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We study the effect of super-sample covariance (SSC) on the power spectrum and higher-order
statistics; bispectrum, halo mass function, and void size function. We also investigate the effect of SSC
on the cross covariance between the statistics. We consider both the matter and halo fields. Higher-order
statistics of the large-scale structure contain additional cosmological information beyond the power
spectrum and are a powerful tool to constrain cosmology. They are a promising probe for ongoing and
upcoming high-precision cosmological surveys such as DESI, PFS, Rubin Observatory LSST, Euclid,
SPHEREx, SKA, and Roman Space Telescope. Cosmological simulations used in modeling and
validating these statistics often have sizes that are much smaller than the observed Universe. Density
fluctuations on scales larger than the simulation box, known as super-sample modes, are not captured by
the simulations and in turn can lead to inaccuracies in the covariance matrix. We compare the covariance
measured using simulation boxes containing super-sample modes to those without. We also compare
with the separate universe approach. We find that while the power spectrum, bispectrum and halo mass
function show significant scale- or mass-dependent SSC, the void size function shows relatively small
SSC. We also find significant SSC contributions to the cross covariances between the different statistics,
implying that future joint analyses will need to carefully take into consideration the effect of SSC. To
enable further study of SSC, our simulations have been made publicly available.

DOI: 10.1103/PhysRevD.108.043521

I. INTRODUCTION

Ongoing and upcoming cosmological missions such
as DESI1 [1], PFS2 [2], Rubin Observatory LSST3 [3],
Euclid4 [4], SPHEREx5 [5], SKA6 [6], and Roman
Space Telescope7 [7] will probe ever larger volumes of
cosmic structure in the small-scale, nonlinear regime.
These data contain rich information that can be used to

constrain fundamental physics, such as dark energy, dark
matter, and neutrino mass. To fully realize the potential of
these surveys, many higher-order (or non-Gaussian)
statistics have been proposed to extract additional infor-
mation beyond the power spectrum (2-point function).
These include, for example, the bispectrum (3-point
function), halo mass function, void size function, prob-
ability distribution function, marked power spectrum, and
wavelet scattering transform [8–41]. They have been
studied intensively in recent years and are becoming
standard tools for cosmological inferences. Moreover,
there is increased interest in joint analysis, in which
second and higher-order statistics are combined to maxi-
mize the information gain (see e.g. [36,42–45]).
Models for higher-order statistics usually rely on simu-

lations for validation of analytic theories, calibration of
semianalytic models, or as the base of simulation-based
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inferences. To compute the covariance matrix of higher-
order statistics, one typically requires a large set of simu-
lations with different random initial conditions [46]. Such
simulations assume periodic boundary conditions and are
normallymuch smaller than the typical observed volumes of
the Universe. Importantly, the mean density of these
simulations is the cosmic one, and so by construction, they
do not take into account the effects of perturbations with
wavelengths longer than the size of the simulation. These
so-called “super-sample modes” can however contribute
sizeably to the covariance matrix; this effect is called the
super-sample covariance (SSC) effect and must be carefully
included to achieve accurate results.
To make contact with past literature, SSC has been

studied as the “beat-coupling” (BC) effect in the mildly
nonlinear regime using perturbation theory, as “halo sample
variance” (HSV) in the highly nonlinear regime using the
halo model, and was sometimes called the DC mode effect
as an analogy between the constant background fluctuation
and constant electric direct current [47,48]. It was first
studied in the context of the power spectrum [49,50], and its
effects have since been quantified using direct simulations
[51], perturbation theory [52–55], and separate universe
simulations [56–58]. It has also been studied in relation to
cluster counts [12,59,60], the matter bispectrum [9,61–63],
the matter one-point probability density function [64], the
redshift space galaxy power spectrum [65–67], and the
lensing power spectrum [68]. Furthermore, the effects of
baryons on the SSC has been studied in [69–71]. The SSC
effect associated with gravitational potential perturba-
tions in cosmological with local primordial non-
Gaussianity (i.e. fNL ≠ 0) has also recently been studied
[72]. Fast, approximate, methods exist to account for the
SSC in forecasts for upcoming lensing and photometric
surveys [73–75].
In this paper, we study the effects of SSC for the power

spectrum and several higher-order statistics; the bispec-
trum, halo mass function, and void size function. To do so,
we compare the statistics measured using small periodic
boxes, which ignore SSC, to those using equally sized
boxes that are embedded in a much larger simulation,
which include SSC. We study the effect of SSC in both the
total matter field and the halo field. We also validate our
results against the separate universe (SU) approach, in
which the SSC contribution is calculated semianalytically
using the response of the statistics to certain changes in the
cosmological parameters.
Our work is the first to investigate the effects of SSC for

voids. Cosmic voids have been studied intensively in recent
years [20,22,36,37,76–83] and have achieved cosmological
constraints with observational data [42,84–86]. The bias
parameters of voids have also been recently studied using
SU simulations [87,88]. Our work is also the first to study
the effects of SSC on the cross covariance between the
combinations of all of these statistics.

The paper is organized as follows. Section II outlines the
methods employed to compute the SSC of the power
spectrum, bispectrum, halo mass function, and void size
function. Section III presents the results for SSC of these
statistics and their cross covariances. We conclude in
Section IV.

II. METHOD

In this section, we describe the methods used to run the
N-body simulations, to compute the statistics, and to
compute the SSC. We also briefly describe the SU
approach.

A. Covariance

The covariance matrix between an observable Oα and
another observable Oβ is given by

Cαβ ¼ hðOα − hOαiÞðOβ − hOβiÞi; ð1Þ

where hi denotes the mean over realizations. The α and β
subscripts can refer to different bins of particular statistic,
or two completely different statistics. The covariance can
be estimated by evaluating Eq. (1) using an ensemble of
simulations with different random realizations of the initial
conditions.
We quantify the SSC effect by comparing the following

two sets of simulations:
(i) sub-boxes that are embedded in a much larger

simulation, where the effect of SSC is properly
captured;

(ii) small boxes that are of the same size and resolution
as the sub-boxes, but are independently simulated
with periodic boundary conditions and have no
super-sample modes.

Because the super-sample modes are only present in the
former and not in the latter, the SSC is given by

CSSC ¼ Csub − Csmall; ð2Þ

whereCsub is the covariance computed using sub-boxes and
Csmall is that using small boxes.

B. N-body simulations

We use FastPM [89,90], a particle-mesh (PM) N-body
simulation, to simulate a big box of side length 5 Gpc=h
with 20483 matter particles. We then split this big box into
83 ¼ 512 sub-boxes. We compare these to 512 indepen-
dent, periodic, small boxes of size 5000=8 ¼ 625 Mpc=h,
each with 2563 particles. The resolution of the small boxes
is chosen to match the big box. We consider a maximum
scale cut of kmax ¼ 0.8 h=Mpc as scales with lower k than
this are well modeled by our simulations. In all cases, we
begin the simulations at z ¼ 9 and take 60 steps to z ¼ 0.
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The resolution of the force mesh is 2 times the number of
particles. For simplicity, we consider and discuss only the
results at z ¼ 0, which is when SSC is expected to be the
strongest.
Our cosmological parameters are h ¼ 0.6774,

Ωm ¼ 0.3089, Ωb ¼ 0.0486, σ8 ¼ 0.8159, ns ¼ 0.9667,
Mν ¼ 0.
To identify halos, we use the Friends-of-Friends (FoF)

algorithm with a linking length of 0.2. We generate the
particle and halo overdensity fields using the Cloud-in-Cell
(CIC) method with Nmesh ¼ 256 using NBODYKIT [91].
Further, we consider the halo field in real and not in redshift
space. We compensate the field for window effects before
calculating the statistics [92]. For matter the overdensity
field is computed as δ ¼ ðρ − ρ̄Þ=ρ̄, where ρ is the matter
density, while for halos it is computed as ðn − n̄Þ=n̄, where
n is the number density. In order to compute the over-
density field in the sub-boxes, there are two choices for the
mean density ρ̄ (or n̄): using the “global” mean of the big
box, or the “local” mean of the sub-box. Realistically, for
weak-lensing surveys it is appropriate to use the global
mean as the mean density can be directly calculated from
the cosmological model, moreover, the measured weak-
lensing shear field is sensitive to the global-mean density.
However, for galaxy surveys, since one does not know how
to predict from first principles the total number of galaxies,
the local mean is what is most appropriate as we measure
the galaxy statistics with respect to the observed galaxy
number density in the survey. We consider both cases in our
analysis.

C. Statistics

We now define the various statistics considered in this
work, and the method used to compute them. We plot the
statistics averaged over all the sub-boxes in Fig. 1:

(i) The power spectrum PðkÞ is defined as the Fourier
transform of the 2-point correlation function
ξðx1 − x2Þ≡ hδðx1Þδðx2Þi, where δ is the overden-
sity field. Defining the fundamental frequency of the
box as kF ≡ 2π=625 h=Mpc, we use 15 linear bins
between bin edges ½0; 80kF�, with Δk ¼ 5kF.

(ii) The bispectrum Bðk1; k2; k3Þ is defined as the
Fourier transform of the 3-point correlation func-
tion hδðx1Þδðx2Þδðx3Þi. We consider three particular
configurations of the bispectrum: equilateral
(k1 ¼ k2 ¼ k3), isosceles (k1 ¼ k2 ≠ k3), and
squeezed (k1 ¼ k2; k3 ∼ 0). More concretely,
we consider the squeezed mode as k3 ¼
3.6 × 10−2 h=Mpc. We compute the bispectrum
using the BSKIT package [93], which employs the
FFT-based bispectrum estimators of [94,95]. The k
binning is the same as for the power spectrum.

(iii) The halo mass function (HMF), denoted
dnH=d lnM, is defined as the comoving number
density of halos nH per unit of log halo mass lnM.
We consider seven logarithmic bins bounded by
Mmin ¼ 1014M⊙=h and Mmax ¼ 1016M⊙=h.

(iv) The void size function (VSF), denoted dnV=dR,
corresponds to the comoving number density of
voids nV per unit of void radius R. We consider
spherical voids in smoothed density fields.

FIG. 1. Power spectrum (top left), halo mass function (top middle), void size function (top right), and three bispectrum configurations
(bottom) averaged over all small boxes. Error bands correspond to the standard deviation across the small boxes,

ffiffiffiffiffiffiffiffiffiffiffi
Csmall

p
. We show

results for the halo (solid) and matter (dashed) field. For the void size function, we show results for two density thresholds used for void
searching, δth ¼ −0.5 (blue) and δth ¼ −0.3 (orange).
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The Nmesh ¼ 2563 field is smoothed with top-hat
filters of size Rfilter in seven linear bins between
Rmin ¼ 12.2 Mpc=h and Rmax ¼ 100.1 Mpc=h,
with ΔR ¼ 6dgrid where dgrid ≈ 2.44 Mpc=h is
the grid size. We search hierarchically, first finding
the largest voids and then the, more abundant,
smaller voids. Voids of size R ¼ Rfilter are defined
as local minima in the Rfilter-filtered field, with
values lower than a predefined threshold δth, unless
they overlap with existing larger voids. In this work
we investigate thresholds of δth ¼ −0.3 and −0.5.
The void finding algorithm was developed by [96]
and we use the implementation in Pylians3 [97].

D. Separate universe simulations

We now briefly summarize an alternative method to
compute the SSC using separate universe (SU) simulations;
we refer the reader to [56,57] for more details. In this
approach, the effect of a super-survey density mode that is
constant inside the box and has amplitude δb is mimicked
by adjusting the cosmological parameters such that
ρ̄m → ρ̄mð1þ δbÞ, where ρ̄m is the mean physical matter
density; if the fiducial cosmology is a spatially flat
universe, this implies that the separate universe has nonzero
curvature (Ωk ≠ 0). The response of any summary statistic
O to δb is computed by considering the difference between
simulations run with different δb. The SSC is then approxi-
mated by

Cij
SSC−SU ≃ σ2b

dOi

dδb

dOj

dδb
; ð3Þ

where σ2b is the variance of the linear matter density
fluctuations on the size of the survey described by a
window function W,

σ2b ≡ 1

V2
W

Z
d3k
ð2πÞ3 jWðkÞj2PlinðkÞ; ð4Þ

where VW ¼ R
d3xWðxÞ is the survey volume and PlinðkÞ is

the linear matter power spectrum. The window function
used in this work corresponds to a 3d cube of side-length
625 Mpc=h, giving σ2b ¼ 6.8 × 10−5. Concretely, we evalu-
ate the responses using finite difference methods on
simulations with δb ¼ �0.03, and averaging over 20
realizations of the initial conditions.
The δb mode modifies the background expansion history,

which implies some care when choosing the box size of the
simulations with δb ≠ 0. In our simulations here, we choose
the comoving box size to match at all times in Mpc units.
This corresponds to the “growth-dilation” methods in the
notation of [56], or equivalently, with our SU simulations
we measure the so-called “growth-only” responses in the
language of [57]. Importantly, when identifying halos in the

simulations, the FoF linking length in the separate universe
needs to be rescaled by the ratio of the scale factors in the
two simulations to guarantee matching halo definitions (see
e.g. [98] for a discussion).
Since the simulations with different δb values can be

initialized with the same random phases of the initial
conditions, the SU approach has the significant advantage
of converging with much fewer simulations than the sub-
box approach (discussed in Section II B). We note,
however, that our SU simulations account only for the
impact of isotropic density perturbations as super-survey
modes, i.e., they do not account in particular for the effect
of super-survey tidal fields [99–101]. Here, we consider
angular averaged spectra in real space, for which the
impact of super-survey tidal fields averages out, but we
note that for analyses in redshift space [65–67] and weak-
lensing applications [68] this is not the case and the super-
survey tidal fields can have a non-negligble effect.
Further, the super-survey tidal fields contribute also to
the SSC effect of halo and void counts, although in a
weak manner since this happens only at second order—
this is because the tidal field is a tensor, and thus must be
contracted at least once (forming a quadratic quantity) if it
is to affect any scalar statisticlike counts [102]. On the
other hand, the SSC calculated using the sub-box
approach automatically includes both the effects of
density and tidal fields.

III. RESULTS

Here we show the effect of SSC for individual statistics
as well as their cross covariances. In all plots, error bars are
computed using bootstrapping and correspond to the
95% confidence interval.

A. Matter field statistics

Figure 2 shows the results of the SSC contribution for the
power spectrum, void size function, halo mass function,
and three bispectrum configurations. Each statistic contains
two panels, the upper of which shows the diagonal term of
the covariance computed with and without SSC, using sub-
and small boxes, respectively. For sub-boxes, we show
results using both the local mean and the global mean
density. The lower panel shows the ratio between the sub
and small box, which is equal to Csub=Csmall ¼
1þ CSSC=Csmall [using Eq. (2)]. Shown also is the result
from the SU approach (marked by the red crosses and
pluses for the local and global mean cases respectively),
which agrees reasonably well overall with the SSC esti-
mated from the sub-box approach.
For the case of our power spectrum and bispectrum

results, we note also that while the SSC does not depend to
first order on the size of the wave number bins, other
contributions to the covariance typically do, which can
have an impact on the exact values of Csub=Csmall (note this
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does not mean there is a dependence of the signal-to-noise
on the bin size). This does not have an impact on the main
takeaway points of our results, but it is useful to keep in
mind especially when comparing quantitatively to results
obtained previously in the literature.

1. Power spectrum

The SSC of the matter power spectrum can be seen to be a
just under a 100% effect at k ¼ 0.7 h=Mpc in the local mean
case. However, the SSC ismuch largerwhen using the global
mean, with the ratio Csub=Csmall increasing with k to a factor
of ∼4 at k ¼ 0.7 h=Mpc. This can be explained as follows:
the local mean density is modified with respect to the
global mean by the background density δb, as ρ̄local ¼
ρ̄globalð1þ δbÞ. Thus the power spectrum with respect to
the local mean is given by PlocalðkÞ ¼ ð1þ δbÞ−2PglobalðkÞ,
where PglobalðkÞ is the power spectrum with respect to
the global mean. The local and global responses are then
related as

d lnPlocalðkÞ
dδb

≈
d lnPglobalðkÞ

dδb
− 2; ð5Þ

where we use the fact that δb ¼ 0.03 ≪ 1. It can be shown
with perturbation theory that the global response is close to
2 for the scales considered in this paper [50,51,56], hence
the local response is much suppressed in comparison to
the global. Recall, the SSC of the power spectrum refer-
enced to the global density is what is relevant to weak-
lensing analysis, and this strong response is ultimately
the reason why SSC is the most important piece of the
off-diagonal covariance in cosmic shear 2-point function
studies [68,103].

2. Halo mass function

We find the SSC has very little contribution to the counts
of massive halos ≳1015M⊙=h, while it increases towards
less massive halos, with the ratio Csub=Csmall becoming
roughly a factor of 3 for masses of ∼1014M⊙=h. The
fluctuation in the number density of halos δn ¼ δnðMÞ in a

FIG. 2. Covariances for the power spectrum (top left), halo mass function (top middle), void size function (top right), and three
bispectrum configurations (bottom) in the matter field. Each statistic contains two panels, the top of which shows the diagonal term of
the covariance computed in the small box (dashed), and in the sub-box using local (solid) and global (dotted) mean. The lower panel
shows the ratio between the sub- and small boxes, where the dashed horizontal gray line indicates no SSC. For the void size function, we
show results for two density thresholds used for void searching, δth ¼ −0.5 (blue) and δth ¼ −0.3 (orange). We also show separate
universe results for SSC computed using local and global mean densities, marked in “x” and “þ”, respectively. Shaded regions
correspond to 95% confidence intervals.
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mass bin M is a biased tracer of the underlying matter
field δm

δn
n̄

¼ bδm; ð6Þ

where b ¼ bðMÞ is the halo bias in the mass bin. The
diagonal term of the sub-box HMF covariance divided by
the shot noise Csmall ¼ n̄=V is thus [59],

Csub=Csmall ¼ 1þ σ2bb
2N̄; ð7Þ

where N̄ ¼ n̄V is the number (or abundance) of halos. The
second term on the right is the SSC contribution. While
massive halos tend to be more biased (by a factor of few
compared to low mass halos), their abundance is exponen-
tially suppressed. Thus, the most massive halos are in
the shot-noise dominated regime with little contribution
from SSC.

3. Void size function

Recall, we consider spherical voids with density thresh-
olds δth ¼ −0.5 and −0.3, whose results are shown on the
top right panel of Fig. 2. The SSC contribution for voids is
generally small for all void radii shown. Following from the
discussion above for the HMF, this is as expected since
voids are approximately 100 times less abundant than the
halos, and their bias values remain of order 0–10 [87,88].
Thus, the covariance is strongly dominated by shot noise
and the SSC effect is negligible. Note further that for
certain void radii, and contrary to the case of halos, the void
bias can be zero, in which case even an infinite abundance
would have no SSC.
It can, however, be seen that the error bars from the small

versus sub-box analysis allows for an Oð10 − 100%Þ SSC
effect, with a slight increase with R, while the SU approach
suggests a negligible SSC for all R. This is likely a
numerical artifact due to the void finder assuming periodic
boundary conditions; the covariance of the sub-boxes,
which are not periodic, could be spuriously large, espe-
cially for large voids that extend beyond the boundary of
the box. On the other hand, the SU results are based on the
difference between two periodic boxes, and are thus free of
such boundary effects. We leave correcting this boundary
effect for future work.

4. Bispectrum

All three configurations of the bispectrum thatwe consider
have a much smaller SSC than the power spectrum, typically
a factor 1–2 effect for k≲ 0.7 h=Mpc. Similarly to the power
spectrum, the global case has a larger effect than local. This
agrees within error bars with [61], which considered the
equilateral and isosceles cases using an analytical response
approach and simulations. Also [63] found the SSC effect to
be small for the matter bispectrum. Our results are also in
good agreement with [62] which analytically derived that the

SSC effect is small for the squeezed matter bispectrum, as a
few multiplicative factors get suppressed by the soft (low k)
modes. More generally speaking, one can intuit that the
matter bispectrum has a smaller SSC than the power
spectrum as follows. While the power spectrum only has a
Gaussian piece and a connected 4-point function non-
Gaussian piece (which includes the SSC), the bispectrum
consists of additional non-Gaussian disconnected pieces
(proportional to the square of the bispectrum and the power
spectrum times the trispectrum) which increase the covari-
ance overall. Thus, the connected 6-point function (which is
where the bispectrum’s SSC enters) is small in comparison to
the lower-order contributions to the bispectrum covariance.

B. Halo field statistics

Figure 3 shows the results for statistics computed from
the halo field, which is a biased tracer of the matter field.
Here, we apply a minimummass cut ofMmin ¼ 1014M⊙=h.
The halo field SSC shows qualitative similarities to that of
the matter field, namely larger SSC on smaller scales for the
power spectrum and the bispectrum, and a small SSC
for voids.
One noteworthy difference concerns the relative size of

the local and global cases for the power spectrum, which is
now comparable. This is because the local and global
responses for halos are related as

d lnPh
localðkÞ

dδb
≃
d lnPh

globalðkÞ
dδb

− 2b: ð8Þ

Unlike in the case of the local matter response [Eq. (5)],
where the global response nearly cancels with the −2 term,
the global halo response is corrected by −2b1. In our work
the bias is b1 ≈ 2.5, which leads to a negative local halo
response (see Fig. 12 of [104] and derivation therein), so
much so that the local effect is now comparable to the
global effect after taking the square of the response in
Eq. (3). The exact value of the response is mass and redshift
dependent, as halo bias increases when considering more
massive halos and/or halos at higher redshift. The SSC of
the halo bispectrum will be similarly affected by the bias
and mass cuts, the exact manner in which requires future
theoretical study. For the setup considered in this work, we
find that the global halo bispectrum SSC remains small for
all configurations, while the local SSC becomes large for
the equilateral and isosceles configurations.

C. Cross covariance

In this section, we study the SSC contribution to the
cross covariance of the statistics. Higher-order statistics
typically have large off-diagonal terms in the covariance
compared to the power spectrum and are usually studied
jointly with other statistics. Therefore, it is important to
study not only the variances of individual statistics, but also
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their cross covariance. To focus on the off-diagonal terms,
we normalize the covariance using the diagonal term to
obtain the correlation matrix

rij ≡ Cij=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
CiiCjj

p
; ð9Þ

where C is the covariance matrix with indices run through
the bins of all the statistics studied here. Figure 4 shows the
difference in correlation coefficient between the sub- and

small box, Δr≡ rsub − rsmall, for the both the matter and
halo fields, using local and global mean densities.
For the power spectrum and the bispectrum, the SSC

contribution to the cross covariance is positive in all cases.
The amplitude is the smallest in the local matter case,
due to the local mean response cancellation discussed in
Sec. III A 1. The local and global halo cases see comparable
contributions, also similarly to what was observed for the
diagonal term in Sec. III B.

FIG. 3. Same as Fig. 2 but for the halo field, with a minimum mass cutMmin ¼ 1014M⊙=h. The halo mass function plot (top middle) is
duplicated here for completeness.

FIG. 4. Difference in correlation coefficient between the sub and small box Δr≡ rsub − rsmall. From left to right: matter global, matter
local, halo global, halo local.
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For the HMF, we see a large contribution of SSC to the
cross covariance with other statistics. The effect is positive
in all cases, except for the halo local-mean case.
For the VSF, we observe a relatively small contribution

of SSC to the cross covariance with other statistics, except
for the global-mean matter field. This is consistent with the
observation of almost negligible SSC in VSF variances in
Sec. III A 3, where we discussed that the SSC is low due to
the low abundance of voids.

IV. CONCLUSIONS

We study the effect of SSC on the power spectrum,
bispectrum, halo mass function, and void size function, as
well as on the cross covariance between them. We consider
both the total matter and halo fields. We compare the
covariance that includes the SSC (computed using
625 Mpc=h sub-boxes of a 5 Gpc=h simulation), to the
covariance without (computed using 625 Mpc=h small
periodic boxes). We now summarize our main results
together with additional discussion:

(i) We see an increasing impact of SSC on smaller
scales for the matter and halo power spectrum,
reaching a factor of a few compared to the covari-
ance that ignores SSC from k ≈ 0.2 h=Mpc and
beyond. The exception is the case of the power
spectrum referenced to the local-mean density, for
which the effect is less than 100%. This is in
agreement with previous studies [49–52,56].

(ii) For the halo mass function, the SSC has little effect
on massive halos above 1015M⊙=h, as they are
dominated by shot noise. However, the effect of SSC
increases to a factor of 2–3 for lower mass halos,
consistently with previous studies [12,59,60].

(iii) For the void size function, we found a relatively
small SSC effect, due to the low number density of
voids compared to that of halos for a given survey
volume, and also the low bias. This is an attractive
feature of voids, making their covariance simpler to
approximate without considering the SSC. In this
work we considered spherical voids, however one
might consider different void finding algorithms,
such as VIDE [105]. However, as long as the void
abundance and bias are comparable to those we
considered, our general conclusions should hold for
other void definitions as well.

(iv) While the matter bispectrum receives less SSC
contribution, an approximately 50% effect, in good
agreement with previous studies [61,62], the halo
bispectra shows dependence on the bispectrum
configuration and the choice of local or global mean
density. Concretely, the level of SSC remains rela-
tively low (≈10–100% level) for all three halo
bispectrum configurations (equilateral, isosceles,
and squeezed) when using the global-mean density
and for squeezed bispectrum using the local mean.

However, the SSC contribution is a many hundred
percent effect for the equilateral and isosceles halo
bispectra referenced to the local mean.

(v) For the cross covariances, we see non-negligible
contribution of SSC, in particular for the halo-field
statistics. We also observe a negative effect of SSC
(or reducing the off-diagonal terms) for HMF ×
other statistics in the halo-local mean case, and
VSF × other statistics in some radius bins. This
indicates the importance of including the effect of
SSC in future joint-statistic analysis.

In summary, our work shows that future cosmological
analyses with the power spectrum and higher-order sta-
tistics, as well as their joint analysis, should need to
carefully consider the effect of SSC. Analyses where many
higher-order statistics are combined can have large data
vector sizes, which puts pressure on simulation-based
methods for the covariance because of the need to have
a sufficiently converged covariance matrix that is stable
under inversion (which is what is needed in parameter
inference analyses). This therefore strongly motivates more
simulation-based works like ours here towards a robust
understanding of the super-sample covariance and cross
covariance of higher-order statistics.
The level of impact of SSC depends on the box/survey

size, halo sample, and redshift—it would be fruitful future
work to investigate these dependencies in detail. In par-
ticular, we considered a box size of 625 Mpc=h, a value in
the ballpark of simulation volumes currently used for
covariance estimation (see e.g. Table 1 of [106]). To
translate our results to different survey volumes, the scaling
of the super-sample covariance with window volume can be
determined from Eq. (3). The responses to δb are volume
independent, thus the σ2b term is solely responsible for
volume dependence. Translating between different window
volumes thus simply requires reevaluating σb. To gain some
intuition, it can be seen that if the power spectrum were
taken out of the integral in Eq. (4), the scaling would be
exactly CSSC ∼ σ2b ∼ 1=VW, just like for other covariance
contributions. However, performing the integral of Plin
convolved with the window function causes some correc-
tions to this 1=VW scaling.
It would also be interesting to assess the impact of the SSC

at the level of final parameter posteriors in simulated like-
lihood inference analyses for ongoing and future surveys.
Furthermore, it would be fruitful to use our simulations to
quantify the SSC of other higher-order statistics.
To enable such future works, our simulations have

been made publicly available in https://github.com/Half
DomeSims/ssc.
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