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Particles with masses much larger than the inflationary Hubble scale, HI , can be pair-produced
nonadiabatically during inflation. Due to their large masses, the produced particles modify the curvature
perturbation around their locations. These localized perturbations eventually give rise to localized
signatures on the cosmic microwave background (CMB), in particular, pairwise hotspots (PHSs). In this
work, we show that convolutional neural networks (CNNs) provide a powerful tool for identifying PHSs on
the CMB. While for a given hotspot profile a traditional matched filter analysis is known to be optimal, a
neural network learns to effectively detect the large variety of shapes that can arise in realistic models of
particle production. Considering an idealized situation where the dominant background to the PHS signal
comes from the standard CMB fluctuations, we show that a CNN can isolate the PHSs with Oð10Þ%
efficiency even if the hotspot temperature is Oð10Þ times smaller than the average CMB fluctuations.
Overall, the CNN search is sensitive to heavy particle massesM0=HI ¼ Oð200Þ, and constitutes one of the
unique probes of very high energy particle physics.
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I. INTRODUCTION

An era of cosmic inflation [1–3] in the primordial
Universe remains an attractive paradigm to explain the
origin of (approximately) scale invariant, Gaussian, and
adiabatic primordial perturbations, inferred through cosmic
microwave background (CMB) and large scale structure
observations. This inflationary era can be characterized by
a rapid expansion of spacetime, controlled by an approx-
imately constant Hubble scale HI. Excitingly, based on the
current constraints,HI can be as large as 5 × 1013 GeV [4].
This fact, coupled with the feature that particles with
masses up to order HI can get quantum mechanically

produced during inflation, makes the inflationary era a
natural and unique arena to directly probe very high energy
particle physics.
There are several classes of mechanisms through which

heavy particles, which we label as χ, can be produced
during inflation. When their mass mχ ≲HI , quantum
fluctuations of the inflationary spacetime itself can effi-
ciently produce the χ particles. However, formχ ≫ HI, this
production gets suppressed exponentially as e−πmχ=HI [5],
and other mechanisms are necessary for efficient particle
production to occur.
To illustrate this, we consider the standard slow-roll

inflationary paradigm containing an inflaton field ϕ whose
homogeneous component we denote by ϕ0ðtÞ. Normaliza-
tion of the primordial scalar power spectrum requires the
“kinetic energy” of this homogeneous component to be
jdϕ0=dtj1=2 ≈ 60HI [4]. Therefore, heavy particles, if appro-
priately coupled to the inflatonkinetic term, can be efficiently
produced for mχ ≲ 60HI. One class of this involves a
coupling of the type ∂μϕJμ, where Jμ is a charged current
made up of the χ field. For some recent work implementing
this idea see, e.g., Refs. [6–14]. In these constructions, heavy
particle production happens continuously in time, in a
scale-invariant fashion. In other words, the coupling of the
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inflaton to χ particles does not break the shift symmetry,
ϕ → ϕþ constant, of the inflaton.
A different class of mechanisms can lead to particle

production at specific times during the inflationary evolu-
tion. This can happen if the shift symmetry of the inflaton is
broken in a controlled manner, e.g., to a discrete shift
symmetry. This breaking of shift symmetry translates into a
violation of scale invariance and selects out specific time
instant(s) when particle production can occur. Examples
of such mechanisms appear in Refs. [15–21], and see
Refs. [22,23] for reviews.
Aparticularly interesting example of this lattermechanism

arises in the context of ultraheavy particles with time-
dependent masses. More specifically, suppose mχ varies as
a function of ϕ in a way such that, as ϕ passes through a
specific point ϕ� on the inflaton potential at time t�, mχðϕÞ
passes through a local minimum. In this case, nonadiabatic χ
particle production can occur at time t�. Following their
production, χ particles can again become heavy, mχ ≫
jdϕ0=dtj1=2, and owing to this large mass they can backreact
on the inflationary spacetime, contributing to the curvature
perturbation around their locations.
We can describe the effects of these additional curvature

perturbations qualitatively in the following way, leaving the
details for the next section. Following their production, the
perturbations exit the horizon when their wavelengths
become larger than 1=HI and become frozen in time.
After the end of inflation, they eventually reenter the
horizon and source additional under- or overdensities in
the thermal plasma in the radiation dominated Universe.
Overdense regions, for example, would trap more plasma,
and therefore would emit more photons at the time of CMB
decoupling.1 Therefore, we would observe localized
regions on the sky where CMB would appear hotter than
usual. As we will discuss below, the sizes of these localized
“spots” are determined by the size of the comoving
horizon, η�, at the time of particle production t�. While
η� can take any value, for concreteness we will consider
η� ∼ 100 Mpc in this work. This implies that the localized
spots would subtend ∼1° on the CMB sky.
The next question one may ask is what is an efficient

strategy to look for such signatures. Since this scenario is
associated with a violation of scale invariance, character-
ized by η�, one would expect to see “features” on the CMB
power spectrum or even higher-point correlation functions.
However, in the regime we focus on, the total number of
produced χ particles is still small to the extent that the CMB
power spectrum is minimally affected, as we explicitly
check later. On the other hand, the spots can still be
individually bright enough such that we can look for them

directly in position space. Higher N-point functions can be
more sensitive than the power spectrum, but recent work [24]
showed that an analysis of higher N-point functions due to
particle production can be resummed to the much simpler
profile search in position space, assuming the density of
profiles is low enough so that they do not usually overlap. In
this case a profile search will always be statistically optimal.
This class of signatures in the context of heavy particle
production were discussed in Refs. [25,26], and in Ref. [27]
the associated CMB phenomenology was described and a
simple “cut-and-count” search strategy was developed.
Using the cut-and-count strategy, Ref. [27] constrained the
parameter space of ultraheavy scalars and illustrated regions
where a position space search is more powerful than power
spectrum-based searches.
In more detail, Ref. [27] considered a single instance of

particle production during the time when CMB-observable
modes exit the horizon. Conservation of momentum
implies that such heavy particles are produced in pairs.
However, owing to their large mass, the particles do not
drift significantly following their production, and it was
argued that the separation between the two particles
forming a pair can be taken to be a uniformly random
number between 0 and η�. Finally, it was shown that the
coupling g of χ to the inflaton determines how hot/cold
the associated spot on the CMB is with the heavy particle
mass mχ determining the total number of such spots on the
sky. To summarize, the three parameters determining the
hot/cold spot phenomenology are fg;mχ ; η�g, as will be
reviewed in more detail in the next section. While both cold
or hot spots can arise depending on the value of η�, for the
choices of η� in this work, only hotspots will appear on
the CMB. Therefore, we will often be referring to these
localized spots as hotspots, in particular as pairwise
hotspots (PHSs) since the spots appear in pairs.
In the present work, we improve upon Ref. [27] in

several important ways. First, in Ref. [27] we only
considered hotspots that lie within the last scattering
surface, with a thickness of Δη ≈ 19 Mpc [28]. In this
work we adopt a more realistic setup and include hotspots
that are distributed in a larger region around the last
scattering surface. We take this region to have a thickness
of 2η� and we show in Sec. II how hotspots lying outside
the Δη shell can still affect the CMB. The overall signature
of PHSs then changes nontrivially. For instance, with the
improved treatment we can have one spot of a pair lying on
the CMB surface, while the other can lie off the CMB
surface, leading to an asymmetric signal.
Second, we develop a neural-network-based search for

the hotspot profiles. In principle, a neural network is not
necessary to search for a profile of known shape which is
linearly added to the Gaussian background. In this case, the
standard method of constructing a so-called matched filter
can be shown to be the optimal statistic to detect the profile
(see, e.g., [24]). Matched filter-based searches for radially

1To be more accurate, one also needs to take into account the
gravitational redshift of the photons as they climb out of the
gravitational potential wells. We will compute this effect in
the next section.
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symmetric profiles in the CMB have been previously
reported for example in [29–31], with the physical motiva-
tion of searching for inflationary bubble collisions. Various
matched filters have also been used in the Planck anisotropy
and statistics analysis [32,33] without finding a significant
excess. However, the signal that we are looking for here is
more complicated. Profiles come in pairs (breaking radial
symmetry of the profile), they can be overlapping, and,
depending on their production time and orientation with
respect to the surface of last scattering, their appearance on
the CMB changes. While it is in principle possible to cover
the entire space of profiles with a very large bank of matched
filters, this would be a complicated and computationally
challenging approach. A neural network, on the other hand,
can learn an effective representation of these filters that
interpolates well between all profile shapes, including over-
lapping ones. We also implement the matched filter method
below, and show that in the simplified case with a single
profile type, our neural network performs similar to the
optimal matched filter.
This work is organized as follows. We first describe a

simple model of χ particle production in Sec. II and
summarize how the total number of produced particles
depends on the model parameters along with various proper-
ties of the PHSs. We improve the calculation of the hotspot
profiles by taking into account the line-of-sight distance to
the location of the hotspots which can be off the CMB
surface. In Sec. III, we describe the simulation of the PHS
signals and the CMB maps in angular space, assuming that
the dominant background to the PHS signal comes from the
standard CMB fluctuations. In Sec. IV, we describe the
convolutional neural network (CNN) analysis and estimate
the sensitivity the CNN can achieve for a PHS search. We
then translate this sensitivity to the mass-coupling parameter
space of the heavy particles. We also compare the CNN
analysis with a matched filter analysis for simplified hotspot
configurations. We conclude in Sec. V.

II. PAIRWISE HOTSPOT SIGNALS

To model heavy particle production, we consider a
scenario where the mass of χ is inflaton dependent,
mχðϕÞ. Therefore as ϕ moves along its potential, efficient,
nonadiabatic particle production can occur if mχðϕÞ varies
with ϕ rapidly. With a mass term mχðϕÞ2χ2, pairs of χ
particles would be produced, as required by three-momenta
conservation. The phenomenology of such heavy particles
depend on their mass, coupling to the inflaton, and the
horizon size at the time of their production. We now review
these properties more qualitatively, referring to Ref. [27]
for a more complete discussion.

A. Inflationary particle production

We parametrize the inflationary spacetime metric as

ds2 ¼ −dt2 þ a2ðtÞdx⃗2; ð1Þ

with the scale factor aðtÞ ¼ eHIt and HI the Hubble scale
during inflation that we take to be (approximately) con-
stant. To model particle production in a simple way, we
assume mχðϕÞ passes through a minimum as ϕ crosses a
field value ϕ�. Then we can expand mχðϕÞ near ϕ� as

mχðϕÞ ¼ mχðϕ�Þ þ
1

2
m00

χðϕ�Þðϕ − ϕ�Þ2 þ � � � ; ð2Þ

where primes denote derivatives with respect to ϕ. Thus the
mass term would appear in the potential as

mχðϕÞ2χ2¼mχðϕ�Þ2χ2þmχðϕ�Þm00
χðϕ�Þðϕ−ϕ�Þ2χ2þ��� :

ð3Þ

While away from ϕ�, mχðϕÞ can vary in different ways,
most of the important features of particle production are
determined by the behavior of mχðϕÞ around ϕ�. For
example, the number density of χ particles is determined
by mχðϕ�Þ, as we will see below. Similarly, the spatial
profiles of the hotspots on the CMB is determined by the
dependence ðϕ−ϕ�Þ2∼ ϕ̇2

0ðt− t�Þ2∼ ðϕ̇0=HIÞ2 logðη=η�Þ2,
where we have used the relation between t and conformal
time η, η ¼ ð−1=HIÞe−HIt (an overdot here denotes a
derivative with respect to time). Given the importance of
the physics around ϕ�, we will denote, mχðϕ�Þ2 ≡M2

0,
mχðϕ�Þm00

χðϕ�Þ≡ g2, and ϕ� ≡ μ=g, to describe particle
production. Thus we will write the Lagrangian for χ as

Lχ ¼ −
1

2
ð∂μχÞ2 −

1

2
ððgϕ − μÞ2 þM2

0Þχ2: ð4Þ

As ϕ nears the field value ϕ�, the mass of the χ field changes
nonadiabatically and particle production can occur.
The efficiency of particle production depends on the

parameters g,M0, and η�, the size of the comoving horizon
at the time of particle production. This can be computed
using the standard Bogoliubov approach, and resulting
probability of particle production is given by [20,34]

jβj2 ¼ exp

�
−
πðM2

0 − 2H2
I þ k2η2�H2

I Þ
gjϕ̇0j

�
: ð5Þ

The normalization of the scalar primordial power spectrum,
in the context of single-field slow-roll inflation, fixes
As ¼ H4

I =ð4π2ϕ̇2
0Þ ≈ 2.1 × 10−9 [4], which determines ϕ̇0 ≈

ð58.9HIÞ2.
The above expression (5) characterizes the probability of

particle production with physical momentum kp ¼ kη�HI .
The total number density of particles can then be computed
by integrating over all such k modes,
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n ¼ 1

2π2

Z
∞

0

dkpk2pe−πk
2
p=ðgjϕ̇0jÞe−πðM2

0
−2H2

I Þ=ðgjϕ̇0jÞ;

¼ 1

8π3
ðgϕ̇0Þ3=2e−πðM2

0
−2H2

I Þ=ðgjϕ̇0jÞ: ð6Þ

From an observational perspective, it is more convenient to
relate n to the total number of spots that would be visible on
the CMB sky. To that end, we need to specify the associated
spacetime volume. Considering a shell of thickness Δηs
around the CMB surface, the total number of spots in that
shell is given by [27]

Nspots ¼ n ×

�
a�
a0

�
3

× 4πχ2recΔηs ¼
1

2π2

�
gϕ̇0

H2
I

�
3=2Δηs

χrec
ðk�χrecÞ3e−πðM2

0
−2H2

I Þ=ðgjϕ̇0jÞ;

≈ 4 × 108 × g3=2
�

Δηs
100 Mpc

��
100 Mpc

η�

�
3

e−πðM2
0
−2H2

I Þ=ðgjϕ̇0jÞ: ð7Þ

Here a� and a0 ¼ 1 are the scale factors at the time of
particle production and today, respectively. The quantity
χrec is the distance of the CMB surface from us and
approximately equals 13871 Mpc, obtained from Planck’s
best-fit ΛCDM parameters, and k� ¼ a�HI ¼ 1=η� is the
mode that exits the horizon at the time of particle
production.

B. Effect on the CMB

We now discuss the detailed properties of the spots and
how they modify the CMB.

1. Primordial curvature perturbation from heavy particles

Owing to their large mass, the heavy particles can
backreact on the spacetime metric around their locations,
and can give rise to nontrivial curvature perturbations. The
profile of such a curvature perturbation can be computed
using the in-in formalism and the result is given by [26]

hζHSðrÞi ¼
HI

8ϵπM2
pl

�
Mðη ¼ −rÞ; if r ≤ η�
0; if r > η�

: ð8Þ

Here ϵ ¼ jḢIj=H2
I is a slow-roll parameter, and we have

anticipated that this curvature perturbation would give rise
to a hotspot (HS), rather than a coldspot. Importantly, the
variation of the mass as a function of conformal time η
controls the spatial profile. This variation can be computed
from Eq. (4) by noting the slow-roll equation ϕ − ϕ�≈
ϕ̇0ðt − t�Þ, which gives

MðηÞ2 ¼ g2ϕ̇2
0

H2
I
lnðη=η�Þ2 þM2

0: ð9Þ

Here we have used the relation between cosmic time t and
the conformal time η, that also determines the size of the
comoving horizon, t − t� ¼ −ð1=HIÞ ln ðη=η�Þ.
Using the slow-roll relation ϕ̇2

0 ¼ 2ϵH2
IM

2
pl and the

fact that M2
0 ∼ gjϕ̇0j so that Nspots is not significantly

exponentially suppressed [see Eq. (7)], we can drop the

contribution of the second term in Eq. (9) away from η�.
The profile can then be simply written as

hζHSðrÞi ¼
gH2

4πjϕ̇0j
lnðη�=rÞθðη� − rÞ: ð10Þ

Given the typical size of a standard quantum mechanical
fluctuation hζ2qi1=2 ∼H2=ð2πϕ̇0Þ, we see the curvature
perturbation associated with a hotspot differs primarily by
g=2. In this work we will choose g ∼Oð1Þ, so the two types
of perturbations will be of the same order of magnitude.

2. CMB anisotropy

After these fluctuation modes reenter the horizon, they
source temperature anisotropies and give rise to localized
spots on the CMB sky. To compute the resulting anisot-
ropies, we first write metric perturbations,

ds2 ¼ −ð1þ 2ΨÞdt2 þ a2ðtÞð1þ 2ΦÞδijdxidxj; ð11Þ

in the Newtonian gauge. The temperature fluctuations of
the CMB corresponding to Fourier mode k⃗, pointing to
direction n̂ in the sky is given by

Θðk⃗; n̂; η0Þ ¼
X
l

ilð2lþ 1ÞPlðk̂ · n̂ÞΘlðk; η0Þ: ð12Þ

Here the multipole Θlðk; η0Þ depends on the primordial
perturbation ζðk⃗Þ and a transfer function TlðkÞ as

Θlðk; η0Þ ¼ TlðkÞζðk⃗Þ; ð13Þ

with η0 denoting the conformal age of the Universe today.
Importantly, for our scenario TlðkÞ itself can be computed
exactly as in the standard ΛCDM cosmology. It can be
computed after taking into account the Sachs-Wolfe (SW),
the integrated Sachs-Wolfe (ISW), and the Doppler (Dopp)
effect [35],
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Θlðk; η0Þ ≃ ½Θ0ðk; ηrecÞ þ Ψðk; ηrecÞ�jlðkðη0 − ηrecÞÞ þ
Z

η0

0

dηe−τ½Ψ0ðk; ηÞ −Φ0ðk; ηÞ�jlðkðη0 − ηÞÞ

þ 3Θ1ðk; ηrecÞ
�
jl−1ðkðη0 − ηrecÞÞ − ðlþ 1Þ jlðkðη0 − ηrecÞÞ

kðη0 − ηrecÞ
�
;

≡ ½fSWðk; l; η0Þ þ fISWðk; l; η0Þ þ fDoppðk; l; η0Þ�ζðk⃗Þ;

where τ is the optical depth. The above expression relates a primordial perturbations ζ to a temperature anisotropy Θl.

3. Temperature anisotropy due to heavy particles

Regardless of the origin of ζðk⃗Þ is, we can compute
fSWðk; l; η0Þ, fISWðk; l; η0Þ, and fDoppðk; l; η0Þ as in the
standard ΛCDM cosmology. Thus converting the position
space profile in Eq. (10) to momentum space and using
Eq. (II B 0 b), we can get the observed profile of a hotspot
on the CMB sky. This Fourier transform of the profile (10)
can be written as

hζHSðk⃗Þi ¼ e−ik⃗·x⃗HS
fðkη�Þ
k3

; ð14Þ

with a profile function

fðxÞ ¼ gH2

ϕ̇0

ðSiðxÞ − sinðxÞÞ; SiðxÞ ¼
Z

x

0

dt sinðtÞ=t:

ð15Þ

We parametrize the distance to the hotspot as

x⃗0 − x⃗HS ¼ −ðη0 − ηHSÞn̂HS: ð16Þ

Here x⃗0 and x⃗HS parametrize our and the hotspot locations,
respectively, and n̂HS points to the direction of the hotspot.
The quantity ηHS denotes the location of the hotspot in
conformal time with η0 being the size of the present epoch.
In the earlier paper, we took the hotspot to be on the CMB
surface and hence set ηHS ¼ ηrec ≈ 280 Mpc. In this work,
we allow the hotspots to be away from the last scattering
surface with ηHS between ηrec − η� and ηrec þ η�, and study
their signals on the CMB surface. This set up is summa-
rized in Fig. 1.
As derived earlier, the temperature due to the hotspot is

given by (dropping η0 from the argument),

Θðx⃗0; n̂Þ ¼
Z

d3k⃗
ð2πÞ3 e

ik⃗·ðx⃗0−x⃗HSÞ
X
l

ilð2lþ 1ÞPlðk̂ · n̂ÞðfSWðk; lÞ þ fISWðk; lÞ þ fDoppðk; lÞÞ
fðkη�Þ
k3

: ð17Þ

Here n̂ denotes the direction of observation. The functions fSWðk; lÞ and fISWðk; lÞ are extracted from the transfer function
using CLASS [36,37] as in Ref. [27]. Using the plane wave expansion

e−ik⃗·r⃗ ¼
X∞
l¼0

ð−iÞlð2lþ 1ÞjlðkrÞPlðk̂ · r̂Þ ð18Þ

and the relation

Plðk̂ · n̂Þ ¼
4π

ð2lþ 1Þ
Xl

m¼−l
Ylmðn̂ÞY�

lmðk̂Þ; ð19Þ

we get

Θðx⃗0; n̂; ηHSÞ ¼
1

2π2

Z
∞

0

dk
k

X
l

jlðkðη0 − ηHSÞÞð2lþ 1ÞPlðn̂ · n̂HSÞTsumðk; lÞfðkη�Þ; ð20Þ

Tsumðk; lÞ≡ fSWðk; lÞ þ fISWðk; lÞ þ fDoppðk; lÞ: ð21Þ
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Note Θðx⃗0; n̂; ηHSÞ depends on ηHS, the location of the
hotspot—which need not be on the last scattering surface as
mentioned above. Given the spherically symmetric profile
of the hotspot, the Doppler contribution to Θðx⃗0; n̂; ηHSÞ is

small, from now on we only include the SW and ISW
corrections for our analysis.

4. Central temperature

It is useful to compute the temperature anisotropy at the
central part of a hotspot. To that end, we set n̂ ¼ n̂HS,
implying Plðn̂ · n̂HSÞ ¼ 1, and

Θcentralðx⃗0; ηHSÞ ¼
1

2π2

Z
∞

0

dk
k

X
l

jlðkðη0 − ηHSÞÞð2lþ 1ÞTsumðk; lÞfðkη�Þ: ð22Þ

In Fig. 2 we show the SW and ISW contributions to the
central temperature as a function of ηHS after multiplying
by the average CMB temperature T0 ¼ 2.7 K for
η� ¼ 160 Mpc. For completeness, we also show the central
temperature in Fig. 3, as obtained in [27], as a function of
hotspot size η�, assuming the hotspot is located on the surface
of last scattering. As we can see, the pair-produced CMB
spots are indeed hotspots when η� ≲ Gpc. For η� >
6600 Mpc coldspots as opposed to hotspots arise. This is
because the negative SWcontribution dominates the positive
ISW contribution, with the combination being negative.

III. SIMULATIONOFTHECMBANDPHSSIGNALS

In order to design a PHS search, we simulate the PHS
signal and CMB maps so that we can estimate the signal

capture rate (“true positive rate”), and the background
count for a CNN analysis. We notice that there are three
types of backgrounds to consider for a PHS search: (i) the
noise of the CMB detector, (ii) the astrophysical fore-
ground, and (iii) the background from the standard pri-
mordial fluctuations.
A realistic analysis needs to take into account detector

noise and foregrounds. In our analysis, we consider profiles
on relatively large angular scales, l < 1000. For these
scales current CMB temperature data, such as from Planck,
is signal dominated and we thus do not need to add
instrumental noise to our simulations. The astrophysical
foreground comes from compact objects such as galaxies,
galaxy clusters, gas, and dust, which can also produce
localized signals. Part of these astrophysical foregrounds
can be cleaned out due to their frequency dependence (for a

FIG. 2. Central temperature Θcentral × T0 of a hotspot as a
function of the (radial) location of the hotspot. We choose η� ¼
160 Mpc and g ¼ 1. The dotted gray line indicates the location
of the recombination surface. Larger (smaller) ηHS implies the
hotspots are closer to (further from) us. We also show contribu-
tion of the Sachs-Wolfe term (orange) and the integrated Sachs-
Wolfe term (purple) in determining the total temperature (olive).
The left and right edges of the plot are at ηHS ¼ ηrec − η� and
ηHS ¼ ηrec þ η�, respectively.

FIG. 1. Representation of a hotspot on the CMB sky. Our
location and the location of a hotspot are denoted as x⃗0 and x⃗HS,
respectively, defined with respect to an arbitrary coordinate
system. The black circle denotes the surface of last scattering,
located at ηrec ≈ 280 Mpc in conformal coordinates. Due to
momentum conservation, heavy particles are produced in pairs,
and the distance between the two members of a pair can vary
between 0 and η�. Therefore, in our analysis we allow the two
members to be anywhere within the gray shaded region. We
compute the temperature profile of a hotspot as a function of
direction of observation n̂, with the hotspot center in the direction
of n̂HS.

TAEGYUN KIM et al. PHYS. REV. D 108, 043525 (2023)

043525-6



review see, e.g., Ref. [38]). For the signal sizes that we
consider, corresponding to l < 1000, we do not expect
significant astrophysical contamination after foreground
cleaning and masking of the galactic plane, while for
significantly smaller scales a detailed study of residual
foregrounds and point sources would be required (see, e.g.,
Planck’s component separation analysis [39]). In the
following, we therefore only consider the background from
the primordial, almost Gaussian, fluctuations when study-
ing the PHS signal. This last type of background is
“irreducible” in the sense that it will always be present,
originating from the fluctuations of the inflaton itself. We
will assume the CMB maps are masked to reduce the
astrophysical foregrounds and badly conditioned pixels and
retain only 60% of the sky for the analysis. The number is
similar to the sky fraction used in the Planck analysis [40].
Unlike the analysis in [27] that was based on a HEALPix

[41] simulation, in this work, we use the QUICKLENS

package2 to simulate the CMB maps. QUICKLENS allows
us to work in the “flat sky approximation,” neglecting sky
curvature that is irrelevant to the size of the PHS profile we
consider, as well as to draw sample maps with periodic
boundary conditions to avoid complications due to mask-
ing. QUICKLENS can take a theoretical temperature power
spectrum to produce mock flat sky CMB maps. To provide
an initial input, we use the CLASS (v3.2) package [36,37] to
compute a temperature anisotropy spectrum CTT

l based on
the Planck 2018 [42] best fit ΛCDM parameters,

fωcdm;ωb; h; 109As; ns; τreiog
¼ f0.120; 0.022; 0.678; 2.10; 0.966; 0.0543g: ð23Þ

We will comment on the sensitivity of the CNN analysis to
the ΛCDM parameters in Sec. IVA and Appendix A. We
specify lmax ¼ 3500 in the code for the maximum number
of l modes used for the image generation. As explained
above, our signal profiles have support on length scales
corresponding to an l < 1000, where instrumental noise is
negligible compared to the primary background from CMB
and can thus be ignored. An application to significantly
smaller angular scales would need to take into account the
noise properties of the experiment. We choose the image
resolution such that 1 pixel ¼ 10−3 radians to match
Planck’s angular resolution down to ≈5 arcminutes [43].
We also use the relation between the angle and the
comoving length on the last scattering surface Δη=χrec.

3

For instance, if the separation between two hotspot centers
is 160 Mpc on the last scattering surface, then the two
centers are 12 pixels away on the image, with χrec ¼
13871 Mpc for Planck’s best-fit ΛCDM parameters.
For the CNN analysis, we begin by generating 3602 pixel

images, corresponding to a ½−10.32°; 10.32°� region in
longitude and latitude (nx ¼ 360 in QUICKLENS). We then
cut out a 902 patch from each of the 3602-sized maps.
These nonperiodic, smaller maps are then used for further
analysis. In particular, for our CNN analysis, we generate
160k training images, 40k validation 902 pixel images, and

FIG. 3. Central temperature (green) of a hotspot originating from a heavy particle for g ¼ 1, based on Eq. (22) with ηHS ¼ ηrec. The
green line illustrates the variation of the observed anisotropy as a function of the “size” of the hotspot, determined by the comoving
horizon η� at the time of particle production. The horizontal gray line gives a rough benchmark of the magnitude of the large-scale
temperature anisotropy due to only the standard quantum fluctuations of the inflaton ð1=5Þhζ2qi, without taking into account acoustic
oscillations. The dashed vertical gray lines show the benchmark choices for the hotspot size η� ¼ 50, 100, 160 Mpc chosen in the
subsequent discussion. We take the plot from Ref. [27].

2https://github.com/dhanson/quicklens.

3In Ref. [27], the angular size of one pixel was obtained by
matching the pixel number to the total degrees of freedom in the l
modes (l2

max þ lmax ¼ 4π=θ2pixel), together with the approxima-
tion lmax ≃ η0=ηpixel. Although the matching reproduces the same
angular resolution, the relation between lmax and ηpixel gives
Δθ ¼ ffiffiffiffiffi

4π
p

Δη=χrec. Since lmax ≃ η0=ηpixel comes from the
approximation of the k-mode integral with jlðkχrecÞ and
k ¼ 2π=η, the relation between the angle and length is less
robust than Δθ ¼ Δη=χrec.
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an additional 5k test images to quantify the network
performance. Training the neural network on smaller
patches yields better training convergence and does not
lead to loss of information as long as the characteristic size
of the signal is smaller than the size of the patch.
The profile of each of the PHSs is described by Eq. (20),

where the function depends on the distance to the hotspots

ðη0 − ηHSÞ and the angle cos−1ðn̂ · n̂HSÞ, as defined in
Fig. 1. The overall magnitude of the signal temperature
is proportional to the coupling g. When generating the
signal, we require both the hotspots to be within a shell�η�
around the last scattering surface as shown in Fig. 1. For
example, when studying the case with η� ¼ 160 Mpc, we
first divide the�160 Mpc region into 50 concentric annuli,
each having equal thickness. We then choose the first
hotspot from a pair to lie on any of these 50 annuli with
equal probability. The second member is then chosen
anywhere within a sphere of radius η� centered on the
first hotspot, again with a uniform random distribution.4 A
pair is kept for further analysis only if both the spots of the
pair falls within the �η� shell of the last scattering surface.
Since the distribution in a 3D volume allows hotspots to
orient along the line-of-sight direction, the average sepa-
ration between the two hotspots projected on the last
scattering surface is smaller than the separation assumed
in Ref. [27] that only considered PHSs on the last scattering
surface.
Once we generate PHS images with random orientation

and separation between two hotspots, we pixelate them and
add the PHS image to the simulated CMB maps to produce
the signal image. We follow this procedure for all the signal
images in our study. In this work, we study benchmark
models with horizon sizes

η� ¼ 50; 100; 160 Mpc; ð24Þ

and couplings from g ¼ 1 to 4. Specifying g and η� sets the
overall temperature and the profile of the hotspot, á la
Eq. (20). Within the approximations we have made in
Sec. II, the remaining model parameter,M0, only affects the
overall number of hotspots NPHS [through Eq. (7)]. Going
forward, we will compute the number of hotspots that can
be hidden within the background fluctuations for given
benchmark coupling and η�. Then, using Eq. (7), the upper
bounds onNPHS can be translated into lower bounds onM0.
As an illustration of what a benchmark PHS looks like, in
Fig. 5 we show examples of the CMB background (left),
PHS signal (middle), and the signal plus background (right)
for g ¼ 4 with different choices of η�. Note that it is
difficult to identify the signals by eye in the plots on the
right, even with such a large coupling.
Compared to Ref. [27], the benchmark η� values are

identical, but we choose smaller values of the coupling g.
This is because we find the CNN analysis is much more
powerful than the “cut and count” method adopted in

FIG. 4. Radial profile of a single hotspot with the heavy particle
position inside (olive), on (orange), and outside (purple) of the
last scattering surface. The locations of these hotspots in
conformal time are taken to be ηrec þ η�, ηrec, and ηrec − η�,
respectively, as denoted by the labels. From upper left to bottom:
horizon size for the hotspot production at η� ¼ 50, 100, 160 Mpc.
The plots assume the inflaton-χ coupling g ¼ 1.

4Our motivation for the uniform distribution is driven by
Eq. (6). There, the integral is dominated by kp ∼M0, as small kp
are suppressed by the k2p factor and large kp are exponentially
squashed. Assuming that χ are produced semirelativistically and
can travel a horizon scale distance, we expect a uniform
distribution of hotspots within �η� of the last scattering surface.
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Ref. [27], and therefore capable of identifying fainter
hotspots. We chose the benchmark η� values to test out
a variety of different PHSs; η� ¼ 160 Mpc hotspots have a
very high central temperature (Fig. 3), while η� ¼ 50 Mpc
hotspots are significantly cooler and have smaller interspot
separation. The choice η� ¼ 100 Mpc sits between these
for comparison.

IV. IDENTIFYING PAIRWISE
HOTSPOTS WITH CNN

In this section we describe the training process for the
CNN using 902 pixel images, and discuss some qualitative
properties of the training result. We then apply the trained
network to a larger sky map and present results on the upper
bound on the number of PHSs for given values of η� and g.
We end the section with some comparisons between the
CNN and a matched filter analysis.

A. Network training on small sky patches

CNNs are one of the most commonly used deep neural
networks specialized for image recognition [44,45]. In this
study, we build the network using PyTorch [46] with the
structure shown in Fig. 6. The network takes a CMB or
CMBþ PHS image as an input and outputs a single value
between 0 and 1, which can be interpreted as the probability
of the input image containing the PHSs. We train the
network on 160k images (see Sec. III), half of which
contain a single pairwise hotspot profile on top of the CMB
and the rest are CMB-only images. For optimization, we
use a binary cross entropy loss function, commonly used
for binary classification, along with Adam optimizer [47]
and 10−4 learning rate. We briefly experimented with
variations of the network architecture, in particular by
changing the number of convolutional filters and kernel
sizes. We did not observe a significant change in network
performance, most likely indicating that our default net-
work is sufficiently expressive to solve the task optimally.
We train the network using PHS signals with g ¼ 3 for

all the three values of η� individually. One may wonder how
well a network trained on one g value will generalize to
different values without retraining. As the CNN (unlike the
matched filter discussed below) is nonlinear, extrapolation
to values of g other than what was used for training is not
guaranteed to be optimal. On the other hand, training a

FIG. 5. Example plots of pure background from QUICKLENS

simulation (left), pure signals (middle), and signals with g ¼ 4 on
top of the simulated background (right). The scalar particles are
produced at comoving horizon sizes η� ¼ 50 Mpc (top),
100 Mpc (middle), η� ¼ 160 Mpc (bottom). The signals at
different benchmark η� have roughly the same size, as the η�
dependence only enters logarithmically. The two hot spots are
clearly separated for η� ¼ 160 Mpc and η� ¼ 100 Mpc, while for
η� ¼ 50 Mpc they overlap.

FIG. 6. A schematic architecture of the CNN used in this work. We applied two convolutional layers in series; first, eight kernels with
size of 16 × 16 and stride of 2 are applied, then, eight independent kernels size of 8 × 8 yields feature map of 40. Next, we apply a max
pooling using the kernel and stride size of 2 × 2, which subsequently reduces the image dimension down to 20 × 20 × 8. Processed
images get further reduced by going through 2D convolution and max pooling, further reducing the size of the image to 5 × 5 × 8. After
four sets of total convolution followed by average pooling, the final feature maps are flattened to feed into fully connected network form,
and the final network ends with single output value that sits between 0 and 1. Throughout the network, we use the rectified linear unit
function [48] to introduce nonlinearity, except for the output layer, which has a sigmoid activation function suitable for the binary
classification.
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CNN for each possible benchmark input is time and resource
intense. Empirically, we find that the network trained at g ¼
3 works well over a wide range of g values, perhaps because
the network learns to analyze the shape rather than the
amplitude of the profile. In a fully optimal analysis onewould
want to retrain the neural network over a grid of g values.
To get some idea for how the CNN discriminates

between signal and background images, we show the
feature maps from the first three convolutions in Fig. 7 for
η� ¼ 160 Mpc and g ¼ 4. As we can see proceeding from
left to right, the trained network does amplify the signal
region compared to the background-only image, and the
convolutional layers can emphasize the correct locations of
each spot in the feature map.

To quantify the performance of the CNN, we generate a
test sample of 5k CMB-only maps and 5k CMBþ PHS
maps, each having 902 pixels. For a CMBþ PHS map,
we inject one randomly oriented and located PHSs in the
CMB map. The PHS signal occupies Oð502Þ pixels in the
examples that we study, and thus the 902 pixels image is
only slightly larger than the signal. When an image has
network output > 0.5, we count it as an identified signal
map. We call the signal capture rate (true positive rate,
ϵS;902) as the fraction of CMBþ PHS images being
correctly identified as signal maps, and define the fake
rate (false positive rate, ϵB;902) as the fraction of CMB-only
images being wrongly identified as signal maps,5

ϵS;902 ¼
number of signal-injected images with CNN output > 0.5

total number of signal-injected images
;

ϵB;902 ¼
number of background-only images with CNN output > 0.5

total number of background-only images
: ð25Þ

FIG. 7. Comparison between true and the CNN feature maps with and without implanted signals. The left plots show the PHS signal
and signal plus the CMB background. The middle and right plots show feature maps after going through three convolutional layers. The
enhanced signal locations on the feature maps on the right align with the true location of the hotspots after rescaling the pixel coordinates
with respect to the relative size between the third layer (202 pixels) and the original image (902 pixels). Here we take η� ¼ 160 Mpc,
g ¼ 4, and ηHS ¼ ηrec for both the spots.

5In the actual search, there can be more than one PHS in a 902-pixel region, and the CNN would still count the region to be one signal
map. We verify that the signal capture rate would increase if there are more PHSs in the image. When we study the sensitivity of the
CNN search, having additional PHSs around the same location will help the search, and this makes our analysis based on having one
PHS in a 902-pixel image to be conservative. Moreover, given that the CNN search can probe PHSs with a small number of signals on
the CMB sky, the probability of having additional PHSs around the same location is small. Therefore, counting the number of 902-pixel
regions should give a good approximation of the PHSs in the analysis.
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In Fig. 8, we show the network output for the 5k images
with and without injecting the PHS signal. In the left
column we show the result when the PHSs are uniformly
distributed within a shell of ηrec � η� around the surface of
last scattering, while the right column shows the result
when ηHS ¼ ηrec. The signal capture and background
rejection rates in Fig. 8 refer to ϵS;902 and ð1 − ϵB;902Þ.

Clearly, for g ≥ 3, our CNN setup is highly efficient at
separating CMBþ PHS images from CMB images alone.
For example, for g ¼ 3 (the same coupling as in the training
sample) and η� ¼ 160 Mpc, ϵS;902 is over 73% with ϵB;902
less than 0.1%. For η� ¼ 160 Mpc and 100 Mpc, the signal
capture rate falls if the hotspots are off the last scattering
surface but in the ηrec � η� window we consider. When

FIG. 8. Network output for 5k images without (blank histogram) and with (colored histograms) PHS signals. We count the image as an
identified signal map when the network output > 0.5. In the plots we show the background rejection rate from the CMB-only analysis
and the signal capture rate from the CMBþ PHS images, for different inflaton-χ couplings g. The fake rate is defined as (1-background
rejection rate). The plots on the left have both the hotspots distributed uniformly with separation ≤ η� and within ηHS ¼ ηrec � η�, which
is how we simulate the signal for the rest of the study. The signal capture rate therefore includes possible suppression due to hotspots
moving off the last scattering surface. For comparison, we show the training results in the right plots requiring ηHS ¼ ηrec. Comparing
results obtained from the same study but with different sets of 5k images, we find the efficiency numbers vary by ∼0.1–1%.
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applying the same trained network on dimmer PHS signals
(g < 3), ϵS;902 drops, but the background rejection rate
remains close to unity.
Both ϵS;902 and ϵB;902 vary with the horizon size.

Comparing results for η� ¼ 160 Mpc to η� ¼ 50 Mpc, the
ϵS;902 values are similar for g ≥ 3, but η� ¼ 50 Mpc case
performsmuchbetter atweaker coupling (ϵS;902 ¼ 51.2% for
η� ¼ 50 Mpc compared to 1.8% for η� ¼ 160 Mpc, both for
g ¼ 1). The η� ¼ 50 Mpc case has a larger background fake
rate, compared to η� ¼ 160 Mpc. However, even if we
incorporate the background and compare ϵS;902=

ffiffiffiffiffiffiffiffiffiffiffi
ϵB;902

p
—

the efficiency ratio is Oð10Þ times larger for the dimmer,
η� ¼ 50 Mpc case. The ability of catching dimmer signals
indicates that the network uses additional information than
the overall temperature to identify the PHSs.
Although it is difficult to know exactly how the CNN

identifies the PHSs, the network seems to more accurately
identify PHSs with a distinct rim structure compared to just
utilizing the fact that there are two hotspots (Fig. 5). One
indication that the CNN utilizes the rim structure of the
η� ¼ 50 Mpc signal is that the signal capture rate for that
benchmark is insensitive to whether or not the PHSs lie on
the last scattering surface. We perform the same CNN
analysis by having the signal hotspots centered on the last
scattering surface [ηHS ¼ ηrec in Eq. (20)] and summarize
results in the right column of Fig. 8. For hotspots with
temperature profile peaked at center, as we show in the
η� ¼ 160 and 100 Mpc plots in Fig. 4, the highest PHS
temperature takes the maximum value when ηHS ¼ ηrec
(orange). It then is reasonable to have a larger average
signal capture rate when the hotspots center on the last
scattering surface. However, as we illustrate in the upper
left plot in Fig. 4, the “shell” of the η� ¼ 50 Mpc signal in
3D always project into a rim with a fixed temperature (at
angle ≈0.008 rad), regardless of the location of the hotspot,
ηrec; ηrec þ η�, or ηrec − η�. Therefore, if the CNN identifies

the η� ¼ 50 Mpc signal based on the rim structure, ϵS;902
should remain the same even when the PHSs are on the last
scattering surface. This is indeed what we see on the bottom
plots in Fig. 8. Further study on what features the CNN
uses to identify the η� ¼ 50 Mpc case can be found in
Appendix C.

B. Application of the trained network
to larger sky maps

After training the CNN to identify PHSs in images with
902 pixels, we look for signals on a larger sky map by
applying the same network analysis repeatedly across the
larger map. In this way we can analyze, in principle,
arbitrarily large maps. A benefit of such a larger map search
is that it avoids the loss of sensitivity to signals where a
PHS is partially cut out by the boundary of a 902-pixel
region. Such a PHS would be lost had we simply parti-
tioned the sky into nonoverlapping 902-pixel regions.
For a concrete application, we study maps with 7202

pixels6 using the following steps: (i) we apply the trained
network on the upper left corner of the map, obtaining the
network output, (ii) we shift the 902-pixel “window” to the
right by five pixels and get the network output again,
(iii) repeat the process until we hit the right-hand side of the
large map. Then, return to the upper left corner but slide the
widow down by five pixels, (iv) continue with these steps
until the entire larger map is covered. The result of steps
(i)–(iv) result in what we call a “probability map.” Starting
with an original 7202 image and scanning in steps of five
pixels, the probability map has 1262 entries, with each entry

FIG. 9. Left: PHS signals that are implanted on CMB map. Right: probability map from scanning the same 7202 image plus the CMB
with the CNN search of 902-pixel region shifting in steps of 1 pixel. The true and fake signals show up as clusters in the processed image.
We further suppress the number of fake signals in the following analysis by applying cuts on the network output of each pixel and the
pixel number in each cluster. We find the analysis from shifting the search window in steps of 5 pixels produce similar results to the steps
of 1 pixel and therefore use 5-pixel steps for the rest of the analysis.

6Repeating this analysis on even larger maps would be ideal
and lessen the assumptions made when extrapolating to the whole
sky. However, practically, we found that 7202 was the largest size
we could make without sacrificing statistics (number of maps).
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showing the probability of having a signal in a 902-pixel
region centered at each pixel. We have tried different step
sizes and find that a 5-pixel step size yields nearly identical
results to a 1-pixel step size for the following analysis, so we
use the 5 pixel step size for improved computational speed.
In Fig. 9, we show an example of the probability map

(right) obtained from the image of CMB plus three PHS
signals shown in the left plot. To make the signals more
visible by eye, we make the probability map by sliding the
search window in 1 pixel step, thereby giving a 6302-pixel
map. The true signals in the right plot show up as three
bright clusters, and there are fake signals from the CMB
fluctuations themselves. To reduce these fake signals, we
further apply cuts on the probability map by only keeping
pixels satisfying a threshold cut (network output) > 0.9.

To properly count the number of observed signals, we
cluster nearby pixels in the probability map. Specifically,
we employ the “scikit-image’s morphology label” tech-
nique [49] to connect neighboring pixels with the same
values and therefore group the connected pixels into
clusters. We further remove clusters with < 30 connected
pixels, as these have a smaller chance to be a true signal.
The choices of cuts on network output threshold and
number of pixels in a cluster were made by trying several
values and choosing the value that maximized the signal
capture rate while keeping the fake rate small.
To determine how well the method works, we study a set

of 500 CMB-only images (i.e., pure background) and 500
images where Ninj ¼ 3 randomly distributed PHS signals
have been injected. We then define “efficiencies”:

ϵS;7202 ¼
total number of clusters passing the threshold in CMBþ PHSmaps

3 × 500
;

ϵB;7202 ¼
total number of clusters passing the threshold in CMB-only maps

500
: ð26Þ

The results for the benchmark η� values and three different
couplings are summarized in Table I below. The 7202

search retains some of the key features from the 902 search,
namely the superior performance for η� ¼ 50 Mpc when g
is small.

C. Obtaining theoretical bounds
from detection statistics

Using Table I we can calculate the upper bound on NPHS,
the number of hotspot pairs produced where both members
of a pair lie within a shell of �η� from the last scattering
surface. As an example, let us take η� ¼ 50 Mpc and g ¼ 1.
From Table I, we see ϵS;7202 ¼ 54.6%while ϵB;7202 ¼ 1.4%.
Assuming that only a fraction fsky ¼ 60% is used for the
search, the total number of signals for this benchmark is

Sig ¼ ϵS;7202NPHSfsky, while the number of background
events is Bg ¼ 25ϵB;7202fsky, where the factor of 25 is the
number of 7202 patches needed to cover the full sky. From
the number of signal and background events, we form the
log-likelihood ratio [50,51] and then solve for NPHS for
the desired signal significance. When calculating the 2σ
exclusion bound, we require

TABLE I. CNN result from scanning 500 randomly generated
CMBorCMBþ PHSmaps using the network trained in Sec. IVA.
The image size is 7202 pixels, and we shift the search window
having 902 pixels by 5-pixel steps. The fake rate is the average
number of fake signals from a 7202-pixel mapwith CMB only. The
signal capture rate is the chance of identifying each input PHS
signal. Comparing results obtained from the same study but with
different sets of 500 images,we find the efficiency numbers vary by
∼0.1–1%.

η ¼ 50 Mpc η ¼ 100 Mpc η ¼ 160 Mpc

ϵB;7202 1.4% 11% 6.6%
ϵS;7202 ; g ¼ 1 54.6% 0.8% 0.5%
ϵS;7202 ; g ¼ 2 84.0% 34% 34.6%
ϵS;7202 ; g ¼ 3 98.6% 76.8% 71.2%

TABLE II. Upper: 2σ upper bound on the number of PHSs in
the whole CMB sky with both hotspot centers located within
ηrec � η� window around the last scattering surface. In the
calculation we assume sky fraction fsky ¼ 60%. Lower left:
lower bounds on the bare mass of the heavy scalar field in units of
the Hubble scale during the inflation. Lower right: lower bounds
on the bare mass in units of the rate of the mass, ðgϕ̇0Þ1=2, owing
to the inflaton coupling.

Number of PHSs η ¼ 50 η ¼ 100 η ¼ 160

g ¼ 1 8 840 1162
g ¼ 2 5 20 17
g ¼ 3 4 9 8

M0=HI η ¼ 50 η ¼ 100 η ¼ 160

g ¼ 1 145 120 114
g ¼ 2 213 199 194
g ¼ 3 266 253 247

M0=ðgϕ̇0Þ1=2 η ¼ 50 η ¼ 100 η ¼ 160

g ¼ 1 2.5 2.0 2.0
g ¼ 2 2.6 2.4 2.4
g ¼ 3 2.6 2.5 2.4
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σexc ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2 ln

�
LðSigþ BgjBgÞ

LðBgjBgÞ
�s

≥ 2;

with LðxjnÞ ¼ xn

n!
e−x: ð27Þ

Note that this is the expected bound, as we are taking
simulated CMB background to be the number of observed
events [n in Eq. (27)]. The resulting values of NPHS are
given in the left panel of Table II. It is also interesting to
determine how many PHSs would be needed for discovery
at each benchmark point. We calculate the expected
discovery reach using

σdis ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2 ln

�
LðBgjSigþ BgÞ

LðSigþ BgjSigþ BgÞ
�s

≥ 5: ð28Þ

The results are collected in Table III.
We can further obtain the minimum mass M0 of the

heavy particle corresponding to σexc and σdis using Eq. (7)
and Δη ¼ 2η�.

7 In Table II and III, we show the bounds (or
reach) on the number of PHSs and M0=HI . Due to the

energy injection from the dynamics of the inflaton, we can
probe scalar particles with masses up to ≈260HI. In the
bottom right tables, we show that the mass bounds
correspond up to ≈2.6 times the mass-changing rate caused

by the inflaton rolling (
ffiffiffiffiffiffiffiffi
gϕ̇0

p
), which dominates the

exponential suppression in Eq. (7). We also plot the 2σ
lower bound onM0=HI in Fig. 10. Since the NPHS depends
on M0 exponentially, a slightly lower scalar mass than the
2σ bound leads to a 5σ discovery of the PHSs.
These bounds are significantly improved compared to

the previous analysis in Ref. [27]; this is not surprising
given that the analysis in Ref. [27] was very simplistic,
utilizing only a single temperature cut to separate signal
from background. Using the CNN, we can now obtain
meaningful bounds for g ¼ 1, 2—cases for which the PHSs
were rather invisible before. For hotter signals, e.g., g ¼ 3,
the CNN analysis beats the past result by ΔM0 ≈ 60HI.
This is a notable improvement given that the PHS density is
exponentially sensitive to the scalar mass (squared).
Finally, to show that the CNN search of localized objects

gives a better probe of heavy particle production than the
measurement of CMB temperature power spectra, we plot
the corrections to the ΛCDMDTT

l spectrum in Appendix B,
including the same number of PHSs in Table II. For
example, for g ¼ 1, η� ¼ 160 Mpc, we see from Table II
that the 2σ bound on NPHS from our CNN analysis is 1162
hotspot pairs. Injecting 1162 hotspots into the sky,8 we find
a correction toDTT

l of Δχ2 ¼ 0.3—which is well within the
1σ band on Planck 2018 temperature power spectrum.
Repeating this exercise with the other benchmarks in
Table II, yields Δχ2 values that are even smaller.

D. Comparison with a matched filter analysis

Matched filter analysis is a standard tool for identifying
localized signals on a CMB map. Given a 2D power
spectrum of the CMB, PðkÞ, we can obtain a filtered map
ψðr⃗Þ in position space from a convolution between the
original image (signal plus background) ζðk⃗Þ and a signal
filter hðk⃗Þ [the Fourier transform of a profile hðr⃗Þ in
position space],

ψðr⃗Þ ¼
Z

d2k⃗
ð2πÞ2

�
ζðk⃗Þhðk⃗Þ
PðkÞ

�
eik⃗·r⃗: ð29Þ

If the signal is spherically symmetric, then the filter
simplifies to hðk⃗Þ ¼ hðkÞ. From the filtered map ψðr⃗Þ
one can construct an optimal likelihood ratio test between
the Gaussian null hypothesis and the existence of the signal

TABLE III. Same as Table II but for the 5σ discovery reach.

Number of PHSs η ¼ 50 η ¼ 100 η ¼ 160

g ¼ 1 16 2047 2757
g ¼ 2 10 48 40
g ¼ 3 9 21 19

M0=HI η ¼ 50 η ¼ 100 η ¼ 160

g ¼ 1 143 116 110
g ¼ 2 210 194 189
g ¼ 3 262 247 241

M0=ðgϕ̇Þ1=2 η ¼ 50 η ¼ 100 η ¼ 160

g ¼ 1 2.4 2.0 1.9
g ¼ 2 2.5 2.3 2.3
g ¼ 3 2.6 2.4 2.4

7One subtlety in solving the mass bound is that when
simulating the PHS signals, we require both hot spots to be
within �η� around the last scattering surface. Hence, the
simulation excludes PHSs with one of the hot spots outside of
the shell region that would be harder to see by the CNN.
However, when solving the upper bound on the PHS density
using Eq. (7), we take into account the signals that are partially
outside of the shell region, leading to an overestimate of the
signal efficiency and a stronger upper bound on the number
density. From checking the hot spot distribution numerically, we
find that ≈17% of the PHSs in our examples can be partially
outside of the �η� region. Fortunately, since the size of M0 only
depends on the number density bound logarithmically, the error
only changes the M0 bound by up to 1%. This is acceptable for
the accuracy we want for the concept study.

8For simplicity, we restrict all hotspots to the last scattering
surface. This somewhat overemphasizes the PHS correction to
the power spectrum, as scenarios with both particles fixed to the
last scattering surface are, on average, brighter than when ηHS
varies.
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(see, e.g., [24]), making the matched filter ideal for picking
out single (or more generally, nonoverlapping) localized
signals.
As we have seen, while the individual hotspots are

spherically symmetric, they often overlap (at least for the
range of parameters we are interested in), leading to a net
signal in the sky that is no longer spherical. Additionally,
the random separation between the initial heavy particles
means the resulting PHSs are not uniform. The unusual
shape and variability among signals make the PHSs less
suitable for a vanilla matched filter analysis. While it may
be possible to design a complicated and large bank of
matched filters to cover the space of possible signal
templates, the CNN analysis can effectively learn a set
of flexible filters to enhance the signal over background
even with varying and nonspherical signal shapes.
Even if the matched filter analysis defined in Eq. (29) is

not optimal for the full pairwise hotspot signal, it is still
instructive to compare a few examples of the matched filter
analysis versus the CNN. For this comparison, we consider
PHSs that lie only on the last scattering surface. The
combined signal from the PHSs will still be nonspherical,
but restricting all PHSs to the last scattering surface does
take away some of the variability among signals.9 While
each hotspot in a pair will “pollute” the other—meaning
that it appears as a background that is different from the
CMB fluctuations—each of the two hotspots can still be
picked up effectively by the single spot template hðkÞ.
We perform the comparison using 902 pixel images with

one PHS injection. We use QUICKLENS to generate the
CMB maps, which follows periodic boundary condition
and thereby ensures the separation between k modes in the
2D power spectrum PðkÞ of the CMB image. The CNN

results for this signal set have already been shown in
Sec. IVA and can be found in the right hand panels of
Fig. 8; the background rejection is above 99% for all
benchmark points, while the signal capture rate varies from
a few percent to 100% depending on η� and g.
For the matched filter analysis, we obtain PðkÞ from the

average of the discrete Fourier transform of 500 simulated
images. We also apply discrete Fourier transform on the
profile of a single hotspot in the PHSs, and use it as hðkÞ in
the convolution. Carrying out the integral in Eq. (29), we
obtain the processed maps ψðr⃗Þ. An example of the signal
processing is shown in Fig. 11, where the plot on the left is
the PHS signal (η� ¼ 160 Mpc and g ¼ 2), the middle is
the signal plus background, and the right plot is the output
image ψðr⃗Þ. We see that the filter can indeed pick up the
signal hidden inside the background.
As one way to quantify the matched filter results, in

Fig. 12 we show the distribution of largest ψðr⃗Þ values in
each of the 500 maps generated with (blue) and without
(red) PHS signals with fη�; gg ¼ f160 Mpc; 2g (left) and
f100 Mpc; 2g (right). From this perspective, the matched
filter clearly separates the signal and background for the
two cases. We also perform the same analysis for the η� ¼
50 Mpc signals (which have much lower temperatures). In
this case, the overlap between signal and background in the
ψ distribution is large, and a simple ψ cut is not the optimal
way to separate the signal and background. For this reason,
we only consider the η� ¼ 100 and 160 Mpc examples in
the following discussion.
To provide a rough numerical comparison between the

matched filter and the CNN analysis, we apply a ψmax cut in
each of the matched filter histograms in Fig. 12. We choose
the ψmax cut value to equal the background rejection rate in
the CNN analysis, then compare signal capture rates in the
two analyses. For the η� ¼ 160 Mpc example, the signal
capture rate is about 5% and 74% for g ¼ 1 and 2, while the

FIG. 10. Bound on the heavy scalar mass for η� ¼ 50 Mpc, η� ¼ 100 Mpc, and η� ¼ 160 Mpc. In the region above the “%
backreaction” line, the backreaction to the inflationary dynamics due to particle production is smaller than a percent (see Ref. [27] for a
more detailed discussion). The light blue lines show various contours of NPHS. We notice that the projected CNN search is able to cover
most of the parameter space up to the target NPHS ¼ 1 contour.

9We still allow a random separations (within η�) between
hotspots on the (2D) last scattering surface.
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match filter analysis performs slightly better, capture rates
8% and 98%, respectively. For η� ¼ 100 Mpc, the CNN
signal capture rates are ∼10% and ∼69% for g ¼ 1 and 2,
while the match filter analysis rates are slightly lower, 4%
and 50%. We note that the neural network was trained for
g ¼ 3 so the signal capture rate may be somewhat sub-
optimal for the g ¼ 1 and g ¼ 2 cases. This could be
alleviated by retraining.
In summary, the matched filter and neural network

analysis perform similarly. This indicates that the neural
network training has converged to a good solution that is
not easily outperformed by the standard matched filter
method. Our comparison is not exactly one-to-one because
the neural network is trained on pairs of hotspots while the
matched filter uses a single spherically symmetric profile.
This gives the neural network an advantage in the realistic
situation of pairs of hotspots. A full comparison of the two

methods would require an extended and complicated
matched filter analysis which includes pairs of profiles.

V. DISCUSSION AND CONCLUSION

In this work, we show that CNNs provide a powerful
tool to identify PHSs on the CMB sky. These PHSs can
originate from superheavy particle production during
inflation. We improve the previous analysis of Ref. [27]
by more accurately modeling the distribution of PHSs on
the CMB sky and by developing a CNN-based signal
search strategy.
To accurately model the PHS distribution, we include the

possibility that PHSs are distributed along the line-of-sight
direction, rather than fixed to the last scattering surface.
As a result, the average interspot separation within a PHS,
when projected onto the CMB, is smaller than in Ref. [27].

FIG. 11. Example images from the matched filter analysis. Left: PHSs with η� ¼ 160 Mpc and g ¼ 2. Middle: signal plus the
background. Right: filtered map from the convolution integral Eq. (29).

FIG. 12. Maximum pixel distribution in filtered maps, where the value ψ of the pixels on the filtered map is defined in Eq. (29). We use
500 CMB-only and 500 CMBþ PHS maps and plot the distribution of the maximum ψ of each filtered map to show the separation
between the CMB and CMBþ PHS results. We used feature scaling also known as min-max normalization for ψmax, so that the smallest
value is zero and the largest value is 1.
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For PHSs with small values of η�, such as η� ¼ 50 Mpc, the
two hotspots in a PHS significantly overlap with each other,
and the resulting PHSs look like a single object, but with a
distinct angular profile (Fig. 5).
For the signal search, we construct a CNN to identify

PHSs from within the CMB, the standard fluctuations of
which act as backgrounds for the signal. The network is
trained on 902 pixel images with and without PHSs injected
in them (both with hotspots distributed in 3D, and with
hotspots fixed on the last scattering surface). During
training we choose a coupling g ¼ 3, but the trained
CNN can still identify PHSs for smaller values of g with
a significant signal capture rate and small background
fake rate. We find that the CNN actually performs better for
the smaller η� benchmark, even though the hotspots are
dimmer. We believe this is due to the distinctive ring
structure the PHSs have when η� ¼ 50 Mpc, as evidenced
by comparing PHS signals distributed in 2D versus in 3D,
and by studies testing the CNN on “dot” and “ring” test
signals (Appendix C).
After developing the CNN for 902 pixel images, we

apply it to larger 7202 pixel maps, sliding 902 “templates”
in 5-pixel steps across the larger images to generate a
probability map. In the probability map, each pixel is
evaluated by the network multiple times. As a final step, we
filter the probability map, only retaining clusters—groups
of positive network outcomes—of a certain size. The
benefit of the sliding template search is that it less sensitive
to the exact position of the hotspot within the 902 pixel
region. Applied in this manner, we find that the CNN can
efficiently discern the presence of hotspots, even if the
signal temperature is much smaller than the CMB temper-
ature fluctuations. In particular, the CNN can even identify
Oð10Þ number of PHSs on the CMB sky for g ¼ 1 and
η� ¼ 50 Mpc, a signal that has a temperature ≈20 times
colder than the average CMB temperature fluctuations.
Translated into model parameters, for the benchmark
models we study using mock CMB maps, we project that
a CNN search can set a lower bound on the mass of heavy
scalars M0=HI ≳ 110–260, with the precise value depend-
ing on the time of particle production and coupling to the
inflaton. These numbers are a significant improvement over
the simplistic analysis in Ref. [27] that used a single
temperature cut to separate the signal from the background.
Compared to the standard matched filter analysis, the

CNN is more versatile in identifying nonrotationally
symmetric signals with varying shapes and temperatures
that arise in the context of PHSs. We performed a simplified
comparison between the CNN and matched filter analysis
by considering PHSs with a fixed profile and located on the
last scattering surface to show that the match filter analysis
can provide comparable signal capture and fake rates to the
CNN search for PHSs with η� ¼ 160 Mpc and 100 Mpc.
For dimmer PHSs (η� ¼ 50 Mpc), more analysis is
required to separate the signal and background in the

filtered map. We leave a more detailed comparison to the
matched filter method with a bank of filters to cover the
signal space to future work.
Several future directions remain to be explored. It would

be interesting to apply our methodology to actual Planck
CMB maps to search for PHSs. In the absence of a
detection, we can still set a lower bound on the masses
of ultraheavy particles which are otherwise very difficult to
discover or constrain. This, however, requires a subtraction
of the astrophysical foregrounds and knowing if the CNN
can distinguish PHSs from the compact objects in the
foreground. Since the distortion of the curvature perturba-
tion from particle production also modifies structure for-
mation at late times, it would also be interesting to see if the
current or future large scale structure surveys can identify
the resulting signals localized in position space. A neural
network like the one used here can learn to incorporate the
nonlinear physics of structure formation if trained on
suitable simulations. Related to localized PHS signatures,
similar types of cosmological signals from topological
defects [52] or bubble collisions [29–31] can also arise
and these may also be identified by a CNN search. From a
more theoretical perspective, it would also be useful to
write down a complete inflationary model that incorporates
inflaton coupling to heavy fields and leads to particle
production as described here. We leave these directions for
future work.
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APPENDIX A: SENSITIVITY TO THE ΛCDM
PARAMETERS

Our analysis uses ΛCDM parameters in Eq. (23) to
simulate the CMB. As the ΛCDM parameters come with
uncertainties, we should check how sensitive the signal
capture rate is to the variation of the parameters. In
Table IV, we show the background rejection and signal
capture rate using the same trained network for Fig. 8 (left)
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with g ¼ 3 and η� ¼ 160 Mpc but on CMBmaps simulated
with variations of ΛCDM parameters. As we see, when
changing the fAs;Ωb;ΩCMB; nsg one by one with twice
the 1σ uncertainty reported in [40], the signal capture rate
only changes by Oðfew%Þ, comparable to the variations in
our CNN analysis due to finite sampling. The consistent
search results show the robustness of the network’s ability
to identify PHSs against the uncertainty of ΛCDM
parameters.

APPENDIX B: PHS CORRECTIONS TO THE
CMB POWER SPECTRUM

Herewe show the corrections on theCMBpower spectrum
when the number of PHSs in the full sky saturates the bounds
in Table II. We show examples with the coupling g ¼ 1 and
horizon sizes η� ¼ 100 Mpc (NPHS ¼ 840) and 160 Mpc
(NPHS ¼ 1162), assuming the centers of all the hotspots are
located on the last scattering surface. Notice that the latter

assumption of fixing ηHS ¼ ηrec makes the average PHS
temperature higher compared to themain analysis that allows
ηHS to vary. However, the assumption simplifies the power
spectrum calculation and gives a more conservative result
by exaggerating the PHS correction to the power spectrum.
We also check results for different g and η� but, following
Table II, with a much smaller NPHS. The corrections to the
power spectrum for the other benchmarks are even smaller.
To see how the excesses appear on the power spectrum,

we utilize hierarchical equal area isolatitude pixelization,
HEALPix [41], based on the CTT

l spectrum computed from
the CLASS package using the same ΛCDM parameters in
Eq. (23). HEALPix pixelates a sphere in an equal area where
the lowest resolution consists of 12 baseline pixels. The
resolution is increased by dividing each pixel into four
partitions which can be parametrized as Npixels ¼ 12N2

side
where Nside is a power of 2. We choose the resolution
parameter Nside ¼ 2048. Since the total number of pixels in

TABLE IV. The response of the signal capture and background rejection rates with varying ΛCDM parameters,
labeled with the difference to the ΛCDM parameters. The variation of the rates is comparable to the fluctuations in
our CNN analysis due to finite sampling and therefore is insignificant. For this test, we used g ¼ 2 and η� ¼
160 Mpc for the PHS signal.

ωb ωcdm 109As ns τre Bg rejection Signal capture

Planck18 0.0224 0.120 2.10 0.966 0.0543 99.8% 74.0%
Case 1 þ0.004 99.8% 72.3%
Case 2 þ0.07 99.2% 74.1%
Case 3 þ0.01 99.6% 69.9%
Case 4 þ0.0003 99.8% 73.4%
Case 5 þ0.014 99.2% 74.4%
Case 6 þ0.0003 −0.004 þ0.05 −0.01 −0.014 99.8% 72.4%
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FIG. 13. CMB temperature power spectrum using best fit ΛCDM input parameters in Eq. (23) with (red lines) and without (blue lines)
PHS signals implemented on the full sky using a resolution parameter Nside ¼ 2048. Here, we assume that all PHS signals are on the last
scattering surface. The differences between the two distributions are shown in green lines, and the gray shaded regions denote 1σ
uncertainty, taken from the Planck 2018 data.
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a sphere characterizes the total number of independent l
modes in CTT

l , which is given by
Plmax

l¼0ð2lþ 1Þ ¼
ðlmax þ 1Þ2, our benchmark resolution parameter Nside ¼
2048 corresponds to the maximum multipole number
lmax ≃ 3500.
Figure 13 shows DTT

l spectra for the ΛCDM model
(blue) and theΛCDMþ PHS (red) with η� ¼ 100 Mpc and
η� ¼ 160 Mpc. The difference between the red and blue
spectra is shown on the lower panel (green), with the 1σ
error bar (gray) taken from the Planck 2018 result [40]. For
both scenarios, the excesses are well below the error bar
indicating that the power spectrum analysis will not be
able to resolve them. We also show Δχ2 to quantify the

deviations with respect to the ΛCDM spectrum using the
same Planck 2018 binning intervals in l. The total Δχ2
for both cases is negligible compared to the number of
parameters we have.

APPENDIX C: SHAPE ANALYSIS FOR THE
η� = 50 Mpc SIGNAL

In our earlier results, we found that the CNN’s perfor-
mance for η� ¼ 50 Mpc PHSs exceeds the other bench-
marks, despite the fact that the hotspots at η� ¼ 50 Mpc are
much cooler. We surmise that the result is due to the distinct
shape of the profile—a rim structure with central peak. As a

FIG. 14. Similar plots as Fig. 7, but with η� ¼ 50 Mpc.

FIG. 15. In the left panel we show the trimmed inner piece of a hotspot signal, while in the right we show the output after 500
CMBþ inner hotspot images are run through a network trained on full (untrimmed) η� ¼ 50 Mpc, g ¼ 3 hotspots.
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simple test of this hypothesis, we formed a signal set of
PHSs decomposed into two separate features, an inner peak
and an outer rim. We then ran each piece through a network
trained on the complete shape of the η� ¼ 50 Mpc spots.
We ran 500 CMBþ deconstructed PHS test samples

through the network, using a variety of g values but always
with both located on the last scattering surface. The results,
along with sample images of the deconstructed signals, are
shown in Figs. 15 and 16. Comparing the right-hand panels
in Figs. 15 and 16, we see that the network is much more
efficient at capturing the ring portion, e.g., 88% capture for
g ¼ 3 compared to 27% for the central spot. From this test
we conclude that the ring shape is crucial to the CNN’s
performance at low η� [note that the signal capture for the
ring nearly matches the capture rate for the full signal
(Fig. 8)]. In Fig. 14, we show the CNN feature maps both
with (right) and without (middle) implanted signals for the
η� ¼ 50 Mpc case. Interpreting the convolution layers’
signal identification is challenging; however, the signal
images exhibit more extended profiles compared to the
η� ¼ 160 Mpc case in Fig. 7, where PHS profiles peak at
each of the hotspot centers.

APPENDIX D: ROBUSTNESS OF CNN ANALYSIS
WITH DEFECTS IN THE IMAGE

To evaluate the CNN search’s generalizability on real
data, we conduct a preliminary test using imperfect
simulated CMB maps with PHSs. These simulations
incorporate masked regions and randomly distributed
bright pixels. To ensure consistency with our analysis,
we adopt the true mask utilized in the Planck 2018 analysis
[53], downscale its resolution to 1024 from the original
Nside ¼ 2048 setting, and project it onto a flat map. For
comparison with the 902-pixel analysis in Sec. IV B, we

randomly sample small mask patches from the flattened
map and inject them into sample images containing 902

pixels for CNN training and testing purposes.
Each sample image contains masks that collectively

cover up to 10% of the image area, and the masks can
cut out some PHS signals in the image. Additionally,
random pixels are included, with numbers ranging from
0–3, and temperatures varying between 60–130; μK. These
temperature values are chosen to be comparable to the
central PHS temperatures found in the benchmark
models with g ¼ 3, which is the coupling for the network
training.
The trained CNN discussed in Sec. IV B encounters

confusion due to the presence of masked regions and fake
point sources. We therefore retrain the network using a
fresh set of images that incorporate both masks and bright
pixels. For injecting the PHS signal, we assume ηHS ¼ ηrec.
A more comprehensive investigation of the effects of these
defects, considering variations in PHSs’ line-of-sight dis-
tance, will be left for future work.
In Fig. 17, we show the network output for the 1k images

with and without injecting the PHS signal. We perform the
analysis assuming ηHS ¼ ηrec for the PHS signals. The
obtained background rejection and signal capture rates
should be compared to the right panel of Fig. 8. As we can
see, the retrained CNN achieved similar background
rejection and signal capture rates. For instance, taking
η� ¼ 50 Mpc as an example, the 2σ upper bounds on the
number of PHS increase by approximately a factor of 2 for
g ¼ 1, 2, 3, mainly due to slightly lower background
rejection rate. However, the resulting lower bound on
M0=HI only drops by up to 2%. This similar sensitivity
to the analysis in Sec. IV B confirms the feasibility of
adapting the CNN analysis to detect PHSs in real data.

FIG. 16. In the left panel we show the trimmed outer piece of a hotspot signal, while in the right we show the output after 500
CMBþ outer hotspot images are run through the same network as in Fig. 15. The capture rates for the ring are much higher than for the
central spot, shown in Fig. 15.
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