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We present the first nonlinear lattice simulation of an axion field coupled to a U(1) gauge field during
inflation. We use it to fully characterize the statistics of the primordial curvature perturbation ζ. We find
high-order statistics to be essential in describing non-Gaussianity of ζ in the linear regime of the theory. On
the contrary, non-Gaussianity is suppressed when the dynamics become nonlinear. This relaxes the bounds
from overproduction of primordial black holes, allowing for an observable gravitational waves signal at
pulsar timing array and interferometer scales. Our work establishes lattice simulations as a crucial tool to
study the inflationary epoch and its predictions.
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I. INTRODUCTION

In the standard paradigm, cosmological inflation, the
accelerated expansion of the very early Universe, is driven
by a scalar degree of freedom, the so-called “inflaton” field
ϕ [1–5]. The quantum vacuum fluctuations of ϕ provide a
natural mechanism to generate the observed anisotropies
in the cosmic microwave background (CMB) [6–11].
Although the simplest single-field slow-roll scenario is
compatible with all current observations [12,13], we still
lack a complete theoretical understanding of the infla-
tionary Universe. For this reason, nonminimal models of
inflaton have been studied in the literature, involving
multiple scalars or gauge fields. In many interesting cases,
the dynamics are affected by nonlinear physics, invalidat-
ing the standard perturbative technquiques. Nonlinear
lattice simulations, developed to study the reheating
epoch after inflation [14–23], might be an essential tool
to compute predictions from nonminimal inflationary
scenarios.
We consider a model where inflation is driven by a

pseudoscalar “axionlike” ϕ, which is coupled to gauge

fields through Chern-Simons interaction ϕFF̃ [24–33].
This system gives rise to unique observational signatures,
like non-Gaussianities and chiral gravitational waves,
which might be observed with next generation experi-
ments [34,35]. However, this system is often characterized
by strong backreaction effects, associated with a break-
down of perturbation theory [36–43]. Although significant
effort has been put into simulating axion-gauge models
during the reheating phase of the Universe [22,23,44–54],
they have never been simulated during the inflation-
ary epoch.
In this paper, we use a lattice simulation to study the

following axion-gauge system during inflation:
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where ϕ is the pseudoscalar inflaton field, coupled to a U(1)
gauge field Aμ with strength tensor Fμν ¼ ∂μAν − ∂νAμ and
F̃μν ¼ ð2 ffiffiffiffiffiffi−gp Þ−1ϵμνμ0ν0Fμ0ν0 . Here, ϵμνμ

0ν0 is a totally anti-
symmetric symbol with ϵ0123 ¼ 1, g is the determinant of
the metric tensor, R is the Ricci scalar, α is the dimension-
less coupling constant, and f is the axion decay constant.
MPl is the reduced Planck mass, that we set to 1 throughout
this paper.
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The Chern-Simons interaction ϕFF̃ leads to an abundant
production of gauge-field particles [24,25], which act as a
source for inflaton perturbations δϕ via the inverse particle
decay [25–28], hence affecting the statistical properties of
the comoving curvature perturbation ζ. The power spec-
trum of ζ on superhorizon scales k ≪ aH has been
estimated analytically as [25–28]

PζðkÞ ≃ Pvac þ P2
vacf2ðξÞe4πξ; ξ ¼ αϕ̇

2fH
; ð2Þ

where Pvac ¼ H4=ð2πϕ̇Þ2 is the vacuum contribution and
f2ðξÞ is a function that can be found in Ref. [27]. This result
was derived assuming a constant ξ. Moreover, the statistics
of ζ are highly non-Gaussian, as FF̃ is bilinear in the gauge
field. The bispectrum has also been estimated in the
ξ-constant approximation [25–28]. We avoid reporting
the lengthy expression for the bispectrum, whose value
can be found, for example, in Ref. [27].
These analytical estimates are valid when at least two

key assumptions are satisfied. First, the backreaction of
ϕFF̃ on the background inflationary trajectory is small.
This translates into the following bound [25–28]:

H2

26πjϕ̇j ξ
−3=2eπξ ≪ 1: ð3Þ

Second, the power spectrum PζðkÞ remains small (typically
smaller than 10−1), to ensure perturbativity. A violation
of these assumptions invalidates the perturbation theory
approach and requires nonlinear tools, such as presented in
this paper.

II. LATTICE SIMULATION

Our simulation is based on the methodology developed
in Refs. [55,56], to which we refer for details. We discretize
the classical equations of motion in real space. We choose
to work in the Lorenz gauge ∂

μAμ ¼ 0, in which the
equations read [48]

ϕ00 þ 2Hϕ0 − ∂j∂jϕþ a2
∂V
∂ϕ

¼ −a2
α

4f
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A00
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α
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A00
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f
ϵijkϕ

0
∂jAk −

α

f
ϵijk∂jϕ

× ðA0
k − ∂kA0Þ; ð4Þ

where i; j; k ∈ f1; 2; 3g and the prime denotes derivatives
with respect to conformal time. The scale factor in Eq. (4) is
evolved self-consistently with the second Friedmann equa-
tion. As is commonly done in the literature [25–28,57–60],
we neglect the role of metric perturbations because

gravitational interactions are slow-roll suppressed during
inflation. Moreover, the field dynamics of models charac-
terized by large non-Gaussianity is expected to be
decoupled from the gravitational sector [61].
To solve this system of equations, we associate field

values ϕn1;n2;n3 and Aμ;n1;n2;n3 to the N3 points of a periodic
cubic lattice with comoving volume L3. After defining a
discretization scheme for the spatial derivatives, Eq. (4)
constitute a set of second-order coupled differential equa-
tions that we solve numerically with a Runge-Kutta fourth-
order integrator. We start the simulation when the lattice
box size satisfies L≲ 1=ðaHÞ, so that the fields are
approximately in their Bunch-Davies vacuum state at the
beginning of the simulation. The gauge condition ∂μAμ ¼ 0

is only imposed at the initial time. Therefore, we need to
check by hand that ∂μAμ vanishes with sufficient precision
throughout the evolution. We find that the dimensionless

gauge constraint ∂μAμ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ρ j∂ρAρj2
q

is always smaller than

3 × 10−4 for all the simulation runs shown below.

III. NEGLIGIBLE BACKREACTION

We show the results of the simulation starting from the
case when backreaction is negligible [see Eq. (3)]), and
compare them to the known analytical results. We assume a
monodromy potential for the inflaton [62] VðϕÞ ¼ 1

2
m2ϕ2

with m ¼ 0.51 × 10−5. The system is initiated far from the
end of inflation by setting ϕ ¼ −14.5. We run a simulation
with N3 ¼ 2563 points and comoving size L ¼ 2=m. We
evolve the system for Ne ¼ 6 e-folds, which makes the
simulation box satisfy L ≫ 1=ðaHÞ at the end of the
simulation. For this run, we set the gauge coupling
α=f ¼ 42, which is excluded by CMB observations but
allows us to better compare the results of the simulation
with the existing analytical estimates. Below we consider a
more realistic value of the coupling. In the left panel of
Fig. 1 we show the value of ξ during this simulation, which
monotonically grows following the slow-roll trajectory.
In the upper panel of Fig. 2 we show the power spectrum

of the comoving curvature perturbation ζ ≡ −δϕH=ϕ̇ at
different times during the simulation.1 We compare the final
power spectrum with Eq. (2), which is shown as a shaded
region as ξ varies during the evolution. The black dashed
lines delimiting this region are computed using the initial
and final values of ξ. In the bottom panel of Fig. 2 we show
the bispectrum BζðkÞ≡ hζðk⃗1Þζðk⃗2Þζ�ðk⃗1 þ k⃗2Þi on equi-

lateral configurations k≡ jk⃗1j ¼ jk⃗2j ¼ jk⃗1 þ k⃗2j at the
final time, and compare it to the analytical estimate of
Ref. [27]. We find that both the bispectrum and the power

1This relation for the curvature perturbation is valid as long as
the energy density of the Universe is dominated by the back-
ground ϕ field, which remains true for all the cases considered in
this work.

CARAVANO, KOMATSU, LOZANOV, and WELLER PHYS. REV. D 108, 043504 (2023)

043504-2



spectrum are in agreement with the analytical estimates.
Note that for the largest modes there is a drop in the lattice
spectra, which is unphysical and it is caused by the lattice
UV cutoff.
Thanks to the lattice approach, we have access to the

curvature perturbation in real space. In the left panel of
Fig. 3 we show the normalized histograms of the values
of ζ across the N3 points at different times during the
simulation. We find that non-Gaussianity manifests as a
pronounced exponential tail in the distribution of ζ. To
quantify non-Gaussianity, we compute the cumulants of the
one-point probability density function [63],

κ3 ¼
hζ3i
σ3

; κ4 ¼
hζ4i − 3σ4

σ4
; κ5 ¼

hζ5i − 10hζ3iσ2
σ5

;

ð5Þ

which we normalize by powers of σ2 ¼ hζ2i to make them
dimensionless. In the right panel of Fig. 3 we show the
evolution of the cumulants during the simulation. We find

that κ6 > κ5 > κ4 > κ3 at late times. For illustrative pur-
pose, we avoid showing the evolution of κ6, whose final
value is κ6 ≃ 10.3. This result shows that higher-order
statistics are essential to characterize non-Gaussianity of ζ.
This has important observational consequences, as dis-
cussed below.

IV. STRONG BACKREACTION

We now turn to the case of strong backreaction. We set
the gauge coupling to α=f ¼ 25, so that the imprints of the
Chern-Simons coupling on ζ are unobservable at CMB
scales [25–28]. Later during inflation, however, ξ increases
and the universe eventually enters a nonlinear phase.
We start the simulation when ϕ ¼ −5.5. With this

choice, the universe is still in the weak backreaction phase
at the beginning of the simulation. Then, after roughly two
e-folds, the system enters a strong backreaction phase
where the bound of Eq. (3) is violated and Eq. (2) gives
Pζ ∼ 0.1, which indicates a breakdown of perturbativity.
We show results from a run with ðN;LÞ ¼ ð256; 1.5=mÞ,
but we tested our simulation also with other values of
ðN;LÞ to ensure that our results are physical and do not
depend on the spatial resolution. Moreover, we ensured the
stability of the time integration by checking energy con-
servation and time-step convergence.
In the right panel of Fig. 1 we show the evolution of ξ

during the simulation. We find the departure from the
slow-roll trajectory as an oscillatory behavior in ξ. This is
intuitive, as one can see from Eq. (4) that a strong FF̃ leads
to a depletion of the inflaton velocity; this lowers the value
of ξ and reduces the backreaction, bringing the system
momentarily back to the slow-roll trajectory. Oscillations of
similar period and size were already predicted by previous
studies [59,65–67], which explored backreaction effects
using semianalytical tools. Another consequence of the
backreaction is that, after 6.5 e-folds of evolution, the
background inflaton value is ϕ ¼ −3.02. This value would
be reached after 5.4 e-folds of evolution if the backreaction
were negligible, which means that the backreaction sig-
nificantly delays the background dynamics.

FIG. 2. (Top) Power spectrum of ζ in the case of weak
backreaction. The shaded region, delimited by black dashed
lines, shows the analytical prediction of Eq. (2). The blue dashed
line shows the vacuum contribution Pvac. (Bottom) Equilateral
bispectrum of ζ compared to the analytical prediction.

FIG. 3. (Left) Normalized histograms of ζ in real space in the
case of weak backreaction. (Right) Time evolution of the
correlators defined in Eq. (5). For a more detailed version of
this figure, with associated errors, see Ref. [64].

FIG. 1. Time evolution of the ξ parameter as a function of the
number of e-folds Ne, in the case of negligible backreaction (left)
and strong backreaction (right).
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In Fig. 4 we show the histograms of ζ and the evolution
of the cumulants κi. These plots show that the non-
Gaussianity of ζ substantially decreases during the strong
backreaction phase. At late times, it is mainly described
by a (small) negative κ4, while the other cumulants are
negligible. Moreover, κ5 shows oscillations. The suppres-
sion of non-Gaussianity in this regime is a consequence of
the central limit theorem, and it is caused by the fact that
the number of excited gauge field modes grows with ξ. To
understand this, we expand the source term FF̃ in Fourier
space as follows:

ðFμνF̃μνÞðkÞ ¼
X
k0
Fμνðk0ÞF̃μνðk − k0Þ: ð6Þ

This shows that each Fourier mode of FF̃ is the sum of
several non-Gaussian quantities. For ξ ∼ 1, there are few
elements contributing to this sum due to the small number
of excited gauge field modes. For ξ ≫ 1, the number of
statistically independent elements in this sum is large, and
FF̃ converges to a Gaussian distribution due to the central
limit theorem. Therefore, it sources a Gaussian ζ. This is
analogous to what happens when ϕ is coupled to fermionic
fields [68].
Parametrizing non-Gaussianity in the local type form [69],

ζðx⃗Þ ¼ ζgðx⃗Þ þ fNL½ζ2gðx⃗Þ − hζ2gðx⃗Þi�; ð7Þ

where ζg is a Gaussian field and fNL a real number, one can
use the linear results of Ref. [26] to show that fNL ∝ e−2πξ.
This shows that the suppression of non-Gaussianity for large
ξ can be guessed from the linear regime of the theory in the
ξ-constant approximation. Although the linear theory is not
reliable in this regime, and we find that non-Gaussianity is
not of the local type, the simulation confirms this intuition.
In Fig. 5 we show the power spectrum from the

simulation. Although the analytical estimates are not
reliable in this regime, we still compare it with Eq. (2)
using the initial and final values of ξ from the simulation.
As κ3 ≪ 1, we are not able to compute the bispectrum
because it is below the noise of our bispectrum estimator.

V. DISCUSSION

We presented the first lattice simulation of nonlinear
perturbations generated during inflation. For the first time,
we obtain the full primordial density fluctuation predicted
by inflation. We used the simulation to fully characterize
the statistics of ζ from the axion-U(1) model.
In the weak-backreaction regime, the power spectrum and

bispectrum agree with analytical estimates. Nevertheless,
high-order information is crucial in describing the statistics,
showing that n-point correlators are not efficient to fully
characterize this signal. Current large-scale bounds, con-
straining α=f ≲ 32 for the quadratic potential, are derived
using power spectrum and bispectrum of the CMB, ignoring
higher-order statistics [25–28].
In light of our results, we expect the information beyond

power spectrum and bispectrum to play a key role. The
output of the simulation can be used as truly ab initio initial
condition for the cosmological simulations of structure
formation, allowing to test inflation using the full infor-
mation contained in the density field. This opens a new
possibility for the field of cosmological simulations, that
we plan to explore in future work.
In the case of strong backreaction, typically relevant for

small scales, the system enters an instability phase, charac-
terized by oscillations in the inflation background velocity.
In this regime, non-Gaussianity of ζ is strongly suppressed.
This is a consequence of the central limit theorem, and it is
caused by the large number of excited gauge field modes
contributing to the source term FF̃. We expect this sup-
pression to be a general feature of models where matter fields
are coupled linearly to the inflaton L ⊃ ϕfðXÞ, with fðXÞ
being a quadratic function of a generic matter field X, that
could be for example a scalar X ¼ ψ or a gauge field
X ¼ Aa

μ. If X is copiously produced during inflation via
some mechanism, its contribution to the statistics of ζ is
expected to be Gaussian for the same reason. Due to the
simplicity of this argument, the same conclusion could hold
for more generic nonlinear functions fðXÞ, although this
needs to be investigated in future studies.
This result relaxes the bounds from the overclosure

of the universe due to overproduction of primordial black

FIG. 4. Histograms of ζ (left) and the cumulants κi (right) in the
case of strong backreaction. FIG. 5. Power spectrum from the simulation in the case of

strong backreaction.
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holes (PBH), constraining α=f ≲ 23 for the quadratic
potential [58,70]. These bounds strongly rely on the
assumption that ζ can be approximated by a (non-
Gaussian) χ2 distribution during the strong backreaction
phase [58,70], which corresponds to the fNL ≫ 1 limit of
Eq. (7). We find a nearly Gaussian ζ, requiring a much
larger power spectrum at small scales to efficiently produce
PBHs [58]. Estimating PBH production requires a more
extensive and detailed study of the final e-folds of inflation,
for two main reasons. First, as we show in this paper,
backreaction significantly delays the end of inflation,
making it problematic to identify the range of modes
relevant for PBH production. Second, as we show in
Fig. 4, there is still a small remnant non-Gaussianity at
the end of the simulation, to which the production of PBH
is extremely sensitive.
We conclude that the most stringent bounds on α=f are

the ones from the statistics of ζ at large scales, discussed
above. This allows for an inflationary gravitational waves
(GW) signal within reach of LISA [71,72], advanced
LIGO [73] and PTA-SKA [74–76] experiments. Indeed,
the gauge field acts as a source for GW [25–28], and the
signal can be above the projected sensitivity of all these
experiments in the parameter range compatible with current
CMB constraints [70].
Note that, both for simplicity and to better compare with

previous studies, we considered a quadratic potential for the
inflaton VðϕÞ ¼ 1

2
m2ϕ2, which is disfavored by the latest

Planck-BICEP/Keck results [13,77]. The particular choice
of slow-roll potential, however, only affects the quantitative

bounds on α=f given above. Our findings about the
statistics of ζ, that are the main original result of this
work, do not depend on this choice.
The lattice simulation presented in this paper allowed to

reveal unknown aspects of the axion-U(1) system that are
beyond the regime of validity of perturbation theory. At the
same time, it allowed to compute inflationary observables
within this model with a precision that exceeds state-of-the-
art analytical and semi-analytical computations, both in
the weak- and strong-backreaction regimes. There several
other cases where a lattice simulation could be crucial, like
models involving non-Abelian SU(2) gauge fields [29–33],
or scalar fields models with a strong turn in field space [78].
Our work shows that lattice simulations could be an
essential tool to understand the predictions of these models,
and more generically inflationary scenarios characterized
by nonlinear physics.
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