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We study the momentum-space entanglement between the sub- and super-Hubble modes of a spectator
scalar field, with a cubic λϕ3 interaction, in de Sitter space. Momentum-space entanglement has some
universal properties for any interacting quantum field theory, and we examine them for this specific curved
background using the Hubble scale as a natural delimiter to define UV/IR separation. We show that there
are several new subtleties when generalizing flat space results due to having a time-dependent interaction
term and a nontrivial vacuum state. Our main finding is that the momentum-space entanglement entropy in
de Sitter space grows very rapidly, supporting previous similar results for cosmological perturbations [S.
Brahma et al., Entanglement entropy of cosmological perturbations, Phys. Rev. D 102, 043529 (2020)],
which leads to interesting new questions.
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I. INTRODUCTION

De Sitter (dS) space occupies a critical role in our
understanding of the cosmos. Both the very early universe
as well as the current cosmic epoch can be modelled by dS
(or quasi-dS) spacetimes. However, the UVand IR regimes
of QFTs in dS suffer from a variety of conceptual issues.
For instance, UV physics on Planck scales can lead to an
arbitrariness in the choice of the dS vacuum (the so-called
“trans-Planckian problem”) [1,2], unless one assumes that
standard Minkowski space underlies physics on Planck
scales, not to mention the more drastic claim about the
impossibility of obtaining dS space from UV-complete
theories of gravity [3–7]. On the other end, it is well-known
that late-time effects in dS lead to secular divergences and
require non-perturbative physics for their resolution [8–11].
UV-IR mixing happens naturally due to the non-
conservation of energy and red-shifting of the physical
degrees of freedom (d.o.f.s) from the UV to the IR due to
the accelerated expansion of the universe. This makes
application of standard Wilsonian renormalization more

tricky in dS. Clearly, there are many aspects of quantum
fields in curved spacetimes, and particularly in dS, that are
much less understood than their flat-space counterparts.
Given these considerations, entanglement has become a

fruitful avenue to explore these ideas, and is now far from
just being an esoteric (albeit, defining) property of quantum
fields, having turned into a well-tested physical pheno-
menon. For example, in the context of gravity, entangle-
ment entropy has been extensively studied to probe the
UV structure of spacetime, leading to remarkable insights.
Indeed, holography has allowed us to study the entangle-
ment structure of the vacuum by looking at the entangle-
ment associated with a geometric region of space.
However, if one wants to explore this through the lens
of interacting QFTs, there is a plethora of technical
problems to overcome when dealing with position-space
entanglement, especially in the presence of interacting
fields. Nonetheless, entanglement emerges in any sub-
system where a subalgebra of observables can be defined,
and this need not be a sub-region of position space. In
particular, as shown in [12–14], there is an entanglement
entropy associated with different bands in momentum-
space. The Fock vacuum being completely factorized for a
free theory, all the entanglement in this case comes indeed
from interactions.
Hence, it is meaningful to ask what is the momentum-

space entanglement entropy for a quantum field in dS
space, looking for deviations from the flat-space results.1
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1See, for instance, [15–24] for some recent results on other
measures of entanglement in dS space.
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Our main motivation remains cosmology, where the sta-
tistics (e.g., the power spectrum, bispectrum, and so on) of
the cosmological perturbations, in terms of momentum
modes, are typically observed. Evidently, inflation is the
most natural test bed to explore these ideas. According to
this paradigm, quantum fluctuations are the fundamental
seeds from which we can extract the distribution of matter
in our universe, and since general relativity is nonlinear,
this implies that such quantum modes must have nonzero
entanglement entropy in momentum-space. In order to
simplify the technical details of the calculation, and to
highlight the salient features associated with entanglement
profile of the curved vacuum, we will focus on a spectator
scalar field in a pure dS spacetime, the former being a proxy
for cosmological perturbations while the latter for infla-
tionary expansion.
A first evaluation for the entanglement entropy of scalar

perturbations during inflation, originating from cubic non-
Gaussianities, was carried out in [25] (see also [26,27]).
However, it was realized in that work itself that partitioning
the full Hilbert space into sub- and super-Hubble modes
would lead to several subtleties over the flat space case. The
first one has to do with the “system” (super-Hubble) and
“environment” (sub-Hubble) states. Choosing a flat slicing
of dS, one can immediately see that super-Hubble states are
“squeezed” due to the curved background, or more spe-
cifically, as a consequence of gravity pumping zero-
momentum pairs of modes due to a time-dependent mass
term in the quadratic Hamiltonian. On the other hand,
environment modes are assigned the standard Fock vac-
uum, since the short-distance behavior of spacetime is
assumed to be that of Minkowski space. The second major
complication comes from having a time-dependent inter-
action parameter which necessitates computing the matrix
elements relevant to the problem using time-dependent
perturbation theory. This was bypassed in [25] by assuming
that the leading-order term is sufficient to capture the
relevant physics, the validity of which we shall examine in
this work. Finally, another technicality arises regarding the
particular configuration of momentum modes that contrib-
utes maximally to the integrals of the matrix elements.
This was assumed to be the “squeezed shape” in [25] due to
physical considerations. In this work, we will show more
explicitly, through numerical studies, that indeed the
momentum integrals can be highly simplified by approxi-
mating them with such profiles for momentum triangles,
although the shape dominating in this case will be a
different one due to the difference in the choice of our
interaction term (when compared with what was taken
in [25]). In short, we try to generalize the momentum-space
calculation carried out in [12,14] for a scalar field in
Minkowski space to that for one in dS.
With this in mind, one of our main goals is to illustrate

that the entanglement entropy between the momentum
modes of a scalar field increases rapidly for dS space. This

is in line with what was shown to be the case in [25], under
the above-mentioned assumptions, and has to do primarily
with the accelerating expansion of the background. In
standard big bang expansion, where there is no acceler-
ation, momentum modes do not cross the Hubble horizon
(rather, they “reenter” the Hubble patch if one assumes
inflation to precede such a phase) and we do not expect to
see this rapid growth in entanglement entropy due to mode-
coupling. Nevertheless, in the concluding section, we will
speculate what this growth in entanglement tells us about
the nature of dS space itself by comparing it with other
well-known measures of entropy and how one can con-
strain this in the future with bounds from information
theory [28–34].
Finally, before delving into the computational aspects of

our work, let us also note that momentum space entangle-
ment entropy is not, in general, symmetric with respect to the
UVand IR modes, i.e., the result is not invariant under which
subsystem we trace out as our environment. This is already
true for a bipartite system in flat space itself, and the
demarcation thus plays a role in the final answer. Hence,
momentum-space entanglement entropy is not a universal
quantity [14]. Strangely, this is one place where the dS space
computation fares better than its flat-space cousin—we have
a physically well-motivated reason for choosing the Hubble
scale to demarcate the UV from the IR. More specifically, if
we have inflation in mind, it makes sense to consider the
entropy of the modes which reenter the horizon and are
observed later on while considering the short-wavelength
modes as the environment. Thus, even if we know the
answer is not independent of the choice of the sub-system
partitioning, there is a physical reason for making the choice
in this case. Furthermore, as always, the entanglement
entropy turns out to be a cut-off dependent quantity.
However, once again the relevant cutoff scale for us would
be the Planck mass MPl, just as the Hubble parameter H
demarcates our system from the environment. Our result also
depends on the choice of the initial state for the quantum
fluctuations, which we assume to be the Bunch-Davies state2

which is a dS-invariant quantity. Furthermore, we assume
that there are no superhorizon modes at the beginning of the
dS phase, thereby choosing an IR cutoff, and the accelerated
expansion creates all the super-Hubble scales of interest.
Finally, although we will evaluate the entanglement entropy
more rigorously in this work, improving significantly over
the approximations made in [25], there will still be assump-
tions which we will have to make in our journey (such as
assuming that the squeezed states form a complete basis for
the super-Hubble modes). We will make these more explicit
in the relevant places.

2This is a point of contention from the point of view of the
trans-Planckian problem of inflation but makes sense for us since
we do not want to modify the short-distance behavior of our
theory.
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In the main body of the paper, we will lay down the
basics of a scalar field theory in dS and assume a cubic
interaction term. This is done both since it is the simplest
nonlinear term that one can consider as well as to remain
close to what was done in [25]. Evaluating the perturbative
entanglement entropy consists of computing the relevant
matrix elements to leading order in perturbation theory.
However, we will show how there can be apparent
divergences appearing for the time-dependent interaction
which one has to deal with appropriately. There are also
momentum integrals which are difficult to compute in full
generality, where we will use some numerics to show that
they peak in a specific “folded” limit. This is in line with
what is expected from standard cosmological arguments for
the bispectrum of such a system. Finally, we will focus on
how fast this perturbative quantity is actually growing by
comparing it with some large background entropy and end
with a speculation regarding what this tells us about the
nature of dS in general.
We use natural units throughout this paper, i.e.,

c ¼ ℏ ¼ 1. In addition, the Planck mass is denoted by
MPl and has the same units as the Hubble parameter H
while a denotes the scale factor.

II. INTERACTING QFT IN DE SITTER

A. The free theory

We begin by employing the standard technology of
evaluating scalar fields in dS. Since we have inflation as our
motivation, we work in the flat slicing of dS, the metric for
which is given by

ds2 ¼ −aðηÞ2½−dη2 þ dx2�; ð1Þ

where η ¼ −1
aH is the conformal time which runs in the range

−∞ < η < 0. We will denote spatial vectors with bold font.
The Hamiltonian for a free massless scalar is [35]

H0¼
1

2

Z
d3k
ð2πÞ3 ½kðckc

†
kþc−kc

†
−kÞþ iaHðckc−k−c†−kc

†
kÞ�;

ð2Þ

where k≡ jkj, ckðc†kÞ is the annihilation (creation)
operator and H−1 is the characteristic dS (or Hubble)
radius. As is well-known, the definition of the vacuum
state in dS is not one without ambiguities [36]. However,
imposing the boundary condition that the mode functions
approach Minkowski as η → η0 ¼ −∞, we can uniquely
define a dS-invariant vacuum state known as the Bunch-
Davies (BD) vacuum j0iBD ≡ j0i, satisfying the familiar
ckj0i ¼ 0. Sticking to the Heisenberg picture, where the
BD state is time-independent, we can work out the time-
dependence of the ladder operators through the Bogoliubov
transformation

c†−kðηÞ ¼ eiθk cosh rkc
†
−kðη0Þ − e−iðθkþ2ϕkÞ sinh rkckðη0Þ;

ð3Þ

where θk and ϕk represent rotation angles, whereas rk
quantifies the squeezing of the kth mode. These parameters
are respectively given by [37,38]

θkðηÞ ¼ kηþ arctan

�
1

2kη

�
; ð4aÞ

ϕkðηÞ ¼
π

4
−
1

2
arctan

�
1

2kη

�
; ð4bÞ

rkðηÞ ¼ −arcsinh
�

1

2kη

�
: ð4cÞ

Using this, one can show that modes starting out in the
BD vacuum evolve to the squeezed state, on super-
Hubble scales, due to the action of the quadratic (free)
Hamiltonian (2). The explicit form of the squeezed state
can be conveniently written as

jSQðk; ηÞi≡ 1

cosh rk

X∞
n¼0

e−2inϕk tanhn rkjnk; n−ki; ð5Þ

where

jnk; n−ki≡ 1

n!
ðc†kc†−kÞnj0k; 0−ki:

B. Interacting theory

While it is possible to calculate the geometric entanglement
entropy inherent to a free theory in de Sitter (see [15,16]),
we are interested in evaluating the momentum-space
entanglement entropy arising from an interaction term.
We will closely follow the procedure laid down in [12],
developed for deriving the momentum space entanglement
entropy from the standard notion of von Neumann entropy.
For the sake of clarity, we shall go through some of their
arguments here.
The decomposition for a generic perturbed state in a total

Hilbert space H ¼ HE ⊗ HS, where HEðSÞ denote envi-
ronment (system) Hilbert space respectively, in terms of the
unperturbed states of both subsystems is given by

jΩi ¼
�
j0i þ

X
n≠0

Anjni
�

E

⊗
�
j0i þ

X
N≠0

BN jNi
�

S

þ
X
n;N≠0

ðCn;N −AnBNÞjniE ⊗ jNiS; ð6Þ

where A, B, C are some matrix coefficients. The main
assumption here is that the full Hamiltonian for an
interacting bipartite QFT can be written as H ¼ HE

0 þ
HS

0 þHI , where H0 is the free Hamiltonian
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in (2) for both system and environment modes while HI
denotes the mode-coupling part [we define the specific
interaction term for us below in (8)]. Given the discussion
in the previous section, environment (system) modes are
in their Fock (squeezed) state, defined by the appropriate
number of c†kðηÞ acting on the BD vacuum. From this
expression, we can clearly see that without interactions
between the two subsystems, the final terms would not exist
and jΩi would simply be a separable state, which has zero
entanglement. We reiterate that this measure of entangle-
ment is a standard perturbative one in QFT on a curved
background and is thus quite distinct from their holo-
graphic counterparts [39,40]. We are also not measuring the
entanglement in the long-range interactions of the Bunch-
Davies modes since, essentially, that was a measure of
position space entanglement [15]. Nevertheless, perturba-
tive momentum-space entanglement has the potential to
carry information corresponding to measurable observables
in the CMB [26].
This provides the perfect segue to discuss the first

generalization of calculating entanglement entropy in dS
space compared to what was done in [12]. For flat space, all
the momentum modes, either in the system or environment
bands, are taken to be in the perturbed Fock vacuum.
However, in our case, this is no longer true. Although all
modes start out in the BD vacuum in the far past, when they
are well within the horizon, as they exit the horizon, they get
squeezed due to the squeezing term in (2). Essentially, this is
why we will treat the system modes to be in the squeezed
state while the environment modes—the ones which remain
sub-Hubble—will remain in their vacuum state.3

C. von Neumann entropy

Since we are interested in the behavior of entanglement
entropy in dS, we resort to the simplest kind of potential so
that we may avoid needless complications. Given the action
of a phi-cubic potential

SI ¼
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½−λψ3�; ð7Þ

where λ is some weak coupling constant that we can tune,
we can derive the Hamiltonian in terms of the rescaled field
ψ ¼ aφ as

HIðηÞ ¼ λaðηÞ
Z

d3xφ3ðη;xÞ: ð8Þ

Since our computation is for the perturbative entanglement
entropy, in the presence of an interaction term, we first

write down the corresponding perturbed vacuum. To see
how the perturbed ground state explicitly looks like, we use
the fact that for HI, we can define the unitary evolution
operator

UIðη0; ηÞ≡ T e
−i
R

η

η0
dη0 HIðη0Þ; ð9Þ

T signifying the time-ordering operator. Perturbation
theory then tells us that

jΩi ≈ j0; 0i þ
�
−i

Z
η

η0

dη0HIðη0Þ
�
j0; 0i þOðλ2Þ; ð10Þ

where we have used the notation where ji; ji≡ jiiE ⊗ jjiS.
Using perturbation theory, it is easy to rewrite the above
expression in terms of matrix elements as in (6). Finding the
von Neumann entropy is straightforward from hereon,
simply taking the outer product of jΩi and tracing out
the environment dofs shows us that, at leading order in λ,
the diagonalized reduced density matrix only depends on
one of the matrix elements, namely Cn;N [12], so that

Sent ¼ −
X
n;N≠0

jCn;N2jðln jCn;N2j − 1Þ þOðλ3Þ; ð11Þ

where Cn;N can be found from standard perturbation theory
(by taking the inner product of (10) with hn;Nj)

Cn;N ≈ hn;Nj
�
−i

Z
η

η0

dη0HIðη0Þ
�
j0; 0i þOðλ2Þ: ð12Þ

D. Momentum distributions

Now we arrive to the crux of the argument in [12].
Rather than deriving the entanglement entropy in position
space [44], we can instead partition the system in terms of
Fourier modes with some momentum scale μ such that now
the sums over excited states translates to a sum over
momentum modes with at least one below and one above
the demarcation scale

X
n;N≠0

→
X

fpig≷μ
: ð13Þ

Enforcing the scale dependence on this demarcation scale
requires working with a dimensionful entropy density
S ¼ S=V, which in the infinite volume limit turns the
discrete sum into an integral. This entanglement entropy
density can now be computed as

S ¼ −
Z
fpig≷μ

Y3
i

d3pi½jCfpigj2ðln jCfpigj2 − 1Þ� þOðλ3Þ;

ð14Þ

3The discussion here is regarding the choice of the quantum
state of the perturbations in dS and has nothing to do with treating
the background dS itself as a coherent state on top of a
Minkowski vacuum [41–43].
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Cfpig ¼ hp1;p2;p3j
�
−i

Z
η

η0

dη0HIðη0Þ
�
j0; 0i þOðλ2Þ;

ð15Þ

where in the second expression we have made use of the
fact that even with the external modes n, N ranging up to
infinitely many excited states in either Hilbert spaces, we
know that the matrix elements are exactly zero for all but
sets with a number of external states matching the ones
created by the interaction Hamiltonian.4 In our case for the
cubic interaction term, this number is three. This means that
there are exactly two sets of momenta that we are interested
in: set A with 1 sub- and 2 super-Hubble modes, and set B
with 1 super- and 2 sub-Hubble modes. To be precise, there
are three of each differing only by which label goes where
but they are all obviously equivalent, only resulting in some
combinatorial numerical factors out in front which we can,
as we will with all numerical factors, reabsorb into a
redefinition of λ. Making a particular choice of labeling, we
can now write the two sets (setting the beginning of
inflation as ai ¼ 1)

fpigA ⇒

�
H < jp1j; jp2j < aH

aH < jp3j < aMPl
;

fpjgB ⇒

�
H < jp3j < aH

aH < jp1j; jp2j < aMPl
:

Given how tedious the calculationwill be, wewill only show
explicitly the entanglement entropy resulting from set A
interactions, which wewill see later is actually the dominant
one, while relegating the other set B to Appendix A.

III. PERTURBATIVE MOMENTUM-SPACE
ENTANGLEMENT ENTROPY

First, notice the mode expansion of the scalar field

φðη;xÞ ¼
Z

d3k
ð2πÞ3

1ffiffiffiffiffi
2k

p ½ckðηÞ þ c†−kðηÞ�eik·x ð16Þ

¼
Z

d3k
ð2πÞ3

1ffiffiffiffiffi
2k

p ½vkðηÞckðη0Þþv�kðηÞc†−kðη0Þ�eik·x;

ð17Þ

where the BD mode functions are given by

vkðηÞ ¼
e−ikηffiffiffiffiffi
2k

p
�
1 −

i
kη

�
: ð18Þ

Then, we can see that (8) becomes an exceedingly large
expression of 8 terms all of cubic order in the operators.
While not obvious as of yet, it turns out that all the
nontrivial terms are of the same form. So rather than
working with the whole, we choose a representative of the
non-zero terms; c†−k1

c†−k2
c†−k3

and proceed with doing all
our calculations with it.

A. Time-dependence

We begin by rounding up all the time dependence of (15)
into one expression

IA ≡
Z

η

η0

dη0
1

η0
c†−k1

ðη0Þc†−k2
ðη0Þc†−k3

ðη0Þ; ð19Þ

where we have used the fact that the scale factor in dS is
defined as aðηÞ ¼ −1

Hη. Such that (15) is now

CfpigA ¼hp1;p2;p3j
�
−iλ
H

Z
Δ

IAffiffiffiffiffiffiffiffiffiffiffiffiffi
k1k2k3

p
�
j0;0iþOðλ2Þ; ð20Þ

with the shorthand:
R
Δ≡ R d3k1

ð2πÞ3
d3k2

ð2πÞ3
d3k3

ð2πÞ3 ð2πÞ3δ3×
ðk1 þ k2 þ k3Þ.
Substituting in (3) into (19)

IA ¼ c†−k1
ðη0Þc†−k2

ðη0Þc†−k3
ðη0Þ

Z
η

η0

dη0
1

η0
eiðθk1þθk2þθk3 Þ

× cosh rk1 cosh rk2 cosh rk3 ; ð21Þ

where here we have used the property that ckj0i ¼ 0.
Evaluating this integral analytically, however, proves
to be quite difficult; fortunately, we utilize the reasonable
assumption that the dominant behavior of this integral is
still captured in the sub-(super-)Hubble limit of the modes
jkηj ≫ 1ðjkηj ≪ 1Þ [45], reducing the expression to

IA¼c†−k1
ðη0Þc†−k2

ðη0Þc†−k3
ðη0Þ

1

k1k2

Z
η

−∞
dη0

1

η03
eiKη

0
; ð22Þ

with K ≡ k1 þ k2 þ k3. It is now clear why we chose to
analyse one term from (8).
When looking at all the permutations of the ladder

operators in (8), only terms with the form of (22) survive
the right multiplication with the vacuum. In the super-
Hubble limit eiθk reduces to eikηþ phase, eiϕk to a phase
and sinh rk ≈ cosh rk to 1

2kη. The outcome is that the terms
look identical so when taking the aggregate action of the
Hamiltonian on the BD vacuum, we simply get (22) with a
factor5 in front.
To evaluate this integral, we integrate by parts m times

such that we have4Generally only true for cubic and quartic interactions as
interactions with higher powers in the field result in counterterms
with lower powers and thus allow for a smaller number of
external states. 5Which as we said prior, can be reabsorbed into λ.
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Z
η

−∞
dη0

1

η03
eiKη

0 ¼ eiKη

2Kη3
Xm−1

j¼0

ð−iÞjþ1
ðjþ 2Þ!
ðKηÞj

þO
�

1

ðKηÞmþ1

�
: ð23Þ

First, note that as long as K is made up of at least one sub-
Hubblemode, jKηj ≫ 1 ∀ η,whichmust be the case to allow
for mode-mixing, it is then easy to intuitively see that it is
possible to take them → ∞ limit so that we are only left with
an exact sum. Doing so, however, clearly results in the sum
being divergent. Rather, it is more appropriate to approximate
the integral by taking only the first-order term corresponding
to m ¼ 1. Although this seems to be a rather drastic
assumption, see Sec. III B for the justification. (In fact, this
approximation is nothing but the so-called Riemann-
Lebesgue lemma in disguise, as was used in [25] earlier,
and will be explained further in the next subsection.) In light
of this discussion, the leading order computation gives us

IA ¼ c†−k1
ðη0Þc†−k2

ðη0Þc†−k3
ðη0Þ

−ieiKη

k1 k2Kη3
: ð24Þ

Expanding the states hp1;p2;p3j in terms of the ladder
operators, denoting P identically as with K, we can rewrite
(20) as

CfpigA ¼ −
λ

Hη5

�
δ3ðp1 þ p2 þ p3Þ
p2
1p

2
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1p2p3

p
P

�
; ð25Þ

where we have implicitly evaluated the momenta integrals
using the delta functions obtained from the equal time
commutation relations and the standard normalization
that h0j0i ¼ 1.
Finally, we can write down what the integral expression

for the entanglement entropy for set A is given by

SA ¼−
Z
fpig≷μ

Y3
i

d3pi½jCfpigA j2ðln jCfpigA j2− 1Þ�þOðλ3Þ;

≈−
λ2 lnλ2

H2η10

Z
fpig≷μ

Y3
i

d3pi

�
δ3ðp1þp2þp3Þ

p5
1p

5
2p3P2

�
þOðλ2Þ;

ð26Þ

where in the second line we separated the logarithmic term
such that we are left only with the leading order.6 All that is
left now is to evaluate these integrals.

B. Hiatus: Breakdown of perturbation theory
and issues of covariance

Ideally, to evaluate (23) exactly, we can use the
Riemann-Lebesgue lemma [46]. Simply put, for a function
fðxÞ that is Cm over an interval ½a; b�

lim
p→∞

Z
a

b
dx eipxfðxÞ ¼ O

�
1

p

�
;

¼
�
eipx

Xm−1

j¼0

ð−1Þj
ðipÞjþ1

fðjÞðxÞ
�a
b

þO
�

1

pmþ1

�
; ð27Þ

where in the second line, the sum comes from integrating by
parts, with fðjÞ being the jth derivative. Ostensibly, the first
equality makes sense physically because the rapid oscil-
lations of the exponential would tend to cancel out and thus
the integral approaches zero.Applying it to (23) is somewhat
subtle since we do not have the condition that K → ∞ but
rather−Kη > 1 ∀ η. This problem is easily overcome since
our function is 1=η03, so the differentiation always brings
down a power of η0 thus the hope is that we get

Z
η

−∞
dη0

1

η03
eiKη0 ¼ O

�
1

Kη

�
; ð28Þ

which is well bounded as we would conclude from the
lemma. However, the problem we face, as we saw in (23), is
that our series has a vanishing radius of convergence due to
the factorial growth. This is another subtlety we can
overcome by looking at the special exponential integral
function [47] defined as

EiðzÞ≡
Z

z

−∞
dt

et

t
: ð29Þ

If we switch the order of the terms when we integrate by
parts, we can get (22) in the exponential integral form:

Z
η

−∞
dη0

1

η03
eiKη0 ¼−

1

2
iK2π−

eiKη

2η2
−
iKeiKη

2η
−
1

2
K2EiðiKηÞ:

ð30Þ

It is well known that the series expansion of the exponential
integral is convergent for all complex values of its argu-
ment [47]. Indeed, interestingly, the asymptotic expansion
for jKηj ≫ 1 turns out to mimic our previous asymptotic
series (23) being a factorial divided by a power law. Since
the function is bounded, then our integral must be so too,
and the apparent divergence must cancel at higher orders.
This is not a very uncommon finding in quantum theory
where it is well-known that Feynmann diagrams are often
accompanied by factorial growth with the perturbative
series becoming divergent at some order in the expansion,

6Note that we should divide the argument of the logarithm by
the UV cutoff to make it a dimensionless quantity (see [12] for the
exact same argument for the flat space case). However, we shall
ignore the logarithm term for all our estimates later on, and thus
this will not be a crucial point for us.
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and therefore requiring a Borel-Ecallé resummation for
exploring their nonperturbative contribution [48,49]. Using
similar logic, finding an exact result may need some
nonperturbative methods such as resurgence, but it is
sufficient for our calculations to rely on the first-order
term recovered by the application of the Riemann-
Lebesgue lemma.

C. Triangle integrals

Let us return to (26) and try to compute the
set of momentum integrals. The first obvious step is to
kill one of the integrals using the delta function.
There is, however, a subtlety here; this is only possible
since the peak of the function is within the range of the
integral. Choosing, rather arbitrarily, to kill the d3p1

integral, we can get a relationship between the energies
p1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
2 þ p2

3 − 2p2 p3 cos ω
p

, where ω is the angle
between p2 and p3. In Fourier space, this closes a triangle
made up of the three momenta and this can be seen
in Fig. 1.
Orienting the triangle such that p2 is parallel to the

z-axis, we can see that d3p2 ¼ 4πp2
2dp2 and d3p3 ¼

2πp2
3dp3dð− cosωÞ. We can now write (26) with the

appropriate limits on the energies

SA ≈ −
λ2 ln λ2

H2η10

Z
aH

H
dp2

Z
aMPl

aH
dp3

Z
αbðp2;p3Þ

αaðp2;p3Þ
dð− cosωÞ

×

�
p3

P2p3
2ðp2

2 þ p2
3 − 2p2p3 cosωÞ5=2

�
; ð31Þ

where we have introduced the variables αa, αb as angular
limits which are dependent on both momenta since the
angle determines the shape of the triangle. Knowing the
range of ðp3 − p2Þ2 ¼ p2

1, we can write the range of
− cosω such that

αa ≡ 1

2p2p3

½ðHÞ2 − p2
2 − p2

3� < − cosω

<
1

2p2p3

½ðaHÞ2 − p2
2 − p2

3�≡ αb: ð32Þ

The limits for the momentum integrals can be understood
as follows. Since we have chosen the Planck mass as the
UV cutoff for our theory, it is no surprise that the resulting
entanglement entropy will then depend on this UV scale.
The comoving Hubble scale aH is what demarcates system
from environment modes and thus is the lower limit for the

UV modes and the upper limit for the IR ones. Finally, we
postulate that there were no superhorizon scales at the
beginning of the dS phase (where we have set ai ¼ 1), i.e.,
all the super-Hubble modes were created by the dS
expansion.
Once more, we are faced with an integral that is not

trivial to solve. As expected, even if the limits of the
magnitude of the remaining momenta (after using the delta
function) are straightforward to evaluate, this is not the case
for the angular integral which has the limits as a function of
the momenta. However, a little bit of reflection shows that
the integral is dominated by a term that saturates the angle
in the configuration when the Triangle 1 is folded, i.e.,
ω ≈ 0 (See B 1). Being left with integrals with the momenta
in the denominator, we easily see that the IR limit
dominates as we approach late times a ≫ 1 and so the
entanglement entropy, at leading order, is given by

SA ≈ −λ2 ln λ2a10H: ð33Þ

The first thing to notice is that the UV cutoff does not show
up in this answer since the IR limit dominates the integral
and this is a direct consequence of squeezing. In other
words, since our interaction is of the ϕ3 form, and does not
have any derivative interactions as is typically the case for
gravity [25], the folded shape dominates in which case we
have two super-Hubble and one sub-Hubble mode. This
results in an extra factor of the squeezing (as compared to
the so-called “squeezed” limit in [25]) and the IR limit
dominating the integral.
Performing a similar analysis for set B, we find that it is

sub-dominant to set A, explaining why we left it out of the
main text and relegated it to the appendices, namely,

SB ≈ −λ2 ln λ2a6H: ð34Þ

IV. CONCLUSIONS

Let us first convert our result to something a bit more
physically meaningful—this would be the entanglement
entropy per unit physical volume, which is given by

sEE ∼ λ2a7H; ð35Þ

where we have ignored small logarithmic corrections to
focus on the leading order contribution. A quick compari-
son with the entanglement entropy (per unit physical
volume) of cosmological perturbations shows that [25]
the growth here is even faster than in that case. The reason
is the same as explained above. The interaction term chosen
here is simply devoid of any spatial derivatives and this
leads to a stronger dependence on the IR modes, and hence
a faster growth of the entanglement entropy.

FIG. 1. Geometric representation of an interaction between
three Fourier modes.
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Although we computed the entanglement entropy
between sub and super-Hubble modes for a spectator
scalar field in (the flat slicing of) dS, it does have an
important physical application. One would expect a
similar contribution for the tensor modes in inflation
since the leading order term for the cubic non-
Gaussianities for purely primordial gravitational waves
is free of any slow roll parameter, and indeed has a term
devoid of any derivatives (see, e.g., [50,51]). Thus, one
can expect a similar behavior for the growth of entangle-
ment entropy for inflationary tensor modes. Thus, any
conclusions which could be drawn from the growth of this
perturbative entanglement entropy of a scalar field (due to
the background evolution) during inflation can also be
drawn from the tensor entanglement entropy. However, it
remains to be seen what physical implications can we
actually draw from such a momentum space computation,
especially with respect to observations.

A. Interpretation

One way to draw some physical consequences for this
would be to compare this entanglement entropy with the
thermal entropy during reheating. This is reiterating the
argument put forward in [25] which can be stated as
follows. If we assume that all of this entanglement entropy
gets converted into a thermal entropy, how large can this
entanglement entropy be so as to not become greater that
the reheating entropy? This was answered in [25] for scalar
perturbations and we can simply reproduce the calculation
here. In other words, the timescale on which the entangle-
ment entropy becomes comparable to the thermal entropy
of reheating (sth ∼M3=2

Pl H
3=2) is given by

N ≃
1

7
ln

�
M3=2

Pl H
1=2

λ2

�
; ð36Þ

whereN ≡ ða=aiÞ. Qualitatively, this gives the same bound
as in [25], i.e., the entanglement entropy around the
scrambling time of dS becomes large enough to account
for all of the reheating entropy7

Of course, it is entirely possible that the momentum-
space entanglement entropy is not converted into a thermal
entropy and then the upper bound does not apply in this
case. More so, in our original computation, we simply
assumed a spectator scalar field in pure dS and without

invoking the analogy to primordial tensor modes, a
comparison with the reheating entropy is not applicable.
In its current state, the only conclusion about the EE (33)

we can make is that grows quite fast. However, to gain
some insight into how fast is its rate of growth, we can
compare it to other known entropy results for dS. For
instance, one might compare this with the well-known
Gibbons-Hawking (GH) entropy [52]. However, note that
we cannot quite apply a Bousso bound [53] to our
computation since ours is an entanglement entropy between
momentum modes of a scalar field which live everywhere
and is not restricted within a static patch of dS. We are
simply comparing this to the GH entropy to see how fast
can this tiny perturbative computation become as large that
the former quantity.
Since we are comparing the entanglement entropy per

unit physical volume, we must divide the total GH entropy

SGH ¼ M2
Pl

H2 with the dS physical volume VdS ¼ ðHÞ−3 so
that now

sEE ∼ λ2a7H ≤ M2
PlH ≃ sGH; ð37Þ

where we have ignored the logarithmic term in the
coupling, as before, as it is negligible compared to the
quadratic term. Recalling that we had set the initial
value of the scale factor ai ¼ 1, this shows that around
the time

N ≃
2

7
ln
MPl

λ
; ð38Þ

where this number of e-foldings denotes when the
perturbative entanglement entropy due to the cubic inter-
action term becomes as large as the Gibbons-Hawking
entropy. However, as mentioned above, one should not
look at this as a bound for the number of e-foldings
allowed for the dS phase to exist. Rather, this is just to give
a measure of how fast the entanglement entropy is
growing in this system.
If we cannot use the reheating entropy or the GH entropy

to put a bound on the lifetime of the dS phase, how should
we interpret our result? At the very least, this computation
shows us the importance of time-scale lnðMPl=λÞ, after
which we should not trust our perturbative calculation.
Note that although MPl=λ is much longer than the scram-
bling time of dS, given by MPl=H, it is still a very small
amount since its logarithm is the one which appears as the
relevant timescale. This sets a limit on how long such a
perturbative treatment is under control for a QFT in dS
space due to the secular growth in the entanglement
entropy. Since our computation of the entanglement
entropy is in momentum space, it is difficult to put any
direct bounds on it from some physical reasoning.
However, more ambitiously, we might be able to put a
bound on the growth rate of the entanglement entropy

7The astute reader will notice that the above timescale is larger
then the scrambling time (N < lnMPl=H) but it is not by much
since the relevant quantity appears inside a logarithm. Of course,
if ϕ is a spectator field, then λ ≪ H and the above quantity is
larger than the scrambling time and is equal to it in the limit that
the cubic potential is responsible for the accelerating expansion
λ ∼H. However, our main point is that even for a perturbative
potential λ=H ≪ 1, this time scale is not a very large one since it
appears inside a logarithm and demonstrates the rapid growth of
the entanglement entropy.
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coming from upper limits on its velocity from quantum
information theory [54–56]. This might open up an
interesting avenue to constrain perturbative QFT in
dS space.
In summary, in this work we have looked at a pertur-

bative scalar QFT in dS space and computed the entan-
glement entropy, in momentum-space, between the
sub- and super-Hubble modes of the scalar field. Being
in momentum space, the entire entanglement results from
the perturbative non-linearity and our main result is to
demonstrate how fast this quantity grows due to IR effects
of dS space. At the very least, our result shows how long
one can trust perturbative results, especially in relation to
entanglement between fields in dS space, before secular
effects take over and one needs to employ some late-time
(presumably, nonperturbative) resummations to deal with
them. A final caveat to keep in mind is that we have used
the planar slicing of dS, which is relevant especially for
discussing cosmological accelerating spacetimes, and yet
one must compute similar quantities in other slicings of dS
to better understand the crucial features exhibited by the
background expansion on such entanglement. We leave
this and other intriguing issues mentioned above for
future work.
Let us end with a quick summary of the main physical

motivation for our computation. In any system in which
we have access to a part of the Hilbert space, it is
important to quantify the effect of the environment even
if the latter is out scope of direct observations.
Cosmology, and de Sitter space in particular, has a
Hubble horizon which is tailor-made for applying tech-
niques of open quantum systems [23,26,50,57,58] to
them. Momentum-space entanglement entropy is an ideal
quantifier to measure the nonunitarity building up in the
system due to the interactions with the environment. What
we have done in this work is to look at timescales after
which perturbative computations for this entanglement
entropy would become less trustworthy. However, what
would be more interesting to explore in the future would
be the effect of this entanglement between the sub- and
super-Hubble modes on observations in the CMB, analo-
gous to what was done in [59,60]. Independent of that,
decoherence of quantum inflationary perturbations are
also driven by the same interaction terms used here to
quantify the entanglement between these modes, and it
would be interesting to see the decoherence time as
compared to the time for which the perturbative compu-
tations remain valid.
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APPENDIX A: ENTANGLEMENT ENTROPY
FOR SET B

Starting from the equivalent expression of (20) for set B

CfpigB ¼hp1;p2;p3j
�
−iλ
H

Z
Δ

IBffiffiffiffiffiffiffiffiffiffiffiffiffi
k1k2k3

p
�
j0;0iþOðλ2Þ; ðA1Þ

IB ¼ c†−k1
ðη0Þc†−k2

ðη0Þc†−k3
ðη0Þ

1

k3

Z
η

−∞
dη0

1

η02
eiKη0 ; ðA2Þ

where this time we have taken the sub- and super-Hubble
limits for k1, k2, and k3, respectively.
Integrating by parts and taking the leading order, we get

IB ¼ c†−k1
ðη0Þc†−k2

ðη0Þc†−k3
ðη0Þ

−ieiKη

k3Kη2
ðA3Þ

Performing a similar analysis as before, we see that (A1)
is now

CfpigB ¼ −
λ

Hη3

�
δ3ðp1 þ p2 þ p3Þ
p2
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1p2p3

p
P

�
: ðA4Þ

which implies that the expression for the entanglement
entropy for this configuration is given by

SB≈−
λ2 lnλ2

H2η6

Z
fpig≷μ

Y3
i

d3pi

�
δ3ðp1þp2þp3Þ

p1p2p5
3P

2

�
þOðλ2Þ

ðA5Þ

Killing the d3p1 integral with the delta function and
expanding the volume elements, we find

SB ≈ −
λ2 ln λ2

H2η6

Z
aMPl

aH
dp2

Z
aH

H
dp3

Z
βbðp1;p3Þ

βaðp1;p3Þ
dð− cosωÞ

×

�
p2

P2p3
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
2 þ p2

3 − 2p1p3 cosω
p

�
; ðA6Þ

where now the angle ranges, in this case, are determined by
the full range of p1, i.e.,

βa ¼
1

2p2p3

½ðaHÞ2 − p2
2 − p2

3� < − cosω

<
1

2p2p3

½ðaMPlÞ2 − p2
2 − p2

3� ¼ βb: ðA7Þ

From Appendix B 2 we know that the angular
integral peaks when ω ≈ π

2
in the so-called “squeezed” limit.

Performing the momenta integrals, we again see that the IR
limits dominate, as perhaps expected, with the result that

SB ≈ −λ ln λ2a6H: ðA8Þ
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APPENDIX B: DOMINANT TRIANGLE SHAPES
FOR THE MOMENTA INTEGRALS

1. Angles in Set A

Starting from (31), we try to simplify the expression by
figuring out at which ω the integral dominates and thus
precluding the need to evaluate the full integral. To do that,
we need to perform the angular integral, so that we now
have

SA ≈ −
λ2 ln λ2

H2η10

Z
aH

H
dp2

Z
aMPl

aH
dp3Fðp2; p3Þ: ðB1Þ

Showing the resulting function is not very illuminating so
we have opted against explicitly writing it down. Rather,
we are interested in finding at which point Fðp2; p3Þ gives
its maximum contribution to the integral by finding the
shape of the angle which saturates at that point.
We can see from Fig. 2 that the function peaks in the

limits ðp2; p3Þ → ðH; aHÞ. These values severely limit the
shape of the Triangle 1, taking into account the range of p1

we can see that it must be folded. This is sufficient
justification for saying that if we are interested in the
dominant part of (31), we may bypass the angular integral
and simply take the corresponding angle to be that of the
folded shape ω ≈ 0.

2. Angles in Set B

Performing the angular integral in (A6)

SB ≈ −
λ2 ln λ2

H2η6

Z
aMPl

aH
dp2

Z
aH

H
dp3Gðp2; p3Þ ðB2Þ

we similarly express the result in terms of a function
Gðp2; p3Þ which we want to plot the behavior of. Plotting
the function Gðp2; p3Þ against its argument, we can see,
from Fig. 3, that it peaks, similarly, in the IR limits of the
momenta. Once more, taking into account the range of p1,

the configuration corresponding to those limits is when the
angle in Triangle 2 is ω ≈ π

2
which is the squeezed shape in

the standard cosmological vernacular.
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