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The cosmological constant presents one of the most fascinating and confounding problems in physics.
A straightforward, seemingly robust prediction of quantum mechanics and general relativity is that the
vacuum energy gravitates. Therefore, the cosmological constant should be enormous. It is minuscule. Since
there is no understanding of why the cosmological constant is so small, it is important to test this idea in
many different situations. In particular, given the span of distances in astronomy and particle physics, it is
vital to test the gravitation of vacuum energy on as many distance scales as we can. Rydberg atoms open up
a new set of distances for exploration. It is satisfying to measure the cosmological constant with an atom,
but its main significance is extending measurements to microscopic distances. Here, too, there is no
evidence of the gravitation of the vacuum. At scales of a micron and less, we place a limit of 7 GeVon the
scale of gravitating vacuum energy, well below the scale of 100 GeV of the Standard Model of particle
physics.

DOI: 10.1103/PhysRevD.108.043505

I. INTRODUCTION

One of the most pressing and perplexing problems facing
theoretical physics is the explanation of the observed
cosmological constant (CC) [1–4]. A suggestive, back-of-
the-envelope calculation leads to an estimate off by 120
orders of magnitude! The calculation is motivated by the
most basic features of quantum mechanics and general
relativity. Quantum mechanics tells us that there is a zero-
point energy, while quantum field theory tells us that the
vacuum energy (VE) is pervasive and huge. Energy is
important in physics, but only energy differences enter most
physical situations. This changes in general relativity, where
the absolute value of energy participates in gravity. Since the
zero-point energy ℏω=2 is ubiquitous in quantum field
theory, we have to sum this contribution over all modes of
the field. The contribution to the VE density from a field of
mass m, incorporating a momentum cutoff Λ is (unless
otherwise stated, we use units with c ¼ ℏ ¼ 1)

ρv ¼
Z

Λ d3p
ð2πÞ3

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2 þm2Þ

q
¼ Λ4

16π2
: ð1Þ

Thus, the vacuum acquires energy, and this energy should
be a source of gravity. The gravitational interaction of the
VE in turn gives rise to a CC. Since we do not have a
quantum theory of gravity, the Planck scale (MP) represents

the limit of our knowledge and is a natural candidate for the
cutoff in Eq. (1), giving ρv of order ðMPÞ4, off by a record
120 orders of magnitude from the measured value of ρv,
ð0.002 eVÞ4 [5].
If we are careful about introducing the cutoff, ρv is

determined by the largest mass scale in the theory [6,7]. We
denote this scale by ΛUV and define the associated VE as

ρv ¼ Λ4
UV: ð2Þ

The Standard Model (SM), outstandingly successful in
describing physics from radioactive decay to the Higgs
particle, has a typical scale of 100 GeV.
Barring incredible fine-tuning and/or theoretical gym-

nastics, the tiny value of the CC is evidence that the vacuum
does not gravitate on cosmological scales. Explaining this
is a challenge for theoretical physics. Crucial to this picture
is the conviction that the VE gravitates. But is this true?
Since this problem was first noticed by Pauli almost a
century ago [8], hundreds, if not thousands, of articles have
appeared searching for a solution (for a review, see
Refs. [9–11]). Some were clever, some ingenious, some
promising, but none compelling. Some completely decou-
ple VE from gravity, while others partially decouple.
Numerous models accept the reality of gravitating VE,
while providing a mechanism to vitiate its effects on the
scale of our current cosmos. Some models involve the
incoherent addition [12–18], and attendant dilution, over
long distances or time scales of patches of basic VE. Others
rely on damping from long times and large distances (see
Ref. [19] for a review and further references).
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The cosmological constant remains a mystery. Some
proposed solutions require violation of cherished principles
such as Lorentz invariance and/or locality [20,21]. This
desperation is a signal that we are missing something
crucial. To some extent, the problem rests on the measure-
ment of a single number. Therefore, it is vital to explore
other possible measurements. VE as a source of the CC rests
on theories that span distances from nuclear size to our
observable Universe, a span of 42 orders of magnitude. We
cannot rule out the possibility that vacuum, classical, or
quantum, manifests itself differently on microscopic, mac-
roscopic, or cosmic scales. The fact that many proposed
solutions are consistent with, or even demand, that VE
behaves differently at cosmic and noncosmic distances
motivates such a study [12–18]. There are even proposals
that the CC is explicitly scale dependent [22,23]. In Sec. V
we examine how effective field theories suggest distance-
dependent effects of VE.
A further, heuristic, argument for experiments to probe

dark energy (for which a CC is a prime candidate) at
noncosmological scales is that dark energy may behave like
dark matter: uniform on cosmic scales but clumpy at smaller
scales. This was a prime motivation for the proposals of
Perl [24,25] to justify a new class of experiments measuring
the gravitating effect of dark energy at terrestrial distances.
It is worthwhile to concentrate on simple, direct implica-
tions of gravitating VE and check what evidence there is for
or against the basic idea behind the problem of the CC. This,
after all, is the major job of experimental physics, to explore
uncharted waters. Cosmic distances offer the most stringent
constraints on the energy scale of gravitating VE, which is
found to have a value of 10−3 eV. As we probe ever shorter
distances from galactic to astrophysical to laboratory
(terrestrial) data, the experimental upper limit on possible
energy scales of gravitating VE grows, to 10 eV on Solar
System scales (see Ref. [4]) and about 100 keV on
laboratory scales. This leaves distances below a millimeter
to explore. Amazingly, precision atomic-physics experi-
ments can explore exactly that regime, and hence can be
added to the list of meaningful probes of the CC. They can
determine if the quantum vacuum gravitates at microscopic
distances. In this paper, we examine the evidence for or
against gravitating VE at these unexplored atomic scales.
An atom immersed in a background VE experiences a

perturbative gravitational interaction proportional to r2 times
ρv, the VE density. Highly excited Rydberg atoms (RAs),
with r ∝ n2, thus feel a perturbation proportional to n4. The
large values of n available (100 or more) coupled with the
incredible accuracy of the order of 10−10 eV attainable in
modern Rydberg experiments [26,27] enable us to put a limit
on the gravitating component of ρv of ð7 GeVÞ4 at distance
scales less than 1 micron. This sets an upper limit on the
scale of a gravitating VE of 7 GeV on this length scale.
Although not as good as astronomical or macroscopic limits
nor remotely competitive to the cosmological determination

of the CC this is interesting because it eliminates most of
the putative contributions, with a characteristic energy of
100 GeV, from particle physics, at hitherto unexplored
microscopic distances. This has interesting implications
for cosmology and nascent theories of quantum gravity.
We find it remarkable that an atom in a terrestrial

laboratory can teach us something about cosmology. If we
had neither knowledge nor ability to make cosmological
or astronomical measurements atomic physics, by itself,
tells that we have a serious CC problem. (A future,
different terrestrial experiment has been proposed by
Avino et al. [28].) More significant is that Rydberg
experiments provide important information about a pre-
viously inaccessible region—microscopic distances of less
than a micron—to test whether VE does or does not
gravitate. Failure to see evidence of the expected gravi-
tational effect of the vacuum at distances greatly different
from cosmic or macroscopic scales indicates that the
problem lies in the assumption that the vacuum gravitates.

II. WHAT ATOMS KNOW ABOUT
THE EXPANSION OF THE UNIVERSE AND VE

Consider a hydrogen atom in an expanding universe. We
adopt the Newtonian approach of Price and Romano [29]
since this keeps the physics simple, and can be justified
with a full general-relativistic treatment (see Ref. [30] for a
review and references). The physical position r of the
electron relative to its (heavy) nucleus is,

r ¼ aðtÞR ð3Þ

where R is the comoving coordinate and aðtÞ is the scale
factor of the universe. If the universe expands exponentially
because of a nonzero CC the scale factor is,

aðtÞ ∝ e
ffiffiffiffiffiffi
ΛCC
3

p
t ð4Þ

where

ΛCC ¼ 8π

M2
P
ρv: ð5Þ

The electron, due to expansion, is subjected to a repulsive
force,

Fexp ¼ me
ΛCCr
3

ð6Þ

where me is the mass of the electron. The equation of
motion of the electron, including contributions from the
Coulomb, centrifugal, and repulsive forces, is

me
d2r
dt2

−
L2

mer3
¼ −

α

r2
þmeΛCCr

3
ð7Þ
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where α is the fine-structure constant and L is the angular
momentum (we use me explicitly as opposed to Ref. [29]).
From Eq. (7) we identify an effective potential,

Veff ¼
L2

2mer2
−
α

r
−
meΛCC

6
r2: ð8Þ

Price and Romano [29] introduced two characteristic time
scales: Tatom the typical atomic orbital period and Texp the
“Hubble” expansion time. They studied Veff for different
ratios of Tatom=Texp. For sufficiently small values of this
ratio, the atom remains bound and resists the expansion of
the universe, while for larger values (> 1=4) it escapes and
shares in the expansion. This is in accordance with the
intuitive feeling that a tightly bound system decouples from
expansion. The electron, however, “remembers” the expan-
sion since it now sits in a modified potential. Rather than the
purely classical Veff we treat the electron quantum mechan-
ically and use it as our modified potential in Schrödinger’s
equation

V ¼ −
α

r
−me

ΛCC

6
r2: ð9Þ

RAs are capable of noticing this modification as a
perturbation to the Coulomb potential, and thus can
measure or place a limit on the CC!
In the above analysis, it is irrelevant whether the modi-

fication to the effective potential is due to a universal
cosmological expansion or to the local effects of the VE
density ρv. Except for approaches to the CC that exorcise VE
entirely from gravitating [21,31–37] all other approaches
(see, e.g. Refs. [19,38]) have some contribution to Veff . The
perturbation to the Coulomb potential is then

δV ¼ −
4π

3
Gmeρvr2 ¼ −

4π

3

meρvr2

M2
p

: ð10Þ

We rewrite G in terms of the Planck mass MP ∼ 1019 GeV.
If, as we see in Sec. IV, ρv=M2

P is small, δV leads to a
perturbation to the electron energy, δE.
As a check of the consistency of this viewpoint, namely

that the electron decouples from expansion due to a local ρv
but retains a memory with a shifted potential, we compare
Tatom ∼ 10−16 s for the ground state of a H atom to
Texp ∼ 10−6 s, for ρv ¼ ð100 GeVÞ4. Furthermore, even
after the electron decouples from the expansion and is
excited to a high state (say n ¼ 100), it is still well within
the de Sitter horizon

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3=ΛCC

p
∼ 10 cm. The potential (9)

turns over only for Rydberg states with n > 160, so an
excited Rydberg atom with n ∼ 100 is safely bound.

III. BRIEF OVERVIEW OF RYDBERG
EXPERIMENTS

RAs are the template of some of the most precise
experiments in physics. We quote Deiglmayr et al. [26]:
“With the rapid development of methods to generate cold
samples of molecules and the extension of frequency combs
to shorter wavelengths, measurements of molecular....ener-
gies with sub-MHz precision are becoming possible by
Rydberg-state spectroscopy.... Alkali metal atoms offer
distinct advantages for precision measurements of....ener-
gies: their Rydberg states....can be reached by single-photon
UV excitation from the ground state, i.e. in a range where
modern frequency-metrology tools can be fully exploited.
Alkali metals can be easily laser-cooled to sub-mK temper-
atures, so that Doppler and transition-time broadening
become almost negligible. Finally, the closed-shell nature
of the ion core implies that Rydberg series of alkali-metal
atoms can be accurately treated as single ionization channels
with the...Ritz formula.”
Experiments on RAs are now capable of exciting

the atoms to energy levels of the order of n ¼ 100 while
measuring the energy levels with a precision of 10−10 eV.
Peper et al. [27] performed such a precision experiment to
measure the absolute frequency of transitions from the
ground state to large-n Rydberg states. They first prepared
sub-Doppler-cooled 39K samples in the 4s1=2 ground state
by confining them inside magneto-optic traps. They excited
the atoms with pulses of frequency-tunable light from the
4s1=2 state to over 20 different np1=2 and np3=2 Rydberg
states. In these experiments value of n ranging from 22 to
100 were achieved. They recorded these Rydberg states by
millimeter-wave spectroscopy with extraordinary precision.
We employ these high-precision energy measurements for
39K atoms [27] to place a limit on the magnitude of the VE
density. The data are accurately described, to a few parts to
10−6/cm, by the modified Ritz formula (in the following
formulas, we use h ¼ 1 to convert wave numbers to
energies)

Enlj ¼ EI −
RK

ðn − δljðnÞÞ2
ð11Þ

where

δljðnÞ ¼ δ0;lj þ
δ2;lj

ðn − δ0;ljÞ2
þ δ4;lj
ðn − δ0;ljÞ4

þ δ6;lj
ðn − δ0;ljÞ6

þ � � � ð12Þ

are the energy-dependent quantum defects for the respective
series. EI is the ionization energy and RK is the reduced
Rydberg constant for 39K.
Quantum defects δ were originally introduced by Ritz as

purely phenomenological factors that provided an accurate
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representation of his data. Subsequently Sommerfeld, in
old quantum theory [39], and then Hartree, using quantum
mechanics [40], derived these quantum defects to account
for the effects of the short-range corrections (due to the
inner electrons) to the Coulomb potential experienced by
the outer electron. Hence, they are experimentally and
theoretically well founded.

IV. VACUUM-INDUCED ENERGY SHIFTS

Consider an excited Rydberg atom immersed in a
vacuum teeming with energy described by a constant
VE density ρv. If the vacuum gravitates, the outer electron
experiences a gravitational potential given by Eq. (10). For
a hydrogen-like atom, the shift in energy due to this
potential is given by

δE ¼ −
4πmeρvhr2i

3M2
P

ð13Þ

¼ −
4πmeρv
3M2

P

n2

2α2m2
e
½5n2 − 3lðlþ 1Þ þ 1� ð14Þ

where hr2i is the expectation value of r2 in the hydrogen-
like atom, n is the principal quantum number, l is the
angular momentum quantum number, and α is the fine-
structure constant. We note that Ref. [41] discussed the shift
in energy levels of RA due to the tidal force experienced in
strong gravitational fields. They were concerned with
astrophysical effects while here, taking advantage of the
increased precision of laboratory experiments we focus on
atoms in the lab. The physical and mathematical bases of
both studies are very similar. For n ≫ l, the leading-order
energy perturbation in n is

δEðnÞ ∼ −
10π

3

ρv
α2M2

Pme
n4: ð15Þ

Since the perturbation δE [Eq. (15)], shifts the energy
levels, the shifts are more relevant to us than the absolute
values of EI . Therefore, we chose to fit the energy
differences between the various levels n > 22 and
n ¼ 22. We use the np3=2 data from Ref. [27] for the fit.
Using the np1=2 data leads to the same results. We chose
n ¼ 22 since the most precise data start from n ¼ 22 and all
the n are sufficiently high that the Ritz formula is accurate.

Since the fits are relatively insensitive to defects beyond the
second order in Eq. (12), we fit the energy differences to the
expression

Enlj − E22lj ¼ RK

2
64 1�

22 − δ0;lj −
δ2;lj

ð22−δ0;ljÞ2
�
2

−
1�

n − δ0;lj −
δ2;lj

ðn−δ0;ljÞ2
�
2

3
75

þ ðδEðnÞ − δEð22ÞÞ: ð16Þ

We first fit the energy-level differences without pertur-
bation to check that our fit was equivalent in quality to that
in Ref. [27], where they utilized the full Ritz formula (11),
including defects up to δ6 in Eq. (12). After verifying this
equivalence, we redo the fits including the perturbation δE.
For ρv ≲ ð7 GeVÞ4 the fits with δE are almost as good as
the original Ritz formula, but rapidly deteriorate with
increasing ρv. Table I summarizes the fit statistics. We
judge the quality of the fits by comparing the χ2=d:o:f: in
Fig. 1 and the size and randomness of the residues of the fits
with δE to the unperturbed fits in Fig. 2.
Using n� ¼ n − δljðnÞ instead of n in Eq. (15), makes no

material difference in our results and gives an energy scale
that is little changed.

TABLE I. Fit parameters for the best fit to the energy difference (with respect to n ¼ 22) vs n data [27] for selected
values of the VE density ρv.

ρv ð0 GeVÞ4 ð5 GeVÞ4 ð7 GeVÞ4 ð8 GeVÞ4
δ0 1.7108778(1) 1.7108779(1) 1.7108781(1) 1.7108782(1)
δ2 0.2330963(4) 0.2330741(4) 0.2330110(7) 0.2329508(5)
χ2=d:o:f: 0.7731793 0.7093683 0.8110845 1.2986782

FIG. 1. χ2=d:o:f: vs ρv ¼ ðΛUV GeVÞ4 for the best fit to the
np3=2 data [27].
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The data used in our fit of RAs extend from the n ¼ 22
level to n ¼ 100 corresponding to atomic sizes ranging from
10−8 to 10−6 meters. Since Eq. (16) is a global fit to the data
it provides information on this entire distance range. Due to
the n4 dependence of the perturbation in Eq. (15), our fit is
more sensitive to large n, or equivalently larger atomic radii.
For instance, take ΛUV to be 7 GeV at one micron and then
consider that it increases as 1/n as we probe a distance scale
of 0.1 micron. We then find that, at a distance of the order of
0.1 micron, ΛUV is well below 100 GeV. This rules out the
predictions of the SM for gravitating VE at distances of a
few tenths of a micron or less.
This is our chief result: an upper limit to the scale of a

gravitating vacuum ρvac ≲ ð7 GeVÞ4 at distances less than a
micron. (The 7 GeV limit is valid independent of the sign of
ρvac.) Since this scale is well below the established scales of
the SM, it raises the question of whether the VE gravitates
at all. There is the claim that zero-point energy does not
contribute in the usual manner [42,43], but VE is a broader
concept than zero-point energy. The Higgs potential con-
tributes to the VE and should gravitate. The absolute value

of the Higgs potential is unknown, but we expect that its
value should be of the same order as the difference between
the local maximum of the potential and its symmetry-
breaking vacuum (the difference between the top of the
“Mexican hat” and its brim), which is again of order
100 GeV. There are also QCD contributions to VE from
chiral and gluon condensates. Inflationary models are
dependent on the gravitation of the inflaton potential.
The absence of gravitating VE poses serious questions
to our understanding of quantum field theory and semi-
classical gravity.

V. VALIDITY OF THE EFFECTIVE FIELD
THEORY DESCRIPTION

A recent flurry of activity, known as the UV/IR con-
nection [44–46], explores how a consistent quantum theory
of gravity could manifest itself at scales well below the
Planck scale [47,48]. In string theory, this is an attempt to
avoid getting stuck in the swampland, but there are also
attempts to understand how gravity may restrict effective

FIG. 2. Fit residuals for the best fit to the energy difference (with respect to n ¼ 22) vs n data [27] for selected values of the VE density
ρv (top legend of each panel).

DOES THE VACUUM GRAVITATE ON MICROSCOPIC SCALES? … PHYS. REV. D 108, 043505 (2023)

043505-5



field theories (EFTs). It is instructive to consider our results
from the point of view of the EFT approach.
EFT is a framework that is dramatically successful when

applied to the SM. The SM is incomplete since it does not
include quantum gravity, but semiclassical gravity is easily
incorporated. Following Cohen et al. [47] (CKN hereafter),
we consider an EFT with highest energy scale ΛUV, the
cutoff beyond which the theory no longer applies. We use
the EFT to describe a space-time patch, of radius R, with a
high energy density. The maximum energy density in this
EFT is Λ4

UV. If this patch is large enough, it will collapse
into a black hole, a state that does not appear in the EFT.
Thus, the EFT must break down or change. The critical size
Rc for this to occur is when Rc is equal to the Schwarzschild
radius RS

Rc ¼ RS ¼ 2GΛ4
UV

4π

3
R3
c ∼ Λ4

UVR
3
c

8

M2
P
: ð17Þ

The criterion for this not to happen is that its radiusR, is less
than Rc i.e.

R < MP=
ffiffiffi
8

p
Λ2
UV ð18Þ

imposing an IR limit to our theory, implying limitations on
physical scales very different from energy cutoffs. This
strongly hints that predictions of gravitating VE will depend
on the distance scales considered. Alternatively, if we restrict
our attention to a very large region ðR ¼ 1=ΛIR ≫ 1Þ then
fixing R restricts the EFT cutoff ΛUV to be small. If we
investigate the Universe and choose R as today’s Hubble
radius, we find ρv ∼ ð0.002 eVÞ4, intriguingly close to the
observed CC. This interconnection is very different from the
expectations of our traditional study of quantum field theory
and hints at a possible clue to solving the CC problem.
To see how the CKN bound points to VE gravitating only

at short distances consider the extension of the SM to the
TeV range. The TeV scale is the most popular energy scale
to go beyond the SM. Supersymmetry is the most familiar of
these and typically has a cutoff scale of a few to tens of TeV.
We are able to calculate implications of these models, via an
EFT, for gravitating VE, as long as we respect the restraint
(18). There are no predictions for distances greater than
1–100 microns [depending on the exact size of the cutoff in
Eq. (18)] and we are not surprised that no gravitating effects
of VE are observed at distances larger than microscopic
scales. However, below 1–10 microns the EFT predicts
large effects. RA conclusively rules out this not only for
TeV scales but also for all scales larger than 7 GeV.
As an illustration of how the gravitational effects of VE

with a 10-GeV cutoff would not extend beyond micro-
scopic distances, consider the following modified CKN
bound (this modification is rather ad hoc, and we use it for
illustrative purposes only):

R < ðMP=ΛUVÞαΛ−1
UV: ð19Þ

Similar forms of the CKN bound were used in Refs. [49,50].
If we set α ¼ 1=2 in Eq. (19) as the true UV/IR restriction,
the SM EFT does not make predictions for ΛUV ∼ 10 GeV
at distances greater than a micron. Thus, we would not
expect to observe VE gravitating at macroscopic distances.
However, at distances less than 1 micron the EFT for the SM
would be predictive, and RA data, as we have seen, rule out
VE gravitating at 10 GeVenergy scales. Equation (19) is an
example of an ansatz distinguishing between the gravitating
effects of VE at large and small distances. RAs do not see
any evidence that this or any VE gravitates.

VI. CONCLUSION

RAs have a long history of utility in studies of atomic
physics and chemistry, and recently in quantum computing.
We claim that fundamental physics and cosmology can be
added to the list. The idea that atomic physics experiments
are capable of providing any information about the expan-
sion of the Universe is amazing and a celebration of the
unity of physics. Although Rydberg measurements of the
CC will never replace conventional astronomical measure-
ments, they provide further evidence for the need to better
understand the origin of the CC. What is remarkable is not
that RAs are a good way to measure the CC but that they
can do it at all!
The place where RAs add unprecedented information is

in their ability to measure local effects of VE.We found that
precision studies of RAs put an upper limit on the
gravitating VE of ρvac ≲ ð7 GeVÞ4 at distance scales less
than a micron. This is well below the typical energy scale of
the SM and so contradicts our naive expectations. It points
to a shutting off of gravitating VE at all scales as the path to
understanding the smallness of the CC on cosmological
scales.
The limit to the precision of energy levels attainable in

RA is the line width [51], so it may be possible to consider
an improvement by a factor of ∼10 for En when n ¼ 100.
This improves as ðn=100Þ1.6 as we increase n. Such
improvements could lead to both an improved upper limit
on the scale of gravitating VE and tighter limits at distances
significantly shorter than a micron. As the precision of RAs
continues to increase and as higher excited states are
studied, we may someday probe QCD scales (∼1 GeV)
and/or improve restrictions of gravitating VE at distances
less than 0.1 micron, leading to a better understanding of
how gravity can be incorporated into our quantum-field-
theoretic descriptions of nature.
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