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The Universe’s matter inhomogeneity gravitationally affects the propagation of gravitational waves
(GWs), causing the lensing effect. Particularly, the weak lensing of GWs has been studied within the range
of the Born approximation to constrain the small-scale power spectrum. In this work, the validity of the
Born approximation is investigated by accounting for the higher-order terms in the gravitational potential
Φ. To do so, we formulate the post-Born approximation and derive the magnification K and the phase
modulation S up to third order inΦ. We find that the average of S andK is nonzero and that the average of S
depends on the size of the point mass. Due to this size dependency, the signal is enhanced, and the number
of GW events required for detecting the average of S decreases. We find that this number can become
comparable to or even smaller than the number required for detecting the variance of S in certain scenarios.
In addition, it is verified that, for lensing by dark low-mass halos, the post-Born corrections are a few orders
of magnitude smaller than the Born approximation at f ≥ 0.01 Hz. However, in the presence of the point
mass, there is a condition under which the Born approximation fails. We derive the correction terms to the
Born approximation and identify the condition under which the Born approximation no longer holds.
For the magnification, the Born approximation is valid as long as the wavelength of GWs is larger than the
Schwarzschild radius of lenses, while for the phase modulation, this condition is modified due to the
physical size of the point mass.
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I. INTRODUCTION

When light travels across the Universe, its trajectory is
bent by the gravitational potential of intervening massive
objects. This phenomenon called gravitational lensing (GL)
is quite useful in astrophysics and cosmology (e.g., [1–3]).
For instance, it can be used to measure the cosmological
parameters. It can probe the abundance of dark compact
objects.
According to general relativity, GL also occurs for the

gravitational waves (GWs) [4]. One notable feature of the
GL of GWs is that geometrical optics, which is a perfect
approximation in most cases for light, no longer holds for
GWs in some cases since the wavelength of GWs is
typically much larger than that of light and the diffraction
effect becomes important [5–7]. In such cases, wave optics
must be used to deal with the GL. In wave optics, contrary
to the geometrical optics where the starting point is the lens
equation, the lensing signal is represented by the so-called

amplification factor defined as a ratio of the lensed wave-
form to the unlensed one (e.g., [8]). This quantity is a
complex number and all the information of the lensing is
encoded in it. Its absolute value and argument represent the
amplification and phase modulation of the lensed wave,
respectively.
In [9], GL of GWs caused by dark matter fluctuations

was studied. It was shown that there is a length scale of the
matter power spectrum below which the contribution to the
lensing signal is suppressed due to its wavy nature. This
scale, the “Fresnel scale,” depends on the GW frequency.
Thus, by measuring the lensing signal at multiple frequen-
cies and its frequency dependence, we can probe the matter
power spectrum at the Fresnel scale. This idea has been
investigated in more detail by updating the matter power
spectrum as well as adding the compact objects in [10].
In [11], it was shown that the lensing signal of the dark
matter fluctuations is hugely amplified by a massive object
located on the line of sight which itself causes strong
lensing.
When the lensing signal is weak, it is natural to keep only

the terms first order in the gravitational potential Φ (i.e.,
Born approximation). The contributions of the higher-order
terms are expected to be suppressed compared to the
leading-order contribution. In geometrical optics, this has
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been explicitly demonstrated in [12–16]. One naively
expects that a similar conclusion can be drawn for the
case of wave optics.
In [9], the amplification factor sourced by the dark matter

fluctuations was obtained under the Born approximation
(thus the variance of the lensing signal is second order
in Φ). Typical magnitude of the amplitude and the phase
fluctuations was found to be Oð10−2 − 10−3Þ. Thus, the
lensing signal is weak and this would naturally justify the
validity of the Born approximation. However, there are
two issues that need to be investigated regarding the Born
approximation. First, although the post-Born corrections
are expected to be small, it is not known how much they are
suppressed actually. When the measurements of the lensing
signal become available in the future, quantitative compu-
tation of the magnitude of the post-Born corrections is
indispensable to correctly extract the matter power spec-
trum as well as to understand the level of the precision
under consideration. Second, the Born approximation used
in [9] apparently breaks down at large wave frequency since
the gravitational potential in the wave equation is associ-
ated with the frequency. Notice that this issue does not
appear in the geometrical optics since the lens equation is
independent of the frequency of light. While it is known
how the lens equation emerges in the wave optics, it is not
obvious how the breakdown of the Born approximation for
the large frequency in the wave optics is reconciled with the
Born approximation in the geometric optics. In this paper,
we take a first step toward addressing these issues by
extending the previous studies to next higher orders in the
gravitational potential. We first reformulate the wave
equation to make its structure more tractable. We then
derive the expression of the lensing signal up to third order
in the gravitational potential. Expansion to this order is
necessary to evaluate the variance of the post-Born cor-
rections. As we will demonstrate, the post-Born corrections
are suppressed by a few orders of magnitude compared to
the leading-order signal except in a high-frequency region.
Interestingly, when the post-Born corrections are included,
the average of the lensing signal does not vanish. This
average depends on the frequency in a nontrivial manner
and thus cannot be absorbed into the change of the
parameters characterizing the unlensed waveform. Our
analysis suggests an interesting possibility to make use
of the average of the lensing signal as an additional
observable to probe the matter power spectrum.

II. FORMULATION

A. Lensing signal beyond the Born approximation

In this section, we reformulate the wave equation and
show how the post-Born corrections are derived.
Throughout this paper, we assume that the gravitational
potential is small (Φ ≪ 1) and the Universe is flat. We also
ignore the polarization of GWs since the polarization tensor

in the geometrical optics is parallel transported along the
null geodesics [17] and hence the change of the polarization
tensor would be suppressed by a factor of OðΦÞ and
observationally irrelevant.
The presence of mass fluctuation creates the distortion

on spacetime, causing the deviation from the Friedmann-
Lemaître-Robertson-Walker (FLRW) metric. This effect is
small in most of the astrophysical situations and it is a good
approximation to write the metric as [18]

ds2 ¼ gBμνdxμdxν

¼ a2ðηÞ½−ð1þ 2ΦÞdη2 þ ð1 − 2ΦÞdx2�; ð2:1Þ

where η and x are a conformal time and a comoving
coordinate, and aðηÞ is a scale factor. If the wavelength of
GWs is much smaller than the typical radius of the
curvature of the background metric, the propagation of
GWs becomes the same as the wave equation of the
massless scalar field ϕ: ∂μð

ffiffiffiffiffiffiffiffi
−gB

p
gμνB ∂νϕÞ ¼ 0. The expan-

sion of the Universe causes attenuation of ϕ as ϕ ∝ 1=a.
We extract this effect by redefining the GW amplitude ϕ as
ϕ → ϕ=a. Then, the wave equation becomes [8]

ð∇2 þ ω2Þϕ̃ ¼ 4ω2Φϕ̃; ð2:2Þ

in the frequency space. ϕ̃ðω; xÞ is the Fourier transform of
ϕðη; xÞ1 and the higher-order terms inΦ have been ignored.
It is common to represent the lensed waveform in terms of
the amplification factor, which is the ratio of the lensed and
unlensed waveform, namely, F ¼ ϕ̃=ϕ̃0 [8], where the
unlensed waveform is given by ϕ̃0 ¼ eiωχ=χ in terms of
χ, which is the (comoving) distance from the source. Using
the amplification factor F, Eq. (2.2) is rewritten as

2iω
∂F
∂χ

þ 1

χ2
∇2

θF ¼ 4ω2ΦF; ð2:3Þ

where the polar coordinate (χ; θ;ϕ) is used and
∇2

θ ¼ ∂
2=∂θ2 þ sin θ−1∂=∂θ þ sin θ−2∂=∂ϕ2 is the two-

dimensional Laplace operator on two-sphere. In Eq. (2.3),
we have assumed GWs propagate along the line of sight and
are confined in the region θ ≪ 1. Therefore, ∇θ can be
interpreted as the operator on a two-dimensional flat surface
perpendicular to the line of sight.
In order to evaluate the effects of the post-Born approxi-

mation, we find it convenient to deal with a new variable J
defined as F ¼ eiωJ. Using this new variable J, Eq. (2.3)
becomes

�
∂

∂χ
−

i
2ωχ2

∇2
θ

�
J ¼ −2Φ −

1

2χ2
ð∇θJÞ2: ð2:4Þ

1It is defined by ϕðη; xÞ ¼ R
dω
2π e

−iωηϕ̃ðω; xÞ. Thus, ω is the
comoving (angular) frequency.
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This differential equation can be written as an integral
equation by Green’s function of the linear operator acting
on the right-hand side,

Jðχs; θÞ ¼
Z

χs

0

dχ exp

�
i
Wðχ; χsÞ∇2

θ

2ω

�

×

�
−2Φðχ; θÞ − 1

2χ2
ð∇θJÞ2

�
; ð2:5Þ

where Wðχ; χsÞ ¼ 1
χ −

1
χs
. In geometric optics, Wðχ; χsÞ is

sometimes called the lensing efficiency function [15]. The
change of variable to J allows us to partially take into
account the higher-order terms in the gravitational potential
which are not included in the previous studies [9,10,19].
Defining JðnÞ as the term proportional to nth order of the
gravitational potential, JðnÞ can be calculated iteratively
order by order as

Jð1Þðχs;θÞ¼
Z

χs

0

dχ exp
�
i
Wðχ;χsÞ∇2

θ

2ω

�
ð−2Φðχ;θÞÞ; ð2:6Þ

Jð2Þðχs; θÞ ¼ −
Z

χs

0

dχ exp

�
i
Wðχ; χsÞ∇2

θ

2ω

� ð∇θJð1Þðχ;θÞÞ2
2χ2

;

ð2:7Þ

Jð3Þðχs; θÞ ¼ −
Z

χs

0

dχ exp

�
i
Wðχ; χsÞ∇2

θ

2ω

�

×
∇θJð1Þðχ; θÞ · ∇θJð2Þðχ; θÞ

χ2
;

..

. ð2:8Þ

In the geometrical optics limit (i.e., large ω), limω→∞ JðnÞ of
any n becomes real and the correction term at Oð1=ωÞ
becomes imaginary. Thus, limω→∞ J is nothing but the
difference between the arrival time of the geodesic under
the influence of Φ and the one without Φ. At the leading
order, this reduces to the standard expression of the Shapiro
time delay. At Oð1=ωÞ, J gives the magnification in
geometrical optics. In particular, iωJð1Þ reduces to the
standard formula of the convergence (e.g., [1,2]).
In the literature, the Born approximation refers to the

approximation to truncate the expansion of F up to first
order in Φ. Meanwhile, since our expansion is performed
for J, even the truncation at Jð1Þ partially captures the
higher-order terms not included in the previous studies
(see also footnote 2). In spite of such a difference at the
conceptual level, there is practically no difference as to
whether the Born approximation refers to the first-order
truncation for F or J since the variation of F in the former
case is nothing but Jð1Þ.

Our aim is to investigate the leading correction to
the Born approximation of the lensing signal caused by
the dark matter fluctuations. To this end, we compute the
average and the variance of J and investigate how they are
affected by the post-Born approximation by treating Φ as a
random variable. The average trivially vanishes in the Born
approximation. Since the average of Jð2Þ does not vanish in
general, we truncate the evaluation of the average at this
order. The leading post-Born correction to the variance
comes from the cross term Jð1ÞJð2Þ and thus it is OðΦ3Þ.
This is nonvanishing only when Φ is non-Gaussian. The
next leading correction, which is OðΦ4Þ, remains finite
even when Φ is Gaussian. Thus, the correction at OðΦ4Þ
may dominate over the one at OðΦ3Þ in some cases,
especially when Φ is nearly Gaussian. Because of this
reason, we compute the variance up toOðΦ4Þ. To make our
calculation consistent up to this order, we need to keep the
expansion up to Jð3Þ since the cross term Jð1ÞJð3Þ is OðΦ4Þ.
For clarity, we define new differential operators ðW∇Þð2Þ

and ðW∇Þð3Þ as

ðW∇Þð2Þ ¼ Wðχ; χsÞ∇2
θ12 þWðχ1; χÞ∇2

θ1 þWðχ2; χÞ∇2
θ2;

ð2:9Þ

ðW∇Þð3Þ ¼ Wðχ; χsÞ∇2
θ123 þWðχ3; χÞ∇2

θ3 þWðχ0; χÞ∇2
θ12

þWðχ1; χ0Þ∇2
θ1 þWðχ2; χ0Þ∇2

θ2: ð2:10Þ

Using these notations, we obtain the following expressions
of J up to third order:

Jð1Þðχs;θÞ¼−2
Z

χs

0

dχ exp

�
i
Wðχ;χsÞ∇2

θ

2ω

�
Φðχ;θÞ; ð2:11Þ

Jð2Þðχs; θÞ ¼ −2
Z

χs

0

dχ
χ2

Z
χ

0

dχ1

Z
χ

0

dχ2 exp

�
i
ðW∇Þð2Þ

2ω

�

×∇θ1Φ1 · ∇θ2Φ2; ð2:12Þ

Jð3Þðχs; θÞ ¼ −4
Z

χs

0

dχ
χ2

Z
χ

0

dχ3

Z
χ

0

dχ0

χ02

Z
χ0

0

dχ1

Z
χ0

0

dχ2

× exp

�
i
ðW∇Þð3Þ

2ω

�
∇θ12ð∇θ1Φ1 · ∇θ2Φ2Þ

·∇θ3Φ3: ð2:13Þ

Note that Φi ¼ Φðχi; θÞ and ∇θi only acts on Φi (when
there are more than two subscript numbers at the corner of
∇θ, it means the operator acts on the gravitational potentials
that have the corresponding subscripts). Jð1Þ corresponds
to the Born approximation and subsequent terms (Jð2Þ and
Jð3Þ) are the post-Born corrections.
The information about the phase and the magnification

of GWs is encoded in the real and imaginary part of J,
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respectively. Conventionally, the phase modulation and the
magnification are denoted as S andK [9], and we follow the
same notation in this paper. S and K are related to J as

SðωÞ ¼ ωReðJÞ; ð2:14Þ

KðωÞ ¼ −ωImðJÞ: ð2:15Þ

In this definition, the amplification factor is written as
FðωÞ ¼ eKðωÞeiSðωÞ.2 As we have already pointed out,
the Shapiro time delay describes the time lag caused by
the gravitational potential. In the observation of GWs, the
Shapiro time delay is not measurable. Therefore, this
degree of freedom needs to be removed from the phase
modulation. We redefine the physical phase modulation as

SphðωÞ
ω

¼ SðωÞ
ω

− lim
ω→∞

SðωÞ
ω

: ð2:16Þ

From now on, the term phase modulation always means
this physical quantity even if it is not explicitly mentioned.
With these in mind, the phase modulation and the mag-
nification are then explicitly given by

Sð1Þ ¼ −2ω
Z

χs

0

dχ

�
cos

�
Wðχ; χsÞ∇2

θ

2ω

�
− 1

�
Φ; ð2:17Þ

Sð2Þ ¼ −2ω
Z

χs

0

dχ
χ2

Z
χ

0

dχ1

Z
χ

0

dχ2

�
cos

�ðW∇Þð2Þ
2ω

�
− 1

�

× ∇θ1Φ1 ·∇θ2Φ2; ð2:18Þ

Sð3Þ ¼−4ω
Z

χs

0

dχ
χ2

Z
χ

0

dχ3

Z
χ

0

dχ0

χ02

Z
χ0

0

dχ1

Z
χ0

0

dχ2

×

�
cos

�ðW∇Þð3Þ
2ω

�
− 1

�
∇θ12ð∇θ1Φ1 ·∇θ2Φ2Þ ·∇θ3Φ3;

ð2:19Þ

Kð1Þ ¼ 2ω

Z
χs

0

dχ sin

�
Wðχ; χsÞ∇2

θ

2ω

�
Φ; ð2:20Þ

Kð2Þ ¼ 2ω

Z
χs

0

dχ
χ2

Z
χ

0

dχ1

Z
χ

0

dχ2 sin

�ðW∇Þð2Þ
2ω

�

×∇θ1Φ1 ·∇θ2Φ2; ð2:21Þ

Kð3Þ ¼ 4ω

Z
χs

0

dχ
χ2

Z
χ

0

dχ3

Z
χ

0

dχ0

χ02

Z
χ0

0

dχ1

Z
χ0

0

dχ2

× sin

�ðW∇Þð3Þ
2ω

�
∇θ12ð∇θ1Φ1 ·∇θ2Φ2Þ ·∇θ3Φ3:

ð2:22Þ

Sð1Þ andKð1Þ have been derived in the previous works [9,10]
and ours reproduce their results. To the best of our knowl-
edge, higher-order terms Sð2Þ; Sð3Þ; Kð2Þ; Kð3Þ are the new
results. In the high-frequency limit of Eqs. (2.20) and (2.21),
the magnification computed from the above expressions
reproduces the result derived in [12–16] under the post-Born
approximation in geometric optics, which is demonstrated
in Appendix A.

B. Statistics of K and S

The situation we have in mind is the lensing caused by
the dark matter inhomogeneities randomly distributed in
the whole Universe. This means that the K and S behave in
a stochastic manner for individual GW events. Thus, the
comparison between the theoretical prediction and obser-
vation is possible only for the statistical quantities. This
motivates us to compute the average and the variance of the
lensing signal.
To this end, we first notice that, for the ensemble average

of the functions of the gravitational potential, the following
equations hold under the Limber approximation. For
arbitrary functions FðxÞ, GðxÞ, HðxÞ, IðxÞ of differential
operator x, we have

hFð∇θ1ÞΦ1Gð∇θ2ÞΦ2i

¼ δDðχ1 − χ2Þ
Z

d2k⊥
ð2πÞ2Fðiχ1k⊥ÞGð−iχ1k⊥ÞPΦðk⊥; χ1Þ;

ð2:23Þ

hFð∇θ1ÞΦ1Gð∇θ2ÞΦ2Hð∇θ3ÞΦ3ic
¼ δDðχ1 − χ3ÞδDðχ2 − χ3Þ

Z
d2k1⊥
ð2πÞ2

Z
d2k2⊥
ð2πÞ2

× Fðiχ3k1⊥ÞGðiχ3k2⊥ÞHð−iχ3k1⊥ − iχ3k2⊥Þ
× BΦðk1⊥; k2⊥; jk1⊥ þ k2⊥j; χ1Þ; ð2:24Þ

hFð∇θ1ÞΦ1Gð∇θ2ÞΦ2Hð∇θ3ÞΦ3Ið∇θ4ÞΦ4ic
¼ δDðχ1 − χ4ÞδDðχ2 − χ4ÞδDðχ3 − χ4Þ

Z
d2k1⊥
ð2πÞ2

Z
d2k2⊥
ð2πÞ2

×
Z

d2k3⊥
ð2πÞ2 Fðiχ4k1⊥ÞGðiχ4k2⊥ÞHðiχ4k3⊥Þ

× Ið−iχ4k1⊥ − iχ4k2⊥ − iχ4k3⊥Þ
× TΦðk1⊥;k2⊥;k3⊥;−k1⊥ − k2⊥ − k3⊥;χ1Þ: ð2:25Þ

2In [9,10,19], F was written as F ¼ 1þ K þ iS, then K and S
were obtained up to first order in Φ, and finally, exponentiation
F ≈ ð1þ KÞeiS was done. In our approach, the exponentiation
procedure is naturally incorporated from the outset by using the
variable J.
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Here PΦ; BΦ; TΦ are the power spectrum, bispectrum, and
trispectrum of Φ, and h� � �ic indicates the connected term.
They are characterized by

hΦ̃ðk1; χÞΦ̃ðk2; χÞi ¼ ð2πÞ3δDðk1 þ k2ÞPΦðk1; χÞ; ð2:26Þ

hΦ̃ðk1; χÞΦ̃ðk2; χÞΦ̃ðk3; χÞic
¼ ð2πÞ3δDðk1 þ k2 þ k3ÞBΦðk1; k2; k3; χÞ; ð2:27Þ

hΦ̃ðk1; χÞΦ̃ðk2; χÞΦ̃ðk3; χÞΦ̃ðk4; χÞic
¼ ð2πÞ3δDðk1 þ k2 þ k3 þ k4ÞTΦðk1; k2; k3; k4; χÞ;

ð2:28Þ

where Φ̃ðkÞ is the Fourier transform of Φ. With these
definitions, we are ready to derive the average and the
variance of the post-Born corrections, which we will
address in the following.

1. Average

At the level of the Born approximation, the average of K
and S is zero. This does not happen beyond the Born
approximation. Thus, the average ofK and S fully represents
the effects of the post-Born corrections. The leading-order
correction is OðΦ2Þ, and we evaluate hKi; hSi at this order.
From Eqs (2.18), (2.21), and (2.23), we obtain the following
expressions:

hSi ¼ 2ω

Z
χs

0

dχ
χ2

Z
χ

0

dχ1χ21

Z
d2k⊥
ð2πÞ2 k

2⊥

×

�
1 − cos

�ðχ − χ1Þχ1
χω

k2⊥
��

PΦðk⊥; χ1Þ; ð2:29Þ

hKi ¼ −2ω
Z

χs

0

dχ
χ2

Z
χ

0

dχ1χ21

Z
d2k⊥
ð2πÞ2 k

2⊥

× sin

�ðχ − χ1Þχ1
χω

k2⊥
�
PΦðk⊥; χ1Þ: ð2:30Þ

At this stage, there are three thingsworthmentioning. First, it
is suggestive to rewrite the above relations in terms of the

filter functions Fð2Þ
S ; Fð2Þ

K as

hSi ¼ 2

Z
χs

0

dχ
χ3

Z
χ

0

dχ0χ03ðχ − χ0Þ
Z

dk
2π

Fð2Þ
S k5PΦðk; χ0Þ;

ð2:31Þ

hKi ¼ −2
Z

χs

0

dχ
χ3

Z
χ

0

dχ0χ03ðχ − χ0Þ
Z

dk
2π

Fð2Þ
K k5PΦðk; χ0Þ;

ð2:32Þ

where

Fð2Þ
S ¼ 1 − cos k2r2F

k2r2F
; Fð2Þ

K ¼ sin k2r2F
k2r2F

; ð2:33Þ

and rF defined by r2F ¼ χ0ðχ − χ0Þ=ðωχÞ is the Fresnel
scale [9]. By writing in this way, it is manifest that the
frequency dependence of hSi and hKi is solely encoded in the
filter functions. These filter functions are suppressed below
the Fresnel scale k−1 < rF. Physically, the filter functions
describe the diffraction effect that lowers the lensing signal
when the size of matter fluctuations is below this scale. In [9],
it was argued that hS2i and hK2i (within the Born approxi-
mation) are insensitive to the matter fluctuations below the
Fresnel scale. Our result demonstrates that a similar con-
clusion holds for hSi; hKi. Second, since, unlike in the case
of geometric optics, both hSi and hKi depend on the GW
frequency due to the frequency dependence of the Fresnel
scale, we can extract thematter power spectrum at the Fresnel
scale by measuring hSi and hKi at multiple frequencies and
how they vary as the frequency is changed. This suggests a
possibility that, in addition to hS2i and hK2i, hSi and hKi can
be used as new observables to probe the matter power
spectrum at the Fresnel scale. Notice that, contrary to the
case of the cosmological perturbations where the average of
the perturbations is absorbed into the FLRWbackground, hSi
and hKi cannot be absorbed into theunlensedwaveformsince
(i) the frequency dependence of the average is different from
that of the unlensedwaveformand (ii) eachmerger event has a
different unlensed waveform. Third, hSi is a positive definite
for any ω. Thus, if the measurement of hSi gives a negative
value,we can robustly conclude that it is not due to the lensing
by the matter fluctuations but due to something else.
We also derive the expressions of the next leading-order

contributions to the average coming from the higher-order
statistical quantities (bispectrum),

hSð3Þi ¼ −4ω
Z

χs

0

dχ
χ2

Z
χ

0

dχ0

χ02

Z
χ0

0

χ43dχ3

Z
dk1⊥
ð2πÞ2

×
Z

dk2⊥
ð2πÞ2

ðk⊥1 · k⊥2ÞBΦðk1; k2; k3;χÞ
k2⊥1k

2⊥2

×

�
1− cos

�
χ3ðχ − χ3Þ

2ωχ
ðk2⊥1 þ k2⊥2 þ ðk⊥1 þ k⊥2Þ2Þ

þ χ23ðχ0 − χÞ
ωχχ0

k⊥1 · k⊥2

��
; ð2:34Þ

hKð3Þi ¼ −4ω
Z

χs

0

dχ
χ2

Z
χ

0

dχ0

χ02

Z
χ0

0

χ43dχ3

Z
dk1⊥
ð2πÞ2

×
Z

dk2⊥
ð2πÞ2

ðk⊥1 · k⊥2ÞBΦðk1; k2; k3; χÞ
k2⊥1k

2⊥2

;

× sin

�
χ3ðχ − χ3Þ

2ωχ
ðk2⊥1 þ k2⊥2 þ ðk⊥1 þ k⊥2Þ2Þ

þ χ23ðχ0 − χÞ
ωχχ0

k⊥1 · k⊥2

�
: ð2:35Þ
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By incorporating the bispectrum contributions to the
average of S and K, we are able to assess whether the
effects of the non-Gaussianity terms on hSi and hKi are
significant.

2. Variance

In the same way, the rms of the magnification up to
fourth order in Φ is given by

hK2i ¼ hðKð1ÞÞ2i þ 2hKð1ÞKð2Þi þ 2hKð1ÞKð3Þi þ hðKð2ÞÞ2i:
ð2:36Þ

The variance of the magnification up to the same order is
then written as Δ2

K ¼ hK2i − hKð2Þi2. We define the post-
Born corrections to the variance as Δ2

K ¼ hK2
Borni þ δK2 . In

this definition, it is possible that δK2 < 0. As we mentioned
earlier, the third-order term in Φ is necessary because it
couples with the first-order term. At this order, the result
will depend on whether Φ is Gaussian or non-Gaussian.
In the diagrammatic language, the variance contains both
disconnected (δK2;dc) and connected (δK2;c) parts,

δK2 ¼ δK2;dc þ δK2;c: ð2:37Þ

As for the disconnected part, we find that it consists of three
distinct terms,

δK2;dc ¼ hðKð2ÞÞ2idc þ 2hKð1ÞKð3Þidc − hKð2Þi2dc; ð2:38Þ

where the subscript dc should be understood that the
corresponding quantity is obtained by treating Φ as a
Gaussian variable. The connected part also consists of three
terms,

δK2;c ¼ 2hKð1ÞKð2Þic þ 2hKð1ÞKð3Þic þ hðKð2ÞÞ2ic: ð2:39Þ

The first term in Eq. (2.36) is nothing but the variance
in the Born approximation and has been already derived in
the literature [9]. For completeness, we will provide its
expression below. For the Gaussian variable, the n-point
correlation function is completely specified by the two-
point function, i.e., the matter power spectrum. Using this
fact, we find that each term can be written as

hðKð1ÞÞ2i¼4ω2

Z
χs

0

dχ
Z

d2k⊥
ð2πÞ2 sin

2

�ðχs−χÞχ
2χsω

k2⊥
�
PΦðk⊥Þ; ð2:40Þ

hðKð2ÞÞ2idc ¼ hKð2Þi2dc þ 16ω2

Z
χs

0

dχ
χ2

Z
χ

0

dχ0

χ02

Z
χ0

0

dχ1

Z
χ0

0

dχ2

Z
d2k1⊥
ð2πÞ2

Z
d2k2⊥
ð2πÞ2

× sin

�ðχs − χ1Þχ1
2χsω

k21⊥ þ ðχs − χ2Þχ2
2χsω

k22⊥ þ ðχs − χÞχ1χ2
ωχsχ

k1⊥ · k2⊥
�

× sin

�ðχs − χ1Þχ1
2χsω

k21⊥ þ ðχs − χ2Þχ2
2χsω

k22⊥ þ ðχs − χ0Þχ1χ2
ωχsχ

0 k1⊥ · k2⊥
�

× χ21χ
2
2ðk1⊥ · k2⊥Þ2PΦðk1⊥ÞPΦðk2⊥Þ; ð2:41Þ

hKð1ÞKð3Þidc ¼ −16ω2

Z
χs

0

dχ
χ2

Z
χ

0

dχ0

χ02

Z
χ0

0

dχ1

Z
χ0

0

dχ2

Z
d2k1⊥
ð2πÞ2

Z
d2k2⊥
ð2πÞ2

× sin

�ðχs − χ2Þχ2
2χsω

k22⊥
�
sin

�ðχs − χ2Þχ2
2χsω

k22⊥ þ ðχ − χ0Þχ1χ2
ωχχ0

k1⊥ · k2⊥ þ ðχ − χ1Þχ1
χω

k21⊥
�

× ðχ21χ22ðk1⊥ · k2⊥Þ2 þ χ31χ2k
2
1⊥ðk1⊥ · k2⊥ÞÞPΦðk1⊥ÞPΦðk2⊥Þ: ð2:42Þ

As these expressions show, the computation of δK2;dc
requires multiple integrations in eight variables. Among
these eight variables, the integral with respect to the
angle between k1⊥ and k2⊥ can be analytically performed
and the result is written in terms of the Bessel functions.
Thus, practically, the number of variables in the integration
is six. The concrete expression of δK2;dc which we will

evaluate numerically in the next section is given in
Appendix B.
The connected part δK2;c given by Eq. (2.39) comes from

the non-Gaussianity of the matter fluctuations: the matter
bispectrum, trispectrum, and so forth. The first term in
Eq. (2.39), which is OðΦ3Þ, is written in terms of the
bispectrum as
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hKð1ÞKð2Þic ¼ −4ω2

Z
χs

0

dχ
χ2

Z
χ

0

dχ3χ23

Z
d2k1⊥
ð2πÞ2

Z
d2k2⊥
ð2πÞ2 sin

�ðχs − χ3Þχ3
2ωχs

jk1⊥ þ k2⊥j2
�

× sin

�ðχs − χ3Þχ3
2ωχs

ðk21⊥ þ k22⊥Þ þ
ðχs − χÞχ23

ωχsχ
k1⊥ · k2⊥

�

× ðk1⊥ · k2⊥ÞBΦðk1⊥; k2⊥; jk1⊥ þ k2⊥jÞ: ð2:43Þ

The other two terms, which are OðΦ4Þ, are written in terms of the trispectrum as

hðKð2ÞÞ2ic ¼ −8ω2

Z
χs

0

dχ
χ2

Z
χ

0

dχ0

χ02

Z
χ0

0

dχ4χ44

Z
d2k1⊥
ð2πÞ2

Z
d2k2⊥
ð2πÞ2

Z
d2k3⊥
ð2πÞ2

× sin

�ðχs − χÞχ24
2ωχsχ

jk1⊥ þ k2⊥j2 þ
ðχ − χ4Þχ4

2ωχ
ðk21⊥ þ k22⊥Þ

�

× sin

�ðχs − χ0Þχ24
2ωχsχ

0 jk1⊥ þ k2⊥j2 þ
ðχ0 − χ4Þχ4

2ωχ0
ðk23⊥ þ jk1⊥ þ k2⊥ þ k3⊥j2Þ

�

× ðk1⊥ · k2⊥Þ½k3⊥ · ðk1⊥ þ k2⊥ þ k3⊥Þ�TΦðk1⊥; k2⊥; k3⊥;−k1⊥ − k2⊥ − k3⊥Þ; ð2:44Þ

hKð1ÞKð3Þic ¼ 8ω2

Z
χs

0

dχ
χ2

Z
χ

0

dχ0

χ02

Z
χ0

0

dχ4χ44

Z
d2k1⊥
ð2πÞ2

Z
d2k2⊥
ð2πÞ2

Z
d2k3⊥
ð2πÞ2 sin

�ðχs − χ4Þχ4
2ωχs

jk1⊥ þ k2⊥ þ k3⊥j2
�

× sin

�ðχs − χÞχ24
2ωχsχ

jk1⊥ þ k2⊥ þ k3⊥j2 þ
ðχ − χ4Þχ4

2ωχ
k33⊥þ

ðχ − χ0Þχ24
2ωχχ0

jk1⊥ þ k2⊥j2 þ
ðχ0 − χ4Þχ4

2ωχ0
ðk21⊥ þ k22⊥Þ

�

× ðk1⊥ · k2⊥Þ½ðk1⊥ þ k2⊥Þ · k3⊥�TΦðk1⊥; k2⊥; k3⊥;−k1⊥ − k2⊥ − k3⊥Þ: ð2:45Þ

In order to evaluate the connected part, we need to
determine the bispectrum and the trispectrum of the matter
fluctuations. In this paper, we only focus on the lowest-
order term in the non-Gaussianity part, which is the
contribution from the bispectrum.
The above formulation is for the variance of K. The

variance of S can be formulated in exactly the same manner.
The quantities of S corresponding to Eqs. (2.40)–(2.45)
are obtained by replacing all the sine functions as
sinð� � �Þ → 1 − cosð� � �Þ.

III. HALO MODEL

Our results in the previous section are described by the
power spectrum and bispectrum of the potential PΦðk; χÞ
and BΦðk1; k2; k3; χÞ. As mentioned, the bispectrum is the
only term considered in this paper to capture the non-
Gaussianity. In the actual computations of the average and
the variance of S and K, we need the spectra of matter
instead of the gravitational potential and they are obtained
through the Poisson equation,

PΦðk; χÞ ¼
�
3H2

0Ωm

2

�
2 1

a2ðχÞk4 Pδðk; χÞ; ð3:1Þ

Bϕðk1; k2; k3; χÞ

¼ −
�
3H2

0Ωm

2

�
3 1

a3ðχÞk21k22k23
Bδðk1; k2; k3; χÞ: ð3:2Þ

The precise dependence of the matter power spectrum at
a small scale, which is important for the frequency range
of our interest, is very difficult to compute from the first
principle due to complex physical processes such as
baryonic physics. To circumvent this issue, we adopt the
formulation of the halo model described in [10] which
provides a useful phenomenological approach with rea-
sonable computational costs.
While it is advisable to refer to [10] for more detail, we

would like to give a brief summary of their findings.
In [10], the power spectrum was computed using their halo
model, which incorporates subhalos and baryonic matter
such as galaxies and stars. Their model’s power spectrum
shows a close match to the one computed through hydro-
dynamical simulations within the range covered by the
simulation (k < 30h Mpc−1), confirming the reliability of
the model at least within this range. Then, they compute the
power spectrum at an even smaller scale (up to as small as
k ∼ 108h Mpc−1) with their halo model assuming that the
halo model approach provides a reasonable estimation of
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the power spectrum. Under this assumption, they found that
the power spectrum at k ∼ 106h Mpc−1 is predominantly
determined by the two components: dark low-mass halos
(1h−1M⊙ ≲M ≲ 104h−1M⊙, no stars within them, thus dark)
and the point mass (ordinary stars, neutron stars, and black
holes which causes the shot noise in the signal). Considering
that the weak lensing effect on GWs is highly sensitive to the
matter power spectrum at the corresponding scale [9], they
show that, within a certain frequency range of GWs
(10≲ f ≲ 100 Hz), the lensing dispersion is also sensitive
to the abundance of dark low-mass halos and primordial black
holes (point mass) and can be used to probe them.
Following their result that dark low-mass halos and the

point mass are important, we only focus on their contribu-
tions to the matter power spectrum and bispectrum, and we
ignore the effect from other sources such as the density
distribution within a galaxy. In addition, we separately
compute the lensing signal from the halos and the point
mass (shot noise) for the following two reasons. First, the
power spectrum and bispectrum for these two components
exhibit different characteristics (the power spectrum with
subhalos included is strongly suppressed at small scales,
while the shot noise contributes to all scales of the spectra
equally). By analyzing their effects separately, we can gain a
clearer understanding of the individual contributions.
Second, there is a technical aspect to consider. While
analytical computations can be partially carried out for the
shot noise contribution, full numerical computation poses
challenges due to rapid oscillation in the integration proc-
esses. On the other hand, the subhalo contribution cannot be
evaluated analytically due to the lack of a simple analytical
form for the power spectrum and bispectrum, leaving
numerical calculations the only option. Consequently, sepa-
rating the calculation of these two components allows us to
effectively address the computational challenges associated
with each contribution (the contribution from the shot noise
is separately studied in Sec. IV E).
Following [10], we estimate the effect of subhalos by

computing the analytic subhalo mass function based on the
extended Press-Schechter theory with the tidal stripping
and the dynamical friction effects included.
Figure 1 shows the matter power spectrum used in this

paper evaluated at z ¼ 0; 1 (solid line). The dotted lines are
the power spectrum without the subhalo contributions,
illustrating the enhancement of the small-scale power
spectrum due to the subhalos. We also show with the red
dashed lines the power spectrum computed by the halofit
model [20]. Halofit is a fitting formula whose functional
form ismotivated by the halomodel and is calibrated against
theN-body simulation at k≲ 30h Mpc−1. The halomodel is
indeed consistent with the fitting formula within the cali-
bration range. Note that, in this figure, the vertical axis is
scaled k2PδðkÞ as this is the contribution to gravitational
lensing per log k. At k ∼ 10−2hMpc−1, a slight hump can be
observed. This scale represents the peak of the linear power

spectrum, while the peak observed at k ∼ 10hMpc−1 indi-
cates the scale of the largest halos.As the scalemoves toward
the lower side (high k), the power spectrum decreases as the
contribution from the larger halos (halos whose radius is
greater than the scale of interest) becomes less and less
significant. The dash-dotted straight line emerging at k ¼
106hMpc−1 represents the shot noise effect due to the point
mass. The shot noise is evaluated using a simple model,
where all point masses are the same type of object and are
randomly distributed throughout the Universe. This model
does not take into account the time evolution of the point
mass either. The power spectrum based on this model is
simply given by a constantPshot ¼ f2p=n̄, where fp and n̄ are
the mass fraction of the point mass to the total matter and the
number density of the point mass, respectively. In order to
compute n̄, we use the relation ρ̄Ωmfp ¼ mpn̄, and H2

0 ¼
8πG
3
ρ̄ with mass m ¼ 0.5M⊙ and mass fraction fp ¼ 0.01.

The fiducial value of fp is consistent with the measured
abundance of stars [21].
Next, we would like to provide an approximation

formula for the power spectrum,

Pδðk; χÞ ¼ Pδðk0; χÞ
�
k
k0

� k0
Pδðk0 ;χÞ

dPδðk0 ;χÞ
dk0 ¼ BðχÞk−b: ð3:3Þ

This is equivalent to the Taylor expansion of logPδ with
respect to log k and is useful to approximately evaluate the

FIG. 1. The power spectrum for the halo model with subhalos
included (solid) is significantly enhanced by the presence of
subhalos at small scales compared to the power spectrum of the
halo model without subhalos (dotted). At large scales, the halo
model is fairly accurate with the halofit (red dashed). The halofit
is a fitting formula given in [20] whose parameters are calibrated
on the N-body simulation results at k < 30h Mpc−1. The shot
noise effect (compact object with mass 0.5M⊙ and mass fraction
fp ¼ 0.01) on the power spectrum is illustrated by the dash-
dotted line emerging at k ∼ 106h Mpc−1. The hump seen at k ¼
10−2–10−1h Mpc−1 represents the peak of the linear power
spectrum, while the peak at k ∼ 101h Mpc−1 represents the scale
of the biggest halos considered in the model.
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asymptotic behavior of the average and the variance of S
and K (particularly, δS2;dc, the correction term to the
variance of the phase modulation). k0 is an arbitrary scale
around which Pðk; χÞ is expanded, thus we can take
k0 ¼

ffiffiffiffiffiffiffiffiffiffi
H0ω

p
∼ 1=ðFresnel scaleÞ so that the variation of

the power spectrum around the Fresnel scale is properly
evaluated.
In addition to the power spectrum, we also need to

evaluate the bispectrum for calculating the lensing
dispersion. In the halo model formulation, the total bispec-
trum is the sumof so-called 1-halo, 2-halo, and 3-halo terms,

Bδ ¼ B1H þ B2H þ B3H; ð3:4Þ

where each term is calculated by following the formalism
presented in [22]. Since we are interested in the small-scale
bispectrum, we need to incorporate the subhalo contribution
to this expression. To do so, we follow the formulation
in [23], where the 1-halo term is separated into seven
terms as

B1H ¼BsssþBsscþBs1cþBs2cþB1cþB2cþB3c: ð3:5Þ

The notation used here is the same as the one in [23] (s and c
mean smooth and clump, respectively). We evaluate each
term using the same mass function and density profile of the
subhalos in [10].
Note that we have ignored the contributions from

subhalos to the 2-halo term and 3-halo term.
The rationale for this assumption is as follows: The

2-halo term refers to the three-point correlation involving
two points from the same halo and the third point from a
different halo. In the case of an equilateral or flattened
configuration of a triangle, this term becomes subdominant
compared to the 1-halo term. For instance, when k1, k2, and
k3 are equal (equilateral), and their corresponding scales are
smaller than the size of a main halo, the 2-halo term is
significantly suppressed due to a very small correlation
between these two halos. However, the 1-halo term remains
relevant because of the matter density fluctuation and the
presence of subhalos in a main halo. The only triangle
configuration where the 2-halo term becomes relevant is
when the scales corresponding to k1 and k2 are of the order
of the halo size, while the scale corresponding to k3 is much
larger than the size of a main halo. In such cases, the
contribution of subhalos can be ignored because, at scales
much larger than the size of a main halo, even the main
halos can be treated as point mass objects. Similar con-
siderations can be made for the 3-halo term. The 3-halo
term only becomes relevant when the scale corresponding
to k1, k2, and k3 is significantly larger than the size of a
main halo. In such cases, the structure of individual main
halos becomes irrelevant.
In Fig. 2, we show the bispectrum evaluated at three

different configurations (equilateral, flattened, and squeezed)

and two different redshifts (z ¼ 0; 1). The squeezed con-
figuration is set to k1 ¼ k2 ¼ k; k3 ¼ 0.01k. The solid
(dotted) lines show the bispectrum with (without) subhalos.
The red dashed lines are the BiHalofit model given in [24]
(a fitting formula for the matter bispectrum calibrated on the
simulations at k < 30h Mpc−1). The trend observed in the
bispectrum is the same as the one in the power spectrum:
The inclusion of subhalos enhances the small-scale bispec-
trum, while the large-scale behavior (the small hump
representing the peak linear bispectrum and the peak
representing the largest scale of halos) is compatible with
the fitting formula. However, there is a notable difference
from the power spectrumwhich is intrinsic to the bispectrum.
In one squeezed configuration (k1 ¼ k2 ¼ k; k3 ¼ 0.01k), it
is observed that the subhalo enhancement to the bispectrum
has the peak at k1 ¼ k2 ∼ 103 and k3 ∼ 10h Mpc−1. This
represents the correlation within the main halo where the
larger scale corresponds to the scale of the largest halos,
while the smaller scale involves the subhalo scale. The
straight dash-dotted lines are the shot noise effect, which is
calculated by assuming that it is given by a constant Bshot ¼
f3p=n̄2 withm ¼ 0.5M⊙ and fp ¼ 0.01. Precisely speaking,
the shot noise effect on the bispectrum contains not just the
constant term, instead, it is given by [25]

Bshot ¼
fp
n̄
ðPδðk1Þ þ Pδðk2Þ þ Pδðk3ÞÞ þ

f3p
n̄2

; ð3:6Þ

where PδðkÞ is the power spectrum without the shot noise
effect. In fact, the first three terms in Eq. (3.6) come from the
coupling of the non-shot-noise effect and the shot noise
effect. However, as mentioned earlier, we treat the shot noise
separately, and the isolation of the shot noise from the rest of
the terms results in ignoring the coupling terms.
Up to this point, we have assumed that the halo model

can be a reasonable estimation for such a small scale as
k ∼ 106h Mpc−1. However, it is not clear whether the
uncertainty of the spectra based on the halo model is
reasonably suppressed even at scales much smaller than the
ones covered by the simulations. Since our aim in this paper
is to provide formalism to compute the post-Born correc-
tions given that the matter power spectrum and bispectrum
are properly evaluated, we simply take it for granted that
our matter power spectrum and bispectrummodels are valid
at all scales.
Thus, the numerical values of the post-Born corrections

thatwill be given later should not be understood as the robust
quantitative prediction of the post-Born effects.3 Once the

3In addition to the uncertainty of the matter power spectrum
caused by the use of the halo model, there are other types of
uncertainties coming from our ignorance about the microscopic
properties of dark matter and primordial power spectrum on small
scales, both of which affect the shape of the matter power
spectrum at small scales.
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correct matter power spectrum and bispectrum are obtained,
it is straightforward to evaluate the post-Born corrections by
using the formulation given in this paper.We emphasize that
our general conclusion that the post-Born corrections are
subdominant compared to the Born approximation remains
unaffected by the refinement of thematter power spectrum in
the absence of the shot noise.
The cosmological parameters we use to compute the halo

model, as well as the lensing dispersion, are h ¼ 0.6739,
Ωm¼0.3147,ΩΛ ¼ 0.6888,ns ¼ 0.9665, andσ8 ¼ 0.8102.

IV. POST-BORN EFFECT ON S AND K

A. Numerical computation

In order to evaluate the lensing signal, it is essential to
compute the multivariable integral over a considerably wide
range for highly oscillatory functions. To achieve this,we use
theMonteCarlo algorithm to compute the lensingdispersion.
We ensure that the error of our calculation is smaller than

10% by progressively increasing the number of sample
points until the fluctuation in the results is less than 10%.
In the case of hSð3Þi and hSBornSð2Þi, which exhibit a slow
convergence rate, the computation error is ensured to be less
than 30%. Additionally, we assess the impact of the inte-
gration range on the final result by varying its width and
we confirm that the results remain unchanged (the default
integration range is set to 10−4h−1 < k < 1012h Mpc−1). By
undertaking these checks, we can guarantee that the results
are indeed converged. We have to keep in mind that the error
in our calculation, which we estimate to be 10%, arises
from the slow convergent rate of these integrals. Thus, this
number cannot be interpreted as the error of the actual
observed S and K.

B. Born approximation

For completeness, we first evaluate the variance of S
and K under the Born approximation. Formally, hK2

Borni is

(a) Equilateral (b) Flattened

(c) Squeezed

FIG. 2. In all configurations of a triangle [(a) equilateral, (b) flattened, (c) squeezed)], the halo model with subhalos (solid) is
significantly enhanced at small scales compared to the smooth (without subhalos) model (dotted). At large scales, the halo model is
fairly consistent with the BiHalofit model [24] (red dashed) in all configurations at different redshifts (z ¼ 0; 1). The shot noise
(dash-dotted) becomes relevant above k ∼ 107h Mpc−1. In this squeezed bispectrum (k1 ¼ k2 ¼ k; k3 ¼ 0.01k), there is a peak at
k ∼ 103h Mpc−1 due to the subhalo enhancement.
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given by Eq. (2.40) and hS2Borni is given by the same
equation with the sin function being replaced with 1 − cos.
In Fig. 5, we show hS2Borni as a function of f with the
corresponding Fresnel scale 1=r̄F ¼

ffiffiffiffiffiffiffiffiffiffi
H0ω

p
represented by

the second horizontal axis at the top. Irrespective of the
source redshift, hS2Borni exhibits a general behavior pertain-
ing to the power spectrum. As the frequency increases
from f ¼ 10−18 Hz, it initially rises and forms a hump
around f ¼ 10−15 Hz (k ∼ 10−2h Mpc−1). It then reaches a
peak at f ¼ 10−11 Hz (k ∼ 101h Mpc−1) and gradually
decreases as the frequency moves toward higher values.
As seen in Fig. 1, these scales correspond to the peak of the
linear power spectrum and the largest scale of the halos,
respectively.
In order to understand this feature, let us write hS2Borni in

terms of the matter power spectrum as

hS2Borni ¼ 4ω2

�
3H2

0Ωm

2

�
2
Z

χs

0

dχ
a2ðχÞ

Z
dk
2πk3

×

�
1 − cos

�ðχs − χÞχ
2χsω

k2
��

2

Pδðk; χÞ: ð4:1Þ

The integration over k is dominated by the integrand around
the scalewhere the argument of the cosine function becomes
Oð1Þ. Thus, approximatingPδ at that scale as a single power

law Pδ ∝ k−b, we find the scaling hS2Borni ∝ ω1−b
2, which

explains the behavior of the purple curve in Fig. 3 and the
reason why it reflects the matter power spectrum at the
corresponding Fresnel scale. Notice that the Taylor expan-
sion of the cosine in 1=ω in the high-frequency regime,
which naively gives the scaling hS2Borni ∝ ω−2, does not
make sense due to the divergence of k integration stemming
from the coefficient of ω−2.
The fact that the scaling of hS2Borni depends on b is one of

the advantages of the weak lensing of GWs as the
measurement of the frequency dependence of hS2Borni at
a detectable frequency range of GWs provides a direct
probe of the slope of the matter spectrum at small scales (as
small as or smaller than k ∼ 105–106h Mpc−1).
The orange solid line in Fig. 6 shows hK2

Borni as a
function of f with the corresponding Fresnel scale at the
top. Contrary to the phase modulation, the variance of K
approaches a constant value in the high-frequency limit,
which is nothing but the variance of the convergence κ in
geometrical optics. Also, we can observe a hump at
f ∼ 10−15 Hz in the same way as the phase modulation.
At frequencies below f ¼ 10−11 Hz, hK2

Borni decreases as
the frequency is lowered. In order to understand this
feature, let us write hK2

Borni in terms of the matter power
spectrum as

FIG. 3. It is clear that hSð3Þi (green) is a few orders of magnitude smaller than hSð2Þi (cyan), confirming the validity of using hSð2Þi
as an approximation of hSi. In both figures, hSð2Þi experiences a hump at f ∼ 10−15 Hz (k ∼ 10−2h Mpc−1) and reaches the peak at
f ∼ 10−11 Hz (k ∼ 101h Mpc−1), tracing the behavior of the power spectrum. hSð3Þi also exhibits a similar behavior (the hump at
f ∼ 10−15 Hz and the peak at f ∼ 10−11 Hz). However, the change of signature at f ∼ 10−7 Hz seems to be a reflection of enhancement
on the squeezed bispectrum caused by subhalos. The solid (dashed) line indicates the þð−Þ value.
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hK2
Borni ¼ 4ω2

�
3H2

0Ωm

2

�
2
Z

χs

0

dχ
a2ðχÞ

Z
dk
2πk3

× sin2
�ðχs − χÞχ

2χsω
k2
�
Pδðk; χÞ: ð4:2Þ

The difference between the magnification and the phase
arises from the difference in the filter function. As
mentioned above, hS2Borni is predominantly determined
by the power spectrum at the Fresnel scale due to the
filter function being relevant only when k is comparable to
the Fresnel scale. On the other hand, the filter function for
hK2

Borni indicates that it provides relevant contributions
whenever the argument of sinð� � �Þ is comparable to or
smaller than unity. Thus, hK2

Borni computes the weighted
sum of the power spectrum at all scales above the Fresnel
scale. For this reason, the magnification in wave optics can
be viewed as the convergence in geometric optics with
the smoothing radius being replaced by the Fresnel scale.
Since the scale above the Fresnel scale contributes to the
magnification, the strong lensing due to galaxies might
cause relevant effects, even if the Fresnel scale for typical
GWs (k ∼ 106h Mpc2) is much smaller than the size of a
galaxy (k ∼ 103h Mpc−3). However, as partially mentioned
in [10], the removal of strong lensing by galaxies allows us
to extract the underlying lensing signal primarily due to the
dark matter halos and the point mass.

C. Average

Having understood the behavior of the magnification and
phasemodulations in the Born approximation, let us proceed
to the post-Born corrections. The cyan curve in Fig. 3 shows
the nontrivial leading-order term of hSið¼ hSð2ÞiÞ and the
green line shows their non-Gaussian correction hSð3Þi. They
are both shown as a function of GW frequency f and are
numerically computed based on Eqs. (2.31) and (B15)
combined with Eqs. (3.1) and (3.2). The source redshift is
taken to be zs ¼ 1 for the left and z ¼ 3 for the right. As
mentioned in the previous section, hSð2Þi should be always
positive and our numerical result also confirms this property.
Figure 3 implies that hSi shows close similarities to

hS2Borni: it has a hump around f ¼ 10−15 Hz and a peak at
f ¼ 10−11 Hz, representing the hump and peak of the power
spectrum as hS2Borni does. Based on the same analysis, we
found that hSð2Þi scales asωð2−bÞ=4, thus, the scaling behavior
is the same as hS2Borni as well as hSð2Þi and hSBorni having the
same order of magnitude hSi ∼ hS2Borni. We also evaluate
hSð3Þi (the correction term to hSi) that originates due to the
bispectrum contribution. hSð3Þi is shown to be about 2 orders
of magnitude smaller than hSð2Þi, which guarantees that the
correction to hSi due to the non-Gaussian effect is negligible
and the estimation of hSi solely by the power spectrum term
is still reliable.

Based on the result of hS2Borni and hSð2Þi, it is expected
that the frequency dependence of hSð3Þi also reflects the
behavior of the bispectrum. Indeed, hSð3Þi traces the general
behavior of the bispectrum: it initially increases with a
small hump at f ¼ 10−15 Hz and reaches a peak at
f ¼ 10−11 Hz, after which it decreases. However, there
is a frequency scale at f ∼ 10−7 Hz (corresponding Fresnel
scale is 102–103h Mpc−1) where the signature of hSð3Þi
flips. Our numerical computation reveals that this change of
signature hSð3Þi is attributed to the squeezed bispectrum.
Nevertheless, the precise influence of different squeezed
bispectrum configurations, such as the ratio of the larger
and smaller scales, on the change of signature has not
been elucidated yet. However, it is worth noting that this
scale significantly exceeds the scale of our interest
(f ∼ 0.01–1000 Hz) and would also be predominantly
influenced by galactic structures. For this reason, the
specific behavior of hSð3Þi around this frequency is not
particularly relevant in our analysis compared to the scale
around f ∼ 1 Hz. Also, as we will see later, the hump in
hSð3Þi at f ∼ 10−15 Hz is relatively smooth compared to the
hump seen in δS2;c, though its specific physical meaning is
unclear to us yet.
The olive curve in Fig. 4 shows the nontrivial leading-

order correction to hKi, while the brown dashed line is the
next leading-order contribution. As observed in hK2

Borni,
hKi initially increases and approaches a constant.
We find that hKi is always negative within the frequency

range of our calculation, which is not obvious from the
formulation of hKi. Although the exact reason for this
negative sign is still unclear, a similar result appears in
geometric optics. In geometric optics, the mean conver-
gence hκi is shown to follow the simple relation
hκi ¼ −2hκ2i < 0,4 hence negative, as demonstrated ana-
lytically [26] and in N-body simulation [27]. Since K is
reduced to the convergence κ in weak lensing when taking
the geometric optics limit (ω → ∞), hKi should be neg-
ative, at least when ω → ∞ is taken.
While hKð3Þi (the correction to hKi) also shows similar

behavior to hKð2Þi, it is smaller than hKð2Þi by about 2
orders of magnitude. Similar to the case of hSi, the
correction to hKi from the non-Gaussian effect is small,
and therefore the estimation of hKi solely by the power
spectrum term is reliable.

D. Variance

Before discussing the significance of the post-Born
corrections to the variance solely due to the presence of
the dark matter halos, it is important to clarify that we have

4By performing integration by parts for the integration over χ1
in Eq. (2.30), we can verify that hKi and hK2

Borni derived in this
paper reproduce the relation hKi ¼ −hK2

Borni in the high-
frequency limit.
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successfully calculated the post-Born corrections numeri-
cally for almost all cases using the expressions for δS2;dc,
δS2;c, δK2;dc, δK2;c presented in Appendix B. However, there
is one case that poses computational challenges when
computing the Gaussian correction to the phase δS2;dc,
particularly above frequency f ¼ 10−7 Hz. The reason for
this difficulty arises from the cancellation of significant
digits. Specifically, hðSð2ÞÞ2idc and 2hSð1ÞSð3Þidc in δS2;dc
have very similar values but differ in their signature at high
frequency, causing the cancellation of almost all contribu-
tions from each term and leaving very small differences. It
is known that, in geometric optics, the translation invari-
ance of the correlation functions plays a key role in this
type of cancellation for K [12–16]. To overcome this issue,
we employ an alternative approximation method to obtain
δS2;dc at frequencies above f ∼ 10−7 Hz. In Appendix C, we
develop a method to approximately obtain δS2;dc given the
power spectrum following a singe-power law at high wave
number. On the other hand, the power spectrum can be
approximated by a single power law around an arbitrary
reference scale k0 using Eq. (3.3). Due to the expectation
that the power spectrum at the Fresnel scale dominates the
contribution to δS2;dc, we chose the reference scale to be the
approximated value of the corresponding Fresnel scale,
namely, k0 ¼

ffiffiffiffiffiffiffiffiffiffi
H0ω

p
. By utilizing the approximated power

spectrum, which takes the form of a power law around the
Fresnel scale and our developed computation method, we

can effectively compute δS2;dc with reasonable accuracy
using the following expression:

δS2;dc ¼
3

4

�
3H2

0Ωm

2

�
4
Z

χs

0

dχ1

Z
χ1

0

dχ2
W4ðχ1;χsÞχ41χ42
a2ðχ1Þa2ðχ2Þ

1

ð2πÞ2

×

�
Bðχ2Þ
ω

b2
2
−1

Z
∞

0

dk1k1Pδðk1;χ1Þ
�
χ22Wðχ2;χsÞ

2

�b2
2
−1

×

�
1−

2
b2
2

2

�
Γ
�
1−

b2
2

�
sin

�
b2
2

�
þð1↔ 2Þ

�
; ð4:3Þ

where b2 ¼ bðχ2Þ and Bðχ2Þ are calculated using Eq. (3.3).
Note that, in analyzing the frequency dependency of δS2;dc,
it can be regarded as a constant with respect to the
variations in χ due to the relatively small variation of
bðχÞ with changing χ.
Figure 5 shows the variance of S including the Born

approximation hS2Borni and two types of post-Born correc-
tions (Gaussian δS2;dc and non-Gaussian δS2;c with the
non-Gaussian correction only containing the bispectrum
contribution). The source redshift is taken to be zs ¼ 1; 3
for the left and right graphs, respectively. This result
suggests that the post-Born corrections to the variance of
S are subdominant at all frequency ranges considered in the
paper. Also, it implies that the smallness of the post-Born
corrections remains valid regardless of whether the matter
density is Gaussian or non-Gaussian, as long as the

FIG. 4. As expected, both hKð2Þi (olive) and hKð3Þi (brown) approach a constant value as the frequency increases. Since hKð3Þi is more
than an order of magnitude smaller than hKð2Þi, it is reasonable to use hKð2Þi as an approximation of hKi. At the low end of these figures,
Kð3Þ decreases more rapidly than hKð2Þi, indicating the small non-Gaussian effect at large scales. We can see that the hump also exists
(f ∼ 10−15 Hz) for the average of K. The solid (dashed) line indicates the þð−Þ value.
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contribution to the variance is primarily attributed to the
dark matter halos. Note that the computation of δS2;dc using
Eq. (4.3) is reliable as it nicely coincides with the result of
the numerical computation of δS2;dc at f ∼ 10−7 Hz.
The behavior of δS2dc is drastically different from hS2Borni

below f ¼ 10−9 Hz. While hS2Borni exhibits a hump and
peak at f ¼ 10−15 and f ¼ 10−11 Hz, the Gaussian cor-
rection δS2;dc changes its signature multiple times in this
region. On the other hand, the non-Gaussian correction δS2;c
shows generally the same behavior as hS2Borni: it increases
with a small hump at f ∼ 10−15 Hz and reaches the peak at
f ¼ 10−11 Hz, after which it gradually decreases. However,
there is a frequency scale at f ¼ 10−5 Hz corresponding
to k ∼ 104h Mpc−1 where the behavior of δS2;c changes.
Similar to hSð3Þi, it appears that this change of behavior
represents the effect of subhalos through the dependence of
hSð3Þi on the squeezed bispectrum. Moreover, by compar-
ing Figs. 3 and 5 at f ∼ 10−15 Hz, it is clear that the hump
observed in Fig. 3 is relatively less prominent than the one
observed in Fig. 5.
Since the frequencies f ∼ 10−15 and f ∼ 10−11 Hz cor-

respond to the peak that appears in the linear spectrum and
the scale of the largest halos in the halo model (b ∼ 0 and
b ∼ 2 for each scale), it is suggested that δS2;dc encodes
information about this scale. In fact, Eq. (4.3) partially

captures this behavior. For example, the sine function in
Eq. (4.3) enforces this term to be suppressed when b ∼ 0.
Note that this estimation should not be taken too seriously
as Eq. (4.3) cannot be used when b < 2. In addition,
identifying the exact scale is also challenging since the
error of the numerical calculation inevitably increases at
this specific frequency. Thus, further investigation is
needed for understanding the more precise property of
δS2;dc at around this frequency.
On the other hand, the frequency above f ¼ 10−9 Hz

provides important physical insight. By examining the
frequency dependence of δS2;dc in Eq. (4.3), it is clear that
δS2;dc scales as ω

1−b=2, the same scaling property as hS2Borni.
The underlying reason for this scaling can be understood as
follows. In the case of hS2Borni, the main contribution arises
solely from the power spectrum (thus two-point correlation
function) evaluated at the Fresnel scale. However, as
Eq. (4.3) implies, the main contribution to δS2;dc comes
from the product of the power spectrum evaluated at two
scales: the Fresnel scale and the scale that primarily
contributes to

R
dkkPðkÞ. This leads to the power spectrum

evaluated at the Fresnel scale producing ω1−b=2, while the
other one contributes mainly to the amplitude of δS2;dc.
The significance of this cross term contribution is that

information about large-scale density fluctuation is encoded

FIG. 5. In the frequency range of our interest f > 0.01 Hz (k ∼ 105h Mpc−1), hS2Borni (purple) is more than 2 orders of magnitude
larger than both δS2;dc (blue) and δS2;c (green), showing that the Born approximation remains valid under the halo model. In this
frequency range, the post-Born corrections δS2;dc, and δS2;c mainly enhance the amplitude of hS2Borni, which is interpreted as the effect of
the halos being distributed unevenly. While hS2Borni and δS2;c show the hump and the peak at f ∼ 10−15 Hz (k ∼ 105h Mpc−1, the scale
corresponding to the peak of linear spectra) and at f ∼ 1011 Hz (k ∼ 105h Mpc−1, the scale corresponding to the size of the largest
halos), δS2;dc changes its signature multiple times in this range. Also, at f ∼ 10−5 Hz, there is a sudden change of the slope of δS2;c,
respecting the effect of the enhanced squeezed bispectrum by subhalos. The solid (dashed) line indicates the þð−Þ value.
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in the variance of S through higher-order terms. The above
discussion about the behavior of the Gaussian correction
δS2;dc immediately implies that the correlations between
density fluctuations at the Fresnel scale and much larger
scales are the main contributing factor to δS2;dc. Physically,
this correlation arises from the fact that small-scale density
fluctuations are more likely to grow in regions with a high
matter density (i.e., large-scale density fluctuations are
significant). In fact, the main contribution to the non-
Gaussian correction δS2;c at high frequencies also comes
from this correlation, since δS2;c is particularly affected by the
squeezed bispectrum, which is by definition the correlation
between large- and small-scale density fluctuation.
In order to understand this effect more intuitively, let us

consider a universe in which lensing only occurs by dark
matter halos. In this case, hS2Borni fails to capture the uneven
distribution of the halos. The rationale for this is that hS2Borni
is solely determined by the abundance of halos at the
Fresnel scale, and information about unevenness (such as
bispectrum) is absent. However, it is expected that the true
hS2i would deviate from hS2Borni simply because the lensing
effect is enhanced (suppressed) in regions with a high (low)
halo number density compared to regions with average
number density. Our analysis indicates that the post-Born
approximation can capture the uneven distribution of lens
objects by accounting for the correlation between the
density fluctuation at the Fresnel scale and the density
fluctuations at much larger scales.

In terms of the frequency range of our interest, which is
above f ¼ 0.01 Hz and corresponds to the scale dominated
by the dark low-mass halos, our result suggests that the
post-Born corrections to the variance are estimated to be
δS2=hS2Borni ≲Oð10−2Þ. Also, it is important to mention
that the Gaussian correction term δS2;dc and the non-
Gaussian correction term δS2;c are relatively the same order
of magnitude in this frequency range.
Let us next investigate the variance of K. Figure 6 shows

the correction to hK2
Borni in the case where the source

redshift is zs ¼ 1 and zs ¼ 3, respectively. Similar to
hK2

Borni and hKi, the correction to the variance is sup-
pressed at low frequency and approaches a constant value
in the high-frequency limit. One difference between the
post-Born correction to the magnification and the phase
modulation is the relative magnitude of the non-
Gaussianity term to the Gaussianity term. In the case of
the magnification, the non-Gaussian term δK2;c is almost 2
orders of magnitude larger than the Gaussian term δK2;dc in
the frequency range f ¼ 0.01–1000 Hz, while those terms
are relatively the same order of magnitude for the phase
modulation. Due to this effect, the post-Born correction to
the variance of K in the high-frequency range is mainly
caused by the non-Gaussian term δK2 ≈ δK2;c. The relative
magnitude of the post-Born correction is given by
δK2=hK2

Borni≲Oð10−1Þ in the frequency range where the
magnification can be treated as a constant. On the other
hand, when the frequency is smaller than f ¼ 10−9 Hz, the

FIG. 6. The Born approximation hK2
Borni (orange) is the dominant effect on the K, with δK2;c (brown) being the second. Gaussian

contribution δK2;c (red) is more than an order of magnitude smaller than the non-Gaussian term. The solid (dashed) line indicates the
þð−Þ value.
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non-Gaussian term exhibits a faster decrease compared to
the Gaussian correction term, which can be seen by the
reduction of the difference between δK2;c and δK2;dc in
Fig. 6. This behavior reflects the fact that the non-
Gaussianity is less significant at larger scales.

E. Shot noise contribution

Up to this point, we have not considered the effect of the
shot noise coming from the Poisson distributed stars (or any
other dark compact objects) because (i) the low-frequency
GWs are not strongly affected by the point masses and
(ii) numerical integrations face technical challenges asso-
ciated with the highly oscillatory behavior of the integrand.
However, the shot noise may become important at high
frequencies, as suggested in [10], and the effect of the post-
Born correction needs to be considered. Thus we discuss the
contribution of the shot noise in this subsection. At the level
of the post-Born approximation, the lensing signals have a
dependency on not only the terms purely representing the
shot noise but also the cross term between the shot noise
terms and the smooth halo terms. This is due to the fact that
the higher-order corrections to S and K contain the bispec-
trum and the product of the power spectrum. The evaluation
of the cross terms is beyond the scope of this paper and we
will only focus on the pure contribution of the shot noise.
Formally, the shot noise is given by adding a constant to

the matter power spectrum and the bispectrum, namely,

Pδ ¼
f2p
n̄
; ð4:4Þ

Bδ ¼
f3p
n̄2

; ð4:5Þ

where n̄ is the average number density of an individual star
and fp is the mass fraction of the point mass to total matter
density. For simplicity, we ignore the time variation of n̄
due to stellar evolution. As mentioned earlier, we chose
fp ¼ 0.01 and m ¼ 0.5M⊙ as a fiducial value, which is
consistent with observations [21]. The shot noise effect on
the lensing signal is caused by the point mass, which, in
reality, possesses a finite physical size. To account for this
finite size, it is reasonable to introduce a cutoff scale kc,
which characterizes the regime where the point mass
approximation holds, since the cutoff scale represents
the size of stars in this case, and we chose kc ¼ 4 ×
1013h Mpc−1 (∼10−6 km−1).
We first evaluate the shot noise contribution to hS2Borni

and hK2
Borni. As long as it is smaller than the Fresnel scale,

the size of the stars kc does not have a relevant contribution
to the results, allowing us to effectively take kc → ∞.
Substituting Eq. (4.4) for the power spectrum that appears
in Eq. (4.1), we can analytically perform the integral over k
by using the formula

R
∞
0

dx
x3 ð1 − cos x2Þ2 ¼ 1=ð4πÞ. Then,

we obtain

hS2Bornishot ¼
1

4

�
3H0Ωm

2

�
2
Z

χs

0

dχ
a2ðχÞ χ

2Wðχ; χsÞ × ω
f2p
n̄
:

ð4:6Þ

Similarly, using the formula
R∞
0

dx
x3 sin

2 x2 ¼ 1=ð4πÞ, we
find that hK2

Bornishot ¼ hS2Bornishot. Thus, both the variance
of S and K under the Born approximation diverge in the
high-frequency limit. Note that this divergence comes
from neglecting the size of stars. In reality, the point mass
approximation breaks down when the Fresnel scale
becomes smaller than the size of stars. By properly
incorporating the size of stars, hS2Bornishot and hK2

Bornishot
can be shown to remain finite in the high-frequency limit.

1. Shot noise contribution to average

Let us next investigate the average hSi and hKi. Plugging
Eqs. (3.1) and (4.4) into the expression hSi given by
Eq. (2.29), we find that the integration over k diverges
logarithmically at large k. Hence, we need the cutoff wave
number kc which physically represents the inverse of the
size of the stars. With this cutoff, we can perform the
integration over k and the result is given by

hSishot ¼ 2

�
3H0Ωm

2

�
2
Z

χs

0

dχ
Z

χ

0

dχ0
χ02

χ2
1

a2ðχ0Þ
1

4π

× Cin
�
k2c

χ02Wðχ0; χÞ
ω

�
× ω

f2p
n̄
; ð4:7Þ

where CinðxÞ is the cosine integral defined as CinðxÞ ¼R
x
0 dt

1−cos t
t . When x is sufficiently large, the cosine integral

is approximated as CinðxÞ ≈ log ðeγxÞ, where γ is Euler’s
constant. We usually consider the case where χs takes the
cosmological distance (χs ≈ 1=H0). In this specific case,
we can further approximate this expression by

hSishot ∼
1

2π

�
3H0Ωm

2

�
2
Z

χs

0

dχ
Z

χ

0

dχ0
χ02

χ2
1

a2ðχ0Þ

× ω
f2p
n̄
log

�
k2c
H0ω

�
: ð4:8Þ

Since the cutoff scale kc only appears in logð� � �Þ, it
can be eliminated by the weighted subtraction of
S evaluated at different frequencies. For example, when
hSðω1Þ=ω1 − Sðω2Þ=ω2i is computed using the shot noise
power spectrum, k2c=H0ω that appeared as an argument of
logð� � �Þ is replaced by ω2=ω1.
As for hKi, the integral over k does not diverge and we

can practically take kc → ∞. Then, the result is given by
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hKishot¼−
1

4

�
3H0Ωm
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�
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Z

χs

0

dχ
Z

χ

0

dχ0
χ02

χ2
1

a2ðχ0Þ×ω
f2p
n̄
:

ð4:9Þ

The third-order terms hSð3Þi and hKð3Þi can be calculated in
a similar way. Using Eqs. (3.2) and (4.5), we obtain the
following expressions:

hSð3Þishot ¼ 0; ð4:10Þ

hKð3Þishot ¼ 8ω2

�
3H2

0Ωm

2

�
3
Z

χs

0

dχ
aðχÞ3 χ

2Wðχ; χsÞJ ×
f3p
n̄2

;

ð4:11Þ

where J is just a number given by the following integral:

J ¼ 1

12

Z
∞

0

dξ1
2π

Z
∞

0

dξ2
2π

Z
2π

0

dϕ
2π

sinðξ21Þ þ sinðξ22Þ þ sin ðξ21 þ ξ22 þ 2ξ1ξ2 cosϕÞ − 2 sin ðξ21 þ ξ22 þ ξ1ξ2 cosϕÞ
ξ1ξ2ðξ21 þ ξ22 þ 2ξ1ξ2 cosϕÞ

; ð4:12Þ

which is found to be J ≃ 0.0021. Note that hSð3Þishot becomes exactly zero. In fact, hSð3Þishot is formally written in the same
way as hKð3Þishot is given,

hSð3Þishot ¼ 8ω2

�
3H2

0Ωm
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�
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Z

χs
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dχ
aðχÞ3 χ

2Wðχ; χsÞL ×
f3p
n̄2

; ð4:13Þ

where L is given by an integral

L ¼ 1

6

Z
∞

0

dξ1
2π

Z
∞

0

dξ2
2π

Z
2π

0

dϕ
2π

2sin2ðξ21 þ ξ22 þ ξ1ξ2 cosϕÞ − sin2ðξ21Þ − sin2ðξ22Þ − sin2ðξ21 þ ξ22 þ 2ξ1ξ2 cosϕÞ
ξ1ξ2ðξ21 þ ξ22 þ 2ξ1ξ2 cosϕÞ

: ð4:14Þ

However, this integral is found to be exactly zero. This
implies that the corrections to hSi come from much higher-
order terms, but it is not clear the rationale for hSð3Þi being
zero.

Figure 7 shows the shot noise contribution to the average
of S. For both cases (the source redshift zs ¼ 1, 3), the
shot noise effect becomes dominant at slightly above
f ¼ 0.1 Hz. This frequency that the shot noise takes over

FIG. 7. The cyan line shows the value of hSi including the halo and the shot noise terms. The shot noise is represented by the thin cyan
straight line ascending in the upper right direction. The shot noise term overcomes the halo term at f ∼ 10−1 Hz. Compared to the shot
noise effect on hS2Borni in Fig. 9, the onset of the shot noise effect for hSi occurs at a lower frequency than hS2Borni due to hSð2Þi depending
on the size of the point mass kc. The shot noise effect on hSð3Þi (green) vanishes, indicating that the higher-order terms are necessary to
provide the corrections to hSð2Þi. The solid (dashed) line indicates the þð−Þ value.
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is lower than the one for the variance. This is due to the
enhancement of the shot noise effect on hSi, which arises
from the logarithmic factor in Eq. (4.8).
Figure 8 shows the shot noise contribution to the average

of K. The shot noise effect is hidden until the frequency
becomes f ¼ 104 Hz. Thus, the frequency lower than this
is not affected by the shot noise effect. When the frequency
is above f ∼ 104, the shot noise effect becomes dominant.
However, soon after the shot noise effect dominates hKi,
the higher-order contribution hKð3Þi overcomes the lower-
order term hKð2Þi. When the higher-order terms dominate
the lower-order terms, it is an indication that the perturba-
tive approach fails. Taking the ratio of Eq. (4.9) to
Eq. (4.11) and assuming the redshift is not too large
(truncating the second- or higher-order terms in zs), we
find the following condition for the validity of the pertur-
bative approach for the computation of hKi:

				 hK
ð3Þishot

hKð2Þishot

				 ¼ 1.7Gmpω

�
1þ zs

2

�
< 1: ð4:15Þ

As we will show later, this condition is analogous to the
condition under which the Born approximation for the
magnification can be reliably applied.

2. Shot noise contribution to variance

Finally, we evaluate the post-Born correction to the
variance. First, we consider the corrections to the phase
modulation. For the same reason as hSishot, the integral for
δS2;dc;shot and δS2;c;shot requires the cutoff scale kc to avoid
divergence.
We can compute the approximation of the Gaussian

correction δS2;dc, using the property of Eq. (B10). When k1
and k2 are large enough, the main contribution to δS2;dc;shot
comes from the factor 1

k1k2
due to the cancellation by

oscillations. In other words, it is possible to make the
following approximation:

�
1

k1k2
F S;12 −

1

k21
F S;1 −

1

k22
F S;2

�

∼ −
1

2k1k2

�
1 − cos

�
χ21Wðχ1; χsÞ

2ω
k21

��

×

�
1 − cos

�
χ22Wðχ2; χsÞ

2ω
k22

��
; ð4:16Þ

where k1 and k2 are taken to be sufficiently large due to the
dominant contribution to δS2;dc;shot coming from such a
region. Using this approximation as well as other simpli-
fications used in the computation of hSishot, we obtain

FIG. 8. The back lines show the total hKi. hKð2Þi (olive) is dominated by the halo term until f ∼ 104 Hz. However, hKð3Þi (brown)
exceeds hKð2Þi around f ∼ 5 × 104 Hz as well, indicating that the perturbative approach fails around this frequency. Equation (4.15)
provides a condition under which hKð2Þi is a reliable approximation of hKi, which is equivalent to the weak lensing condition presented
in [10] up to a constant prefactor. Note that the precise behavior of hKi around frequencies where the halo and the shot noise are of
similar magnitude (transition frequency) is not captured in these figures due to the exclusion of cross terms. The solid (dashed) line
indicates the þð−Þ value.

MORIFUMI MIZUNO and TERUAKI SUYAMA PHYS. REV. D 108, 043511 (2023)

043511-18



δS2;dc;shot∼−
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The correction from the bispectrum term can be
calculated using Eq. (4.18) and the expression for the
bispectrum Eq. (4.5). Since we consider the bispectrum
term as the main contribution to the non-Gaussian correc-
tion δS2;c;shot ¼ 2hSBornSð2Þi holds. Adopting the same

approximation we used to calculate hSishot and δS2;dc;shot,
we have the following result:

δS2;c;shot ∼
1

4π2

�
3H2

0Ωm

2

�
3
Z

χs

0

dχ
a3

χ2Wðχ; χsÞ

× ω2
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�
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�
k2c
H0ω

��
2

: ð4:18Þ

Similarly, the logarithmic factor arises due to the presence
of the cutoff.
As for the Gaussian correction δK2;dc, it does not diverge

even if we take kc → ∞. Taking this limit, the formal
expression is given by

δK2;dc;shot ¼ 16
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0Ωm
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The definition ofFK;12;FK;1;FK;2 is given in Appendix B.
We have not been able to find an analytic method to
approximately compute the integration over k1, k2 because
it requires careful analytical treatment. Although it is, in
principle, possible to compute the integral numerically, it
turned out to be quite complicated to achieve it. This arises
from the fact that the expression is highly oscillatory at
large k. However, it is expected that the non-Gaussian
correction δK2;dc is sufficiently smaller than the Gaussian
correction δK2;c;shot due to the reason we discuss below.

On the other hand, δK2;c;shot ¼ 2hKBornKð2Þi is computed
using Eqs. (2.43) and (4.5) as

δK2;c;shot ¼ 16

�
3H2

0Ωm

2

�
3
Z

χs

0

dχ
a3

χ2Wðχ; χsÞI × ω2
f3p
n̄2

;

ð4:20Þ

where I is just a number given by the following integral:

I ¼ 1

2

Z
∞

0

dξ1
2π

Z
∞

0

dξ2
2π

Z
2π

0

dϕ
2π

sin ðξ21 þ ξ22 þ 2ξ1ξ2 cosϕÞ sin ðξ21 þ ξ22 þ ξ1ξ2 cosϕÞ sin ðξ1ξ2 cosϕÞ
ξ1ξ2ðξ21 þ ξ22 þ 2ξ1ξ2 cosϕÞ

; ð4:21Þ

which is found to be I ∼ −0.0038.
Figure 9 shows the shot noise effect on the variance of

the phase modulation, indicating that the shot noise is
subdominant until f becomes greater than f ∼ 1 Hz. As for
the post-Born corrections, it can be seen that the non-
Gaussian contribution δS2;c is the dominant contribution
compared to the Gaussian contribution δS2;dc. This can be
understood by considering that δS2c;shot is proportional to
Bshot while δS2;dc;shot is proportional to P2

shot. Since P
2
shot is

smaller than Bshot by a factor of fpð¼ 0.01Þ, as we can see
in Eqs. (4.4) and (4.5), the effect from the non-Gaussian
term δS2;c;shot is dominant compared to the Gaussian term
δS2;dc;shot. Thus, it can be concluded that the post-Born
correction is primarily determined by the non-Gaussian
term (δS2;shot ≈ δS2;c;shot).

An important observation is that, in this point mass
scenario (mp ¼ 0.5M⊙; fp ¼ 0.01; kc ¼ 4× 1013h Mpc−1),
the post-Born term δS2;shot surpasses the Born approxima-
tion hS2Bornishot at around f ∼ 20 Hz. This indicates the
breakdown of the Born approximation around this
frequency.
A similar trend can be observed for the variance of

K in Fig. 10. In this case, the post-Born term δK2;c;shot

exceeds the Born result hK2
Borni at around f ¼ 10000 Hz.

It is expected that δK2;dc;shot is smaller than δK2;c;shot for
similar reasons as δS2;dc;shot being smaller than δS2;c;shot
(bispectrum is much larger than the square of the power
spectrum). Therefore, we can consider the correction to the
variance of K to be dominated by the non-Gaussian
term δK2;shot ≈ δK2;c;shot.
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FIG. 9. The black lines show the total hS2i. The shot noise effect dominates hS2Borni (purple) above f ∼ 1 Hz, while for δS2;c (green) the
shot noise takes over the halo term at f ∼ 0.3 Hz. The shot noise from the Gaussian correction δS2;dc (blue) is subdominant compared to
δS2;c due to Bshot ≫ P2

shot. At f ∼ 20 Hz, δS2ð¼ δS2;c þ δS2;dcÞ exceeds hS2Borni, indicating the breakdown of the Born approximation.
Since δS2 is enhanced by the logð� � �Þ factor which reflects the physical size of the point mass, the breakdown frequency for hS2i is lower
than that for hK2i under the same point mass scenario. Note that the precise behavior of δS2;dc and δS2;c evaluated at the transition
frequency are imprecise due to the exclusion of the cross term. The solid (dashed) line indicates the þð−Þ value.

FIG. 10. The black lines show the total hK2i. The shot noise effect on hK2
Borni (orange) is subdominant until f ∼ 104 Hz, while the

non-Gaussian correction δK2;c (brown) takes over hK2
Borni at a similar frequency, implying the breakdown of the Born approximation. We

do not show the shot noise effect on the Gaussian correction δK2;dc due to computational challenges but it is expected to be smaller than
the non-Gaussian correction δK2;c because Bshot ≫ P2

shot. For the magnification, the condition under which the Born approximation holds
is given by Eq. (4.23), which ensures that the point mass does not cause strong lensing. Thus, the breakdown of the Born approximation
can be attributed to the variance of K being dominated by rare strong lensing events to which the weak lens approximation cannot be
applied. Note that the precise behavior of δK2;dc and δK2;c evaluated at the transition frequency is not accurate due to the exclusion of the
cross terms. The solid (dashed) line indicates the þð−Þ value.
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Based on these considerations, it is possible to provide
the general condition under which the Born approximation
holds for the shot noise. This condition can be derived by
computing the relative magnitude of the post-Born correc-
tions δS2;shot, δK2;shot to the Born approximation hS2Bornishot,
hK2

Bornishot. By assuming that the source redshift is not
exceedingly large and truncating the second- or higher-
order terms in zs is justified, we obtain the following
conditions:

				 δS2;shot
hS2Bornishot

				 ¼ cSGmpω

�
1þ zs

2

��
log

�
k2c
H0ω

��
2

< 1;

ð4:22Þ
				 δK2;shot

hK2
Bornishot

				 ¼ cKGmpω

�
1þ zs

2

�
< 1; ð4:23Þ

where a factor of order unity cS and cK are found to be
approximately cS ¼ 4=π and cK ¼ 3.1 in this study. Note
that the presence of the Hubble parameter H0 in Eq. (4.22)
arises from the assumption that the source and the lens
redshifts are of cosmological order χðzsÞ ∼ 1=H0. The
general trend observed in Eqs. (4.22) and (4.23) is that
the Born approximation provides a reliable estimation
when Gmpω is small. Physically, there are two ways to
interpret the factor Gmpω. One is to consider this as a ratio
of the Schwarzschild radius of the point mass to the
wavelength of GWs, while the other views it as a square
of the ratio of the Einstein radius of the point mass to the
Fresnel scale of GWs. In the second interpretation, the
distances to the source and lens from the observer are
assumed to be the same order of magnitude. Also,
Eq. (4.23) is the same as the one derived in [10] up to
constant, which is based on the requirement that strong
lensing by the point mass does not occur.

V. DISCUSSION

In this section, we summarize our main findings and
discuss the possibility of the applications and the detect-
ability of the post-Born effect.

A. Validity of the Born approximation

The weak lensing of gravitational waves offers the
advantage of probing the scale corresponding to the
Fresnel scale. In the case of typical GWs seen by
the ground-based detectors (f ¼ 10 ∼ 1000 Hz), the
Fresnel scale can reach values as small as a few parsecs.
At such a small scale, a high degree of non-Gaussianity is
expected. However, strong non-Gaussianity does not auto-
matically indicate that the post-Born corrections are large.
To gain a better understanding of this, let us begin by
examining the general case of statics before delving into
our specific cases.

Suppose X½δ� is a physical quantity such as K and S
evaluated by a random variable δ (in this case, it is the
matter density fluctuation δ). Here, the Born approximation
XBorn½δ� is usually interpreted as an approximation of X½δ�
by the leading-order terms of its Taylor series, thus
X½δ� ¼ XBorn½δ� þ δX½δ�, where δX½δ� is the post-Born
correction.
For non-Gaussianity, it can be characterized by compar-

ing the skewness of X with its variance while ensuring
that they have the same dimension. In other words, the
dimensionless parameter hX3i2=3=hX2i can be used to
quantify the degree of non-Gaussianity in X. If this quantity
is sufficiently small compared to 1, it suggests that X is
almost Gaussian. When this is comparable to 1, it indicates
a strong deviation from Gaussianity.
On the other hand, the post-Born corrections to hX2

Borni
are given by the higher-order terms, which in this case are
2hXBornδXi þ hδX2i. Since non-Gaussianity and the post-
Born corrections are intrinsically different, even if XBorn

exhibits strong non-Gaussianity (hX3
Borni2=3 ∼ hX2

Borni),
the post-Born corrections can be still small (hX2

Borni ≫
2hXBornδXi þ hδX2i).
Now, let us turn to more specific cases, particularly

those involving the presence of dark matter halos and the
shot noise.

1. Without the shot noise

When considering only the dark matter halos, we found
that the corrections to the Born approximation are signifi-
cantly small, especially for the phase modulation. For
frequencies higher than f ¼ 0.01 Hz, the ratio of the
correction terms to the leading-order term is δS2=hS2Borni≲
Oð10−2Þ. Similarly, the corrections to the magnification
are small, although not excessively so: δK2=hK2

Borni≲
Oð10−1Þ. Note that the frequencies below f ¼ 0.01 Hz
correspond to scales larger than k ∼ 105h Mpc−1 and may
be strongly influenced by baryonic matter, specifically in
the form of galaxies [10].
Our findings indicate that, in the absence of the shot

noise, the Born approximation remains still valid across the
frequency ranges where the primary contributions to hS2i
and hK2i are attributed to dark matter halos. Since the post-
Born corrections account for the effect of the halos being
unevenly distributed, the suppression of the post-Born
corrections implies that halos can be treated as though
they are uniformly distributed when computing the lensing
signal.
This result does not contradict the expectation that

the matter distribution is highly non-Gaussian at small
scales. In fact, our analysis revealed that S and K show
significant non-Gaussian behavior. Figure 11 shows the
degree of non-Gaussianity in S and K. As these figures
indicate, hS3Borni3=2=hS2Borni and hK3

Borni3=2=hK2
Borni exceed

unity at high frequencies, exhibiting a strong deviation
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from Gaussian behavior. Note that, in Fig. 11, it can be seen
that the degree of non-Gaussianity decreases as the source
of GWs moves further away (at higher redshift). This
behavior is consistent with [10]. Essentially, when the
source of GWs is distant, they are more likely to traverse
multiple halos. When they pass through many halos, the
overall lensing effect is described by the sum of each
individual lensing event that occurs during their propaga-
tion. Due to the central limit theorem, this summation
process leads to the reduction of non-Gaussianity.

2. With the shot noise

In the presence of the shot noise, we found that the
applicability of the Born approximation depends on two
factors: the satisfaction of the weak lensing condition
[Eq. (4.22) for S and Eq. (4.23) for K] and the dominance
of the shot noise contribution to the variance. For simplic-
ity, let us focus on the validity of the Born approximation
for the magnification. The same argument can be applied to
the phase modulation as well.
For the magnification, the Born approximation remains

valid if the shot noise effect is subdominant or Eq. (4.23) is
satisfied. However, if Eq. (4.23) is not satisfied and the shot
noise is the dominant contribution to the variance, the Born
approximation breaks down. In this context, the breakdown
of the Born approximation specifically refers to the

situation where the variance of S and K computed using
the leading-order terms of S andK inΦ no longer provide a
reliable estimate of the true variance. This also implies that
the perturbative approach fails since adding up a finite
number of higher-order terms does not necessarily improve
the accuracy of variance estimation. At this stage, a full-
order analysis or simulation is required to obtain the true
distribution of S and K. The simulation approach has been
taken in geometric optics [27], but further investigation is
needed within the framework of wave optics.
A similar condition to Eq. (4.23) is also derived in [10]

(the only difference is a unity-order prefactor) under the
requirement for the absence of strong lensing. Thus, the
violation of Eq. (4.23) implies the existence of a specific
configuration of lenses and a GW source that can lead to
strong lensing such as the point mass being very close to
the line of sight. It is important to note that the violation of
Eq. (4.23) does not by itself imply the breakdown of the use
of the Born approximation for the variance. As mentioned
above, the breakdown requires not only the violation of
Eq. (4.23) but also the dominance of the shot noise effects
on the variance over other effects. Therefore, even if there
are objects that can potentially cause strong lensing, the
Born approximation is still valid as long as the contribution
of these lenses to the variance is subdominant compared to
the contribution of other lenses that do not cause strong
lensing (such as dark low-mass halos).

FIG. 11. For the phase modulation (left), the degree of non-Gaussianity exhibits a rapid increase, followed by a deceleration at
f ∼ 10−12 Hz, and reaching a peak at f ∼ 10−4 Hz. After that, it gradually decreases. A similar trend can be observed for the non-
Gaussianity ofK (right). However, hK3

Borni3=2=hK2
Borni reaches a constant value once the frequency exceeds f ∼ 10−11 Hz. In both cases,

the degree of non-Gaussianity is large at f > 10−10 Hz (k ∼ 101h Mpc−1), which is intuitively true. Also, it is observed that the non-
Gaussianity in S and K decreases as the source redshift becomes larger. This is because S and K become more Gaussian when they are
able to pass many dark matter halos on average due to the central limit theorem. This behavior is also consistent with the discussion
about the non-Gaussianity of S and K found in [10].
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Due to this property, the shot noise signal can help
constrain the nature of point masses. For example, if
Eq. (4.23) is satisfied and the shot noise effect dominates
the variance (this is true for the phase modulation when the
parameters for the shot noise is fp ¼ 0.01; m ¼ 0.5M⊙ and
the frequency of GWs is around f ¼ 1 Hz), it is possible to
estimate the parameters of the point masses such as m and
fp [10]. In addition to this, our analysis provides a method
to include the correction to the Born approximation. By
using the post-Born terms calculated in this study, the shot
noise contribution to the variance is modified as

hS2ishot ¼ hS2Bornishot
×

�
1 −

4

π
Gmpω

�
1þ zs

2

��
log

�
k2c
H0ω

��
2
�
;

ð5:1Þ

hK2ishot ¼ hK2
Bornishot

�
1 − 3.1Gmpω

�
1þ zs

2

��
: ð5:2Þ

In the moderately high-frequency region, where the per-
turbative approach is still useful but the accuracy of the
Born approximation is uncertain, this modification will
enable us to more accurately estimate the variance of S and
K produced by the point masses with specific parameters
mp, kc, and fp.
On the other hand, the scarcity of strongly lensed signals

can place constraints on the abundance of lens objects
capable of causing strong lensing. For example, if we
consider a scenario where m ¼ 50M⊙ instead of m ¼
0.5M⊙ while maintaining fp ¼ 0.01, Eq. (4.23) indicates
that the frequency at which the breakdown of the Born
approximation for themagnification shifts is fromf ∼ 10000
to f ∼ 100 Hz. This scenario (m ¼ 50M⊙; fp ¼ 0.01) cor-
responds to the universe in which the 50 solar mass black
holes as part of dark matter are as prevalent as the stellar
components.
As this frequency range falls within the sensitivity of

current ground-based detectors, there is a possibility of
detecting the strong lensing signal caused by such black
holes. If the number of strong lensing events is small
enough so that their impact on the variance is subdominant,
the abundance of such black holes can be constrained by
this information.
Such a scenario (m ¼ 50M⊙; fp ¼ 0.01) has been

attracting great interest recently after the observations of
such massive black holes by the GW experiments. It is
under active investigation whether the abundance of pri-
mordial black holes comparable to fp ≃ 0.01 is consistent
with the existing observations [28]. GL of GWs studied in
this paper provides an alternative path to test this possibility
(see also [10]).

B. Average as an additional probe

We found that the ensemble average of K and S is no
longer zero at the level of the post-Born approximation.
This provides the possibility to detect the average of S and
K and use them as an additional probe for matter abun-
dance. However, it is crucial to assess the validity of the
approximation of the average by only considering the
power spectrum term. Therefore, we will now examine
the reliability of this approximation.
In the absence of the shot noise, the main contribution to

the average of S and K comes from the power spectrum and
the contribution from the higher-order terms containing the
bispectrum is subdominant. This is consistent with the
behavior observed in the variance, where the correction
terms to the Born approximation are found to be subdomi-
nant. In this case, the average of S and K is roughly of the
same order as their variance (hSi ∼ hS2i; hKi ∼ −hK2i).
In the presence of the shot noise, we found that there are

cases where the computation of the average of K by
accounting only for the matter power spectrum breaks
down, which is the same condition as the breakdown of the
Born approximation for hK2i up to a constant prefactor.
Therefore, if the Born approximation for the variance
of K is valid, then the computation of the average of K
by accounting only for the power spectrum contribution
remains valid.
Regarding the phase modulation, the contribution from

the bispectrum term due to the shot noise becomes exactly
zero hSð3Þi ¼ 0. This suggests that including higher-order
terms such as trispectrum would be necessary to capture
the corrections to hSi in the presence of the shot noise.
However, as long as the Born approximation for hS2i holds,
it is expected that the approximation of hSi using the power
spectrum contribution alone is valid. This presumption is
reasonable because if the Born approximation for the
variance holds, it implies that the lensing signal is weak
and the first term in the perturbative approach offers a
reliable approximation.
Based on these considerations, the average calculation is

valid as long as the Born approximation for the variance
also holds. Now, let us shift our focus to the average of S, as
it can play a significant role in probing the properties of the
point masses. Specifically, by combining hSi and hS2i, we
can probe the size of the shot noise constituent, as well as
its mass and abundance, since the shot noise has different
effects on hSi and hS2i. This analysis cannot be performed
by considering the variance alone because the size depend-
ency does not appear in the variance. The obtained proper-
ties of the shot noise can be compared with the properties
of stars inferred by other astronomical observations. This
provides the test of whether the sources causing the shot
noise in the gravitational lensing of GWs are stars or other
types of compact objects that have not been detected by
non-GW observations.
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It is also important to mention that, according to our
formulation, hSi is always positive. If the negative value of
hSi is detected, it means an indication of the presence of
something outside the lensing effect. It could mean the
presence of new matter that interacts with gravity in an
unusual way or the violation of general relativity, which
could lead to new physics.

C. Detectability of the post-Born effect

In [29], it is suggested that the amplitude and phase
fluctuation of GWs can be measured with an accuracy
of 1=SNR, where SNR is the signal-to-noise ratio.
According to [10], the accuracy of measurement is
improved by combining many gravitational events.
In [10], it is argued that the required accuracy is written
as ∼ð2=NeventÞ1=4ð1=SNRÞ, which yields Nevent ∼ 3 × 105

as the number of GW events (with SNR ¼ 50) required for
detecting the lensing signal. We would like to perform a
similar estimation of Nevent required to detect the post-Born
effect.
First, let us consider the number of GW events required

for detecting the average of S andK. Since our purpose is to
estimate Nevent by the back-of-the-envelope calculations,
we will consider the following toy model which simplifies
the situation without losing the essential point. Suppose
we have succeeded in inferring the source parameters and
hence the unlensed waveform from the GW measurement.
Then, the residual signal, which we denote by s, remains
after subtracting the unlensed waveform from the measured
waveform and consists of the uncertainties n of the
unlensed waveform and the lensing signal X, namely,

sX;i ¼ ni þ Xi; ð5:3Þ

where i labels the GW events, while X takes either S or K.
For simplicity, we assume that both ni and Xi are Gaussian
random variables and each GW event is independent of the
others. In this case, the ensemble average of the quantities
computed from ni and Xi is given by

hninji ¼
�

1

SNR

�
2

δij; ð5:4Þ

hXii ¼ μX; ð5:5Þ

hXiXji ¼ σ2Xδij þ μ2X; ð5:6Þ

hniXji ¼ 0: ð5:7Þ

Here, μX and σX are the values of both the average and the
standard deviation of the phase modulation and the
magnification. All the other quantities can be computed
from the combination of these relations. The first relation
hninji ¼ δij=SNR2 is about the accuracy of detecting the

phase and magnification fluctuation mainly discussed
in [29].
In reality, we are only able to detect a finite number of

GWevents. Thus, it is convenient to introduce the estimator
of the average μX defined as

Eμ ¼
1

Nevent

XNevent

i¼1

sX;i: ð5:8Þ

This quantity is an approximated version of the ensemble
average, thus taking Nevent → ∞ reproduces μX. Indeed,
computing the average and the variance of Eμ, we obtain

hEiμ ¼ μX; ð5:9Þ

hE2
μi − hEμi2 ∼

�
1

SNR

�
2 1

Nevent
: ð5:10Þ

It is important to mention that we have used the assumption
1=SNR ≫ μX; σX to derive the second equation. This result
shows that Eμ fluctuates around μX with a fluctuation width
of about ð 1

SNRÞ 1ffiffiffiffiffiffiffiffi
Nevent

p . In order to confidently conclude that

the average is nonzero, μX > ð 1
SNRÞ 1ffiffiffiffiffiffiffiffi

Nevent
p needs to be

satisfied. Using this restriction, we can estimate that
Nevent;μX ∼ ð 1

SNRÞ2 1
μ2X

is at least necessary to detect the

average of K and S.
Next, we consider the number of events for detecting the

variance. In this case, we need at least two independent
measurements of the residual for the same GWevent if it is
difficult to distinguish the lensing signal from the uncer-
tainty associated with the unlensed waveform by using one
measurement alone. In the following, we assume measure-
ments by two detectors. For this purpose, we denote the
signals from two different measurements (1 and 2) to be
sX;1;i ¼ n1;i þ Xi, sX;2;i ¼ n2;i þ Xi and assume that one
measurement noise is independent of the other’s
hn1;in2;ji ¼ 0. The detectability is calculated in the same
way above by introducing the estimator of the variance,

Eσ2X
¼ 1

Nevent

XNevent

i¼1

sX;1;isX;2;i −
1

N2
event

XNevent

i¼1

sX;1;i
XNevent

j¼1

sX;2;j:

ð5:11Þ
From this expression, we obtain the expressions of the
ensemble average of Eσ2X

,

hEσ2X
i ¼ σ2X; ð5:12Þ

hE2
σ2X
i − hEσ2X

i2 ∼
�

1

SNR

�
4 1

Nevent
: ð5:13Þ

The interpretation of this result is exactly the same as EμX

that Eσ2X
fluctuates around σ2X with a width of about
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ð 1
SNRÞ2 1ffiffiffiffiffiffiffiffi

Nevent
p . Therefore, the number of gravitational

wave events required to detect the variance is given by
Nevent;σ2X

∼ ð 1
SNRÞ4 1

σ4X
.

Now, let us examine the detectability of the phase
modulation and the magnification. Table I presents the
order of magnitude for the average and variance of S andK,
along with the post-Born corrections to the variance. We
consider the scenario where the source redshift is zs ¼ 3,
and the signal-to-noise ratio is SNR ¼ 50. The shot noise
effect we include corresponds to lensing by point masses
with m ¼ 0.5M⊙; fp ¼ 0.01, and kc ¼ 4 × 1013h Mpc−1.
For the phase modulation, we focus on the frequency

range of f ¼ 0.01–10 Hz, which falls within the range
where the Born approximation is valid. Within this fre-
quency range, the lensing signal is dominated by both the
dark low-mass halos and the point masses, with specific
dominance depending on the frequency. At the lower end of
this range (f ¼ 0.01 Hz), the signal is primarily attributed
to the dark matter halos. However, as the frequency of GWs
increases, the shot noise effect becomes more significant,
taking over the halo contribution at around f ¼ 1 Hz for
the Born variance and f ¼ 0.3 Hz for the average.
In this frequency range, the variance remains relatively

stable, while the average increases moderately. The typical
order of the average is around Oð10−5Þ, but at the higher
end of this range f ¼ 10 Hz, it can be enhanced by up to
Oð10−4Þ. On the other hand, the order of the Born variance
remains Oð10−6Þ, even at the higher end of the range. This
difference arises from the dependency of the average on the
size of the point mass. Using the formalism we developed
above, the number of GW events required to detect hSi is
estimated to beOð106Þ in themiddle of this frequency range.
However, at the higher-frequency end, the required number
reduces toOð104Þ. On the other hand, the number of events

required to detect hS2i is Oð105Þ in the middle-frequency
range and Oð104Þ at the high end. As a result, the detection
cost for the average is comparable to the detection cost for
the variance at high frequencies in which the shot noise
dominates. In a slightly different scenario, the detection of
the averagemight be easier than the detection of thevariance.
For instance, if the point masses we considered here are
not ordinary stars but black holes with the same mass and
mass fraction (thus, kc becomes much bigger), the required
number for detecting the average decreaseswhile the number
for the variance remains the same.
Note that, if the signal-to-noise ratio is much larger than

SNR ¼ 50, the number of GWevents required to detect the
variance becomes significantly smaller compared to the
number required for the detection of the average. This is
because the number of required events for the variance
scales as 1=SNR2, while the number for the average scales
as 1=SNR2. Hence, the situation where the average might
be easier to detect is when the SNR is not excessively high.
In the case of the post-Born corrections to the variance,

their relative magnitude compared to the Born variance
prior to the onset of the shot noise is Oð10−3Þ. However,
once the shot noise effect becomes dominant, their relative
magnitude is described by f=20 Hz. In this case, the ratio
of the number of GW events required to resolve this
correction to the number required to detect the Born
variance scales as ð20 Hz=fÞ2. This means that, even if
the corrections to the Born variance are 10%, resolving it
would require 100 times more GW events than those
needed to detect the Born variance. If the SNR is 100,
which is expected to be achieved in the future [30], the
number of events to resolve the Born variance reduces to
Oð10−3Þ. Assuming a total of 105 GW events are observed,
it would be possible to resolve the post-Born corrections
that exceed 1% of the Born variance. This corresponds to
frequencies around f ∼ 2 Hz, which is already close to the
breakdown frequency (f ∼ 20 Hz).
These considerations indicate that the post-Born correc-

tions are challenging to detect except in the vicinity of the
breakdown frequency. In the frequency range where the
perturbative approach holds but the accuracy of the Born
approximation becomes less reliable, including the post-
Born correction [Eqs. (5.1) and (5.2)] can yield a more
accurate estimate of the variance caused by the point
mass lens.
Next, let us consider the magnification. In Table I, we

consider the frequency range of f ¼ 0.01–1000 Hz. This
frequency range is chosen based on the validity of the Born
approximation, which holds until Eq. (4.23) breaks down,
which occurs at around f ¼ 10000 Hz. As shown above,
the magnification has a broader frequency range within
which the Born approximation is valid compared to the
phase modulation.
The order of magnitude of the magnification is much

larger than that of the phase, making SNR ¼ 50 sufficient

TABLE I. In the scenario where the shot noise consists of point
masses with mp ¼ M⊙; fp ¼ 0.01, and kc ¼ 4 × 1013h Mpc−1,
with zs ¼ 3 and SNR ¼ 50. In this case, the number of GW
events required to detect hS2i and hSi can be comparable to
Oð104Þ at f ∼ 10 Hz due to the enhancement of hSi by its
dependence on the physical size of the point mass. On the other
hand, the magnification can be much more easily observed.
However, a similar number of GW evens is expected to be
required to extract the wave-dependent part from K.

10−2 ≤ f ≤ 101 Hz NeventsðSNR ¼ 50Þ
hSi Oð10−5–10−4Þ Oð106 ∼ 104Þ
hS2Borni Oð10−6Þ Oð105 ∼ 104Þ
δS2=hS2Borni ∼ f

20 Hz
≳Oð105Þ × ð20 Hz

f Þ2
10−2 ≤ f ≤ 103 Hz NeventsðSNR ¼ 50Þ

hKi −5 × 10−3 Oð102Þ
hK2

Borni 5 × 10−3 Oð1Þ
δK2=hK2

Borni 5 × 10−2 Oð10Þ
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to resolve hK2i, while around 100 GW events are required
to resolve hKi. Even the post-Born correction to the
variance can be resolved with just Oð10Þ GW events.
However, there is an important consideration to make.

The magnification approaches a constant value as the
frequency increases, representing the geometric optics
limit. Since the geometric optics limit lacks frequency
dependence, it cannot be used to probe the matter abun-
dance at the Fresnel scale. In order to extract the pure
wave effect, which can be used to probe the scale
corresponding to the Fresnel scale, the constant term in
the magnification needs to be subtracted. However, as
calculated in [10], this pure frequency-dependent part is
of the same order as the phase. This can be also understood
by considering the consistency relation for the variance
of the phase modulation and the magnification, namely,
hK2

Bornð2fÞi − hK2
BornðfÞi ¼ hS2BornðfÞi [19]. Therefore,

the magnification needs to be determined at the same level
of accuracy as the phase to extract the wave-dependent part
that is superimposed on the constant part. Consequently, a
similar number of GW events is required to make the
magnification as useful as the phase in extracting informa-
tion about the matter abundance at the Fresnel scale.

VI. CONCLUSION

In this paper, we have investigated the weak lensing of
GWs beyond the Born approximation by including the
higher-order terms in the gravitational potential Φ. To do
this, we adopted a new formulation for the equation
governing the GL of GWs. Instead of using the amplifi-
cation factor F defined as the ratio of the lensed to unlensed
waveform, we introduced a new variable J defined as
F ¼ eiωJ. This process allows us to partially include the
nonlinear effect of Φ and reduces the complexity of
calculating the higher-order terms. We then derived the
expression of the phase modulation S and the magnification
K up to third order in Φ and calculated the post-Born
corrections to the average and variance. In computing the
post-Born corrections, we considered both Gaussian (prod-
uct of the bispectrum) and non-Gaussian (bispectrum)
terms up to the lowest nontrivial order in Φ. To evaluate
the validity of the Born approximation, we numerically
computed hSi; hKi; δK2 ; δS2 by using the matter power
spectrum and bispectrum obtained by the phenomenologi-
cal halo model including subhalos.
We found that, at the level of the post-Born approxi-

mation, hSi and hKi are no longer zero. We also confirmed,
by computing the contribution to hSi and hKi from the
bispectrum terms, that evaluating hSi and hKi by solely
using the power spectrum still provides a reliable estima-
tion. While hSi and hKi typically have the same order as
hS2i and hK2i, the presence of the point masses (shot noise)
can particularly enhance hSi, due to the dependency of hSi
on the physical size of the point masses. We then estimate
the number of GW events required to observe hSi and hKi

and found that, while detecting the average generally
requires a larger number of events than the variance, the
number required to observe hSi can be of the order of
Oð104Þ at f ∼ 10 Hz with SNR ¼ 50. This number is
comparable to, or potentially even smaller than, the number
required to detect hS2i, depending on the nature of the point
masses.
As for the post-Born corrections to the variance, we

found that their primary contribution comes from uneven
distributions of the target halos with the corresponding
Fresnel scale. Our findings show that the corrections to hS2i
in the absence of the shot noise are 2 orders of magnitude
smaller than the Born approximation at f > 0.01 Hz and
zs ≤ 3. This also indicates that the halos can be treated as if
they are uniformly distributed when computing hS2i and
hK2i. In addition, the post-Born corrections do not pose
relevant issues in the absence of the shot noise unless SNR
for GWs is excessively high.
In the presence of the shot noise, we determined the

conditions under which the Born approximation fails.
The validity of the Born approximation is guaranteed when
the point mass does not dominate hS2i and hK2i or when
strong lensing by the point mass does not occur. However,
when these conditions are violated simultaneously, the
variance is predominantly determined by rare strong lensing
events, and the Born approximation no longer predicts the
true variance. Furthermore, the breakdown frequency for
hS2i is lower compared to the one for hK2i due to the
enhancing factor pertaining to the physical size of the point
masses. Since the breakdown frequency may fall within the
sensitivity range of current detectors in certain scenarios
(such as f ∼ 20 Hz for hS2i with mp ¼ 0.5M⊙; fp ¼ 0.01,
and kc ¼ 4 × 1013h Mpc−1), careful analysis of the lensing
signal is required. For example, when the frequency of GWs
approaches the breakdown frequency from below and the
accuracy of the Born approximation becomes less trustable,
the modification to the Born approximation given in
Eqs. (5.1) and (5.2) can be used to provide a more accurate
estimation of hS2i and hK2i. When the frequency is above
the breakdown frequency, a perturbative approach fails to
provide a reliable result. Thus, in this case, a separate study
involving a full-order analysis is needed to effectively
constrain the property of the point masses.
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APPENDIX A: GEOMETRIC OPTICS LIMIT

In [12–16], the post-Born approximation is discussed
under geometric optics. Although geometric optics has
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been widely used in the gravitational lensing, a fundamen-
tally more accurate description for the GL of GWs is wave
optics. In this sense,waveoptics shouldbeable to encompass
everything that could be derived in geometric optics.
In geometric optics, we take the large frequency limit

(ω → ∞) from the outset and start from the geodesic
equation which does not contain ω. In this appendix, we

demonstrate explicitly that the magnification in the high-
frequency limit under the post-Born approximation in wave
optics coincides with the one derived based on geometric
optics. In order to calculate the magnification under geo-
metric optics, we need the convergence κ and shear γ up to
second order and first order in Φ, respectively. According
to [12–16], they are given by

κð1Þðθ0; χsÞ ¼
Z

χs

0

dχχ2Wðχ; χsÞΦiiðχÞ; ðA1Þ

κð2Þðθ0; χsÞ ¼ −2
Z

χs

0

dχ
Z

χ

0

dχ0χ2χ02Wðχ; χsÞWðχ0; χÞΦijðχÞΦijðχ0Þ

− 2

Z
χs

0

dχ
Z

χ

0

dχ0χ3χ0Wðχ; χsÞWðχ0; χÞΦiikðχÞΦkðχ0Þ; ðA2Þ

γð1Þ1 ðθ0;χsÞ¼
Z

χs

0

dχχ2Wðχ;χsÞðΦ11ðχÞ−Φ22ðχÞÞ; ðA3Þ

γð1Þ2 ðθ0; χsÞ ¼ 2

Z
χs

0

dχχ2Wðχ; χsÞΦ12ðχÞ: ðA4Þ

The gravitational potential is evaluated at the straight line along which the unlensed ray propagates, namely,
ΦðχÞ ¼ Φðθ0; χÞ. The magnification μgeoðθ0; χsÞ is the inverse of the determinant of the Jacobian matrix Aðθ0; χÞ ¼
ð1−κ−γ1−γ2þΩ

−γ2−Ω
1−κþγ1

Þ and, up to second order in Φ, μgeo is given by

μgeoðθ0; χsÞ ¼ 1þ 2κð1Þ þ 2κð2Þ þ 3ðκð1ÞÞ2 þ ðγð1Þ1 Þ2 þ ðγð1Þ2 Þ2

¼ 1þ 2κð1Þðθ0; χsÞ þ 2ðκð1Þðθ0; χsÞÞ2 − 4

Z
χs

0

dχ
Z

χ

0

dχ0χ3χ0Wðχ; χsÞWðχ0; χÞΦiikðχÞΦkðχ0Þ

þ 4

Z
χs

0

dχ
Z

χ

0

dχ0χ2χ02Wðχ; χsÞ2ΦijðχÞΦijðχ0Þ: ðA5Þ

Up to this order, Ω does not appear in the magnification as
Ω itself is already second order in Φ.
We now show the magnification computed in wave

optics based on the formulation given in this paper reduces
to Eq. (A5) in the high-frequency limit. Prior to that, we
write the approximated solution of the lens equation up to
first order in Φ,

δΘðθ0; χÞ ¼ −2
Z

χ

0

dχ0Wðχ0; χÞ∇θΦðθ0; χ0Þ: ðA6Þ

In wave optics, the magnification effect is encoded in K as
μwaveðθ;ωÞ ¼ e2K , where θ is the position of the source on
the source plane θ ¼ θ0 þ δΘðθ0; χsÞ. Taking ω → ∞ of
Eqs. (2.20) and (2.21) yields

Kð1Þðθ; χs;ω → ∞Þ ¼ −2
Z

χs

0

dχχ2Wðχ; χsÞΦiiðθ; χÞ

¼ κð1Þðθ; χsÞ; ðA7Þ
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Kð2Þðθ;χs;ω→∞Þ ¼
Z

χs

0

dχ
χ2

Z
χ

0

dχ1

Z
χ

0

dχ2½Wðχ;χsÞ∇2
θ12þWðχ1;χÞ∇2

θ1þWðχ2;χÞ∇2
θ2�∇θ1Φ1 ·∇θ2Φ2

¼ −
Z

χs

0

dχ1Wðχ1;χsÞ∇θð∇2
θΦðχ1ÞÞ · ð−2Þ

Z
χs

0

dχ2Wðχ2;χsÞ∇θΦðχ2Þ

− 2

Z
χs

0

dχ
Z

χ

0

dχ0χ3χ0Wðχ;χsÞWðχ0;χÞΦiikðχÞΦkðχ0Þ þ 2

Z
χs

0

dχ
Z

χ

0

dχ0χ2χ02Wðχ;χsÞ2ΦijðχÞΦijðχ0Þ

¼ −∇θKð1Þ · δΘ− 2

Z
χs

0

dχ
Z

χ

0

dχ0χ3χ0Wðχ;χsÞWðχ0;χÞΦiikðχÞΦkðχ0Þ

þ 2

Z
χs

0

dχ
Z

χ

0

dχ0χ2χ02Wðχ;χsÞ2ΦijðχÞΦijðχ0Þ: ðA8Þ

The magnification in wave optics up to second order is then given by

μwaveðθ; χs;ω → ∞Þ ¼ 1þ 2Kð1Þ þ 2ðKð1ÞÞ2 þ 2Kð2Þ

¼ 1þ 2κð1Þðθ − δΘ; χsÞ þ 2ðκð1Þðθ0; χsÞÞ2 − 4

Z
χs

0

dχ
Z

χ

0

dχ0χ3χ0Wðχ; χsÞWðχ0; χÞΦiikðχÞΦkðχ0Þ

þ 4

Z
χs

0

dχ
Z

χ

0

dχ0χ2χ02Wðχ; χsÞ2ΦijðχÞΦijðχ0Þ

¼ μgeoðθ0; χsÞ: ðA9Þ

Therefore, the result of geometric optics is indeed derived
by taking the high-frequency limit of wave optics. It is
important to mention again that the lens plane θ0 is used in
geometric optics whereas, in wave optics, the source plane
θ is the fundamental variable. This difference manifests
itself in the argument of both μgeo and μwave. We have
shown that, at least up to second order in Φ, our
formulation reduces to the well-known result in geometric
optics. This consistency strongly supports the validity of

the discussion about the post-Born approximation of the
lensing in wave optics.

APPENDIX B: POST-BORN VARIANCE
OF S AND K

The correction of the variance of K to the Born
approximation is described by Eq. (2.38), and a similar
relation holds for S. This equation is rewritten by using the
matter power spectrum given in Eq. (3.1),

δX2;dc ¼ 16

�
3H2

0Ωm

2

�
4
Z

χs

0

dχ
χ2

Z
χ

0

dχ0

χ02

Z
χ0

0

dχ1

Z
χ0

0

dχ2
1

a2ðχ1Þ
1

a2ðχ2Þ
1

ð2πÞ2

× ω2

Z
∞

0

dk1

Z
∞

0

dk2Pδðk1; χ1ÞPδðk2; χ2Þ
�

1

k1k2
F 12 −

1

k21
F 1 −

1

k22
F 2

�
; ðB1Þ

where

F 12 ¼ χ21χ
2
2

Z
2π

0

dϕ
2π

cos2ϕ

�
F

�
χ21Wðχ1; χsÞ

2ω
k21 þ

χ22Wðχ2; χsÞ
2ω

k22 þ
χ1χ2Wðχ; χsÞ

ω
k1k2 cosϕ

�

× F

�
χ21Wðχ1; χsÞ

2ω
k21 þ

χ22Wðχ2; χsÞ
2ω

k22 þ
χ1χ2Wðχ0; χsÞ

ω
k1k2 cosϕ

�

− F

�
χ21Wðχ1; χsÞ

2ω
k21

�
F

�
χ21Wðχ1; χsÞ

2ω
k21 þ

χ22Wðχ2; χÞ
ω

k22 þ
χ1χ2Wðχ0; χÞ

ω
k1k2 cosϕ

�

−F
�
χ22Wðχ2; χsÞ

2ω
k22

�
F

�
χ22Wðχ2; χsÞ

2ω
k22 þ

χ21Wðχ1; χÞ
ω

k21 þ
χ1χ2Wðχ0; χÞ

ω
k1k2 cosϕ

��
; ðB2Þ
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F 1 ¼ χ1χ
3
2

Z
2π

0

dϕ
2π

cosϕF

�
χ21Wðχ1; χsÞ

2ω
k21

�
F

�
χ21Wðχ1; χsÞ

2ω
k21 þ

χ22Wðχ2; χÞ
ω

k22 þ
χ1χ2Wðχ0; χÞ

ω
k1k2 cosϕ

�
; ðB3Þ

F 2 ¼ χ2χ
3
1

Z
2π

0

dϕ
2π

cosϕF

�
χ22Wðχ2; χsÞ

2ω
k22

�
F

�
χ22Wðχ2; χsÞ

2ω
k22 þ

χ21Wðχ1; χÞ
ω

k21 þ
χ1χ2Wðχ0; χÞ

ω
k1k2 cosϕ

�
: ðB4Þ

Here, X is either K or S. FðxÞ is defined as FðxÞ ¼ sin x for the magnification K and FðxÞ ¼ 1 − cos x for the phase
modulation S. Even though χ1 and χ2 are symmetrical and can be expressed by either one of two terms, we explicitly write
both terms so that the symmetry can be captured easily. The integral with respect to ϕ can be performed analytically by
using the identities regarding Bessel functions,

Z
2π

0

dϕ
2π

cosϕ sinðx cosϕÞ ¼ J1ðxÞ; ðB5Þ
Z

2π

0

dϕ
2π

cos2ϕ cosðx cosϕÞ ¼ 1

2
½J0ðxÞ − J2ðxÞ�: ðB6Þ

In addition to this,
R
2π
0

dϕ
2π cosϕ cosðx cosϕÞ ¼ R

2π
0

dϕ
2π cos

2ϕ sinðx cosϕÞ ¼ 0 holds by virtue of the antisymmetric nature of
the integrand.
For the magnification, FK;12;FK;1;FK;2 are given by

FK;12 ¼
χ21χ

2
2

4

��
1 − cos

�
χ21Wðχ1; χÞ

ω
k21

�
− cos

�
χ22Wðχ2; χÞ

ω
k22

�
þ cos

�
χ21Wðχ1; χsÞ

ω
k21 þ

χ22Wðχ2; χÞ
ω

k22

�

þ cos

�
χ22Wðχ2; χsÞ

ω
k22 þ

χ21Wðχ1; χÞ
ω

k21

���
J0

�
χ1χ2Wðχ0; χÞ

ω
k1k2

�
− J2

�
χ1χ2Wðχ0; χÞ

ω
k1k2

��

− cos

�
χ21Wðχ1; χsÞ

ω
k21 þ

χ22Wðχ2; χsÞ
ω

k22

��
J0

�
χ1χ2Wðχ; χsÞ þ χ1χ2Wðχ0; χsÞ

ω
k1k2

�

− J2

�
χ1χ2Wðχ; χsÞ þ χ1χ2Wðχ0; χsÞ

ω
k1k2

���
; ðB7Þ

FK;1 ¼
χ1χ

3
2

2

�
sin

�
χ21Wðχ1; χsÞ

ω
k21 þ

χ22Wðχ2; χÞ
ω

k22

�
− sin

�
χ22Wðχ2; χÞ

ω
k22

��
J1

�
χ1χ2Wðχ0; χÞ

ω
k1k2

�
; ðB8Þ

FK;2 ¼
χ2χ

3
1

2

�
sin

�
χ22Wðχ2; χsÞ

ω
k22 þ

χ21Wðχ1; χÞ
ω

k21

�
− sin

�
χ21Wðχ1; χÞ

ω
k21

��
J1

�
χ1χ2Wðχ0; χÞ

ω
k1k2

�
: ðB9Þ

In exactly the same way, the similar equations are derived for the phase modulation,

F S;12 ¼ χ21χ
2
2

�
−
1

2
þ 1

2
cos

�
χ21Wðχ1; χsÞ

2ω
k21

�
þ 1

2
cos

�
χ22Wðχ2; χsÞ

2ω
k22

�
−
1

2
cos

�
χ21Wðχ1; χsÞ

2ω
k21 þ

χ22Wðχ2; χsÞ
2ω

k22

�

×

�
J0

�
χ1χ2Wðχ; χsÞ

ω
k1k2

�
þ J0

�
χ1χ2Wðχ0; χsÞ

ω
k1k2

�
− J2

�
χ1χ2Wðχ; χsÞ

ω
k1k2

�
− J2

�
χ1χ2Wðχ0; χsÞ

ω
k1k2

��

þ 1

4
cos

�
χ21Wðχ1; χsÞ

ω
k21 þ

χ22Wðχ2; χsÞ
ω

k22

��
J0

�
χ1χ2Wðχ; χsÞ þ χ1χ2Wðχ0; χsÞ

ω
k1k2

�

− J2

�
χ1χ2Wðχ; χsÞ þ χ1χ2Wðχ0; χsÞ

ω
k1k2

��
þ
�
1

4
þ sin2

�
χ21Wðχ1; χsÞ

4ω
k21

�
cos

�
χ21Wðχ1; χsÞ

2ω
k21 þ

χ22Wðχ2; χÞ
ω

k22

�

þ sin2
�
χ22Wðχ2; χsÞ

4ω
k22

�
cos

�
χ22Wðχ2; χsÞ

2ω
k22 þ

χ21Wðχ1; χÞ
ω

k21
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×

�
J0

�
χ1χ2Wðχ0; χÞ

ω
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�
− J2

�
χ1χ2Wðχ0; χÞ

ω
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���
; ðB10Þ
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F S;1 ¼ 2χ1χ
3
2sin

2

�
χ21Wðχ1; χsÞ

4ω
k21

�
sin

�
χ21Wðχ1; χsÞ

2ω
k21 þ

χ22Wðχ2; χÞ
ω

k22

�
J1

�
χ1χ2Wðχ0; χÞ

ω
k1k2

�
; ðB11Þ

F S;2 ¼ 2χ2χ
3
1sin

2

�
χ22Wðχ2; χsÞ

4ω
k22

�
sin

�
χ22Wðχ2; χsÞ

2ω
k22 þ

χ21Wðχ1; χÞ
ω

k21

�
J1

�
χ1χ2Wðχ0; χÞ

ω
k1k2

�
: ðB12Þ

For the non-Gaussian correction, we only consider the bispectrum term as the only relevant contribution, thus
δX2c ¼ 2hXBornXð2Þic. Based on this assumption, Eq. (2.43) can be rewritten as

δS2c ¼ 8ω3

�
3H2

0Ωm

2

�
3
Z

χs

0

dχ
a3

Z
∞

0

dk1
2π

Z
∞

0

dk2
2π

Z
2π

0

dϕ
2π

Bδðk1; k2; k3; χÞ
k1k2k23

×

�
1 − cos

�
r2F
2
k23

���
r2Fk1 · k2 − 2 sin

�
r2F
2
k1 · k2

�
cos

�
r2F
2

k21 þ k22 þ k23
2

��
; ðB13Þ

δK2;c ¼ 16ω3

�
3H2

0Ωm

2

�
3
Z

χs

0

dχ
a3

Z
∞

0

dk1
2π

Z
∞

0

dk2
2π

Z
2π

0

dϕ
2π

Bδðk1; k2; k3; χÞ
k1k2k23

× sin

�
r2F
2
k23

�
sin

�
r2F
2

k21 þ k22 þ k23
2

�
sin

�
r2F
2
k1 · k2

�
; ðB14Þ

where k23 ¼ k21 þ k22 þ 2k1k2 cosϕ and k1 · k2 ¼ k1k2 cosϕ. The bispectrum contribution to the average of S and K,
Eqs. (2.34) and (2.35), can be rewritten in a similar way as

hSð3Þi ¼ 4ω3

�
3H2

0Ωm

2

�
3
Z

χs

0

dχ
a3

Z
∞

0

dk1
2π

Z
∞

0

dk2
2π

Z
2π

0

dϕ
2π

Bδðk1; k2; k3; χÞ
k1k2k23

×

�
4k23sin

2ðr2F
4
ðk21 þ k22 þ k23ÞÞ

ðk21 þ k22 þ k23Þ
− 2sin2

r2Fk
2
3

2
−
r2F
2
ðk1 · k2Þk23

�
; ðB15Þ

hKð3Þic ¼ 4ω3

�
3H2

0Ωm

2

�
3
Z

χs

0

dχ
a3

Z
∞

0

dk1
2π

Z
∞

0

dk2
2π

Z
2π

0

dϕ
2π

Bδðk1; k2; k3; χÞ
k1k2k23

×

�
sin ½r2Fk21� þ sin ½r2Fk22� þ sin ½r2Fk23� − 2 sin

�
r2F
2
ðk21 þ k22 þ k23Þ

��
: ðB16Þ

Note that, in computing bispectrum contribution numeri-
cally, symmetrizing the wave number variables k1, k2, k3
reduces the computational cost.

APPENDIX C: HIGH-FREQUENCY
BEHAVIOR OF δS2;dc

In this appendix, we would like to approximately derive
the high-frequency behavior of δS2;dc in order to avoid the
difficulty of numerical computation associated with the
cancellation of significant digits. When the frequency of
GWs is high, δS2;dc is mainly affected by the large k region
of the matter power spectrum. Given that the corresponding
Fresnel scale mainly contributes to the lensing, we can
expand the power spectrum around the approximated
Fresnel scale (1=

ffiffiffiffiffiffiffiffiffiffi
H0ω

p
) as

Pδðk; χÞ ¼ Pδðk0; χÞ
�
k
k0

�d logPδðk0 ;χÞ
d log k0 ¼ BðχÞk−bðχÞ; ðC1Þ

where ðk0 ¼
ffiffiffiffiffiffiffiffiffiffi
H0ω

p Þ. In this way, BðχÞ and bχ are both
functions of redshift and the frequency of GWs. We
compute BðχÞ and bðχÞ numerically using our power
spectrum at each frequency. Keeping this in mind, we
only consider the case that is relevant to our discussion.
We usually deal with the GW sources whose dis-

tance from Earth is roughly given by 1=H0, so the
corresponding Fresnel scale is 1=

ffiffiffiffiffiffiffiffiffiffi
ωH0

p
. The high-

frequency behavior in this context is then interpreted as
the satisfaction of the condition kL ≪

ffiffiffiffiffiffiffiffiffiffi
H0ω

p
. DefiningR � � �R ≡16ð3H2

0
Ωm

2
Þ4R χs

0
dχ
χ2

R χ
0
dχ0
χ02
R χ0
0 dχ1

R χ0
0 dχ2

1
a2ðχ1Þ

1
a2ðχ2Þ

1
ð2πÞ2,

the post-Born approximation of the variance of S is given by
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δS2;dc ¼
Z

� � �
Z

ω2

Z
∞

0

dk1

Z
∞

0

dk2Pδðk1; χ1ÞPδðk2; χ2Þ
�

1

k1k2
F S;12 −

1

k21
F S;1 −

1

k22
F S;2

�
: ðC2Þ

The definition of F S;12;F S;1;F S;2 is the same as the ones in Appendix B. Change of variables k1 ¼
ffiffiffiffi
ω

p
ξ1 and k2 ¼

ffiffiffiffi
ω

p
ξ2

and separating the integral area at kL yields

δS2;dc ¼
Z

� � �
Z

ω2

Z kLffiffi
ω

p

0

dξ1

Z kLffiffi
ω

p

0

dξ2Pδð
ffiffiffiffi
ω

p
ξ1; χ1ÞPδð

ffiffiffiffi
ω

p
ξ2; χ2Þ

�
1

ξ1ξ2
F 12 −

1

ξ21
F 1 −

1

ξ22
F 2

�

þ
Z

� � �
Z

ω2−b
2Bðχ2Þ

Z kLffiffi
ω

p

0

dξ1

Z
∞

kLffiffi
ω

p
dξ2Pδð

ffiffiffiffi
ω

p
ξ1; χ1Þξ−b2

�
1

ξ1ξ2
F 12 −

1

ξ21
F 1 −

1

ξ22
F 2

�

þ
Z

� � �
Z

ω2−b
2Bðχ1Þ

Z
∞

kLffiffi
ω

p
dξ1

Z kLffiffi
ω

p

0

dξ2Pδð
ffiffiffiffi
ω

p
ξ2; χ2Þξ−b1

�
1

ξ1ξ2
F 12 −

1

ξ21
F 1 −

1

ξ22
F 2

�

þ
Z

� � �
Z

ω2−bBðχ1ÞBðχ2Þ
Z

∞

kLffiffi
ω

p
dξ1

Z
∞

kLffiffi
ω

p
dξ2ξ−b2 ξ−b1

�
1

ξ1ξ2
F 12 −

1

ξ21
F 1 −

1

ξ22
F 2

�
: ðC3Þ

Since these four terms contribute to δS2;dc in a different way,
we will compute the contribution from each term sepa-
rately. To begin with, we consider the first term. In the high-

frequency limit, the integral range
R kLffiffi

ω
p

0 is restricted in a very
small area so the contribution from the first term in Eq. (C3)
comes from the region where ξ1, ξ2 ≪ 1 holds. Since ξ1
and ξ2 are both order 1=

ffiffiffiffi
ω

p
in this integral range, the

expansion of F in 1=
ffiffiffiffi
ω

p
up to leading order yields

F ¼ Oð1=ω4Þ. Considering that ω2 is multiplied in the
expression, we can conclude that the first term is propor-
tional to ω−2.
The second and third terms in Eq. (C3) are symmetrical

with respect to the subscript 1, 2, so they have the same
contribution. In the second term, ξ1 is still restricted in the
area where ξ1 ≪ 1, whereas ξ2 is no longer small. In this
case, we can expand F only in terms of ξ1 and keep the ξ2
term untouched, then we have

F ¼ ξ1

�
ξ2

�
cos

�
χ22Wðχ2; χsÞ

2
ξ22

�
− cos2

�
χ22Wðχ2; χsÞ

2
ξ22

��
C

þ
�sin
χ2

2
Wðχ2;χsÞ

2
ξ22

�
2ξ2

−
sin ðχ22Wðχ2; χsÞξ22Þ

4ξ2

�
D1 þ Cξ2sin2

�
χ22Wðχ2; χsÞ

2
ξ22

��
þOðξ31Þ; ðC4Þ

where C;D1 are

C ¼ 3

8
χ41χ

4
2Wðχ; χsÞWðχ0; χsÞ; ðC5Þ

D1 ¼ χ61χ
2
2f−Wðχ0; χÞ þWðχ; χsÞg: ðC6Þ

Combining these notations, the second term is calculated as

ð2ndÞ ¼
Z

� � �
Z

ω2−b
2Bðχ2Þ

Z kLffiffi
ω

p

0

dξ1Pδð
ffiffiffiffi
ω

p
ξ1; χ1Þ

Z
∞

kLffiffi
ω

p
dξ2ξ−b2

�
1

ξ1ξ2
F 12 −

1

ξ21
F 1 −

1

ξ22
F 2

�

¼
Z

� � �
Z

1

ω
b
2
−1 Bðχ2Þ

Z
∞

0

dk1k1Pδðk1; χ1Þ
Z

∞

0

dξ2
1

ξb2
½ð� � �ÞCþ ð� � �ÞD1 þ ð� � �ÞC�

¼
Z

� � �
Z

1

ω
b
2
−1 Bðχ2Þ

Z
∞

0

dk1k1Pδðk1; χ1Þ
�
χ22Wðχ2; χsÞ

2

�b−2
2

�
CIc þ

2

χ22Wðχ2; χsÞ
D1Id þ CIe

�
: ðC7Þ

WEAK LENSING OF GRAVITATIONAL WAVES IN WAVE … PHYS. REV. D 108, 043511 (2023)

043511-31



From the first line to the second, we used Eq. (C4) and took the integral range from zero to infinity. We can safely perform
this approximation due to the fact that the integral converges. Here, Ic, Id, Ie are just numbers defined as

Ic ¼
Z

∞

0

dx
cos x2 − cos2 x2

xb−1
; ðC8Þ

Id ¼
Z

∞

0

dx
2 sin x2 − sin 2x2

4xbþ1
; ðC9Þ

Ie ¼
Z

∞

0

dx
sin2 x2

xb−1
: ðC10Þ

The fourth term in Eq. (C3) is calculated in a similar way,

ð4thÞ ¼
Z

� � �
Z

1

ω
b
2
−1 Bðχ1ÞBðχ2Þ

k−bþ2
L

b − 2

��
χ22Wðχ2; χsÞ

2

�b−2
2

�
CIc þ

2

χ22Wðχ2; χsÞ
D1Id þ CIe

�
þ ð1 ⇔ 2Þ

�
: ðC11Þ

Note that the fourth term is essentially determined by kL, which is the arbitrary scale. However, the second and third term are
determined by the scale at which Pδ changes from an increasing function to a decreasing function due to the dependence onR
∞
0 dk1k1Pδðk1Þ. Since we can take kL to be sufficiently larger than this scale, it is justified to ignore the contribution from
the fourth term, and we have the following expression for δS2;dc:

δS2;dc ¼ 2 × 16

�
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0Ωm
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�
4
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χ02
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Z
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0

dχ2
1
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1

a2ðχ2Þ
1

ð2πÞ2

×
Bðχ2Þ
ω

b
2
−1

Z
∞

0

dk1k1Pδðk1; χ1Þ
�
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2

χ22Wðχ2; χsÞ
D1Id þ CIe

��
χ22Wðχ2; χsÞ

2

�b2−2
2

: ðC12Þ

This expression can be further simplified by changing the order of integral and using some formula for the gamma function,
and finally, we have

δS2;dc ¼
3

4

�
3H2

0Ωm

2

�
4
Z

χs

0

dχ1

Z
χ1

0

dχ2
W4ðχ1; χsÞχ41χ42
a2ðχ1Þa2ðχ2Þ

1

ð2πÞ2

×
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ω

b
2
−1

Z
∞

0

dk1k1Pδðk1; χ1Þ
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�b2
2
−1�

1 −
2

b2
2

2

�
Γ
�
1 −

b2
2

�
sin

�
b2
2

�
þ ð1 ↔ 2Þ

�
: ðC13Þ

It is clear from this expression that this term depends not
only on the scale corresponding to the Fresnel scale but
also on the factor

R∞
0 dk1k1Pδðk1; χ1Þ that is mainly

contributed by the large-scale matter fluctuation. This
means that the information pertaining to the larger-scale
fluctuation is encoded within the small scale through the
higher-order terms. In the physics context, the correlation

between the large- and small-scale matter fluctuations
arises from the fact that the regions where the large-scale
matter fluctuation is significant have higher matter density
than areas with small fluctuation, and in this region,
the small-scale matter fluctuation is more likely to grow
and be amplified simply due to the abundance of matter
available.
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