

P

8

Z
dτd3xa2½ðγ0ijÞ2 − ð∇γijÞ2�: ð27Þ

Expanding the quantum operators in terms of the corre-
sponding creation and annihilation operators as

γsk ¼ bskγkðτÞ þ bs†−kγkðτÞ�; ð28Þ

with the usual commutation relation ½bs1k ; bs2k0 � ¼
δs1s2δ3ðk − k0Þ, the mode function is given by

γkðτÞ ¼
H

ffiffiffi
2

p

MPk
3
2

ð1þ ikτÞe−ikτ: ð29Þ

Correspondingly, the two-point correlation is given by

hγskγs
0
k0 i ¼ δss

0

2
PγðkÞ ¼

2H2

k3M2
P
δss

0
; ð30Þ

with the dimensionless tensor power spectrum given by

Pγ ¼
k3

2π2
PγðkÞ ¼

2H2

π2M2
P
: ð31Þ

To calculate the loop corrections, we employ the
standard in-in formalism [47] in which the expectation
value of the operator Ô at the end of inflation τ0 is given by
the Dyson series,

hÔðτ0Þi ¼
	�

T̄ exp

�
i
Z

τ0

−∞
dτ0Hinðτ0Þ

��

× Ôðτ0Þ
�
T exp

�
−i

Z
τ0

−∞
dτ0Hinðτ0Þ

��

; ð32Þ

in which T and T̄ represent the time ordering and anti-
time ordering, respectively, while HinðtÞ collectively rep-
resents the interaction Hamiltonian. In our case at hand
HinðτÞ ¼ H3 þH4.
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IV. TENSOR-SCALAR-SCALAR CONSISTENCY
CONDITION

While our main goal is to calculate the one-loop
corrections in the tensor power spectrum, as a prelude
here we study the bispectrum of hγλk1

Rk2
Rk3

i in the
squeezed limit k1 ≪ k2 ≃ k3. This is mainly to check that
our EFT approach with the interaction Hamiltonians given
above are trusted for the one-loop corrections in the tensor
power spectrum. While this analysis is interesting and new
(in the current SR → USR → SR setup), the reader who is
only interested in loop corrections can skip directly to the
next section.
To calculate hγλk1

Rk2
Rk3

i in the squeezed limit we
assume that the tensor perturbation has left the horizon
during the first SR phase while the scalar perturbations
have left the horizon during the intermediate USR phase.
As such, the hierarchy k1 → 0 and k2 ≃ k3 is assumed. On
the physical ground, as the tensor mode is frozen on the
superhorizon scale, we expect a consistency condition
similar to that of Maldacena [21] for the tensor-scalar-
scalar to hold.
To calculate hγλk1

Rk2
Rk3

i at the tree level, we only need
the cubic interaction Hamiltonian H3. Plugging H3 from
Eq. (21) in the in-in integral (32), we have

hγλk1
ðτ0ÞRk2

ðτ0ÞRk3
ðτ0Þi

¼ −2Im
Z

τ0

−∞
dτhH3ðτÞγλk1

ðτ0ÞRk2
ðτ0ÞRk3

ðτ0Þi: ð33Þ

Using the linear relation R ¼ −Hπ, and noting that
k2 ≃ −k3, we obtain

hγλk1
ðτ0ÞRk2

ðτ0ÞRk3
ðτ0Þi0 ¼ −4M2

Pϵ
λ
ijðk1Þk̂2ik̂2jI ; ð34Þ

in which here and below a prime over h� � �i means we have
pulled out the overall factor ð2πÞ3δ3ðk1 þ k2 þ k3Þ. The
factor I is calculated via the in-in integral as follows:

I ≡ k22

Z
τ0

−∞
dτϵðτÞa2Im

h
γ�k1ðτ0ÞR�

k2
ðτ0Þ2γk1ðτÞRk2ðτÞ2

i
:

ð35Þ

As the scalar modes leave the horizon during the USR
period, there are two contributions in the above integral,
from the USR period τi < τ < τe and after the USR period
τe < τ < τ0. Performing the integral over the USR period
and neglecting the contribution of a rapidly oscillating term
in the form of cosð2k2τiÞ, we obtain

Iðτi < τ < τeÞ ¼ −
3

4

�
h − 6

h

�
2 H4

k31k
3
2M

4
Pϵe

þO
�
k22
k2e

�
:

ð36Þ

On the other hand, calculating I for the period τe < τ < τ0
we obtain

Iðτe < τ < τ0Þ ¼ −
ð6 − hÞðh − 10Þ

10h2
H4

k31k
3
2M

4
Pϵe

×

�
k22
k2e

�
:

ð37Þ

For the modes which k2 ≪ ke, we may neglect the
contribution Iðτe < τ < τ0Þ and to leading order

hγλk1
ðτ0ÞRk2

ðτ0ÞRk3
ðτ0Þi0

¼ 3

4
ϵλijðk1Þk̂2ik̂2jPRðk2; τ0ÞPγðk1; τ0Þ; ð38Þ

in which PRðk2; τ0Þ and Pγðk1; τ0Þ are the scalar and tensor
power spectrum as given in Eqs. (11) and (30).
The above result is obtained employing a direct in-in

calculation. However, as the tensor mode is frozen on
superhorizon scales and is not affected by the USR phase,
we expect a consistency condition similar to [21] to hold.
Below we demonstrate that this is indeed the case.
As k1 → 0, one can assume that the long tensor

mode only modifies the background for the short scalar
modes [21] in the form of a quadrupolar anisotropy by
changing k22 → k22 − γijki2k

j
2. Following the logic of [21]

we can write

hγλk1
Rk2

Rk3
i0 ≃ −hγλk1

γλk1
iϵλijðk1Þk̂2ik̂2j

∂

∂k22
hRk2

Rk3
i:

ð39Þ

Using the specific form of the scalar power spectrum given
in Eq. (11) we have

∂

∂k22
PRðk2Þ ¼ −

3

2k22
PRðk2Þ; ð40Þ

and consequently, plugging this into Eq. (39), we obtain

hγλk1
ðτ0ÞRk2

ðτ0ÞRk3
ðτ0Þi0

¼ 3

4
ϵλijðk1Þk̂2ik̂2jPRðk2; τ0ÞPγðk1; τ0Þ; ð41Þ

in exact agreement with Eq. (38).
As explained above, one expects the above consistency

condition to hold. This is because the tensor perturbation
has left the horizon during the early SR phase which is
frozen afterwards and is largely unaffected by the USR
phase. Consequently, it can only modify the background for
the short scalar modes, which leave the horizon much later
in the USR phase, in a form of quadrupolar anisotropy.
The above analysis confirms the applicability of our

EFT approach. In addition, as the consistency condition is
unaffected, the above results imply that the loop corrections
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from the short scalar perturbations will be minimal on long
tensor perturbations which have left the horizon much
earlier. We study this issue more directly in the next section.

V. LOOP CORRECTIONS IN TENSOR
POWER SPECTRUM

Now we study the one-loop corrections in long CMB
scale gravitational power spectrum hγs1ðp1Þγs2ðp2Þi
induced from the short scalar modes which leave the
horizon during the intermediate USR phase. In our con-
vention the CMB scale tensor modes have momentum p1

and p2 while that of short scalar perturbations running in
the loop is q.
For a consistent one-loop corrections, we have to

calculate the contributions of both Feynman diagrams
shown in Fig. 1. We start with the right panel which is
easier, containing a four vertex involving one in-in integral
over the quartic Hamiltonian H4.

A. Loop corrections from quartic Hamiltonian

With the quartic Hamiltonian given in Eq. (22) the one-
loop correction from the right panel of Fig. 1 is given by

hγs1p1
ðτ0Þγs2p2

ðτ0ÞiH4

¼ −2Im
Z

τ0

−∞
dτhH4ðτÞγs1ðp1; τ0Þγs2ðp1; τ0Þi; ð42Þ

yielding

hγs1p1
ðτ0Þγs2p2

ðτ0Þi0H4

¼ −2M2
PIm

�
ϵs1ilð−p1Þϵs2ljðp1Þ

Z
d3q
ð2πÞ3 qiqjI4ðqÞ

�
;

ð43Þ
in which the factor I4ðqÞ associated with the quartic
Hamiltonian in-in integral will be given shortly below.
Using the isotropy of the background, the integralR
d3qqiqjI4ðqÞ is nonzero only i ¼ j so one can replace

this momentum integral by 1
3
δij

R
d3qq2I4ðqÞ. Now using

the properties of the polarization tensor given in Eq. (25)
we obtain

ϵs1ilð−p1Þϵs2ljðp1Þ
Z

d3q
ð2πÞ3 qiqjI4ðqÞ

¼ 2

3
δs1s2

Z
d3q
ð2πÞ3 q

2I4ðqÞ: ð44Þ

Combining all together, we obtain

hγs1p1
ðτ0Þγs2p2

ðτ0Þi0H4
¼ −

4δs1s2

3
M2

P

Z
d3q
ð2πÞ3 q

2ImI4ðqÞ;

ð45Þ

in which the factor I4ðqÞ is given by

I4ðqÞ≡
Z

τ0

−∞
dτϵðτÞa2

h
γ�ðp1; τ0Þ2γðp1; τÞ2

i
jRðq; τÞj2:

ð46Þ

In performing the time integral above we should only
consider the contribution of the superhorizon modes, so the
actual time interval in Eq. (46) should be− 1

q < τ < τ0. This
guarantees that we do not count the contributions of the
modes which are subhorizon (i.e. not yet classical) in the
time integral in Eq. (46). On the other hand, the modes
which are subhorizon during the USR phase are quantum
mechanical in nature so their contributions should be
collected via a UV renormalization scheme. While renorm-
alization is an important issue to read off the final physical
quantity, here we are mainly interested in the effects of
superhorizon modes to obtain a rough estimate for the
magnitude of the loop corrections. In addition, as qτ → 0,
the integral in Eq. (46) receives its contribution from its
lower end. In particular, the contribution from the period
after the USR phase τe < τ < τ0 is subleading.
In the limit that p → 0, we have

Im
h
γ�ðp1; τ0Þ2γðp1; τÞ2

i
≃ −

8

3

H4τ3

M4
Pp

3
: ð47Þ

Furthermore, on the superhorizon in which qτ → 0, we
have ϵðτÞjRðq; τÞj2 ≃ H2

4q3M2
P
, yielding

ImI4ðqÞ ≃ −
2H4

3M6
Pq

3p3

Z
τ0

−1
q

dττ ≃
H4

3M6
Pq

5p3
: ð48Þ

Plugging the above result in Eq. (45) and integrating over
the USR modes qi < q < qe, we obtain

hγs1p1
ðτ0Þγs2p2

ðτ0Þi0H4
≃ −

4δs1s2

9

H4

M4
Pp

3

ΔN
2π2

; ð49Þ

in which ΔN ¼ lnðτiτeÞ is the duration of the USR phase.
It is convenient to express the loop correction in terms of

the dimensionless power spectrum Pγ defined in Eq. (31).
Using the result from Eq. (49), for the one-loop correction
in the tensor power spectrum from the quartic Hamiltonian
H4 we obtain

PðloopÞ
γ

���
H4

≃ −
ΔN
36

P2
γ : ð50Þ

Since we calculate the loop corrections induced from the
scalar perturbations on the tensor power spectrum, then
one expects the loop correction to scale like PγPR.
However, from Eq. (50) we see that the loop correction
actually scales like P2

γ . The reason is that the interaction
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vertices in H3 and H4 contain the factor ϵ so the combination ϵR2 appears inside the in-in integral as in Eq. (46). Since
ϵR2 ∼ Pγ , then the final result for the loop correction is given as P2

γ instead of PγPR.

B. Loop corrections from cubic Hamiltonian

Now we calculate the loop corrections from the cubic Hamiltonian corresponding to the left panel of Fig. 1. It involves a
nested integral containing the product of two three-vertices. More schematically, expanding the Dyson series to second
order in H3 we have

hγs1p1
ðτ0Þγs2p2

ðτ0ÞiH3
¼ hγs1p1

ðτ0Þγs2p2
ðτ0Þið2;0Þ þ hγs1p1

ðτ0Þγs2p2
ðτ0Þið1;1Þ þ hγs1p1

ðτ0Þγs2p2
ðτ0Þið0;2Þ ð51Þ

in which

hγs1p1
ðτ0Þγs2p2

ðτ0Þið2;0Þ ¼ −
Z

τ0

−∞
dτ1

Z
τ1

−∞
dτ2hH3ðτ1ÞH3ðτ2Þγs1p1

ðτ0Þγs2p2
ðτ0Þi

¼ hγs1p1
ðτ0Þγs2p2

ðτ0Þi†ð0;2Þ ð52Þ

and

hγs1p1
ðτ0Þγs2p2

ðτ0Þið1;1Þ ¼
Z

τ0

−∞
dτ1

Z
τ0

−∞
dτ2hH3ðτ1Þγs1p1

ðτ0Þγs2p2
ðτ0ÞH3ðτ2Þi: ð53Þ

We leave the details of the in-in analysis to the Appendix. After a long calculation, one obtains

hγs1p1
ðτ0Þγs2p2

ðτ0Þi0H3
¼ −8M4

Pδ
s1s2

Z
d3q
ð2πÞ3 jϵ

s1
ij ðpÞqiqjj2

Z
τ0

−∞
dτ1

Z
τ1

−∞
dτ2Im½X�ðτ1Þδðτ2Þ�; ð54Þ

in which

XðτÞ≡ ϵa2γðp; τÞγ�ðp; τ0ÞRðq; τÞ2 ð55Þ

and

δðτÞ≡ 2ϵa2Rðq; τÞ2Im½γðp; τÞγ�ðp; τ0Þ�: ð56Þ

Using the orthogonality properties of the polarization
tensor one can show thatZ

dΩjϵs1ij ðpÞbqi bqj j2 ¼ 16π

15
; ð57Þ

in which dΩ represents the angular parts of d3q.
Combining all contributions, we obtain (see the

Appendix for further details)

PðloopÞ
γ jH3

≃ ðc1eΔN þ c2ΔNÞP2
γ ; ð58Þ

in which c1 ≃ −0.003 and c2 ≃ 0.005. As in the quartic
case the loop correction scales like P2

γ instead of PRPγ .
Unlike the correction from the quartic case we see a mild

dependence on eΔN . However, this does not cause much
harm. Specifically, for the typical USR setup employed for
the PBH formation, one has ΔN ∼Oð1Þ so the contribution
c1eΔN < 1. For example, for ΔN ¼ 5, we obtain

c1eΔN ∼ 0.4. However, note that with ΔN ¼ 5 the loop
corrections in the scalar sector already become very large if
the transition is sharp [1,8].
Now combining the results from the cubic and quartic

interactions, Eqs. (50) and (58), the total one-loop correc-
tion is obtained to be

PðloopÞ
γ ≃ ðc1eΔN þ c3ΔNÞP2

γ ð59Þ

in which c3 ≃ −0.02.
From the above result we see that the loop corrections in

the tensor power spectrum induced from the USR modes
are quite insensitive to the sharpness of the transition
from the USR phase to the SR phase. Indeed, we do not
see any explicit dependence to the sharpness parameter h in
Eq. (59). This is unlike the loop corrections induced on
long scalar perturbations in which the loop corrections

increase linearly with h [8] for jhj ≫ 1 in which PðloopÞ
R ∼

hPCMB
R Pshort

R ∼ hðPCMB
R Þ2e6ΔN . The dependence on the

duration of the USR phase via the exponential factor
e6ΔN is the hallmark of USR loop corrections in the scalar
power spectrum which can invalidate the perturbative
treatment.
In addition, we see that the induced loop corrections in

GWs are quite small in all practical setups. More specifi-

cally we obtain PðloopÞ
γ

Pγ
∼ 10−3eΔNPγ . Assuming Pγ ≲ 10−10
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from the CMB observations, we need ΔN ∼ 30 in order for

the ratio PðloopÞ
γ

Pγ
to approach unity. However, this does not

happen, because by that time the scalar power spectrum
PR has increased by the gigantic amount e6ΔN ∼ e180,
invalidating the perturbative approach completely. One
may wonder if considering a mild transition can change
the above conclusion. More specifically, in a mild tran-
sition one expects that the loop corrections in the scalar
power spectrum becomes suppressed (by slow-roll param-
eters) so one may have more freedom in increasing ΔN.
However, we note that the loop correction in the scalar
power spectrum scales like e6ΔNh [8]. So the sensitivity of
h is not strong enough to relax the value of ΔN consid-
erably. For example, changing h by a factor of 100 from
h ¼ −6 to a mild transition with h ¼ −0.06 will increase
ΔN by the amount 1

6
lnð100Þ ≃ 0.8 which cannot change

our conclusion above that the loop correction in the tensor
spectrum is harmless.
The conclusion is that the long CMB scale gravitational

waves are practically unaffected by the short scalar per-
turbations which leave the horizon during the USR phase.
This conclusion is largely independent of the mechanism of
the transition from the USR phase to the final SR phase.

VI. SUMMARY AND DISCUSSIONS

In this work we have studied the one-loop correction in
the power spectrum of long gravitational waves from
small scale modes which leave the horizon during the
intermediate USR phase. This study is motivated by
similar recent studies performed for loop corrections in
the scalar power spectrum.
As one might have guessed, the results are quite different

from what were obtained for the case of scalar power
spectrum. We have shown that the long tensor power
spectrum is largely unaffected by the loop corrections
from small USR modes. In particular, the one-loop cor-
rections are quite insensitive to the sharpness of the
transition. This might have been expected from the physical
ground that the tensor perturbations only probe the Hubble
expansion rate of the corresponding inflationary back-
ground and are insensitive to slow-roll parameters.

Having said this, it is still a good cross-check to verify
the validity of this physical expectation since a similar
intuition, suggesting that the scalar power spectrum should
be unaffected by intermediate short modes, proved to fail
for the case of a sharp transition [1,2,8]. While our analysis
was focused to the particular setup of SR → USR → SR,
this conclusion may be general. As long as there are no
dramatic changes in the background Hubble expansion
rate, then independent of the nature of transitions in slow-
roll parameters, the superhorizon tensor modes are unaf-
fected by the short scalar modes which may experience
rapid growth. It would be useful to verify this conjecture in
its generality.
In addition, we have shown that the Maldacena con-

sistency condition for the tensor-scalar-scalar bispectrum in
the squeezed limit does hold. The fact that the long tensor
mode is frozen on the superhorizon scale is the key reason
for the validity of this consistency condition. The long
tensor perturbations only induce small anisotropies on the
background for the short modes yielding to the expected
tensor-scalar-scalar consistency condition.
We comment that the loop corrections on the tensor

power spectrum calculated here should not be confused
with the induced gravitational waves from second order
scalar perturbations which have been actively investigated
recently (for a review see [48]), and for works studying
secondary GWs induced in models with a non-Gaussian
feature or a USR setup see [49–52]. While these two
questions are related but the induced GWs from large
second order scalar perturbations are mostly concerned
with small scale GWs, the modes near the peak of scalar
perturbations reenter the horizon during the radiation
dominated era. Here, on the other hand, we look at the
enhancement of the GW spectrum at the CMB scales.
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APPENDIX: IN-IN ANALYSIS FOR CUBIC HAMILTONIAN

In this appendix we present the details of the in-in integral for the cubic Hamiltonians H3.
As discussed before, the loop interaction from the cubic Hamiltonian is given by

hγs1p1
ðτ0Þγs2p2

ðτ0ÞiH3
¼ hγs1p1

ðτ0Þγs2p2
ðτ0Þið2;0Þ þ hγs1p1

ðτ0Þγs2p2
ðτ0Þið1;1Þ þ hγs1p1

ðτ0Þγs2p2
ðτ0Þið0;2Þ ðA1Þ

with

hγs1p1
ðτ0Þγs2p2

ðτ0Þið2;0Þ ¼ −
Z

τ0

−∞
dτ1

Z
τ1

−∞
dτ2hH3ðτ1ÞH3ðτ2Þγs1p1

ðτ0Þγs2p2
ðτ0Þi

¼ hγs1p1
ðτ0Þγs2p2

ðτ0Þi†ð0;2Þ ðA2Þ
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and

hγs1p1
ðτ0Þγs2p2

ðτ0Þið1;1Þ ¼
Z

τ0

−∞
dτ1

Z
τ0

−∞
dτ2hH3ðτ1Þγs1p1

ðτ0Þγs2p2
ðτ0ÞH3ðτ2Þi: ðA3Þ

Let us start with hγs1p1
ðτ0Þγs2p2

ðτ0Þið1;1Þ. Using the Hamiltonian (21), performing all contractions, and employing the
properties of the polarization tensor given in Eq. (25) one obtains

hγs1p1
ðτ0Þγs2p2

ðτ0Þi0ð1;1Þ ¼ 4M4
Pδ

s1s2

Z
d3q
ð2πÞ3 jϵ

s1
ij ðpÞqiqjj2

����
Z

τ0

−∞
dτXðτÞ

����2; ðA4Þ

in which

XðτÞ≡ ϵa2γðp; τÞγ�ðp; τ0ÞRðq; τÞ2: ðA5Þ
Similarly, for hγs1p1

ðτ0Þγs2p2
ðτ0Þi0ð2;0Þ we obtain

hγs1p1
ðτ0Þγs2p2

ðτ0Þi0ð2;0Þ ¼ −4M4
Pδ

s1s2

Z
d3q
ð2πÞ3 jϵ

s1
ij ðpÞqiqjj2

Z
τ0

−∞
dτ1Xðτ1Þ

Z
τ1

−∞
dτ2Zðτ2Þ; ðA6Þ

in which

ZðτÞ≡ ϵa2γðp; τÞγ�ðp; τ0ÞR�ðq; τÞ2: ðA7Þ

Noting that hγs1p1
ðτ0Þγs2p2

ðτ0Þið2;0Þ ¼ hγs1p1
ðτ0Þγs2p2

ðτ0Þi†ð0;2Þ, we obtain

hγs1p1
ðτ0Þγs2p2

ðτ0Þi0ð2;0Þ þ hγs1p1
ðτ0Þγs2p2

ðτ0Þi0ð0;2Þ
¼ −4M4

Pδ
s1s2

Z
d3q
ð2πÞ3 jϵ

s1
ij ðpÞqiqjj2

Z
τ0

−∞
dτ1

Z
τ1

−∞
dτ2

h
Xðτ1ÞZðτ2Þ þ X�ðτ1ÞZ�ðτ2Þ

i
: ðA8Þ

To proceed further, let us define

ZðτÞ≡ X�ðτÞ þ iδðτÞ�; ðA9Þ

in which the new variable δ, from Eqs. (A5) and (A7), is obtained to be

δðτÞ ¼ 2ϵa2Rðq; τÞ2Im½γðp; τÞγ�ðp; τ0Þ�: ðA10Þ

With the above relation between XðτÞ and ZðτÞ, one can show that the nested time integrals in Eq. (A8) are rearranged in the
following form:Z

τ0

−∞
dτ1

Z
τ1

−∞
dτ2½Xðτ1ÞZðτ2Þ þ X�ðτ1ÞZ�ðτ2Þ� ¼

Z
τ0

−∞
dτjXðτÞj2 − 2

Z
τ0

−∞
dτ1

Z
τ1

−∞
dτ2Im½Xðτ1Þδ�ðτ2Þ�: ðA11Þ

We see that the first integral in Eq. (A11) cancels the contribution of hγs1p1
ðτ0Þγs2p2

ðτ0Þi0ð1;1Þ in Eq. (A4) so at the end we are

left with

hγs1p1
ðτ0Þγs2p2

ðτ0Þi0H3
¼ −8M4

Pδ
s1s2

Z
d3q
ð2πÞ3 jϵ

s1
ij ðpÞqiqjj2

Z
τ0

−∞
dτ1

Z
τ1

−∞
dτ2Im½X�ðτ1Þδðτ2Þ�: ðA12Þ

To go further, we need to calculate the contribution of the polarization tensor in the above integral. With the specific form
of the polarization tensor given in Eq. (26), one can show that

ϵ�ijðpÞbqi bqj ¼ 1ffiffiffi
2

p sin2ðθÞe�2iϕ; ðA13Þ
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in which the orientation of the unit vector q̂ in a coordinate where p̂ is along the third axis is specified by the
angles ðϕ; θÞ in which q̂ ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ. Consequently, one can easily check thatZ

dΩðϵs1ij ðpÞbqi bqjÞðϵs2�mnðpÞcqm bqnÞ ¼ 16π

15
δs1s2 : ðA14Þ

Plugging the above result into Eq. (A12) we obtain

hγs1p1
ðτ0Þγs2p2

ðτ0Þi0H3
¼ −

16

15π2
M4

Pδ
s1s2

Z
dqq6

Z
τ0

−∞
dτ1

Z
τ1

−∞
dτ2Im½X�ðτ1Þδðτ2Þ�: ðA15Þ

In performing the above nested integral, it is useful to note
that

Im½γðp; τÞγ�ðp; τ0Þ� ¼ −
2H2

3M2
P
τ3 ðA16Þ

and

γðp; τÞγ�ðp; τ0Þ ¼
2H2

M2
Pp

3
þOðp−1Þ: ðA17Þ

There is an important comment in order. We emphasize
that we integrate over the modes which become super-
horizontal during the USR phase, so the time integrals in
Eq. (A15) are actually restricted to − 1

q < τ2 < τ1 < τe.

This is to make sure that we only count the modes which
become classical during the USR phase. The modes which
are subhorizontal during the USR phase are not classical,
and their effects may be collected under a UV renormal-
ization scheme which is not our question of interest here.
With the same logic, for the integral over the momentum q
we integrate over the modes qi < q < qe which become
superhorizontal during the USR phase.
Using the relations (A16) and (A17) for δðτ2Þ and Xðτ1Þ

in the nested integral (A15) we obtain Eq. (58) in the main
text. We comment that the main contribution in the time
integral in Eq. (A15) comes for the USR period,
τi < τ1;2 < τe, while the contribution from the final SR
phase, τe < τ1;2 < τ0, is subleading. To perform the analy-
sis of the nested integral in Eq. (A15) we use the Maple

computational software.
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