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We investigate the connection between the full- and flat-sky angular power spectra. First, we revisit this
connection established on the geometric and physical grounds, namely, that the angular correlations on
the sphere and in the plane (flat-sky approximation) correspond to each other in the limiting case of small
angles and a distant observer. To establish the formal conditions for this limit, we first resort to a simplified
shape of the 3D power spectrum, which allows us to obtain analytic results for both the full- and flat-sky
angular power spectra. Using a saddle point approximation, we find that the flat-sky results are obtained in
the limit when the comoving distance and wave modes l approach infinity at the same rate. This allows us
to obtain an analogous asymptotic expansion of the full-sky angular power spectrum for general 3D power
spectrum shapes, including the Λ cold dark matter universe. In this way, we find a robust limit of
correspondence between the full- and flat-sky results. These results also establish a mathematical relation,
i.e., an asymptotic expansion of the ordinary hypergeometric function of a particular choice of arguments
that physically corresponds to the flat-sky approximation of a distant observer. This asymptotic form of the
ordinary hypergeometric function is obtained in two ways: relying on our saddle point approximation and
using some of the known properties of the hypergeometric function.

DOI: 10.1103/PhysRevD.108.043503

I. INTRODUCTION

The angular power spectrum is a powerful tool for
analyzing data from cosmological surveys. It is the canonical
observable in the study of the distribution of temperature and
polarization anisotropies in the cosmic microwave back-
ground (CMB), as well as one of the possibilities when
analyzing the distribution of matter (and its tracers) in the
study of the large-scale structure (LSS) of the Universe.
The angular power spectrum is calculated by decomposing
the CMB or matter tracer observables into a series of
eigenfunctions that describe how the temperature or density
of the Universe varies with the direction on the sky.

The angular power spectrum measures how much power
is present in each spherical harmonic and how that power is
distributed over different angular scales.
Two typical methods for calculating the angular power

spectrum are the full-sky approach and the flat-sky
approximation. In the full-sky approach, the entire spheri-
cal geometry of the sky is considered, with the observer
located at the center of the sphere (neglecting space-time
curvature). The eigenfunctions on a sphere are simple
spherical harmonics, so the angular power spectrum is
thus a measure of the power in each of these harmonics.
While the full-sky approach is well suited for analyzing
data from experiments that observe the entire sky (e.g.,
Planck [1]), the flat-sky approximation is often used for
ground-based experiments that observe a smaller region of
the sky (until recently, this has been a typical setup for
galaxy surveys). Usually, it is also assumed that the
observations lie on a single plane in the sky, neglecting
correlations along the line of sight. The latter, paired with
the flat-sky geometry, forms the so-called Limber approxi-
mation [2,3]: a practical “go-to” implementation of the
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angular power spectrum for LSS data analyses. However,
some of the upcoming and planned cosmological LSS
surveys, such as, e.g., Euclid [4], DESI [5], SPHEREx [6],
SKAO [7], and the Vera Rubin Observatory [8], will
observe large portions of the sky. This means that the
approximations currently in use can no longer provide
sufficient accuracy and that upcoming data analyses will
need to go beyond existing practices (see, e.g., [9] for a
recent comparison of various methods).
On the other hand, solely relying on the full-sky

formalism would make the analysis pipeline cumbersome
and even prevent efficient information extraction and use of
entire datasets, as we would be forced to perform various
suboptimal data compressions and binning. Constrained
by these two considerations, the optimal strategy is thus to
find a middle path by removing some limitations of the
currently implemented approximations while retaining
most of the computational simplicity and efficiency of
such approximations. In this paper, we lay out the map of
this intermediate path by providing a consistent derivation
of a new flat-sky result as an asymptotic approximation of
the full-sky formalism.
This paper is organized as follows:
(i) Section II provides a preamble to the discussion of

the cosmological correlators and their projections on
the sky. It introduces the theoretical unequal-time 3D
power spectrum as a two-point correlation function
in Fourier space over the statistical ensemble and,
thus, by construction, a nonobservable quantity
(see [10] for a discussion).

(ii) Section III introduces the full- and flat-sky two-point
angular power spectrum. We discuss the relations
between these spectra and establish their correspon-
dence in the flat-sky limit. We discuss the emergence
and consequences of unequal-time effects in the flat-
sky two-point angular power spectrum. We show
how these effects lead to the breaking of transla-
tional invariance in the 2D plane and, consequently,
to the breakdown of the isotropy manifested in the
full-sky angular power spectrum (see also [11]).

(iii) In Sec. IV, we continue our study of the angular
power spectrum of the full and flat sky, starting from
a simple analytic form of the theoretical 3D power
spectrum. In this way, we obtain analytic expres-
sions for both the full- and flat-sky angular power
spectra, allowing us to determine the precise asymp-
totic limit under which flat-sky results are obtained.
Although these conditions were obtained in this
simplified scenario, they can be generalized for
arbitrary cosmologies and power spectra, including
the Λ cold dark matter (ΛCDM) case.

(iv) Section V utilizes the precise asymptotic limit
conditions obtained in the previous section to derive
the expression for the unequal-time angular power
spectrum in flat-sky approximation for a general

theoretical 3D power spectrum. For this purpose,
we use the Mellin integral transform of the 3D power
spectrum.

(v) In Sec. VI, we determine a limit of the ordinary
hypergeometric function 2F1ða; b; c; zÞ in which it
corresponds to the modified Bessel function of the
second kind KνðzÞ. We achieve this by combining
the known analytic solutions for the integral con-
taining the power law and two spherical Bessel
functions with our results from the previous sec-
tions. We also show an alternative derivation that
follows from some of the known properties of the
ordinary hypergeometric function.

(vi) We end by summarizing our results and providing
some concluding remarks in Sec. VII.

Table I summarizes the notation used throughout the
paper for the most important physical and mathematical
quantities.

II. THEORETICAL 3D POWER SPECTRUM

The usual method for studying the dynamics of gravi-
tational galaxy clustering uses 3D Fourier space correlators.
The reason why Fourier space is an appropriate choice lies
in the fact that the properties of the system, such as
statistical isotropy and homogeneity, manifest themselves
in the direct simplification of the functional form of the
n-point correlation functions. The homogeneity manifests
itself in the translational invariance of these correlators,
while the isotropy corresponds to the rotational invariance.
The realization of these properties in the correlation
functions can be easily observed, e.g., in N-body simu-
lations, where one can perform ensemble averaging over

TABLE I. Notation used for the most important quantities in
this paper.

δKij Kronecker symbol

δDðxÞ Dirac delta function
WðχÞ Window function; related to the specific

observable and survey
δðxÞ 3D density field of matter or biased tracer
δ̂ðθÞ 2D projected filed in the real space coordinates

on the sky
Pðk; z; z0Þ Unequal-time theoretical power spectrum of the

3D density field (unobservable)
Cl Projected angular power spectrum (with finite

size window functions)
Clðz; z0Þ Unequal-time angular power spectrum (in the

narrow window function limit)
JλðzÞ Ordinary Bessel function
jλðzÞ Spherical Bessel function
IλðzÞ Modified Bessel function of the first kind
KλðzÞ Modified Bessel function of the second kind

2F1ða; b; c; zÞ Ordinary (Gaussian) hypergeometric function
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different realizations determined by different initial con-
ditions (see Fig. 1). The theoretical 3D power spectrum
PðkÞ can then be defined as the two-point correlation
function of the overdensity field of a tracer,

hδðk; zÞδðk0; z0Þi ¼ ð2πÞ3δDðkþ k0ÞPðk; z; z0Þ: ð1Þ

Here we have explicitly pointed out that two overdensity
fields do not have to be correlated at the same time, so we
can study the unequal-time power spectrum. The left part
of Fig. 1 schematically shows a realization of the time
evolution of the overdensity. The right panel shows how
these different times are projected onto a single observable
redshift slice. Thus, the full unequal-time 3D power
spectrum is not an observable quantity since it is never
accessible from survey data to an observer located at a
single position in the Universe (for more details, see [11]).
On the other hand, the 2D angular power spectrum Cl that
correlates the projected overdensity in two different redshift
regions is the most easily observable quantity accessible to
such an observer (see the sketch in the right part of Fig. 1).
The 3D power spectrum is characterized by its shape

dependence (in wave modes k), as well as by the time
dependence, which, in turn, are determined by the physical
model and cosmological parameters of our Universe. Thus,
determining its shape and time dependence allows us to
measure and constrain the fundamental parameters of our
Universe. In this work, however, our goal is not to

determine any of these parameters or to study their
sensitivity in detail; more on that can be found in [10,11].
Rather, we explore the connections between the observable
angular power spectrum and the unobservable 3D power
spectrum in general terms, focusing on the broad properties
of these relationships. Although we present our final results
in a general form so that they are also valid for the ΛCDM
universe, in certain cases we will find it helpful to use a
simple functional form that captures some general proper-
ties similar to those of the real Universe. Thus, in Sec. IV,
we use Pðk; z; z0Þ ¼ ADðzÞDðz0Þk2 exp ð−α2k2Þ to estab-
lish the asymptotic relation between the full- and flat-sky
angular power spectra and to investigate the anticorrela-
tions that appear in the unequal-time angular power
spectrum.

III. UNEQUAL-TIME ANGULAR POWER
SPECTRUM

The relationships between the full- and flat-sky angular
power spectrum formalisms have been studied in great
detail in the context of temperature fluctuations and
polarization [12–17]. In this section, we revisit and review
these results for scalar fields, emphasizing the geometric
aspects of the connection between the full- and flat-sky
tracer number density. First, we verify that the formally
introduced projected overdensity fields in the correspond-
ing scales lead to the equivalent observable (a similar
approach was taken in [16], which also motivated much of
the discussion presented in this section). Namely, we focus
on the angular power spectrum. We show that the derived
observables in both cases match in an asymptotic sense,
i.e., the flat-sky observable recovers some of the properties,
such as statistical isotropy, in an approximate form.
We show how the Limber approximation can be obtained
from the flat-sky approximation, assuming wide window
functions.
In Fig. 2, we schematically present our geometrical

setup comparing the full-sky geometry to the flat-sky

FIG. 1. Scheme representing the construction of the observable
angular power spectrum. We start by correlating the 3D density
field δðx; zÞ, which provides us with the theoretical, unobservable
unequal-time 3D power spectrum Pðk; z; z0Þ. The simplest two-
point observable accessible to an observer at position O is the
unequal-time projected angular power spectrum Clðχ; χ0Þ.

FIG. 2. The full-sky and flat-sky geometrical setup. Assuming a
limited survey volume and distant observer approximation, we
expect the flat-sky approximation to be a suitable representation
of the full-sky results.
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approximation. We can imagine a construction of the
observable by collecting all the tracers in a certain redshift
bin characterized by a isotropic window function WðχÞ
and a direction on the sky n̂. We thus obtain a projected
density field

δ̂ðn̂Þ ¼
Z

dχWðχÞδðχn̂; z½χ�Þ

¼
Z

dχWðχÞ
Z

d3k
ð2πÞ3 e

−iχn̂·kδðk; z½χ�Þ; ð2Þ

where the observable is obtained by projecting/integrating
over the comoving distance χ weighted by the window
functionWðχÞ. On a full sky, described by a spherical shell,
it is convenient to represent the overdensity field in terms of
the spherical harmonics expansion

δ̂ðχn̂Þ ¼
X∞
l¼0

Xl
m¼−l

δ̂l;mðχÞYm
l ðn̂Þ: ð3Þ

This decomposition is useful as it allows us to utilize the
statistical homogeneity and isotropy assumptions. The
simplification is manifest once we look at the two-point
statistics,

hδ̂l;mδ̂�l;mi ¼ δKmm0δKll0Cl; ð4Þ
where the two Kronecker delta functions δKmm0 and δKll0 arise
as consequences of the translational invariance and isotropy
of the 3D power spectrumPðkÞ. This allows us to introduce
the projected angular power spectrum, dependent on a
single mode l, and is related to the 3D power spectrum
PðkÞ via the well-known relation

Cl ¼ 4π

Z
dχ1dχ2Wðχ1ÞW0ðχ2Þ

×
Z

∞

0

k2dk
2π2

Pðk; χ1; χ2Þjlðkχ1Þjlðkχ2Þ: ð5Þ

In recent years, there was a revival of efforts for efficient
evaluations of this expression [18–23]. If we are interested
in thin redshift slices that characterize spectroscopic sur-
veys, we have WðχÞ ¼ δDðχ − χ�Þ, which simply gives us

Cfull
l ðχ; χ0Þ ¼ 4π

Z
∞

0

k2dk
2π2

Pðk; χ; χ0ÞjlðkχÞjlðkχ0Þ; ð6Þ

that we label the “unequal-time angular power spectrum.”
We use the explicit label “full” to distinguish the full-sky
from the flat-sky version of the unequal-time angular power
spectrum, which we investigate next.
As indicated in Fig. 2, we can approximate the observ-

able field near a given direction n̂ and a given comoving
distance χ by the flat-sky approximation, rather than
defining it on the spherical shell with the comoving
distance χ. This approximation assumes that all tracers

lie in the same plane orthogonal to n̂. Since the observer has
a fixed locationO, this means that the statistical observable
defined on such a plane is not guaranteed to inherit
symmetries such as translational invariance in the plane.
This can be recovered by explicitly assuming that a distant
observer also implies a so-called plane-parallel approxi-
mation, i.e., that one can define the observables in the plane
invariant under the translations corresponding to the dis-
placements of the observer point O in the plane parallel to
the observables. We abandon this latter assumption and
leave the position of the observer O unchanged. The result
we obtain can then be organized so that the leading term in
this flat-sky approximation explicitly recovers this trans-
lational invariance in the plane, as we shall see further
below, with the subleading terms estimating the measure of
the error of such an approximation.
We thus have δ̂ðn̂0Þ ≈ δ̂ðn̂þ θÞ and, given that the

direction n̂ is fixed, we can drop labeling it as a variable,
and we simply write δ̂ðn̂0Þ ≈ δ̂ðθÞ. In a 2D plane, a
convenient and often used method for decomposing a
2D field is the Fourier transform,

δ̂ðlÞ ¼
Z

d2θeil·θδ̂ðθÞ: ð7Þ

However, instead of the 2D Fourier transform, we opt for
something more in line with the expansion in the spherical
harmonics we have used to decompose the spherical shell.
The ordinary Bessel functions are a convenient basis for
that purpose, given that they are the eigenfunction of the 2D
Laplacian in the plane. Thus, representing the 2D position θ
in polar coordinates fθ;ϕg, we obtain

δ̂ðθÞ ¼ 1

2π

X∞
m¼−∞

Z
∞

0

ldlδ̂mðlÞJmðlθÞe−imϕ; ð8Þ

where the coefficients can be obtained by using the
orthogonality of the used eigenfunctions,

δ̂mðlÞ ¼
Z

2π

0

dϕ
Z

∞

0

θdθJmðlθÞeimϕδ̂ðθÞ: ð9Þ

This also establishes a natural connection between the flat-
sky coefficients δ̂mðlÞ and the full-sky ones δ̂l;m, as the
former should approach the latter ones as we approach the
field close to the line of sight n̂.
Using the Jacobi-Anger expansion in Eq. (7) provides us

with the connection of the δ̂mðlÞ coefficients and the 2D
Fourier transformed field δ̂ðlÞ, i.e.,

δ̂ðlÞ ¼
X∞

m¼−∞
im

Z
d2θJmðlθÞeimðϕ−ϕlÞδ̂ðθÞ

¼
X∞

m¼−∞
imδ̂mðlÞe−imϕl : ð10Þ
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This establishes the correspondence of the two bases in
the 2D plane. We can relate these coefficients to the
3D Fourier field

δ̂mðlÞ ¼ ð−iÞm
Z

dχ
χ2

WðχÞ
Z

∞

−∞

dkn̂
2π

e−iχkn̂

×
Z

2π

0

dϕk

2π
δðkn̂; l̃;ϕk; z½χ�Þeimϕk ; ð11Þ

where we have separated the dependence of the δðkÞ field
in modes along (kn̂) and perpendicular (k⊥) to the line of

sight. Modes perpendicular to the line of sight can be
additionally decomposed in amplitude l̃≡ k⊥ ¼ l=χ and
phase ϕk. We thus have

δ̂ðlÞ ¼
Z

dχ
χ2

WðχÞ
Z

∞

−∞

dkn̂
2π

e−iχkn̂δðkn̂; l̃;ϕl; z½χ�Þ; ð12Þ

which is, of course, consistent with the direct 2D Fourier
transform in Eq. (7).
Let us look at the two-point correlator,

hδ̂mðlÞδ̂�m0 ðl0Þi ¼ δKmm0

Z
dχ1
χ21

dχ2
χ22

Wðχ1ÞW0ðχ2Þð2πÞ
ffiffiffiffiffiffiffiffiffi
χ1χ2

p ffiffiffiffiffiffiffi
ll0p δDðl=χ1 − l0=χ2Þ

×
Z

∞

−∞

dkn̂
2π

e−iðχ1−χ2Þkn̂Pðkn̂;
ffiffiffiffiffiffiffi
ll0p

=
ffiffiffiffiffiffiffiffiffi
χ1χ2

p
; z½χ1�; z½χ2�Þ; ð13Þ

where we have written the Dirac delta function in polar
coordinates as

δ3Dðk − kÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
ρkρk0

p δDðρk − ρk0 ÞδDðϕk − ϕk0 ÞδDðkz − k0zÞ:

ð14Þ

Moreover, using δDðl̃− l̃0Þ¼
ffiffiffiffiffiffi
χχ0

p
δDððχ0l−χl0Þ=

ffiffiffiffiffiffi
χχ0

p
Þ

and thin redshift windows WðχÞ ¼ δDðχ − χ�Þ, we can
define the flat-sky version of the unequal-time angular
power spectrum

hδ̂mðl; χÞδ̂�m0 ðl0; χ0Þi

¼ ð2πÞ δKmm0ffiffiffiffiffiffiffi
ll0p Cflat

� ffiffiffiffiffiffiffi
ll0p

; χ; χ0
�
δD

�
χ0l − χl0ffiffiffiffiffiffi

χχ0
p �

; ð15Þ

with the explicit expression

Cflatðl; χ; χ0Þ

¼ 1

χχ0

Z
∞

−∞

dkn̂
2π

e−iδχkn̂Pðkn̂;l=
ffiffiffiffiffiffi
χχ0

p
; z½χ�; z½χ0�Þ ð16Þ

and defining δχ ¼ χ − χ0. Before we discuss this definition
of the flat-sky angular power spectrum Cflat in its possible
alternative choices, let us first establish the link between the
angular power spectrum obtained using the flat-sky co-
efficients δ̂mðlÞ compared to the 2D Fourier modes δ̂ðlÞ.
Investigating the correlation function of the 2D Fourier
fields δ̂ðlÞ, we find

hδ̂ðl; χÞδ̂�ðl0; χ0Þi ¼
X
m;m0

im−m0 hδ̂mðlÞδ̂�m0 ðl0Þie−imϕlþim0ϕl0

¼ ð2πÞCflat
� ffiffiffiffiffiffiffi

ll0p
; χ; χ0

� 1ffiffiffiffiffiffiffi
ll0p δD

�
χ0l − χl0ffiffiffiffiffiffi

χχ0
p �X

m

e−imðϕl−ϕl0 Þ

¼ ð2πÞ2Cflat
� ffiffiffiffiffiffiffi

ll0p
; χ; χ0

�
δ2D

�
χ0l − χl0ffiffiffiffiffiffi

χχ0
p �

; ð17Þ

and thus the unequal-time angular power spectrum ob-
tained is equivalent to the one obtained correlating the flat-
sky eigenfunction coefficients δ̂mðlÞ.
Let us comment on the meaning of the Dirac delta

function in Eqs. (15) and (17). The two modes l and l0 are
modulated by the corresponding comoving distances,
keeping in mind that we are comparing the modes on

two different redshift slices. These modulations break the
translational invariance in the single plane, which would be
realized by the simple Dirac delta function of the form
δDðl − l0Þ. However, we also know that the corresponding
symmetry, i.e., statistical isotropy, is realized in the treat-
ment of the entire sky in the form of the Kronecker delta
function δKll0 . We can thus consider the translational
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invariance of the plane as a flat-sky manifestation of the
rotational isotropy of the whole sky, realized in the limiting
case of two nearby planes, both distant from the observer.
Thus, the deviations from this symmetry that we experience
in the flat sky are a feature of the approximation itself, and
the generated off-diagonal terms do not capture any addi-
tional full-sky features or contributions. On the contrary,
we can interpret the off-diagonal contributions as a measure
of the accuracy of our flat-sky approximation, i.e., if they
are in any way significant or comparable to the diagonal
term, we should not expect our flat-sky approximation to be
a good representation of the full-sky result. Furthermore,
we expect the result to be physically meaningful when
the two planes are close to each other and far from the
observer, which motivates us to reorganize our flat-sky
result reflecting these properties. Introducing variables
δ ¼ δχ=ð2χ̄Þ, Δ ¼ l0 þ l we can write

δ2D
�
χ0l − χl0ffiffiffiffiffiffi

χχ0
p �

¼ AðδÞδ2Dðl − l0 þ φðδÞΔÞ; ð18Þ

where the obtained amplitudeAðδÞ and phase φðδÞ are both
functions of δ that depend on a particular choice of the
definition of mean comoving distance χ̄. For a particular
choice of the arithmetic mean χ̄a, we get A ¼ 1 − δ2 and
φ ¼ δ, while with the choice of the harmonic mean χ̄h the
amplitude shift vanishes, i.e., A ¼ 1, at the expense of a
more complex phase φ dependence on δ.1 Expanding in
small δ, i.e., around the diagonal contributions, we have

δ2Dðl − l0 þ φðδÞΔÞ
¼ δ2Dðl − l0Þ þ ðeφðδÞΔ·∂⃗l − 1Þδ2Dðl − l0Þ: ð19Þ

The unequal-time two-point correlation function of the
projected overdensity field in the Fourier space then
becomes

hδ̂ðl; χÞδ̂�ðl0; χ0Þi

¼ ð2πÞ2δ2Dðl − l0Þ
X∞
n¼0

ð∂⃖l · ΔÞn
n!

CðnÞ
� ffiffiffiffiffiffiffi

ll0p
; χ; χ0

�
;

ð20Þ

where the nth angular power spectrum is given as

CðnÞðl; χ; χ0Þ ¼ AðδÞϕðδÞnCflatðl; χ; χ0Þ; ð21Þ

and the expression for the Cflat is given in Eq. (16). Again,
if we choose the arithmetic mean χ̄a, the prefactor Aϕn

simplifies to ð1 − δ2Þδn, and the higher n terms are thus
suppressed by the additional δ ¼ δχ=ð2χ̄Þ terms. Different

choices of the mean distance χ̄ would give somewhat
different ϕ dependence on δ. Nonetheless, the leading term
would still remain linear in δ (see [11]).
Let us consider for a moment the content of this result.

As mentioned earlier, Eq. (20) states that, in addition to the
diagonal term reflecting the translational invariance in the
plane, there exist off-diagonal correction terms character-
ized by the higher derivative operator acting on the Dirac
delta function. These correction terms are suppressed with
respect to the leading n ¼ 0 term by the higher powers of δ
[generally ϕðδÞ] in Eq. (21). The higher n terms arise
purely as a consequence of assuming the flat sky where the
underlying symmetry, namely, the isotropy, is realized on a
sphere. As we will discuss below, this suppression not only
depends on the weighting of the window functions but is
also closely related to the shape of the 3D power spectrum
P and its wave mode support along the line of sight, which
is evident from the integration along the kn̂ in the Eq. (16).
The range of support of P in kn̂ thus determines the support
of Cflat in δ, i.e., it determines the extent of unequal-time
correlation in the unequal-time angular power spectrum
and, consequently, in the projected angular power spectrum
CðlÞ. We can estimate the correlation support in the δ
direction by finding the extrema of Cflat, which gives us

0 ¼
Z

∞

0

dkn̂ sin ð2δ�χ̄kn̂Þkn̂Pðkn̂;l=χ̄; z½χ̄�Þ þ… ð22Þ

and where we have neglected the other contributions arising
from the derivative of the 3D power spectrum and other δ
dependencies. The expression above determines the posi-
tion of the δ� extrema where the unequal-time angular
power spectrum exhibits the maximal or minimal correla-
tion strength. We note that this explicitly depends on the
shape of the 3D power spectrum. In the next section,
we examine these points assuming a simplified shape of the
3D power spectrum.
Before we close this section, let us further consider the

dependence of the unequal-time angular power spectrum
on the unequal-time variable δ and how it affects the
integration of the window functions in the projected
angular power spectrum. We can also clarify under what
conditions the often used Limber approximation [2,24–26]
is justified and can be expected to hold. We begin by noting
that the unequal-time contributions in the 3D power
spectrum can be organized in a series in δ of the form

Pðk; z; z0Þ ¼
X∞
m¼0

Pmðk; z̄Þδm: ð23Þ

This expansion obviously holds in the linear theory
Pðk; z; z0Þ ¼ DðzÞDðz0ÞPLðkÞ, but also in the case of the
nonlinear power spectrum, when, e.g., higher-order per-
turbative corrections are considered. Using this expansion
in Eq. (16) and assuming thatPm depend only quadratically

1For a more detailed discussion of this point, we refer the
interested reader to the Appendix in [11].
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on kn̂ (the fact that holds even when redshift space
distortions are taken into account), we get

Cflatðl; χ; χ0Þ ¼ 2

χχ0
X∞
m¼0

δm
Z

∞

0

dkn̂
2π

cos ð2χ̄δkn̂Þ

× Pmðkn̂;l=χ̄; z½χ̄�Þ: ð24Þ

Integrating over the general window functionsW and using
Eq. (21), we obtain the projected version of the angular
power spectra

CðnÞðlÞ¼
Z

dχ1dχ2Wðχ1ÞW0ðχ2ÞAðδÞϕðδÞnCflatðl;χ1;χ2Þ;

ð25Þ

where we define the projected flat-sky angular power
spectrum as the leading, diagonal component in our
expansion,

CðlÞ≡ Cð0ÞðlÞ: ð26Þ

To proceed a bit further, we assume a specific form of the
window function, namely, we assume a Gaussian window

WðχÞ ¼ 1ffiffiffiffiffiffi
2π

p
σ
e−

ðχ−χ�Þ2
2σ2 ; ð27Þ

which, for the case when both windows in the projected
angular power spectrum are equal, gives us

W

�
χ̄ þ 1

2
δχ

�
W

�
χ̄ −

1

2
δχ

�
¼ Wðχ̄Þ2e−ðχ̄=σÞ2δ2 : ð28Þ

In the case when the two windows are not equal, the
analysis gets a bit more cumbersome; however, the quali-
tative results do not change. For the projected angular
power spectra, choosing the arithmetic mean, we have

CðnÞðlÞ ¼ 2

Z
∞

0

χ̄dχ̄Wðχ̄Þ2
Z

∞

−∞
dδð1 − δ2Þδne−ðχ̄=σÞ2δ2Cflatðl; χ̄; δÞ

¼ 2
X∞
m¼0

Z
∞

0

dχ̄
χ̄
Wðχ̄Þ2

Z
∞

−∞

dkn̂
2π

Gnþmð2χ̄kn̂; χ̄=σÞPmðkn̂;l=χ̄; z½χ̄�Þ; ð29Þ

where we have introduced the kernel GN containing the
integral over δ, which can be written as

GNða; bÞ ¼
Z

∞

−∞
dδ δNe−iaδ−b

2δ2 ¼ ði∂aÞNG0ða; bÞ; ð30Þ

and where G0ða; bÞ ¼
ffiffiffi
π

p
=b exp ð−a2=ð2bÞ2Þ is the usual

Gaussian integral. After a bit of straightforward calculation,
we arrive at

GNða; bÞ ¼ ð−i=bÞNUð−N=2; 1=2; a2=ð2bÞ2ÞG0ða; bÞ;
ð31Þ

where Uða; b; zÞ is a confluent hypergeometric function of
the second kind.
It is interesting to consider what happens when the

window support, characterized by the variance σ, is large.
The support of the window contributions GN , at large kn̂, is
controlled by the G0 part that takes the form

G0ð2χ̄kn̂; χ̄=σÞ ¼
ffiffiffi
π

p
σ=χ̄ exp ð−σ2k2n̂Þ; ð32Þ

which effectively constrains the integral domain to
kn̂ ≲ 1=σ. For some fixed and finite l such that
kn̂ ≪ l=χ̄, one can neglect the kn̂ dependence of the 3D
power spectrum. This is, of course, possible since we
assume that the 3D power spectrum depends only on the

amplitude of the total wave mode k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n̂ þ l2=χ̄2

p
≃

l=χ̄, which is not the case when, e.g., redshift space
distortions are considered (a known regime when Limber
approximation fails). From Eq. (29), we then get

CðnÞðlÞ ¼
X∞
m¼0

ð−iÞnþmγnþm

×
Z

∞

0

dχ̄
Wðχ̄Þ2
χ̄2

�
σ

χ̄

�
nþm

Pmðl=χ̄; z½χ̄�Þ; ð33Þ

where the integration over the GN gives us

γN ¼
Z

∞

−∞

dxffiffiffi
π

p Uð−N=2; 1=2; x2Þe−x2

¼
8<
:

1 if N ¼ 0;

ð−2Þ−N=2þ1=2ðN − 2Þ!!= ffiffiffi
π

p
if N is odd;

0 if N is even:

ð34Þ

The usual Limber approximation is obtained by setting
n ¼ 0 andm ¼ 0, and we obtain the well-known expression

CðlÞ ¼ Cð0ÞðlÞ ¼
Z

∞

0

dχ̄
Wðχ̄Þ2
χ̄2

Pðl=χ̄; z½χ̄�Þ: ð35Þ
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From the expression in Eq. (33), we see that the higher terms
in m (and, equivalently, in n), originating from the unequal-
time effects in the 3D power spectrum, are suppressed in this
“large σ” approximation by the higher powers of σ=χ̄.
In summary, in this section we have established the

connection between the full- and flat-sky angular power
spectrum from a geometrical perspective. Starting from the
common propositions of setting the analysis in the plane
(flat sky), we derived the expressions for the angular power
spectrum that can be considered a suitable approximation
for the full analysis on the sphere (full sky). The question
that naturally arises is under what condition do we expect
this approximation to hold? On physical grounds, we
expected it to hold for small survey angles (high l) and
distant observers (from the observation planes). In the
following sections, we show how these notions arise in a
more formal, asymptotic sense and what is the appropriate
limit of dynamical variables in which the flat-sky solution
is realized.

IV. FLAT-SKY LIMIT USING THE SIMPLIFIED
3D POWER SPECTRUM

In this section, let us focus on the simplified 3D power
spectrum. This will allow us to make a straightforward
and concrete comparison between the flat- and full-sky
results for the unequal-time angular power spectrum Cl.
Moreover, by performing the asymptotic expansion around
the saddle point, we can establish the precise conditions
that give rise to the flat-sky results. Even though obtained in
the simplified 3D power spectrum case, these conditions
should be independent of the shape and form of the power
spectrum and can thus be considered as universal. Indeed,
these very conditions are then used in the next section to
obtain the flat-sky limit for the general case for an arbitrary
3D power spectrum.
Let us thus assume a form of the 3D power spectrum

Pðk; z; z0Þ ¼ ADðzÞDðz0Þk2e−α2k2

¼ A
α2

DðzÞDðz0Þð−∂κÞe−κk2
����
κ¼α2

: ð36Þ

Using this form in the expression given in Eq. (16), we
obtain a simple and analytic flat-sky unequal-time angular
power spectrum

Cflatðl; χ; χ0Þ

¼ ADD0ð−∂κÞe−κl2=ðχχ0Þ
1

2
ffiffiffiffiffi
πκ

p
χχ0

e−
ðδχÞ2
4κ

����
κ¼α2

¼ ADD0

2
ffiffiffi
π

p
α3χχ0

�
1

2
þ ðαlÞ2=ðχχ0Þ − δχ2

4α2

�
e−ðαlÞ

2=ðχχ0Þ−δχ2

4α2 ;

ð37Þ

and where we use again the notation δχ ¼ χ − χ0. Using the
arithmetic mean χ̄ ¼ ðχ þ χ0Þ=2 and the δ variable (intro-
duced in the previous section), this expression becomes

Cflatðl; χ̄;δÞ ¼−
ADD0

2
ffiffiffi
π

p
χ̄2ð1− δ2Þ

× ∂κ

�
1ffiffiffi
κ

p exp
�
−

κ

χ̄2ð1− δ2Þl
2−

χ̄2

κ
δ2
	�

κ¼α2
:

ð38Þ

In the full-sky case, the unequal-time angular power
spectrum is given by Eq. (6), which also has an analytic
solution for our choice of the 3D power spectrum. We
obtain

Cfull
l ðχ̄; δÞ ¼ −

ADD0

2χ̄
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − δ2

p

× ∂κ

�
1

κ
e−

χ̄2

2κð1þδ2ÞIlþ1=2

�
χ̄2

2κ
ð1 − δ2Þ

��
κ¼α2

;

ð39Þ

where we use the fact that the integral over the two
spherical Bessel functions and Gaussian suppression gives
rise to the modified Bessel function IνðzÞ, i.e.,

2

π

Z
k2dk jlðχkÞjlðχ0kÞe−κk2

¼ 1

2
ffiffiffiffiffiffi
χχ0

p 1

κ
e−

χ2þχ02
4κ Ilþ1=2

�
χχ0

2κ

�
: ð40Þ

The question now arises regarding the relation of this
full-sky result Cfull

l to the obtained flat-sky result CflatðlÞ.
Our strategy here is to derive the latter from the former.
We could, of course, compare them numerically and check
the correspondence. However, this is not exactly what we
are aiming at, especially since we are dealing with the
unrealistic shape of the 3D power spectrum. Wewant to use
the analytic expressions to determine the exact conditions
under which the full-sky results approach the flat sky ones.
This is more valuable information because we will require it
to hold universally, regardless of the choice of the shape of
our 3D power spectrum. Thus, we are looking for the exact
asymptotic limit in which we can recover the flat-sky result
CflatðlÞ starting from the expression Cfull

l in Eq. (39).
Without further ado, we postulate that the flat-sky results

are retrieved in the limit χ ∝ l → ∞, i.e., when the mean
comoving distance χ is approaching large values as fast as l
is. We are thus interested in obtaining the asymptotic form
of the modified Bessel function IνðzÞ in that limit, i.e., we
would like to obtain the approximation for

Iνþ1
2
ðaν2 − bÞ; as ν → ∞: ð41Þ
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To do this, we use the standard saddle point method,
starting from the integral representation of the modified
Bessel function

IνðzÞ ¼
1

2π

Z
π

−π
dθ ez cos θþiνθ: ð42Þ

We rewrite the integral in the following form:

Iνþ1
2
ðaν2 − bÞ ¼ 1

2π

Z
π

−π
dθ eiðνþ1

2
Þθeν2fðθÞ; ð43Þ

where fðθÞ ¼ ða − b=ν2Þ cos θ. From f0ðθ0Þ ¼
−ða − b=ν2Þ sin θ0 ¼ 0, we have θ0 ¼ 0; π, and −π, and
thus f00ðθ0Þ ¼ −aþ b=ν2, a − b=ν2, and a − b=ν2.
Expanding the integrand around the stationary point
θ0 ¼ 0 gives us

fðθÞ ¼ ða − b=ν2Þ þ 1

2
f000ðθ − θ0Þ2 þ � � �

¼ ða − b=ν2Þ þ 1

2
jf000jei argðf

00
0
Þs2ei2ϕ; ð44Þ

and we have

Iνþ1
2
ðaν2 − bÞ ∼ eaν

2−b

2π

�Z
0

∞
dt e−iðνþ1

2
Þte−1

2
ðaν2−bÞt2þπ

þ
Z

∞

0

dt eiðνþ1
2
Þte−1

2
ðaν2−bÞt2

	

∼
eðaν2−bÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πðaν2 − bÞ

p e
−

ðνþ1
2
Þ2

2ðaν2−bÞ; as ν → ∞:

ð45Þ

We have thus obtained the leading asymptotic term by
expanding around the stationary θ ¼ 0 point. Further cor-
rections could be obtained by exploring the subleading terms
of this saddle, as well as by considering the corrections
arising from the borders of the integration region.

Using ν ¼ l, a ¼ χ̄2

2κl2, and b ¼ χ̄2

2κ δ
2, we obtain

Ilþ1=2

�
χ̄2

2κ
ð1 − δ2Þ

�

≈
ffiffiffi
κ

p
χ̄

e
χ̄2

2κð1−δ2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πð1 − δ2Þ

p exp

�
−

κ

χ̄2ð1 − δ2Þl
02
	
; ð46Þ

where we use l0 ¼ lþ 1=2, which also gives us a
mathematical justification of the commonly used approxi-
mation (often adopted in conjunction with the Limber
approximation, see, e.g., [26]). This gives us the limit for
the full-sky unequal-time angular power spectrum

Cfull
l ðχ̄; δÞ ≈ −

ADD0

2
ffiffiffi
π

p
χ̄2ð1 − δ2Þ

× ∂κ

�
1ffiffiffi
κ

p exp

�
−
χ̄2

κ
δ2 −

κ

χ̄2ð1 − δ2Þl
02
	�

κ¼α2
;

ð47Þ

which is equivalent to the flat-sky result CflatðlÞ given in
Eq. (38), up to the difference in l and l0. This thus justifies
our limiting procedure, where we assumed χ ∝ l → ∞. In
the next section, we show how we can generalize these
results to the case of a general 3D power spectrum. Luckily,
it turns out we have done most of the calculations that we
will need already in this section.
Before we move on, however, let us use our simple

example to investigate the support of the unequal-time
effects in the flat-sky angular power spectrum CflatðlÞ. The
condition for finding the extrema is given in Eq. (22),
which, besides the trivial δ� ¼ 0 solution, gives us two
finite δ� solutions

δ� ≈� α

χ̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2

�
1þ 2ðαlÞ2

3χ̄2

�s
: ð48Þ

The mathematical details of this expression are not highly
important by themselves; nonetheless, there are several
lessons to be learned. First of all, the flat-sky angular power
spectrum CflatðlÞ at these two points is negative, i.e.,
comparing the two specific time slices (separated approx-
imately by δ�) structure is anticorrelated (see also [10]).
What determines this anticorrelation length? We see that δ�
is dependent on α, i.e., it is determined by the shape of the
3D power spectrum P. We thus expect to find similar
features in more general, ΛCDM-like, cosmologies.

V. FLAT-SKY LIMIT USING THE GENERAL
3D POWER SPECTRUM

We generalize our results from the previous section,
obtained by considering a simplified shape of the 3D power
spectrum, to the case of the general shape, which includes
the realistic ΛCDM power spectrum. We start with the
assumption that the 3D power spectrum P can be repre-
sented as a discrete Mellin transform of the following form:

Pðk; χ; χ0Þ ¼ DD0X
i

αikνi ; ð49Þ

where αi are coefficients, and the νi are phases. Each
of these can be complex. This is a good approximation
that works well in various LSS applications (see, e.g.,
[18,27–31] for some examples). Our strategy is thus to use
this transform and perform the limiting procedure on the
individual kνi case.
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Adopting the transform given in Eq. (49) and using it in
the flat-sky angular power spectrum expression given in
Eq. (16), we get

Cflatðl; χ; χ0Þ ¼ DD0

χχ0
X
i

αi

Z
∞

−∞

dkn̂
2π

e−iδχkn̂ðk2n̂ þ l̃2Þνi2

¼ DD0

χχ0
X
i

αi
ð2l̃=jδχjÞνi2þ1

2ffiffiffi
π

p
Γð− νi

2
Þ Kνi

2
þ1

2
ðjδχjl̃Þ;

ð50Þ

where we use l̃ ¼ l=
ffiffiffiffiffiffi
χχ0

p
, and where Kν is the modified

Bessel function of the second kind. This expression is
useful because it allows efficient evaluation of the calcu-
lation of the projected angular power spectrum. It is
analogous to the computation performed in Ref. [18] for
the full-sky case, where the ordinary hypergeometric
function 2F1 is obtained instead of Kν. In this respect,
the flat-sky results provide us with significant computa-
tional simplification. However, we will not discuss these
aspects of the flat-sky results here; for a detailed analysis
and performance of these flat-sky results, we refer the
reader to Ref. [32]. Here we attempt to obtain the result in
Eq. (50) directly from the full-sky formalism.
Referring to the full-sky unequal-time angular power

spectrum expression given in Eq. (6) and using the discrete

transform of the 3D power spectrum given in Eq. (49),
we have

Cfull
l ðχ; χ0Þ ¼ 4πDD0X

i

αi

Z
∞

0

k2dk
2π2

kνi jlðkχÞjlðkχ0Þ:

ð51Þ

We can use the integral representation of the product of two
spherical Bessel functions

jνðzÞjνðζÞ ¼
1

4i
ffiffiffiffiffi
zζ

p
Z

cþi∞

c−i∞

dt
t
exp

�
1

2
t −

z2 þ ζ2

2t

�

× Iνþ1=2

�
zζ
t

�
; ℜðνÞ > −1=2; ð52Þ

where c is a positive constant (see, e.g., [33],
Eq. (10.9.28)]). Using our earlier result on the asymptotic
expansion of the modified Bessel function given in
Eq. (45), we have

jνðzÞjνðζÞ≈−
1

4

iffiffiffiffiffiffi
2π

p 1

zζ

Z
cþi∞

c−i∞

dtffiffi
t

p exp

�
1

2
t−

ðz−ζÞ2
2t

�
e−

ν02
2zζt:

ð53Þ

This gives us

4π

Z
∞

0

k2dk
2π2

kνjlðkχÞjlðkχ0Þ ≈ −i
ffiffiffi
π

2

r
1

χχ0

Z
∞

0

dk
2π2

kν
Z

cþi∞

c−i∞
exp

�
1

2
t −

δχ2

2t
k2
�
e
− l02
2χχ0k2t

dtffiffi
t

p

≈ −i
ffiffiffi
π

2

r
1

χχ0

Z
cþi∞

c−i∞

dtffiffi
t

p et=2
Z

∞

0

dk
2π2

kνe
−δχ2

2t k
2− l02

2χχ0k2t

≈ −
i

ð2πÞ3=2
1

χχ0
ðl̃0=jδχjÞν2þ1

2Kν
2
þ1

2
ðjδχjl̃0Þ

Z
cþi∞

c−i∞
dt et=2t

ν
2; ð54Þ

where l̃0 ¼ ðlþ 1=2Þ=
ffiffiffiffiffiffi
χχ0

p
, and in the second line, we have used the integral representation of the modified Bessel

function of the second kind (see, e.g., [33]). Finally, the remaining integral is related to the definition of the gamma function

1

2πi

Z
cþi∞

c−i∞
dt et=2ts ¼ 2sþ1

Γð−sÞ : ð55Þ

This gives us an asymptotic form of the full-sky unequal-time angular power spectrum,

Cfull
l ðχ; χ0Þ ¼ 4πDD0X

i

αi

Z
∞

0

k2dk
2π2

kνjlðkχÞjlðkχ0Þ ≈
DD0

χχ0
X
i

αi
ð2l̃0=jδχjÞνi2þ1

2ffiffiffi
π

p
Γð− νi

2
Þ Kνi

2
þ1

2
ðjδχjl̃0Þ: ð56Þ

This is precisely the same form we have obtained from the flat-sky calculations in Eq. (50).
Thus, we have established a direct mathematical correspondence between the full- and the flat-sky angular power

spectrum.We have already shown that this is to be expected on physical grounds in Sec. III, where geometric considerations
are used to establish the correspondence between the full and the flat sky for distant observers looking at the small patch of
the sky. Here we have succeeded in showing that the same correspondence follows purely mathematically when the proper
limit of large χ and l variables is taken, namely, when χ ∝ χ0 ∝ l → ∞, as we have shown in Sec. IV.
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VI. ASYMPTOTIC FORM OF THE ORDINARY
HYPERGEOMETRIC FUNCTION 2F1ða; b; c; zÞ
Here we establish a link between a direct representation

of the double spherical Bessel integral given in Eq. (51)
given in terms of the ordinary (Gaussian) hypergeometric
function 2F1ða; b; c; zÞ and, on the other hand, our
asymptotic representation established in Sec. V. This
gives us an asymptotic expansion of the ordinary

hypergeometric function 2F1 in a distinct variable regime
that we further specify in this section. We show how our
asymptotic result can also be obtained in an alternative
way using some of the known properties of the ordinary
hypergeometric function.
We start with the representation of the double spherical

Bessel integral arising in Eq. (51) in terms of the ordinary
hypergeometric function, giving us

4π

Z
∞

0

k2dk
2π2

kνjlðkχÞjlðkχ0Þ ¼ 2νþ1χ−3−ν
Γðlþ ν

2
þ 3

2
Þ

Γð− ν
2
ÞΓðlþ 3

2
Þ t

l
2F1

�
ν

2
þ 1;lþ ν

2
þ 3

2
;lþ 3

2
; t2

�
; for t ≤ 1; ð57Þ

where t ¼ χ0=χ ¼ ð1 − δÞ=ð1þ δÞ, and we assume without
loss of generality that χ ≥ χ0 (positive δ). This explicit
result has already been used to compute the CMB and LSS
angular statistics [18–20,22]. However, the complexity of
the hypergeometric function poses limits to the efficiency
of using this result. As shown in [32], for all practical
purposes in CMB and LSS, replacing the full result with its
asymptotic form, as given in the previous section, leads to

highly accurate results while significantly reducing the
computational effort. The reason for this simplification lies
in replacing the hypergeometric function with the modified
Bessel function of the second kind.
Given our asymptotic results provided in Eq. (56) and the

analytic expression in Eq. (57), we can establish the
following relation:

2F1ðλ;lþ λ;lþ 1; t2Þ ∼ 1ffiffiffi
π

p
�
l
2

�
λ−1

2 Γðlþ 1Þ
Γðlþ λÞ t

−l−λ
2
−1
4ð1 − tÞ−λþ1

2Kλ−1
2
½lð1 − tÞ= ffiffi

t
p �; for l → ∞; ð58Þ

and for t ≤ 1. However, in order to make these results fully
consistent, we need to impose certain conditions on the
variable t. Namely, when deriving the saddle point approxi-
mation for the modified Bessel function Iν in Sec. IV,
we imposed the condition that χ ∝ χ0 ∝ l, i.e., that the
variable measuring the magnitude of unequal-time effects,
δ ¼ δχ=ð2χ̄Þ ∝ 1=l, is small. This implies that the above
results in Eq. (58) are valid for small values of t. How
small? We can relate the smallness to the l variable,
δ ¼ δχ=ð2χ̄Þ ¼ δχk⊥=ð2lÞ ¼ x=ð2lÞ, where we have in-
troduced an arbitrary constant xð≡δχk⊥Þ. Thus, the above
results hold for any x such that x ≪ l. Therefore, the
asymptotic result in Eq. (58) holds when

t ¼ 1 − x=ð2lÞ
1þ x=ð2lÞ ; ð59Þ

for an arbitrary x. We can simplify the above results further
by noting that we are working in the l → ∞ limit, and thus,
t ∼ 1 − x=l. Equation (58) then simplifies to the following
compact form:

2F1

�
λ;lþ λ;lþ 1; 1 −

2x
l

�

∼
ffiffiffi
2

π

r �
l
2

�
λ
�
1þ x

l

�
l Kλ−1

2
ðxÞ

xλ−
1
2

; for l → ∞: ð60Þ

This result represents the asymptotic expansion of the
ordinary hypergeometric function in a specific configura-
tion defined above. Moreover, in the strict limit,
when l ≫ x, we can further simplify this result using
ð1þ x=lÞl → expðxÞ. Further asymptotic relations, valid
in different variable domains, can be obtained using various
transformation rules of the ordinary hypergeometric func-
tion. The most immediate ones follow from applying, e.g.,
Euler and Pfaff transformations.
Moreover, with the hindsight of our previous result, we

can also derive the asymptotic expression given in Eq. (60)
using some of the well-known relations for the ordinary
hypergeometric function 2F1. The essential piece of infor-
mation is to understand the appropriate limit to be con-
sidered, which of course, follows from the insight provided
in Sec. IV. Thus, we can use the linear transformation
property

2F1ða; b; c; zÞ ¼ ð1 − zÞ−a2F1ða; c − bc; z=ðz − 1ÞÞ;
ð61Þ

and the relation to Tricomi’s (confluent hypergeometric)
function Uða; b; zÞ, giving us

Uða; b; zÞ ¼ z−að lim
c→∞2F1ða; a − bþ 1; c; 1 − c=zÞÞ: ð62Þ
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The latter relation is sometimes also used as a definition of the function Uða; b; zÞ. Combining the two relations above
gives us

2F1ðλ;lþ λ;lþ 1; 1 − 2x=lÞ ¼
�
2x
l

�
−λ

2F1ðλ; 1 − λ;lþ 1; 1 − l=ð2xÞÞ ∼ lλUðλ; 2λ; 2xÞ; for l → ∞: ð63Þ

The final step is to note that, for b ¼ 2a, the Tricomi
(confluent hypergeometric) function can be related to the
modified Bessel function of the second kind,

Uðλ; 2λ; 2zÞ ¼ 1ffiffiffi
π

p ezð2zÞ−λþ1=2Kλ−1=2ðzÞ: ð64Þ

Combining all these parts gives us

2F1ðλ;lþ λ;lþ 1; 1 − 2x=lÞ

∼
ffiffiffi
2

π

r �
l
2

�
λ exKλ−1=2ðxÞ

xλ−1=2
; for l → ∞; ð65Þ

which is equivalent to the result obtained in Eq. (60).
It is easy to verify that starting from the expression given

in Eq. (60) [and, equivalently, in Eq. (65)] and using it in
Eq. (57), we can recover our flat-sky result from the
previous section given in Eq. (56).

VII. SUMMARY AND CONCLUSIONS

We have established a robust link between the full- and
flat-sky descriptions of the leading two-point statistics used
in CMB and LSS data analyses, namely, the angular power
spectrum. So far, the two main modes of employing the
angular power spectrum have been within the Limber
approximation or the so-called full-sky implementation,
the latter requiring a costly evaluation of oscillatory
integrals containing a product of two Bessel functions.
The Limber approximation is foremost a practical

approach. However, it has two considerable drawbacks.
The first is related to the fact that it yields results with the
required accuracy only at relatively small scales and for
surveys with fairly wide windows. Moreover, the accuracy
is limited to autocorrelations. The reason for these limi-
tations is the assumption that the wave modes along the line
of sight (crucial in the redshift space distortions) in the 3D
power spectrum can be entirely neglected when computing
the angular power spectrum. Given these issues, the use of
the Limber approximation is restricted mainly to the
analysis of weak gravitational galaxy and CMB lensing.
At the same time, they represent a serious obstacle to
effective cosmological analyses using galaxy tomography.
On the other hand, the full-sky results are exact and capture
the whole angular dependence of the correlators. However,
the evaluation of integrals involving a product of two
Bessel functions and a theoretical 3D power spectrum has
proven to be a challenging task, especially when part of
Markov chain Monte Carlo analyses. In recent years, there

have been advances proposing the use of the discrete
Mellin transform (known in the field as the FFTLog
decomposition), which leads to an expression in terms
of the ordinary hypergeometric function 2F1 (see, notably,
[18]). Although this representation is exact, it still poses a
computational challenge when used at all scales, especially
in the regime of high l or for distant observers (comple-
mentary to the Limber approximation). To mitigate this,
one might consider patching the full-sky result with the
Limber approximation to achieve efficient yet satisfactory
accuracy on overall scales. However, this quickly becomes
a sensitive fine-tuning problem, with challenges increasing
for unequal-time cross-correlations and narrow windows.
Given this state of affairs, we found it prudent to develop a

systematic framework that mitigates these challenges and
provides a robust and natural way to connect large- and small-
scale results. This is achieved by providing an asymptotic
approximation to the full-sky result in the limiting case of a
distant observer and a largel expansion that is consistentwith
the unequal-time results obtained in the flat-sky limit, i.e.,
when the analysis on spherical shells is replaced by the
parallel planes. To establish the precise asymptotic conditions
under which this limit is achieved, we first consider a simple
analytic form of the theoretical 3D power spectrum. This
allows us to obtain the analytic expressions for both the full-
and flat-sky angular power spectra, which, in turn, gives a
limiting procedure that maps the former to the latter. It turns
out that the full-sky result matches the flat-sky result (in the
leading saddle point approximation) when the angular modes
l and comoving distance are taken to infinity at the same rate,
i.e., when χ ∝ χ0 ∝ l → ∞. The final step is to use this well-
defined asymptotic limit to derive the expansion of the full-
sky angular power spectrum valid for the general theoretical
3D power spectra (which would also include ΛCDM-like
universes). The latter is automatically achieved by using
the above-mentioned Mellin integral transform of the theo-
retical 3D power spectrum. As a result, we find that the same
limiting procedure of high l and distant observer naturally
maps the full-sky result into the one obtained in the flat-sky
approximation, which establishes a robust asymptotic con-
nection between the two results, allowing us also to consider
subleading asymptotic corrections, a task we leave for
future work.
By deriving our asymptotic connection between the full-

and flat-sky angular power spectra, we have also derived a
purely mathematical result. Namely, our analysis establishes
an asymptotic limit of the ordinary hypergeometric function
in the specific variable configuration (corresponding to the
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flat-sky limit in our physical interpretation). In this configu-
ration, the limit connects the hypergeometric function

2F1ða; b; c; zÞ to the modified Bessel function of the second
kind KνðzÞ. Once the nature of the appropriate limit is
established, namely, that χ ∝ χ0 ∝ l → ∞, we are able to
provide an alternative derivation of our earlier flat-sky result
using some of the known properties and limits of the
ordinary hypergeometric function.
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