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Largo San Marcellino 10, 80138 Napoli, Italy
4Dipartimento di Fisica “E. Pancini,” Universitá di Napoli “Federico II,”

Complesso Universitario di Monte S. Angelo, Edificio G, Via Cinthia, I-80126 Napoli, Italy
5Instituto Nazionale di Fisica Nucleare (INFN), Sezione di Napoli,

Complesso Universitario Monte S. Angelo, Via Cinthia 9, 80126 Napoli, Italy
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A discrete space-time structure lying at about the Planck scale may become manifest in the form of very
small violations of the conservation of the matter energy-momentum tensor. In order to include such kind of
violations, forbidden within the general relativity framework, the theory of unimodular gravity seems as the
simplest option to describe the gravitational interaction. In the cosmological context, a direct consequence
of such violation of energy conservation might be heuristically viewed a “diffusion process of matter
(both dark and ordinary)” into an effective dark energy term in Einstein’s equations, which leads under
natural assumptions to an adequate estimate for the value of the cosmological constant. Previous works
have also indicated that these kinds of models might offer a natural scenario to alleviate the Hubble tension.
In this work, we consider a simple model for the cosmological history including a late time occurrence of
such energy violation and study the modifications of the predictions for the anisotropy and polarization of
the cosmic microwave background (CMB). We compare the model’s predictions with recent data from the
CMB, supernovae type Ia, cosmic chronometers and baryon acoustic oscillations. The results show the
potential of this type of model to alleviate the Hubble tension.
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I. INTRODUCTION

Modern cosmology relies on Einstein’s equation, and
thus, on the strict conservation of energy momentum tensor.
This is a feature that seems essentially untouchable.
However, a deeper look at the issue reveals that conserva-
tion of energy momentum is unlikely to be an exact feature
of nature [1]. When taking into account the quantum nature
of matter, it becomes rather apparent that our gravitational
theory must also undergo some modifications which are
likely to include at least small departures from exact
conservation laws. However, these changes might be larger
in early cosmological times and could have cumulative
effects with empirically relevant consequences.
Recently, a group involving some of us [2], used the fact

that in unimodular gravity (UG) the strict conservation of
the energy momentum tensor is not required for the
consistency of the theory, in contrast with what occurs

in general relativity (GR). The theory might be said to
reduce the general invariance under diffeomorphisms,
which is characteristic of GR to a more restricted invari-
ance under four-volume preserving diffeomorphisms.1

Concretely [2] studied within that scheme—i.e. violation
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1Strictly speaking, the invariance under diffeomorphisms is
automatic for any theory that relies on tensor fields defined over a
manifold. The point, as discussed in [3], is whether or not, all
geometrical entities entering the theory are related to (or derived
from) the fundamental degrees of freedom represented in the
formalism, which, in theories of gravitation, correspond to the
space-time metric, or equivalent structures. When one contem-
plates the presence of some additional nondynamical structure,
connected to space-time, but which is not assumed to behave in
the appropriate manner under diffeomorphisms, one encounters
the situations that are known as “violations of full diffeomor-
phism invariance.” In the case under consideration, such struc-
tures could be either the distribution of spontaneous collapse
events, called upon in addressing the conceptual problems of
quantum theory as discussed in [1], or the entities that character-
ize an hypothetical discreteness of space-time.
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of energy momentum conservation together with unim-
odular gravity—the idea that a violation of the conservation
of the energy momentum tensor might have important and
observable consequences on the value of the effective
cosmological constant. Of course, the idea under consid-
eration contemplates a violation that is too small to be
directly detectable, as no direct observation of any depar-
ture from strict energy conservation has been observed at
this stage. Further studies [4,5] considered the idea that
such violations might also result from defects in the fabric
of space-time, and its ultimate origin might lie at the level
of the quantum gravitational description thereof. That
analysis resulted on an attractive account for the nature
and magnitude of the cosmological constant [4,5] which,
without the use of any kind of fine-tuning, leads to an
estimate for the amount of the dark energy which agrees
with those emerging from astronomical and cosmological
observations. In that proposal an effective cosmological
constant represents the accumulated effect of extremely
small departures of such conservation with the dominant
part of the effect arising around the electroweak scale
[yielding a value Λ ∼m2

pðEew=mpÞ7 which can easily be
seen to be of correct order of magnitude]. The perspective
provided by this work motivated the investigation of the
possible role of the fundamental granularity of Planckian
physics as the primordial cause of inhomogeneities ulti-
mately observed at the CMB. This led to an alternative
paradigm to the standard inflationary one where inhomo-
geneities at the CMB are directly linked with Planckian
discreteness during a primordial inflationary era [6].
In some recent work [7,8] the issue of the so-called H0

tension—i.e. the incompatibility at more than 4σ between
the value of H0 obtained in the context of the standard
cosmological model by the use of latest CMB data [9]
and what is obtained in studies based on type Ia supernovae
(SnIa) explosions together with local distance calibra-
tions (CC) [10,11]—has been considered from the present
perspective. In the proposal for the generation of a cos-
mological constant in the context of UG gravity, the
conditions that resulted in the relatively large violations
of the energy-momentum tensor conservation are tied to
regimes in which large space-time curvatures are involved.
The proposal to deal with the H0 tension is meant to be an
extension of such an account, which thus must involve
situations where similar high curvature conditions prevail
in the post-recombination epoch (where the effective
cosmological constant would have to change by a nontrivial
amount). At late cosmological times the only situations
where such strong gravitational fields can be reasonably
assumed to arise correspond to the late time dynamics of
black holes (BHs), particularly highly rotating ones, which
might lose up to 1=3 of their mass if slowed down via a
diffusion mechanism without violating the second law of
thermodynamics.2

Such preliminary study, which assumed a simple expres-
sion for the violation of the energy-momentum tensor,
concluded that the overall plausibility of the model appears
to be supported by observational data [8]. That analysis
focused on the effects on the value of the acoustic angular
scale of the CMB and the comparison with the correspond-
ing recent observational data, and therefore was able to
consider just the changes in the global geometry of the
Universe introduced by the UG model. A similar analysis
which considered different assumptions for the variation of
the cosmological constant was performed in [12]. Also in
[13], the authors consider a cosmological model with sign
switching cosmological constant and show that this model
can alleviate some tensions that are related to the so-called
Hubble tension. In the present paper we perform a more
complete and strict (methodologically speaking) analysis of
the viability of the scenario studied in [8]. Concretely we
study a relatively simple model parametrized by three
quantities: one characterizing the magnitude of the viola-
tion of energy conservation involved, and the other two
characterizing the cosmological period during which the
violation is assumed to have taken place. We analyze the
model by simultaneously considering the anisotropies and
polarization of the CMB, involving therefore the growth of
the structure of the Universe, in addition to the other data
related to the global geometry of the Universe.
The physical source of the relatively large violation of

the conservation of energy momentum is thought to be
related to the dragging effect on the rotation of black holes,
presumably arising from some fundamental granularity of
space-time. Thus, in order to extract a formula for the
energy-momentum violation current Ja ≡∇bTab and pro-
duce quantitative calculations, one would need to model
the cosmological density of black holes as a function of
their mass, their angular momentum and cosmic time
n ¼ fðM; J; tÞ in combination with the proposed form of
the effective dissipation rate described in [7]. With that
expression at hand, we could directly insert it into the
equations of UG, and study the resulting modifications of
the late time cosmology, allowing us to check whether or
not the corresponding predictions can account well for all
the relevant observations. Unfortunately, at this stage, our
knowledge about fðM; J; tÞ is just too vague to carry such
analysis. There are only some known bounds on the
proportion of matter that might be in the form of primordial
black holes which unfortunately seem to refer mostly to
monochromatic contributions [14] rather than constraints
on something like the function fðM; J; tÞ or even the
momentum integrated function,

FðM; tÞ ¼
Z

M2

0

fðM; J; tÞdJ

(the upper bound resulting from limiting consideration of
up to the extremal case). Beyond that, we have recently

2We assume that the second law of thermodynamics holds even
in those extreme circumstances.

LANDAU, BENETTI, PEREZ, and SUDARSKY PHYS. REV. D 108, 043524 (2023)

043524-2



learned [15–23] that the range of masses of black hole is
very wide, involving in the lower end objects as light as a
few solar masses and at the other extreme objects as large as
109 solar masses, with increasing evidence for the existence
of many objects in the 60–100 solar mass range. It is fair to
say that we have very little understanding regarding the
process by which all but the lighter black holes formed and
also very limited knowledge of the form that even FðM; tÞ
might take at intermediate scales (say 102–105 solar
mass range).
Despite our ignorance concerning the details of the current

characterizing the violation of energy-momentum conserva-
tion in the general cosmological context, it is useful to
perform a first analysis using recent cosmological data, such
as the ones provided by the CMB, baryon acoustic oscil-
lations (BAOs), SnIa and CC, to test the viability of
cosmological models that are motivated by UG to explain
the cosmological evolution including the growth of pertur-
bations. However, it follows from the previous discussions
that some assumptions, related to the violation of the energy-
momentum conservation, will have to be included in order to
describe the behavior of the dark energy component of the
Universe as well as the baryonic and dark matter ones.
The organization of this manuscript is as follows: In

Sec. II we offer a brief discussion of the general theoretical
ideas underpinning this work. Section III is devoted to
specify the concrete cosmological model based on these
ideas and to characterize its effective parametrization as
well as the ensuing evolution of the various contributions to
the energy density budget as a function of cosmic time. We
also discuss in this section the effects of the modified
cosmic evolution introduced by our model on the CMB
spectrum. The details of the analysis method used in this
work to perform the statistical analyses (including the
observational datasets) are discussed in Sec. IV. Results of
the statistical analysis of the modified cosmological model
motivated by unimodular gravity with CMB, BAO, SnIa
and CC data are shown in Sec. V. We end in Sec. VI with a
brief discussion of the results, the overall viability of the
model, and of the general theoretical scenario.

II. THEORETICAL SCENARIO

A novel and rather successful scheme to account for the
nature and magnitude of the cosmological constant, yield-
ing in a natural way its correct order of magnitude, was
proposed in [4,5]. This was a particularly encouraging
result, particularly when contrasted with standard estimates
that are typically wrong by 120 orders of magnitude. The
ingredients underlining the proposal are:
(1) The generic idea that quantum gravity implied some

sort of space-time granularity.
(2) The result of [24] where it was showed that the

granularity cannot select a preferential reference
frame without generating (presently) detectable vio-
lations to Lorentz invariance at low energies.

(3) The idea that the two considerations above might be
reconciled if the effects of granularity become
relevant only in the presence of strong gravitational
fields or high curvature.

A basic assumption is that the interactions with granu-
larity need to be of a relational nature in the sense that the
relevant affected degrees of freedom must be capable (via
their excitations) of selecting the local preferential refer-
ence frame with respect to which the fundamental scale can
have an operational meaning. This suggested the rather
natural assumption that the probes which could be sensitive
to such granularity needed to possess both a scale (and thus
break scale invariance to relate to the curvature scales) and
an intrinsic direction to determine the directionality of the
effects under consideration. The natural candidate was
thus identified as spinning and massive degrees of freedom.
The effect would have to be modulated by curvature (to
avoid the no-go result of item 2 above). A mean-field
perspective suggests taking the scalar curvature R which
(linked to the trace of the energy-momentum tensor via
Einstein’s equations) is a natural order parameter of the
violations of scale invariance for the gravitational sources
involved. This led us to propose that, at the level of the
effective characterization of matter in terms of particles, the
effect would take the form of a deviation from the standard
geodesic equation given by

uμ∇μuν ¼ α
m
m2

p
signðs · ξÞRsν; ð1Þ

where α> 0 is a dimensionless constant, m is the particle’s
mass,mP is Planck’s mass, sμ is the particle’s spin, and ξμ is
a preferred timelike vector field characterizing the state of
motion of the matter source. The analysis of this hypothesis
in the cosmological context in terms of standard kinetic
theory led to an effective violation of energy momentum
conservation given by [4,5]

Jν ≡ 8πG∇μTμν ¼ 4πα
T
m2

p
R½8πGΣijsijTðiÞ�ξμ; ð2Þ

where T is the temperature of the cosmological plasma,
the sum involves contributions of the different species i in
the standard model of particle physics, TðiÞ is trace of the
energy momentum tensor of the species i, and jsij the spin
of that species.
Moreover, given that violations of the energy-momen-

tum conservation are inconsistent in the context of GR, the
proposal needs to be formulated in a context of a gravity
theory that allows for such violations [5,8]. In fact, the
theory known as unimodular gravity permits a specific kind
of violations and is therefore ideal to describe those types of
effects expected to arise from a fundamental space-time
granularity. The relatively recent interest in this theory,
which was initially considered by Einstein himself, can be
traced back to works such as [25,26]. At this point it is
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worthwhile to briefly describe the theory of unimodular
gravity. The action can be written in a coordinate inde-
pendent form, using, say, abstract index notation (see for
instance [3]):

S ¼
Z

½Rϵabcd þ λðϵabcd − εabcdÞ þ Lmattϵabcd�; ð3Þ

where εabcd is a fiduciary four-volume element and ϵabcd is
the four-volume element associated to the metric gab,
while λðxÞ is a Lagrange multiplier function. Using
coordinates xμ adapted to the fiduciary volume element,
one is led to the simple relation ϵabcd ¼ ffiffiffiffiffiffi−gp

εabcd with
g ¼ det gμν. The theory is said to be invariant under a
restricted class of diffeomorphisms, i.e. those that are four-
volume preserving.3 The resulting equations of motion for
the metric are

GabðxÞ þ λðxÞgabðxÞ ¼ 8πGTabðxÞ ð4Þ

while the variation with respect to λ leads to the constraint
ϵabcd ¼ εabcd. The value of the Lagrange multiplier λðxÞ
can be determined by taking the trace of the previous
equation. This leads to

λðxÞ ¼ 1

4
ð8πGT þ RÞ ð5Þ

which upon substitution result in the standard form of the
equations of unimodular gravity, namely,

Rab −
1

4
gabR ¼ 8πG

�
Tab −

1

4
gabT

�
: ð6Þ

As noted, a central feature of this theory, which makes it
useful for our purposes, is that, in contrast with general
relativity, it does not require the conservation law
∇aTab ¼ 0, for its self-consistency. Taking the divergence
of Eq. (4) and making use of the Bianchi identity, we find

∇bλðxÞ ¼ 8πG∇aTabðxÞ: ð7Þ

In fact, one might define the “energy momentum non-
conservation current” as Ja ≡ 8πG∇bTab ≠ 0 which, pro-
vided the integrability condition dJ ¼ 0 is satisfied,4 can be
integrated to yield

Rab −
1

2
gabRþ gab

�
λ−∞ þ

Z
J

�
¼ 8πGTab ð8Þ

which coincides with Einstein’s equation with a term that
acts like an “effective dark energy component” which need
not be a constant. In the cosmological setting, the role of
this term—just as it occurs with the usual cosmological
constant term for the range of values that are relevant in our
Universe—is entirely negligible except for the very late
times, where every other contribution to the Universe’s
energy budget has to be diluted to an extreme level, and
thus such term can become dominant.
Calculating the contribution to dark energy in terms of

Eq. (2) using the standard cosmological history of our
Universe,5 it was found that the effective cosmological
constant was given approximately by

Λ ≈ 16πα

ffiffiffiffiffiffiffi
5π3

g�

s
m4

t T3
EW

ℏ2m2
p

ϵðTEWÞ; ð9Þ

where mt is the mass of the heaviest particle with non-
vanishing spin (here the top quark), TEW is the temperature
of the electroweak transition, g� is the degeneracy factor
and ϵ is a factor that takes into account the running of the
top quark mass. For standard values of the cosmological
parameters, the previous prediction coincides with the
observed value of the cosmological dark energy in order
of magnitude when the dimensionless parameter α is
assumed to be of order 1.
It became quite clear after subsequent analysis that, apart

from the generation of a cosmological constant, the con-
ditions for other effects to be observable were simply too
extreme to be accessible to testing in situations to which we
have access at present in our Universe. For instance, simple
dimensional considerations imply violation of Lorentz
invariance parametrized in dangerous6 dimension 5 oper-
ators modulated by R such as

λψ̄γμψξ
μ R
mp

; ð10Þ

for fermion fields ψ , a dimensionless λ. According to
Kostelecky [27] the strongest bound on such operators is

λR
m2

p
≈ λ

ρ

m4
p
< 10−12: ð11Þ

With neutron star densities estimated to reach scales of
about ρn ≈ 10−80m4

p, it is easy to see that not even under

3Here, as is common in these discussions it is assumed that
only the dynamical elements are subject to the action of the
diffeomorphisms.

4The integrability condition is a direct consequence of the
volume-preserving diffeomorphism invariance of the action
principle [2].

5This is justified because it can be shown that the resulting
changes in the dynamics of the background are completely
negligible during the period in which the effective cosmological
constant is generated, and its effects only become relevant at the
very late cosmological times when the dilution of all other forms
of energies make the dark energy the dominant component.

6These are terms that might appear in the effective matter
Lagrangian, which have the potential to generate violations of
Lorentz invariance that are large enough to enter in conflict with
empirical bounds.
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such extreme conditions, empirically significant direct
manifestations of the previous fundamental matter-diffusion
type of effect can take place in matter configurations as
presently known.
However, similar effects could be important in the

context of nonfundamental matter forms; for instance, in
the case of black holes produced by the gravitational
collapse of fundamental matter fields which later become
(for the purpose of outside observers) a seemingly empty
region but with a (classically) unbounded internal curva-
ture. Of course, black holes are not simple pointlike
particles and the applicability of Eq. (2) to such macro-
scopic objects might not seem directly justified. Never-
theless, the fact that black holes are intimately connected
with regimes of arbitrarily high curvatures—expected to
reach Planck scale curvatures inside where only a full
quantum gravity description could be truly relied on—
naturally opens the door to the consideration of the
phenomenological possibility that they might be affected
in a special way by our hypothetical space-time granularity.
This suggests, as discussed in [7], that black holes could be
subject to some kind of effective friction related to the
motion of the “frames they drag” with them and those
associated to the matter that was connected to the space-
time structure of their respective environment.
This led to two interconnected effects responsible for a

translational and a rotational friction, respectively. An early
analysis carried out in [7] showed clearly that the one that
seems more likely to have any important energetic rel-
evance was the second effect, in which (assuming, con-
servatively, that the second law would not be violated by
the type of effects considered) up to 30% of the mass of a
highly rotating black hole could be lost as a result of the
rotational friction. Moreover, the same analysis indicates
that in the context of unimodular gravity the rotational
friction could be a significant source of a change in the
effective cosmological constant.
Even when the basic theoretic ingredients for the gen-

eralization of (2) to the case of black holes are available
from the analysis of [7], an accurate account of the number
density of black holes as a function of their mass angular
momentum and cosmic time n ¼ fðM; J; tÞ for quantitative
estimates. Such a formula presumably would have to
incorporate the formation of new black holes as the result
of standard gravitational collapse during cosmic evolutions,
the effects of black hole mergers, as well as any possible
contribution of primordial black holes. With n¼ fðM;J; tÞ,
one would be able to compute both the modification of that
distribution due to the novel friction hypothesis as well as
(most importantly for this work) its exact contribution to
the evolution of the dark energy density during late
cosmological dynamics. A project is under way to try to
construct reasonable models for fðM; J; tÞ taking into
account hypothetical primordial distribution, simplified
models of merger histories, and direct bounds on abun-
dances of black holes at certain mass scales.

Unfortunately that task will not be completed in the very
near future to the level where the form of f will be narrow
enough so that we could think of simulating the effects with
a single fðM; J; tÞ. That means that even in the best of
circumstances we will have a multiparametric characteri-
zation of the possible fðM; J; tÞ s and the studies of their
cosmological effects will have to be performed in con-
junction with data analysis of many other sources such as
the one we will contemplate here.
In view of this, one can consider rather simple models to

describe the evolution of the cosmological constant over
time [8]. As this study is motivated by the so called “H0

tension” we focus attention on the result of the effect
we have described that might have taken place from the
time of decoupling until today. We therefore study the
overall feasibility of the model in the light of the available
cosmological data.
Some preliminary results were obtained by setting the

current value of Hubble parameter, H0, to the SnIa
estimation [10] and considering for the range of values
of the model parameters that would be roughly compatible
with the observational value of θ, the angular acoustic scale
of the CMB. This gave encouraging results in the light of
the H0 tension, as the fitting of the model parameters did
not require a large change in either the age of the Universe
or the present amount of matter (both baryonic and
dark components). We note that this preliminary analysis
only studied global geometric quantities like θ, however a
change in the evolution of cosmic history introduced by this
kind of models would also affect the growth of perturba-
tions that are the seeds of the present cosmic structure. In
order to include consideration of such aspects, a more
complete analysis, like the one presented in the present
paper, which also includes the prediction of the anisotropies
and polarization of the CMB, as well as geometric
quantities such as the luminosity or angular diameter
distance, is necessary.
In this work, we consider some relatively richer model

which will be carefully described in Sec. III. The friction-
like effect will be characterized by three parameters: two of
them are used to describe the period in which the effect of
“dissipation of black hole rotational energy” takes place,
and the last one characterizes the overall magnitude of the
corresponding change in the cosmological constant. At the
level of analysis that is possible, given our lack of knowl-
edge regarding fðM; J; tÞ, it makes sense to simplify the
treatment and model directly the time dependence of the
effective energy transfer to dark energy to study its effects
in the dynamics of the scale factor. These modifications of
the background evolution are then inserted into the standard
analysis of structure growth starting from the usual form of
the quasi-flat-scale invariant primordial spectrum usually
taken to emerge during the inflationary epoch.
This paper aims at dealing with two crucial aspects:

first, the constraining of the parameters of the theory with
the current data using a complete and appropriate statistical
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analysis; next, the examination and interpretation of
the results obtained in light of other relevant constraints.
In particular, one has the usual nucleosynthesis constraint
setting the overall contribution to the Universe’s current
energy budget appearing in the form of baryonic matter
at 4%–5%, and on the other the high precision data
emerging from the CMB, providing bounds on the relative
abundances of dark matter to baryonic matter at the last
scattering surface. On the other hand, as the model calls for
anomalous reduction of the corresponding energy densities
at late times, we must ensure compatibility with the data
from nearby galaxies and galaxy clusters constraining the
present abundance of baryonic matter as well as bounds on
nonluminous matter (which might include some baryonic
components). In other words, the proposed mechanism, if it
is to be considered as viable, should not result in too large
of a reduction in baryonic or dark matter components today
so as to generate a conflict with the relevant observations.
As we will see the best fits obtained in this work avoid that
“danger” by a rather large margin.

III. THE MATTER DENSITIES
IN THE UNIMODULAR MODEL

Let us consider a homogeneous and isotropic Friedmann-
Lemaître-Robertson-Walker (FLRW) Universe, and intro-
duce our modifications at an effective level in the sector of
both matter (including baryonic and dark matter) and dark
energy. In the context of the UG theory, the modified
conservation equation (7), when applied to the energy
momentum of a pressureless fluid (taken as representing
the matter content of the Universe after the radiation
dominated epoch), can be expressed as

ρ̇M þ 3
ȧ
a
ρM ¼ −ρ̇Λ; ð12Þ

where we have denoted ρΛ ≡ λ
8πG. Therefore, provided an

expression for ρΛðtÞ we can integrate the latter equation
from the beginning of the radiation era (trad) up to an
arbitrary later time, t, to obtain an expression for ρMðtÞ.
As discussed previously, even with a phenomenological
model for the diffusive process in black holes such as that
described in the Appendix (and originally in [7]), the form of
the energy-momentum violation current cannot be well
described given our present lack of knowledge of the black
hole densities in the late Universe. However, we can
postulate a simple expression for ρΛ in order to analyze
the generic viability of a UG model with diffusion as
follows:

ρΛðaÞ ¼ ρΛðtradÞ þ fðaÞΔρ: ð13Þ

At trad, the corresponding scale factor is referred to as
arad. Assuming fðaradÞ ¼ 0 and fða0Þ ¼ 1, the current (i.e
today) value of the dark energy density reads

ρΛða0Þ ¼ ρΛðtradÞ þ Δρ ¼ ρ0Λ; ð14Þ

where ρ0Λ is the current value of the dark energy density.
The final expression for ρΛðaÞ yields

ρΛðaÞ ¼ ρ0Λ þ Δρ½fðaÞ − 1�: ð15Þ
For the sake of simplicity we assume fðaÞ to be constant

in two time intervals, while shows a linear behavior in the
interval of interest as follows:

fðaÞ ¼

8>><
>>:

0 a ∈ ðarad; a� − δ=2Þ;
a−a�þδ=2

δ a ∈ ða� − δ=2; a� þ δ=2Þ
1 a ∈ ða� þ δ=2; a0Þ:

ð16Þ

In this way ρΛ is constant during the Universe evolution,
except for the time interval for which the value of the scale
factor a is (a� − δ=2, a� þ δ=2) where it changes linearly
in a. Moreover, the value of the cosmological constant is
not always the same, namely ρΛ ¼ ρ0Λ − Δρ when a ∈
ðarad; a� − δ=2Þ and ρΛ ¼ ρ0Λ when a ∈ ða� þ δ=2; a0Þ.
We should consider of course arad < a� − δ=2 and
a� þ δ=2< a0. In this way, Δρ accounts for the change
in the value of the cosmological constant with respect to its
present value ρ0Λ, and (a� − δ, a� þ δ) refers to the time
interval in which the energy-momentum tensor is not
conserved. Consequently, we can obtain the expression
for the total matter density ρMðtÞ as a function of the scale
factor integrating Eq. (12) and assuming Eqs. (15) and (16):

ρMðtÞ

¼

8>>>>><
>>>>>:

a3radρMðtradÞ
aðtÞ3 a∈ ðarad;a�−δ=2Þ;

a3radρMðtradÞ
aðtÞ3 −Δρ

4δ

h
a− ða�−δ=2Þ4

aðtÞ3
i

a∈ ða�−δ=2;a� þδ=2Þ;
a3radρMðtradÞ

aðtÞ3 − Δρ
aðtÞ3

h
a�3þða�δ2Þ

4

i
a∈ ða� þδ=2;a0Þ:

ð17Þ
We now proceed to analyze the observational predictions

of this model and how the CMB spectra are modified with
respect to the standard model as the a�, δ, Δρ parameters
vary. For this, we recall that baryons and dark matter have
different physical interactions with other particles during
the formation of neutral hydrogen and the following
Universe evolution, and therefore in principle they should
be described separately. Let us propose the following
expression for the baryon, ρBðtÞ, and dark matter, ρDMðtÞ,
densities which follow from Eq. (17):

ρBðaÞ ¼
a3radρBðtradÞ

aðtÞ3 þ αFða;Δρ; a�; δÞ ð18Þ

ρDMðaÞ ¼
a3radρDMðtradÞ

aðtÞ3 þ ð1 − αÞFða;Δρ; a�; δÞ; ð19Þ
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where

Fða;Δρ; a�; δÞ

¼

8>>><
>>>:

0 a ∈ ðarad; a� − δ=2Þ;
− Δρ

4δ

h
a − ða�−δ=2Þ4

aðtÞ3
i

a ∈ ða� − δ=2; a� þ δ=2Þ;

− Δρ
aðtÞ3

h
a�3 þ ða�δ2Þ

4

i
a ∈ ða� þ δ=2; a0Þ:

ð20Þ
In order to obtain expressions for α, arad; ρBðtradÞ; ρDMðtradÞ
in terms of the present values of the baryon density parameter
ΩB ¼ ρBðt0Þ

ρcrit
and the dark matter density parameter ΩDM ¼

ρDMðt0Þ
ρcrit

where ρcrit is the present critical density, we first define
the present fraction of baryon to dark matter density as
follows:

β ¼ ρBðt0Þ
ρDMðt0Þ

: ð21Þ

Next, we assume that the fraction of baryon to dark
matter at the beginning of the radiation era is equal to its
present value7

β ¼ ρBðt0Þ
ρDMðt0Þ

¼ ρBðtradÞ
ρDMðtradÞ

: ð22Þ

With a bit of algebra we obtain from Eqs. (21) and (22) that

α ¼ β

1þ β
¼ ρBðt0Þ

ρBðt0Þ þ ρDMðt0Þ
¼ ΩB

ΩB þ ΩDM
: ð23Þ

It is important to note thatΩB andΩDM are different from
ΩΛ

B and ΩΛ
DM the current baryonic and dark matter densities

in units of the critical density defined in the standard
cosmological model.
Therefore, recalling that ΩB ¼ ρBða0Þ

ρcrit
and ΩDM ¼ ρDMða0Þ

ρcrit
we obtain the expressions for ρBðaÞ and ρDMðaÞ in terms of
ΩB and ΩDM:

ρBðaÞ ¼

8>>>>><
>>>>>:

ΩBρcritþ ΩB
ΩBþΩDM

Δρða�3þa�δ2
4
Þ

a3 a ∈ ðarad; a� − δ=2Þ
ΩBρcritþ ΩB

ΩBþΩDM
Δρða�3þa�δ2

4
Þ

a3 − ΩB
ΩBþΩDM

Δρ
4δ

h
a − ða�−δ=2Þ4

a3

i
a ∈ ða� − δ=2; a� þ δ=2Þ;

ΩBρcrit
a3 a ∈ ða� þ δ=2; a0Þ

ð24Þ

ρDMðaÞ ¼

8>>>>><
>>>>>:

ΩDMρcritþ ΩDM
ΩBþΩDM

Δρða�3þa�δ2
4
Þ

a3 a ∈ ðarad; a� − δ=2Þ
ΩDMρcritþ ΩDM

ΩBþΩDM
Δρða�3þa�δ2

4
Þ

a3 − ΩDM
ΩBþΩDM

Δρ
4δ

h
a − ða�−δ=2Þ4

a3

i
a ∈ ða� − δ=2; a� þ δ=2Þ;

ΩDMρcrit
a3 a ∈ ða� þ δ=2; a0Þ:

ð25Þ

On the other hand, we point out that the baryon and dark
matter fractions that must be considered for the nucleo-
synthesis predictions are

Ωearly
B ¼ ΩB þ ΩB

ΩB þ ΩDM

Δρ
ρcrit

�
a�3 þ a�δ2

4

�
ð26Þ

Ωearly
DM ¼ ΩDM þ ΩDM

ΩB þΩDM

Δρ
ρcrit

�
a�3 þ a�δ2

4

�
: ð27Þ

Note that, except for the interval (a� − δ
2
, a� þ δ

2
), the

baryon and dark matter densities behave in the same way as
the ones of the ΛCDM model. Moreover, when a < a� − δ

2
,

the density parameters are equal to Ωearly
B for baryons and

Ωearly
DM for dark matter, while for a > a� þ δ

2
, ΩB and ΩDM

are the ones defined above, and correspond to the “late time
values.” On the other hand, the evolution of the baryonic
and dark matter densities during the interval (a� − δ

2
, a� þ δ

2
)

is different from the usual ΛCDM ones as can be inferred

7As a rather straightforward motivation for this simplifying
assumption we might adopt the view that most black holes in the
Universe (or at least those that play a substantial role in the
process at hand) originate ultimately in a population of primordial
black holes, which in turn were formed well before the spatial
distributions of dark and baryonic matter differed substantially.
Thus, the great majority of matter in the form of black holes can
be viewed as traceable to such components which would there-
fore naturally contribute in proportion to their cosmic abundan-
ces. The result is that, when energy in black holes is lost as a
result of our hypothetical aforementioned “effective friction,” the
proportion of baryonic and dark matter would remain essentially
unchanged in the whole process.
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from Eqs. (24) and (25), which reflect what should be
expected for the time interval during which the energy-
momentum conservation is violated.
Let us stress that we are considering the simplifying

assumption that both components of matter (baryonic and
dark) are at the end equally affected by the energy diffusion
under consideration. The expressions we have obtained for
the evolution of the baryon and dark matter and dark energy
densities in our unimodular model with diffusion will result
in a modification of the Friedmann equation as follows:

H2ðaÞ ¼ 8πG
3

½ρRðaÞ þ ρBðaÞ þ ρDMðaÞ þ ρΛðaÞ� −
k
a2

;

ð28Þ

where ρBðaÞ, ρDMðaÞ and ρΛðaÞ are described by Eqs. (24),
(25), and (13) respectively and ρRðaÞ is the radiation
density which is not modified in our model. The change
in the Hubble factor results in changes in other relevant
physical quantities for CMB physics such as zeq, i.e., the
redshift at which the density of matter and radiation are
equal, zLS, which is the redshift of last scattering, θðzLSÞ,
which is the angular diameter distance at last scattering and
lD, the diffusion damping length. Also, for baryon acoustic
oscillations (BAOs) physics we have to consider the
modification in zdrag, i.e., the redshift at which baryons
decouple from photons.8 In turn, zdrag and lD are not only
affected by the modification in the Hubble factor, but also
depend on the speed of sound, which in turn depends on ρB.
However, we have checked that the variations of the latter

quantities are of order 0.07% for Δρh
2

ρcrit
¼ 0.002 and therefore

the most important effect introduced by our model is the
change in the Friedmann equation.

A. Considerations for the CMB anisotropy
and polarization spectra

We implement the model discussed in the previous
section in the public code for anisotropies in the microwave
background [28], changing the expressions of ρB, ρDM and
ρΛ to the ones described in Eqs. (13), (16), (24), and (25),
both in the background evolution and in the calculation of
the growth of perturbations. We did not consider the linear
perturbation equations of unimodular gravity, because we
assume that the corresponding modification in the observ-
able quantities would be very tiny compared to the change
introduced by the background quantities. In principle, and
as noted by an anonymous referee, it would be desirable to
analyze the general problem (background and perturba-
tions) in a rigorous way, if only to confirm the natural

expectations that no significant changes arise for the
situation at hand.
Next, in order to compare the behavior of the class of

models analyzed in this paper, we assume as a reference a
fiducial model, namely a ΛCDM one, with the cosmologi-
cal parameters fixed to the best-fit values of the Planck
collaboration (2018) [9]. Also, we define

ΔρΛ ¼ 8πG
3

Δρ
1002

¼ Δρh2

ρcrit
ð29Þ

which we use instead of Δρ to analyze the effects of
assuming the unimodular models in the CMB anisotropy
and polarization spectrum.9

In Fig. 1 we show the unimodular behavior as the
parameters a�, δ, ΔρΛ vary, exploring the impact of one
parameter at a time and leaving the other two fixed
(indicated at the top of each column), while for the
cosmological parameters we set the ΛCDM best-fit model
reported by the Planck collaboration (2018) [9]. Our choice
of the cosmological parameters for the fiducial and unim-
odular model results in that the physics of the late Universe
(a > a� þ δ=2) is the same in both models [see Eqs. (24),
(25), (13), and (16)].10

We note that increasing ΔρΛ results in a decrease in the
height of the Doppler peaks and a corresponding increase in
the valleys. Also, we note that this produces, in addition, a
very small shift in the locations of the peaks. These effects
are very similar to the ones that occur if the value ofΩDMh2

is changed, so we can anticipate a degeneration between
ΩDMh2 and ΔρΛ, in the statistical analysis and parameter
constraints. Moreover, it is useful to recall that a decrease in
the value ofΩB has the effect of decreasing the height of the
odd peaks and enhancing the height of the even peaks. The
latter is relevant, because we also note that the decrease
(due to the increase in ΔρΛ) in the Doppler peaks is larger
in the even than in the odd ones. The reason for this is that
modifying Δρ affects both ρDMðtÞ and ρBðtÞ in a propor-
tional way and therefore the effect that is shown in Fig. 1 is
a combination of the change in both densities through the
variation in Δρ. Therefore, we also expect a degeneration
between ΩB and ΔρΛ, in the statistical analysis. We further
note that, as a� moves away from 1 in the model, the stage
of the Universe during which its physical parameters are

8Since there are far more photons than baryons, after photon
decoupling the photons continued to drag baryons with them
slightly longer into the Compton drag epoch. The redshift at which
the baryon velocity decouples from the photons is called zdrag.

9In this way, the difference between the values of the
cosmological constant at early and late times can be expressed
as a density parameter, in a similar way, to the baryon and dark
matter density parameters.

10Here we mean that both the behavior of the energy densities
and the corresponding energy parameters are the same in this
periodða > a� þ δ=2Þ. Note that as a result the unimodular model
will not necessary fit BBN constraint, but the point of this section
is to study the behavior of the CMB spectra as the unimodular
parameters are changed in order to understand the results of the
statistical analysis of the next section.
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different from the fiducial model is enlarged, resulting in a
decrease in the peaks and valleys of the spectrum.
Moreover, a change in δ affects only the lower multipoles
of the CMB spectra which is usually attributed to the
integrated Sachs-Wolff (ISW) effect if a standard model of
inflation is assumed. Moreover, it is well known that the
ISW effect scales with the amount of dark energy [29]. We
recall that the dark energy in our model behaves as 1

δ [see
Eqs. (15) and (16)] and this explains why, for greater values
of δ, the departure from the standard behavior is less than
for lower values. Likewise, the low multipoles are also
modified by a change in ΔρΛ and a�, and this can be
explained since a change in these parameters also affects
the amount of dark energy. Finally, due to the lower
sensitivity of the spectra to changes in a� and δ, we expect
the degeneration of these parameters with the usual
cosmological ones to be small or almost negligible.

IV. METHODOLOGY OF THE ANALYSIS

The observational predictions of the previous section are
now compared with cosmological data, so as to obtain the
constraints of the free parameters of the unimodular model.
To do this, we use a Monte Carlo Markov chain exploration
of the parameters space using the available package
CosmoMC [30]. We consider an extended dataset comprising
cosmic microwave background measurements, through the
Planck (2018) likelihoods [31],11 the CMB lensing
reconstruction power spectrum [31,32], the baryon acoustic
oscillation measurements from 6dFGS [33], SDSS-MGS

FIG. 1. The CMB anisotropy and polarization spectrum for different combinations of the unimodular parameter. The two fixed
parameters are indicated at the top of the column, while the legend of each column indicates the third parameter with two explored
values. Top: temperature autocorrelation function (CTT

l ). Middle: temperature E-mode cross-correlation function (CTE
l ). Bottom:

E-model autocorrelation function (CEE
l ).

11We use Plik likelihood “TT, TE, EEþ lowE” by combination
of temperature TT, polarization EE and their cross-correlation
TE power spectra over the range l ∈ ½30; 2508�, the low-l
temperature Commander likelihood, and the low-l SimAll EE
likelihood.
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[34], and BOSS DR12 [35] surveys, the type Ia SNe
Pantheon compilation [36] and cosmic chronometer mea-
surements of the expansion rateHðzÞ from the relative ages
of passively evolving galaxies [37–42]. We also consider a
Gaussian prior for the SNe Ia absolute magnitude M, in
order to consider the calibration given by the current H0

local measurements [43], ð−19.2435� 0.0373Þ mag, as
suggested in [44]. This approach prevents double counting
of low redshift supernovae and avoids assuming a value of
the deceleration parameter, considering M constrained by
the local calibration of SNeI, which is not included
otherwise. Let we stress that several approaches have been
considered in the literature to address the so-called “H0

tension.” The initial approaches started by fixing the value
of H0, or imposing a prior on it in the statistical analysis
[45,46], but the method proved to be statistically inad-
equate [47–50] as it attempts to combine two datasets that
are intrinsically incompatible when considered in the
context of the ΛCDM model, i.e. CMB and SNeIa, and
limits the parametric space of the analysis in regions not
determined by the CMB data alone. Thus, it has been
shown that it is statistically more acceptable to consider a
prior on the supernova calibration parameter instead [44].
Of course, it is crucial to test if this incompatibility of
supernovae and CMB datasets still holds in the context of
the unimodular model and this will be analyzed in the
Results section.
In our analysis, we vary the usual cosmological param-

eters, namely, the physical baryon density ΩBh2, the
physical cold dark matter density ΩDMh2, the ratio between
the sound horizon and the angular diameter distance at
decoupling θ, the optical depth τ, the primordial amplitude
As, and the spectral index ns. We also vary the unimodular
model parameters ΔρΛ, a� and δ and the nuisance fore-
ground parameters [51]. We assume large flat priors for the
free parameters, varying the unimodular ones between

ΔρΛ ∈ ½−0.2; 0.2�, a� ∈ ½0.02; 1� and δ ∈ ½0.02; 1�. We
consider purely adiabatic initial conditions. The sum of
neutrino masses is fixed to 0.06 eV, and we limit the
analysis to scalar perturbations with k� ¼ 0.05 Mpc.
We choose to perform two statistical analyses that we

describe as follows: (i) the main analysis, which we simply
call “unimodular parameters free,” in which we let both the
cosmological and the parameters of the unimodular model
free to vary, (ii) a speculative analysis, which we refer to as
“unimodular parameters fixed” where we fix the value of
the parameters of the unimodular model to arbitrary values
and let the other cosmological parameters vary. This second
choice is due to the fact that, as mentioned in Sec. III, a
degeneration between ΔρΛ and the cosmological parame-
ters ΩDM, ΩB and H0 is expected and will be shown next in
the Results section. Such degeneration can allow this model
to predict higher H0 values, and here we want to show the
cost of this achievement and the ability of this model to
alleviate the Hubble tension whether future data may show
better sensitivity to the constraint of its parameters.

V. RESULTS

We present the results of our statistical analyses in
Table I and Figs. 2–4. Note that we also included the
results of a ΛCDM model analysis using the same dataset
for comparison. About our main analysis, i.e. when the
unimodular parameters are free to vary, we found an
agreement within 1σ with the ΛCDM model cosmological
parameters, as shown in the second column of the table and
with gray curves in the plots. At the same time, both ΔρΛ
and δ are well constrained (see left panel of Fig. 4) while
just a lower bound on a� can be established. Here we stress
that the data clearly indicate that the anomalous behavior in
the energy densities must take place much later than the
formation of neutral hydrogen (arec ∼ 10−3).

TABLE I. Analysis constraints for the models parameters using the data set Planckð2018Þ þ lensingþ BAOþ Pantheonþ CCþM
prior. Quoted intervals correspond to 68% C.L. intervals, whereas quoted upper/lower limits correspond to 95% C.L. upper/lower limits.

ΛCDM Unimodular parameters free Unimodular parameters fixed

Parameter
Mean value and 68%
confidence levels Best fit

Mean value and 68%
confidence levels Best fit

Mean value and 68%
confidence levels Best fit

100ΩBh2 2.250� 0.013 2.254 2.242� 0.027 2.257 2.123� 0.012 2.132
ΩDMh2 0.1186� 0.0009 0.1191 0.1181� 0.0017 0.1189 0.1140� 0.0009 0.1134
τ 0.058� 0.007 0.053 0.056� 0.007 0.060 0.053� 0.007 0.052
lnð1010AsÞ 3.050� 0.015 3.040 3.045� 0.015 3.055 3.058� 0.014 3.056
ns 0.9684� 0.0036 0.9688 0.9700� 0.0056 0.966 0.984� 0.004 0.982
ΔρΛ � � � � � � 0.0010� 0.0040 −0.0003 Fixed to 0.09 � � �
a� � � � � � � >0.4 0.8 Fixed to 0.4 � � �
δ � � � � � � <0.65 0.22 Fixed to 0.02 � � �
H0 [Km=s=Mpc] 68.02� 0.40 67.88 68.51� 0.57 68.24 71.18� 0.42 71.43
100Ωearly

B h2 � � � � � � 2.245þ0.038
−0.035 2.255 2.173� 0.024 2.182

Ωearly
DM h2 � � � � � � 0.1190� 0.0025 0.1195 0.1174� 0.0018 0.1168

LANDAU, BENETTI, PEREZ, and SUDARSKY PHYS. REV. D 108, 043524 (2023)

043524-10



The H0 value of this analyses is compatible with that of
the ΛCDM, although it should be noted that slightly higher
values of H0 are allowed. As expected (see discussion in
Sec. III A), ΔρΛ shows degeneracy with the matter density
values and a weak correlation with H0, as shown in the
right panel of Fig. 4. On the other hand, the a� and δ
parameters show no degeneracy with the cosmological
parameters, which can be explained by the low sensitivity
of the CMB spectrum on these parameters (see discussion
in Sec. III A). On the other hand, we recall that in our model
the cosmological constant takes two different fixed values
over different epochs of standard cosmological evolution
[see Eqs. (15) and (16)]. Our results for ΔρΛ show that the
difference between them is small, namely of order 0.33%.
Finally, it is worth mentioning that the χ2min of this model is
comparable to that of the standard model, but has three
more parameters in the theory. On the other hand, one of the
parameters of the unimodular model is not well constrained

and this deserves further investigation with the next
generation of data that may be more sensitive to the
modifications to the usual theory analyzed here.
Given the difficulty in constraining the a� parameter, and

the apparent lack of degeneracy of δ with cosmological
parameters, we now focus on a model where both a� and δ
parameters are fixed at the smallest values allowed by our
first analysis, 0.4 and 0.02, respectively. Besides, the value
of ΔρΛ is set at a large positive arbitrary value which lies
within the 1σ confidence interval obtained in the first
analysis (i.e where all parameters varying freely). This
allows us to perform a second speculative analysis, shown
in red in Figs. 2 and 3 and in the last columns of the Table I.
We found that, for this choice of unimodular parameter
values, the H0 is shifted into higher values with respect to
the ΛCDM model, in agreement within 1.9σ with the latest
value of Riess et al. [10] obtained from local measure-
ments. This is an important result of the present work,

FIG. 2. Constraints on model cosmological parameters considering the case of all parameters free to vary (gray line), setting theory
unimodular parameters to arbitrary values (red line), compared with the standard cosmological model (blue line).
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because it provides a guide for the construction of models
that describe the density of black holes, which are,
according to our model, the scenario where the violation
of the conservation of the tensor-energy moment occurs
and, therefore, gives rise to the distinctive behavior of the
model. Our results show that higher values of Δρ shift H0

to values that further alleviate the Hubble tension and,
therefore, the models that describe the energy diffusion in
black holes (which are at present under construction)
should, in order to fully solve the issue, point toward these
values. We recall that, in the present work, we assumed a
simple model for the behavior of ρΛ, which is supposed to
arise from an energy diffusion from matter (both dark and
baryonic) to dark energy catalyzed by black holes.
Likewise the predicted values of ns are also not in agree-
ment with those of the ΛCDM model, but still consis-
tent with the predictions of standard inflationary models.

About the constraints for ΩBh2 and ΩDMh2, there is also
not agreement within 2σ with the ΛCDM model.
However, as discussed in Sec. III, the behavior of these
quantities is not the same in both models and, therefore,
we do not expect to obtain the same estimation. Indeed,
for the model to be viable it is necessary that the
predicted values of the baryon density in the early
Universe Ωearly

b h2 are consistent with the nucleosynthesis
constraint Ωbh2 ¼ ð0.021; 0.024Þ and this is verified by
the results shown in Table I.
Finally, we use the deviance information criterion (DIC)

[52] in order to test whether the complexity of the UG
model is statistically supported by the data with respect to
the vanilla ΛCDM one. The DIC has been proven to be a
useful tool to test the average performance of a model with
a penalty given by the Bayesian complexity [53–55] (see
Refs. [56–58] and references inside for some applications

FIG. 3. Constraints on model density parameters (Ωih2) considering the case of cosmological and unimodular theory parameters free
to vary (gray line), setting theory unimodular parameters to arbitrary values (ΔρΛ ¼ 0.09, a� ¼ 0.04, δ ¼ 0.02) while the cosmological
parameters are free to vary (red line), compared with the standard cosmological model (blue line).
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of DIC in cosmology). The DIC value is defined, for the
selected model M, as

DICM ≡ −2lnLðθÞ þ 2pD; ð30Þ
where the first term is the posterior mean of LðθÞ, i.e. the
likelihood of the data given the model parameters θ, and the
second term is the Bayesian complexity pD ¼ −2lnLðθÞ þ
2 lnLðθ̃Þ, where the tilde refers to the chosen estimator.12

We considered following [59] the following scale to
determine the performance of our model in that test:
ΔDIC ¼ 10=5=1 as indicating, respectively, strong/mod-
erate/null preference for the reference model (if the value of
ΔDIC is negative, it would indicate a preference for the
model under consideration). As we obtained ΔDIC ¼ 3.6,
we conclude that there is no evidence, according to this
criteria, to support the analyzed UG model over the
standard ΛCDM one. This indicates that the current data
are not sensitive enough to detect the full complexity of
the model. However, we stress that even using this strict
measure the model is not discarded in comparison
to ΛCDM.

VI. SUMMARY AND CONCLUSIONS

In this work, we perform a methodologically proper
analysis on a general idea involving late time violation of
energy-momentum conservation, resulting from a kind of
granularity of space-time whose ultimate origin lies in
quantum gravitational features. For this, it is necessary to
formulate the cosmological model in the context of unim-
odular gravity, a modification of GR that allows such
violations (under certain conditions that hold automatically
in cosmology). This idea was applied to the very early
Universe to offer an account of the nature and magnitude of

the cosmological constant, a fact that serves as a strong
motivation to seek a resolution of the H0 tension on similar
grounds [2,5].
The analysis carried out in this work must however be

considered as preliminary since the basic idea is that the
effect would be linked to a kind of effective friction
affecting black holes in the epoch between last scattering
and the present. However, we lack, at this time, a clear
picture of the black hole abundances as a function of their
mass angular momentum and time in the relevant period.
This forces us to use a rather simple and rudimentary model
of the effect in terms of an anomalous evolution of the
energy budget during the relevant epochs.
We analyze the model using a Boltzmann solver code to

take into account both background and perturbation evo-
lution. By comparison with a selected set of data, such as
CMB, BAO, SnIa and CC, we are able to constrain, to the
best of the current ability, the free parameters of the theory.
In addition, we note the sensitivity limits of the data on
constraining model complexity and discuss in depth the
degeneracies between parameters. In summary, we are only
able to constrain one unimodular parameter, ΔρΛ, while we
can at most find upper/lower bounds for the other two, a�
and δ. We do not notice significant changes on the
constraint of cosmological parameters compared to the
standard cosmological model.
It is however a noteworthy fact that our results show that

the model does not spontaneously reduce the tension onH0,
producing only a small shift in the value of the parameter.
However, it must be emphasized that the potential of the
model is not fully expressed as the data proved unable to fully
constrain the unimodular parameters. In fact, looking at the
results of our speculative analysis (in whichwe fix the values
of the three unimodular parameters at arbitrarily chosen
values), we see theH0 tension being relaxed, resulting in the
value of H0 ¼ 71.6 Km=s=Mpc at 1σ. This implies very
small modification of most other cosmological parameters
and without leading to a problematic depletion of the dark
matter and baryonic components (dark and bright) which are
of course required at late times to account for the present

-        

FIG. 4. Constraints on model unimodular parameters.

12We choose to use the best fit as estimator, so that the DIC can
be rewritten as DICM ¼ 2lnLðθÞ − 4lnLðθÞ. We obtain the
mean likelihood from the output chains of the MCMC analysis,
and the best-fit likelihood via the BOBYQA algorithm imple-
mented in CosmoMC for likelihood maximization.
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features of galaxies and galactic clusters. More specifically,
the present day energy budget resulting from themodel is the
following ranges (the following values are at 68%confidence
level): ΩB ¼ ð0.0412; 0.0543Þ, ΩDM¼ð0.2438;0.2594Þ,
ΩΛ ¼ ð0.69; 0.71Þ when all parameters are free to vary and
ΩB ¼ ð0.0453; 0.0458Þ, ΩDM ¼ ð0.2429; 0.2467Þ, ΩΛ ¼
ð0.73; 0.74Þ when the unimodular parameters are fixed
which can be compared with the standard ΛCDM values
given by ΩB¼ð0.0505;0.0574Þ, ΩDM¼ð0.2513;0.2613Þ,
ΩΛ ¼ ð0.69; 0.70Þ.
In our view this clearly illustrates the potential of the

proposal to fully resolve the H0 tension, once a more clear
picture of the detail form of the function fðM; J; tÞ is
known (or realistically characterized in terms of a suitable
set of parameters) allowing a repetition on the analysis
carried out in this work with better modeling of the relevant
black hole abundances.
Finally, since the predictions of the unimodular model

for the B modes are different from the ones of the standard
model, future CMB polarization data should provide more
strict constraints on the unimodular model.
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APPENDIX: EFFECTS OF THE FRICTION
DRIVEN FORCE IN BLACK HOLES

In this Appendix we discuss the effects of the force
driven by the friction that arises when the effects of
granularity of space-times are considered in black holes.
In this regard, general considerations led us to postulate a
rotational friction term of the form

uμ∇μsν ¼ ᾱbh
M
m2

p
signðs · ξÞR̃ðs · sÞuν − β̄bh

M
m2

p
R̃BHsν;

ðA1Þ

where M is the black hole’s mass, ᾱbh is connected to the
translational friction term analogous to the one affecting
particles [as in Eq. (1)] and the second term takes into
account that, in contrast to elementary particles, the spin of
the black hole might change not only in orientation but also
in magnitude. Thus, β̄bh is a new dimensionless parameter
characterizing the “intrinsic” spin diffusion term. In [7] two
options for the natural order of magnitude of these effective
parameters were considered, involving “high” and “low”
suppression levels. In order to assess the magnitude of
the effect under consideration, we compare the order of
magnitude or the resulting anomalous force, which we
denote by F, with that of the standard gravitational force
between two black holes at the moment of closest approach
in a black hole coalescence (BHC) event which we
denote by FBHC. The estimate of FBHC is based on the
consideration of two equal mass BHs and the use of the
Newtonian expression, evaluated when the separation
between both is of the order of the Schwarzschild radius,
and the anomalous force is estimated for the case that the two
black holes are extremal so s ¼ ðM=mpÞ2 (the magnitude of
the black hole’s spin measured in natural units). The order of
magnitude estimate for such a quantity turns out to be given
by jFBHCj ∼GM2=ð2GMÞ2 ¼ m2

p=4. It is worth emphasiz-
ing that while FBHC is taken to represent the standard
gravitational interaction, the hypothetical anomalous force
F we are considering would be also, ultimately, of gravi-
tational origin, although, in this case, tied intrinsically with
the granular aspects, of space-time which we take to
characterize its underlying fundamental quantum gravity
origin. As an analogy, one might consider comparing an
electromagnetic force of between two magnets with the
friction force that affects their motion on a surface, which is,
of course, also of electromagnetic origin. The results are the
following [7], in the case involving a high suppression level,

ᾱbh ¼ ᾱ01bh
mp

M
⇒

���� F
FBHC

���� ≤ 4ᾱ01bh10
−6
�

M
M⊙

�
3

; ðA2Þ

and for the second possibility involving a low level of
suppression,

ᾱbh ¼ ᾱ02bh

ffiffiffiffiffiffi
mp

M

r
⇒

���� F
FBHC

���� ≤ 4ᾱ02bh10
13

�
M
M⊙

�7
2

: ðA3Þ

These two possibilities might be seen as derived from a
1=

ffiffiffiffi
N

p
suppression of some stochastic origin with the

number of “area quanta” N ≈M2=m2
p or the number of

“energy quanta” N ≈M=mp involved, respectively.
The quantity R̃BH represents an appropriate measure of

the mean local curvature in the surroundings of the black
hole. Such a quantity could be for instance something
like an “averaged value” of the local Kretschman scalarffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RabcdRabcd

p
, in the region occupied by the black hole.
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For simplicity in [8] we explored the simple case in which
that quantity is taken to be a simple estimate of curvature
R̃BH ¼ 1=M2. Once this choice is made, and taking natural
order of magnitude estimates for the parameters ᾱbh and

β̄bh, the remainder of the analysis would in principle be
quite direct but heavily dependent on aspects of astrophys-
ics and cosmology on which our knowledge is still quite
incipient.
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